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Lie triple systems and warped products

M. BERTOLA – D. GOUTHIER

Riassunto: Si investigano condizioni che garantiscano che un un prodotto defor-
mato M = B×ω F sia localmente simmetrico. In particolare si mostra che è necessario
che esista un sistema triplo di Lie di codimensione uno; tali strutture vengono descritte
e studiate, portando alla classificazione dei prodotti deformati localmente simmetrici.

Abstract: We investigate the conditions ensuring that a warped product M =
B ×ω F is locally symmetric. In particular, we show that it is necessary that there
exists a codimension-one Lie Triple System; such structures are described and studied,
leading to classification of locally symmetric warped products

1 – Introduction

A warped product (M, g) is topologically a product manifold M =

B × F : its Riemannian metric g is obtained as a deformation of the

product metric gB + gF via a map ω : B → IR+:

g = gB + ω2gF .

In the literature warped products were first used to construct examples

of manifolds with negative curvature; of locally symmetric spaces (whose

factors are space forms); of curvature homogeneous spaces which are not

locally homogeneous and so on. Therefore it is natural to study and
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classify warped products with special Riemannian curvature. This mo-

tivated [2], where we described and classified the warped products with

constant curvature and the Einstein warped products with both factors

Einstein.

The present paper extends those results to the case of locally sym-

metric spaces.

The classification of symmetric warped products is achieved via the

system 



κω2 + ‖Ω‖2 = h

∇
(Hω

ω

)
= 0 .

The second equation generalizes the condition Hω ∝ ωg which allowed

our classification, in [2], of the warped products with constant sectional

curvature. Such an equation, in the form Hω + ωg = 0 has been used in

order to give conditions on the curvature. In particular Gallot in [4]

proves that if a complete Riemannian manifold (Mn, g) admits a function

ω such that �ω = nω, then ω satisfies Hω + ωg = 0. Furthermore

Obata’s theorem [7] assures that — under the hypotheses of compactness

— such a function exists iff Mn is the canonical sphere.

It is possible to prove directly that necessary conditions for (M =

B×F, gω) to be (locally) symmetric are that F has constant curvature and

B is locally symmetric (Proposition 4.2). Further conditions involving the

function ω imply the existence of a codimension one Lie Triple System σ

orthogonal to Ω := grad(ω) (Lemma 4.5).

We are thus led to study which conditions must be fulfilled in order

that a symmetric Lie algebra (g, θ) possesses a codimension one Lie Triple

System.

Two different results have been proved here in order to describe such

Lie Triple Systems and consequently the Riemannian manifold (B, gB).

First of all we prove that if Ω is a vector orthogonal to the Lie Triple

System σ then Ω belongs to an irreducible factor or to the Euclidean one

(Theorem 4.9): therefore we study codimension one Lie Triple Systems

embedded into an irreducible factor.

The second result assures that an irreducible symmetric space with a

codimension one Lie Triple System has constant curvature (Theorem 3.5).

Thus, a locally symmetric warped product is (locally) the direct prod-

uct (i.e. a warped product with ω ≡ 1) of some irreducible symmetric
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spaces (and an Euclidean one, if the case) and of a warped product with

constant curvature. Moreover, the warping function of this factor is the

same ω thought on a unique irreducible factor (Corollary 4.8).

The paper is divided into four sections. In Section 2, we recall the

basics of symmetric spaces in order to introduce the notations: we essen-

tially adopt the notations of [5] and the relevant facts are taken ibidem.

Section 3 describes the Lie Triple Systems of codimension one: it

contains the original results in the classification of such objects.

In Section 4 we recall symbols and known results on warped products

(obtained from O’Neill [8]). Then we obtain necessary and sufficient

conditions for local symmetricity (Proposition 4.2); hence, we show the

existence of locally symmetric codimension one submanifolds. Such sub-

manifolds define a Lie Triple System of the same kind studied in Section 3.

In such a way we can achieve a characterization of locally symmetric

warped products, which is the main goal of this paper.

2 – Preliminaries on symmetric spaces

In this section we quickly recall some facts about (locally) symmetric

spaces and fix the notations; as they are quite well known we will recall

only the facts we are going to use referring the reader to [5] for more

extensive coverage of the subject.

A globally [locally] symmetric space is a Riemannian n-dimensional

manifold M with metric g such that for any x ∈ M there exists a geodesic

involutive global [local] isometry θx fixing the point x. Necessary and

sufficient condition for the local symmetry of M is that ∇R = 0.

If G is the largest connected group of isometries of M and K is the

isotropy subgroup of a certain arbitrarily fixed point x0 ∈ M then G acts

transitively on M and hence M = G/K.

The isometry θx0
can be uniquely lifted to an involutive automor-

phism of G (which we denote again with θ) for which the set of fixed

points is K.

Since we are dealing with Riemannian symmetric spaces, K is a com-

pact group (it is a subgroup of SO(n)).

Let g and k be respectively the Lie algebras of the groups G and K:

denote by ϑ the action of the automorphism θ on the Lie algebra of G.
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Let us denote with k and m the subspaces realizing the Cartan decom-

position of g, namely the eigenspaces of ϑ with eigenvalues +1 and −1

respectively. Clearly k is the subalgebra generating K and the orthogonal

complement m is naturally identified with Tx0
M .

We remind that the connection of M does not depend upon the choice

of the G-invariant metric on m. Since we are interested in the curvature, a

specific choice of the invariant metric does not affect the generality of the

result. Hereafter we will work under the assumption that g is semisimple:

a) if g is semisimple and compact we can choose minus the Killing form

as the metric;

b) if it is semisimple, non-compact, without compact ideals then the

Killing form on m is positive definite and therefore we may take that

as our invariant Riemannian metric. This also implies that in the non-

compact case k must be a maximal compactly embedded subalgebra

if we want to obtain a Riemannian symmetric space.

Recall that the curvature tensor at the base point x0 satisfies the

equation:

RXYZ := ∇[X,Y ]Z − [∇X ,∇Y ]Z = [[X,Y ], Z] X,Y, Z ∈ m .

Let h ⊆ m be a maximal Abelian subalgebra (Cartan subalgebra) in the

tangent space Tx0
M ; let Eα ≡ {X ∈ g s.t. ∀H ∈ h adH(X) = α(H)X}

be the corresponding root spaces with dimensions mα.

The set R = {(α,mα) ∈ h∗ × IN s.t. mα > 0} is called the system of

restricted roots and we have the decomposition g = g0+
∑

α∈R Eα where

g0 is the centralizer of h in g. The rank of M is the dimension of h or

equivalently the dimension of a maximal totally geodesic flat submanifold

of M . We introduce the following spaces

kα := π+Eα :=
1

2

(
id + ϑ

)
Eα ⊂ k; mα := π−Eα :=

1

2

(
id− ϑ

)
(Eα)⊆m

k = k0 +
∑

α∈R+

kα; k0 = g0 ∩ k; m = h +
∑

α∈R+

mα .

Notice that the splitting of m is orthogonal w.r.t. the Killing metric.
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We complete h to a Cartan subalgebra H of g and consider the similar

Cartan decomposition of g

g = H +
∑

α∈R

gα

where R denotes the set of roots of the semisimple Lie algebra g: then the

restricted roots contain (as a set) the root system R ⊂ H∗ of g (restricted

to h∗). More precisely, if α ∈ R, then α|h, if not zero, belongs to R. This

in turn implies that R spans the dual h∗.

Conversely for any restricted root α ∈ R ⊂ h∗ ⊂ H∗ there exists a

root α̃ ∈ R such that α̃|h = α.

3 – Codimension one Lie Triple Systems

In this paragraph we will denote with σ the tangent space Tx0
Σ,

subspace of m � Tx0
M . We have the following definition and proposition,

both to be found in [5], which work for a generic subspace σ ∈ m, M being

a locally symmetric space.

Definition 3.1. A Lie Triple System σ is a subspace of g with

the following property

[[σ, σ], σ] ⊆ σ .

It can be proved the following

Proposition 3.2. Let Σ ⊂ M be a totally geodesic submanifold

of the (locally) symmetric manifold M ; then Σ is a (locally) symmetric

manifold and Tx0
Σ � σ ⊂ m is a Lie Triple System.

Conversely if σ ⊂ m is a Lie Triple System, then Σ = Exp(σ) is a

totally geodesic submanifold.

We now begin the study of the codimension one Lie Triple Systems:

the following lemmas and propositions are not to be found in the litera-

ture.

Suppose that σ is of codimension one in m. We take an orthogonal

vector W to σ in m; we can always assume that h contains W by com-

pleting the one dimensional algebra spanned by W to a maximal Abelian
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subalgebra of m and hence we can give the orthogonal decomposition

of m as

m = IR[W ]
⊥⊕ σ0︸ ︷︷ ︸

:=h

⊥⊕
∑

α∈R

mα

σ := σ0

⊥⊕
∑

α∈R

mα .

Let {Hi, i = 1 . . . rank(M)} be a basis of h corresponding to simple roots

{α1 . . . αr} normalized to ‖Hi‖ = 2 for long roots.

Thus we have that

Lemma 3.3. If σ ⊂ m is a codimension one Lie Triple System,

then the Dynkin diagram of the restricted roots has at least a rank one

connected component.

Proof. First of all notice that if X ∈ Eα, then [X,ϑX] is an element

of h because it belongs to the centralizer of h and it is skew w.r.t. ϑ;

moreover ∀H ∈ h

〈H, [X,ϑX]〉 = 〈[H,X], ϑX〉 = α(H)〈X,ϑX〉 =

= −α(H)

2
〈π−X,π−X〉 = −1

2
α(H)‖π−X‖2 ,

and hence [X,ϑX] = −‖π−X‖2

2
Hα. There follows that for any fixed simple

root αi, and any X ∈ Eαi
we have (as in the above equation)

[[H,π−X], π−X] =
‖π−X‖2

4
αi(H)Hi ∀H ∈ σ0 .

Imposing that this is orthogonal to W for all i = 1 . . . r (remember that

all mα are included into σ) we have that, ∀ i = 1 . . . r, ∀H ∈ σ0,

αi(H)〈W,Hi〉 = 0 ,

but, since Hi and αi are linearly independent and the dimension of σ0 is

r − 1 it follows that there exist a unique i (which we assume from now
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on to be 1) such that 〈W,H1〉 �= 0, and 〈W,Hj〉 = 0, ∀ j = 2 . . . r. Hence

W ∈ span(H1) and 〈H1, Hj〉 = 0, j = 2 . . . r.

This proves that the Dynkin diagram is disconnected and it has (at

least) one rank-one component.

The second lemma characterizes the irreducible component of the set

of restricted roots to which α1 belongs.

Lemma 3.4. In the hypotheses of Lemma 3.3 (setting α := α1) we

have that 2α is not a root, i.e. m2α is trivial.

Proof. Suppose X,Y ∈ Eα and Z ∈ E2α, then

[[π−Z, π−X], π−Y ] = −1

2
[π+[ϑX,Z], π−Y ] =

= −1

4
〈π−[ϑX,Z], π−Y 〉Hα − 1

4
π−[[ϑX,Z], Y ]︸ ︷︷ ︸

∈m2α

.

Now the vector π−[ϑX,Z] cannot vanish for all X ∈ Eα, Z ∈ E2α

since ϑX ∈ E−α and −α, 2α belong to the α–string through 0. Thus

〈π−[ϑX,Z], π−Y 〉 does not vanish identically and this leads to a contra-

diction with the fact that W⊥ is a Lie Triple System.

As a consequence we get

Theorem 3.5. An irreducible Riemannian symmetric space M of

rank one with reduced diagram of restricted roots (i.e. α ∈ R ⇒ 2α /∈ R)

has constant sectional curvature.

Proof. We compute the curvature tensor directly. Let X,Y, Z ∈ Eα

(here α is the only positive restricted root) and notice that [X,Y ] =

[X,Z] = [Y,Z] = 0; let ξ = π−X, η = π−Y , ζ = π−Z and set H ∈ h such

that α(H) = 2. A straightforward but lengthy computation — which we

spare to the readers —, gives the following equations:

RHξη = [[H, ξ], η] = 2[π+X,π−Y ] = 〈ξ, η〉H
RHξH = [[H, ξ], H] = 4ξ = 〈H,H〉ξ

RξηH = [[ξ, η], H] =
1

2
[π+[ϑX, Y ], H] = 0

Rξηζ = 〈η, ζ〉ξ − 〈ξ, ζ〉η .
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This proves that R = −R0 where R0
ηξζ := 〈ξ, ζ〉η − 〈η, ζ〉ξ and ends the

proof.

Finally let us consider the more general case in which g is semisimple;

as it is proved in [5], we can split it into the direct sum of irreducible ideals

g(i), i = 1 . . . N , (where irreducible means that the algebra k(i) ⊂ g(i) is

simple compact). Now the picture is the following

g =
N⊕

i=1

(
:=g(i)︷ ︸︸ ︷

m(i) + k(i)
)

and the orthogonal of our Lie Triple System of codimension one is spanned

by the single vector W ∈ ⊕
m(i). Let us introduce the canonical projec-

tions p(i) : g → g(i) and the following objects

W i := p(i)W ; σi := σ ∩ m(i) = 〈W i〉⊥
m(i) .

Notice that σ ⊃ ⊕
σi and that (from the fact that g(i) are ideals) each σi

is a Lie Triple System inside m(i) and coincides with the orthogonal of W i

in m(i). Therefore σi coincides with m(i) if W i = 0, and has codimension

one otherwise. It follows from the previous discussion that

Corollary 3.6. If the symmetric pair (g, ϑ) is semisimple and

g =
⊕

g(i) is the corresponding splitting into irreducibles, then for all j

such that m(j) � W j �= 0 the corresponding irreducible symmetric pair

(g(j), ϑ(j)) is of rank one with reduced diagram, namely it defines a factor

with constant curvature.

Summarizing, each irreducible factor on which W i does not vanish

has constant curvature, while there are no requirements on the others.

We conclude the section with the

Theorem 3.7. If g is semisimple and has a codimension one Lie

Triple System σ in m, then the orthogonal to σ is contained in one irre-

ducible component (which has therefore constant curvature).
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Proof. Let g =
⊕N

1 g(i) be the decomposition into irreducibles as

above; let us recall that σi := σ ∩ m(i) ⊂ σ are Lie Triple Systems into

g(i). Now the generic vector in σ has the form

X =
N∑

1

xiW
i + π−X(i) ,

X(i) ∈ m(i)
αi

≡ σi,
N∑

1

xi‖W i‖2 = 0

where the condition on the xi comes from the requirement of orthogonal-

ity, while the π−X(i) are already orthogonal. Now take a further vector

of the form Y =
∑

ηi =
∑

π−Y (i) (and noticing that [W i, π−X(j)] =

αi(W
i)X(i)δij := λiX

(i)δij) and compute

[[X,Y ], Y ] =
[[∑

i

xiW
i,
∑

j

ηj
]
,
∑

k

ηk
]

=

=
∑

i

xiλi[π
+Y (i), π−Y (i)] =

∑

i

xiλ
2
i ‖ηi‖2W i ;

imposing the orthogonality we get

∑

i

xiλ
2
i ‖ηi‖2‖W i‖2 = 0

which is a contradiction since Y is generic, unless there is only one com-

ponent W i different from 0.

4 – Symmetric warped products

Let now (B, gB) and (F, gF ) be two Riemannian manifolds whose

dimensions are b and f , respectively. We consider the smooth manifold

M := B×F with the canonical projections πB : M → B and πF : M → F .

Given a smooth map ω : B → IR+, we can define a Riemannian

metric g = gω on M (called warped metric)

gω := π∗
BgB + (ω ◦ π)2π∗

FgF .



284 M. BERTOLA – D. GOUTHIER [10]

The pair (M, g) is also denoted by M = B×ω F and it is called a warped

product. We shall denote the scalar product gω(X,Y ) as 〈X,Y 〉, while gB
and gF will be explicitly written.

The fibers π−1
B (p) = {p} × F and the leaves π−1

F (q) = B × {q} are

Riemannian submanifolds of M .

We recall the formulae of the Levi-Civita connection ∇ and the Rie-

mannian tensor R (see [8]). Let X,Y, Z be sections in Γ(π∗TB) and

U, V,W in Γ(σ∗TF ). The Levi-Civita connection is given by

∇XY = ∇B
XY

∇XV = ∇VX =
〈X,Ω〉

ω
V

∇VW = ∇F
VW − 〈V,W 〉

ω
Ω .

Via a direct computation, we have the Riemannian curvature tensor R,

RXYZ = RB
XYZ; RV XY =

Hω(X,Y )

ω
V ; RXY V = RVWX = 0

RXVW =
〈V,W 〉

ω
∇X(Ω); RVWU =RF

VWU−‖Ω‖2

ω2
{〈V,U〉W−〈W,U〉V } .

This section contains our main results on the classification of warped

products which are symmetric spaces (briefly symmetric warped prod-

ucts): this relies on the previous study of codimension one Lie Triple

Systems as it will appear in due course.

The first step is to compute the tensor ∇R on M : since the compu-

tations are wearisome but straightforward, we just list the results in the

following proposition.

Beside the standard tensors we use the notation R0 to denote the

tensor R0
XYZ = g(X,Z)Y −g(Y,Z)X, and obviously RF0 is the analogous

constructed with gF .

Proposition 4.1. Let X,Y, Z, T be in TB, and U, V,W, S in TF .
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Then the expressions of ∇R are given by

(∇XR)Y ZT = (∇B
XR

B)Y ZT(1)

(∇XR)V YZ = ∇X

(H
ω

)
(Y,Z)V(2)

(∇XR)Y ZV = (∇XR)VWY = 0(3)

(∇XR)Y UW =
〈V,W 〉

ω

(
∇X∇Y Ω −∇∇XY Ω − X(ω)

ω
∇Y Ω

)
(4)

(∇XR)VWU = −2
X(ω)

ω
RVWU − 2H(X,Ω)RF0

VWU(5)

(∇VR)XYZ =
(RXY ZΩ

ω
− X(ω)H(Y,Z) − Y (ω)H(X,Z)

ω2

)
V(6)

(∇VR)UYZ =
〈U, V 〉

ω

{
RB

ΩYZ +
Z(ω)

ω
∇Y Ω − H(Y,Z)

ω
Ω
}

(7)

(∇VR)Y ZU =
〈U, V 〉

ω

{
RB

Y ZΩ +
Y (ω)

ω
∇ZΩ − Z(ω)

ω
∇Y Ω

}
(8)

(∇VR)UWY =
H(Ω, Y )

ω2
R0

WUV +
Y (ω)

ω
RUWV(9)

(∇VR)Y UW =
〈U,W 〉H(Y,Ω)

ω2
V −〈V,W 〉H(Y,Ω)

ω2
U−Y (ω)

ω
RV UW(10)

(∇VR)UWS = (∇F
VR

F )UWS − RUWSV

ω
Ω − R0

UWSV

ω2
∇ΩΩ(11)

Imposing the symmetry, namely setting ∇R = 0, the above equations

are redundant since — e.g. — (4) implies (6) which is equivalent to (8):

1. ∇BRB = 0;

2. ∇X

(H
ω

)
= 0;

3. ∇X∇Y Ω = ∇∇XY Ω +
X(ω)

ω
∇Y Ω;

4.
〈X,Ω〉

ω
RVWU +

H(X,Ω)

ω2
R0

VWU = 0;

5. RΩYZ +
Z(ω)

ω
∇Y Ω =

H(Y,Z)

ω
Ω;

6. ∇FRF = 0.
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All the above equations are equivalent to the following

Proposition 4.2. The warped product M is locally symmetric if

and only if

1. B is locally symmetric (: ∇BRB = 0);

2. The fiber F has constant sectional curvature KF = h;

3. We have

(12) ∇X

(H
ω

)
= 0 ;

4. There exists a constant κ ∈ IR such that

(13) κω2 + ‖Ω‖2 = h .

We must investigate if and under which assumptions there exists a

suitable warping function ω satisfying the above overdetermined system

(12)+(13).

Let q be a regular value for ω (it suffices that h − κq2 �= 0) and

let Σ = Σq := ω−1(q). Then it follows from equation (13) that ω is an

appropriate (hyperbolic) trigonometric function of the geodesic distance

from Σ according to the signs of h and κ.

Moreover we derive the necessary and sufficient properties for such a

Σ to be a level surface of ω using equation (12); this way we will have a

classification of all solutions of the joint system (12)+(13).

Specifically we will prove as a consequence of the tensor equation (12),

that Σ must be locally symmetric and hence it will be enough to classify

all codimension one embeddings of a locally symmetric space into another

one.

In the sequel we will need the second fundamental form S of Σ; as

a notational remark, since we are dealing only with the local geometry

of B, we will omit the superscript B in this paragraph.

Now, for X,Y ∈ TΣ we find (notice that (TΣ)⊥ = IRΩ)

SXY : = ∇XY
⊥ = 〈∇XY,Ω〉 Ω

‖Ω‖2
= (X〈Y,Ω〉 −Hω(X,Y ))

Ω

‖Ω‖2
=

= −Hω(X,Y )
Ω

‖Ω‖2
.
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hence we compute the curvature of Σ by means of Gauss–Codazzi formula

in correspondence with generic vectors X,Y, Z,W of TΣ

−RXY ZW = −RΣ
XY ZW + 〈SXZ , SYW 〉 − 〈SY Z , SXW 〉 .

Proposition 4.3. Let (B, gB) be a (locally) symmetric space and

ω : B → IR a smooth function satisfying the system

∇
(H
ω

)
= 0; κω2 + ‖Ω‖2 = h for some h,κ ∈ IR .

Let q be a fixed regular value of ω and Σ := ω−1(q): then the intrinsic

curvature RΣ of Σ is parallel, namely Σ is a locally symmetric space.

Proof. Let, in this proof, X,Y, Z, T,W be vectors in TΣ (hence

〈Ω, X〉 = 〈Ω, Y 〉 = . . . = 0). We first notice that

0 = ∇T

(H
ω

)
=

∇TH

ω
−

=0︷ ︸︸ ︷
〈Ω, T 〉 H

ω2
=

∇TH

ω

then ∇TH = 0.

From Gauss-Codazzi formula we have

SXY = −H(X,Y )

‖Ω‖2
Ω ,

∇Σ
XY = ∇XY − SXY = ∇XY +

H(X,Y )

‖Ω‖2
Ω ,

RΣ
XY ZW = RXY ZW + 〈SXZ , SYW 〉 − 〈SY Z , SXW 〉 =

= RXY ZW +
1

2‖Ω‖2
H ©∧ HXY ZW ,

where we have used the Kulkarni-Nomizu symbol ©∧ (see, e.g., [1]). A quite

long but straightforward computation now shows that the derivatives of

RΣ are all proportional to RΩY ZW : recalling formula (7) we have

RΩY ZW = 〈RΩYZ,W 〉 =
〈H(Y,Z)

ω
Ω +

〈Ω, Z〉
ω

∇Y Ω,W
〉

= 0 .
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Remark 4.4. It is not really essential to assume the explicit form of

κω2 + ‖Ω‖2 = h in the previous proposition. It is easy to realize that the

proposition would hold true and the proof would go through in exactly the

same way if we had to substitute to κω2 + ‖Ω‖2 = h any other functional

relation between the norm of the gradient and the value of ω, e.g. any

smooth functional relation like f(ω, ‖Ω‖) = 0.

The problem arises now as to whether a locally symmetric space B

allows the existence of an embedded locally symmetric space Σ of codi-

mension one; in order to answer to this problem, let us fix a point

p0 ∈ B = G/K and identify as usual the tangent space at that point

with the Lie algebra g of G; we have

g = m⊕ k .

Let W denote the vector Ω(p0) ∈ Tp0
B � m, and 〈|〉 the metric at the

point p0.

From the general theory of the symmetric spaces it follows that

〈[X,A]|B〉 = 〈A|[B,X]〉 for any two vectors A,B ∈ m and X ∈ k. We

first prove the

Lemma 4.5. The group GΣ of isometries of Σ lifts uniquely to local

isometries of B in a neighborhood of Σ, under the request of preserving

the level surfaces of ω.

Proof. We give only a sketch of the proof leaving the details to the

reader.

Let U = ω−1((q − ε, q + ε)) ⊂ M and let ϕ be an isometry of Σ.

Now, all level surfaces of ω in U are diffeomorphic to Σ by means of a

retraction r of U onto Σ defined as follows: for any point p ∈ U the point

r(p) ∈ Σ is the intersection with Σ of the geodesic through p generated by

the gradient Ω. It is not difficult to show that using this diffeomorphism

we can extend ϕ to all level surfaces of ω in U and that the result is a

local isometry. One can also check that this lift is unique and that defines

a group homomorphism GΣ → G.
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It follows from the proof that an alternative and equivalent definition

of GΣ is the following

GΣ := {g ∈ G s.t. ω ◦ g = ω} .

It is also clear that the maximal open neighborhood of Σ in the statement

of Lemma 4.5 is ω−1(I) where I is the (open) interval of regular values

of ω.

The lift defined in Lemma 4.5 allows us to inject the isotropy sub-

group KΣ ⊂ GΣ of p0 ∈ Σ into the isotropy subgroup K ⊂ G of p0 ∈ B.

It follows that KΣ (when injected in K) must preserve Ω(p0); in terms of

the Lie algebra picture this means that

kΣ ⊆ {X ∈ K s.t. [X,Ω] = 0}

namely it is a subalgebra of the centralizer of Ω in k.

Now the tangent space Tp0
Σ ⊂ Tp0

B injects naturally in m as the

orthogonal to Ω. We thus have the following relations

σ := {A ∈ m s.t. < Ω|A >= 0} = {Ω}⊥ ;

kΣ ⊆ Zk(Ω) ;

[σ, σ] ⊂ kΣ ;

[[σ, σ], σ] ⊂ [kΣ, σ] ⊂ σ

where actually the relation [kΣ, σ] ⊂ σ is trivially satisfied because it

would have held true even if we had substituted the centralizer Zk(Ω): in

fact ∀Z ∈ Zk(Ω), ∀A ∈ σ

〈[Z,A]|Ω〉 = 〈A|[Ω, Z]〉 = 〈A|0〉 = 0 .

It follows that σ is a Lie Triple System of codimension one in m, therefore

a necessary condition for our function ω to exist is that ∃Ω ∈ m s.t.

σ := {Ω}⊥ ⊂ m is a Lie Triple System.

As it was proven in Lemmas 3.3 and 3.4, a necessary and sufficient

condition for the existence of a codimension one Lie Triple System is

that B has an irreducible component with constant sectional curvature,

namely B = B1 ×B2 × . . . , and KB1 = κ = constant.
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Since Ω must belong to TB1, then ω is actually a function only of B1

and constant on the other factors.

A direct computation shows that the Hessian of ω is proportional to

the metric as we now prove.

Lemma 4.6. For any ξ, η ∈ σ � Tp0
Σ we have Hω(ξ, η) ∝ g(ξ, η).

The constant of proportionality depends only on the level surface, namely

on the value of ω.

Proof. Let ξ = π−X, η = π−Y ; then, from RΩξη + η(ω)

ω
∇ξΩ =

H(ξ,η)

ω
Ω, Hω(ξ, η) ∝ 〈Ω, RξΩη〉 and hence

Hω(ξ, η) ∝ 〈Ω, [[ξ,Ω], η]〉 ∝ 〈Ω, [π+X, η]〉 = 〈[Ω, π+X], η〉 ∝ 〈ξ, η〉 ,

where all constants of proportionality depend only on the point po via

a function ρ(p0); but now equation (12) implies that Hω
|TΣ

= ρ(p0)gΣ is

covariantly constant on Σ and hence ρ is actually a constant depending

only on the level surface Σ = ω−1(q) and hence on the value of ω.

To find the explicit dependence we must use equation (13); in fact

we have

Hω = ρ(ω)gB1
,

and taking one covariant derivative along Ω we find (recall that 0 =

∇(Hω

ω
) = 1

ω
∇Hω − 1

ω2dω ⊗Hω)

∇ΩH
ω =

‖Ω‖2

ω
Hω =

ρ(ω)‖Ω‖2

ω
gB1

= ρ′(ω)‖Ω‖2gB1
.

Thus the function ρ must satisfy

ρ′

ρ
=

1

ω

and hence ρ = Cω. To fix the constant we use again equation (13) in the

derivative form, namely

Cω〈Ω, X〉 = Hω(Ω, X) = −κω〈Ω, X〉 ⇒ C = −κ .
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In conclusion we summarize the results for the case in which the mani-

fold B is irreducible in the

Theorem 4.7. Let M = B ×ω F be a locally symmetric space such

that ω is non-constant and B is irreducible. Then

i) M has constant curvature KM = κ;

ii) (B, g) is locally isometric to a warped product I ×α Σq where Σq :=

ω−1(q) for a regular value q, α(t) satisfies





(α′(t))2 =
hκ

h− κq2
− κα2(t)

α(0) = 1

and 0 ∈ I ⊆ IR;

iii) Σq has constant curvature KΣq = hκ
h−κq2

.

Corollary 4.8. A generic symmetric warped product M = B×ωF

is (locally) the product of a symmetric space B2×. . .×BN and of a warped

product with constant curvature M1 := B1 ×ω F .

In conclusion we investigate also the case in which Isom(B) has an

Euclidean part: in the above discussion we always assumed that the group

of isometries of B was semisimple, thus excluding the Euclidean case; we

now consider the general case in which the Lie algebra of isometries is a

generic effective orthogonal symmetric Lie algebra (g, ϑ) (see [5], Ch. V).

We can always split it into three ideals g = g0 + g+ + g− of the type,

respectively Euclidean, compact and non-compact.

Let us denote by π0, π+, π− the respective projections (which are Lie

algebra homomorphisms). We can state the

Proposition 4.9. Let Ω be the gradient of ω at some point, seen

in the algebra and let {Ω}⊥ =: σ ⊂ m0

⊥⊕m+

⊥⊕m− be a Lie Triple System.

Then Ω belongs either to the Euclidean part m0 or to one irreducible

component in the semisimple part m+ ⊕ m−.
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Proof. Reasoning as in Theorem 3.7 we can conclude that Ω belongs

to g0 ⊕ g1 where g1 is an irreducible component; this implies that the

function ω depends only on the points in the (locally) direct product

B0×B1 where B0 is an Euclidean affine space (flat). In order to conclude

that ω depends only on the point on B0 or B1 we use the tensor equation

∇(Hω/ω) =: ∇(L) = 0. Take a global flat coordinate system on B0

and denote by ∂i the corresponding coordinates in the tangent space to

B0 ×B1; then ∇∂i(L) = 0 = ∂∂iL says that the tensor L does not depend

on the coordinates of B0; on the other hand, for a vector X tangent to

B1 the identity

0 = (∇XL)(∂i, ∂j) = X(L(∂i, ∂j))

implies that the matrix Kij := L(∂i, ∂j) = Kji is constant. This means

that

∂i∂jω = ωKij .

Assuming that the matrix K is non-vanishing, the compatibility of this

equation imposes ∂kωKij = ∂iωKkj which shows that the solution is of

the form

(14) ω(x0, x1) := C(x1) cos(v(x1) · x0 + Φ(x1)) ,

where x1 stands for the point in B1 while x0 stands for the Euclidean

coordinates of B0 (and · is the Euclidean scalar product); moreover K =

v ◦ v; since now we saw that K does not depend on B1 then v = vi∂i is

actually a constant vector.

By now ω(x0, x1) = C(x1) cos(v ·x0 +Φ(x1)). To complete the proof,

we compute

L(X, ∂i) =
X(C)

C
tan(v · x0 + Φ)vi + X(Φ)vi

that is covariantly constant iff C is constant on B1 as well as Φ: this

proves that ω depends only on the point on B0. Clearly if at the begin-

ning Kij ≡ 0 one similarly proves that ω can depend only on the point

of B1.
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Sem. Rep., 26 (1975), 343-347.

[10] H. Takagi: A class of homogeneous Riemannian manifolds, Sci. Rep. Niigata
Univ., 8 (1971), 13-17.

[11] S. Tanno: A class of Riemannian manifolds satisfying R(X,Y ) ◦R = 0, Nagoya
Math. Journ., 42 (1971), 67-77.
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