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Transitive groups of quasi-isometries and growth

D. ALEKSEEVSKY – R. GRIMALDI – I. MANISCALCO

Riassunto: Se G è un gruppo di Lie transitivo di quasi-isometrie di una varietà
riemanniana (M, g), il tipo di crescita di G è uguale alla crescita riemanniana di (M, g).

Abstract: If G is a transitive Lie group of quasi-isometries of a Riemannian
manifold (M, g), the growth-type of G is equal to the Riemannian growth of (M, g).

– Introduction

In the paper we describe the structure of a Riemannian manifold

(M, g) which admits a transitive group G of (uniform) quasi-isometries

and prove that the growth of G (in the sense of Y. Guivarch [5]) co-

incides with the growth of the Riemannian ball of (M, g). Some conse-

quences of this result are derived.

The group of (uniform) quasi-isometries of a Riemannian manifold

(M, g) is defined as a group G of transformations of M such that

λ−g ≤ ϕ∗g ≤ λ+g ∀ϕ ∈ G ,

where λ± are some positive constants.

This notion is stronger then the notion of a group of (uniform) quasi-

conformal transformations, defined by the condition that the ratio be-
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tween maximal and minimal axis of the ellipsoid, which is the image of

the unit sphere S ⊂ TxM , x ∈ M , under the action of a transformation

ϕ ∈ G is uniformally bounded (see M. Gromov [4]).

In the papers [3] and [11] it is proven that, under some conditions, a

transitive group G of quasi-conformal transformations of a domain D ⊂
IRn is conjugated to a group of conformal transformations. This result is

similar to our Theorem 2. It seems that the problem of characterization of

all Riemannian manifolds (or even domains in IRn) which admit transitive

group of quasi-conformal transformations is still open.

More precisely, the main result of the paper may be stated as following:

Theorem 1. Let G be a connected transitive Lie group of (uniform)

quasi-isometries of a Riemannian manifold (M, g). Then the growth of

the group G is equal to the growth of the Riemannian ball of M .

See Section 1 for basic concepts.

This theorem generalize the following result [1]:

Theorem (Alekseevsky-Kimelfeld). Let G be a connected transitive

group of isometries of a Riemannian manifold (M, g). Then the growth

of G is equal to the growth of the Riemannian ball of M .

The proof of the Theorem 1 is based on a characterization of linear

groups of (uniform) quasi-isometries of an Euclidean vector space as rel-

atively compact groups (Lemma 2) and on the following description of

quasi-invariant metrics in a homogeneous manifold M = G/H.

Theorem 2. Let G be a transitive group of (uniform) quasi-

isometries of a Riemannian manifold (M, g). Then G preserves a Rie-

mannian metric g0 which is quasi-isometric to g. In particular, the

isotropy representation j : Gx → GL(TxM) of the stabilizer Gx of a

point x is exact.

The following corollary shows that we may assume that the group of

(uniform) quasi-isometries is a Lie group.

Corollary 1. A transitive group of (uniform) quasi-isometries of a

Riemannian manifold (M, g) is a subgroup of a Lie group G̃ of (uniform)

quasi-isometries of (M, g).
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Indeed, it is a subgroup of the group G̃ = Isom(M, g0) of all isome-

tries of (M, g0), which is a Lie group, by theorem of Myers-Steen-

rod [2].

Now we state some corollaries of these results.

Recall that a connected Lie group G is called a group of type R

(respectively, R̄) if all eigenvalues of the adjoint operators on the Lie

algebra G=Lie G have unit modulus (respectively, there exist an adjoint

operator Adx, x ∈ G with eigenvalue λ such that |λ| �= 1).

Corollary 2. Let (M, g) be a Riemannian manifold with non

negative Ricci curvature (resp., non positive not identically zero sectional

curvature). Then a transitive Lie group G of (uniform) quasi-isometries

of (M, g) has type R (resp., R̄).

Corollary 3. Let (M, g0) be a Riemannian manifold which admits

a transitive Lie group G of (uniform) quasi-isometries. If G has type R

(resp. R̄) then there is no G-quasi-invariant Riemannian metric with non

positive not identically zero sectional curvature (resp. with non negative

Ricci curvature).

Corollary 4. Let (M, g) be a compact Riemannian manifold.

Assume that its universal covering (M̃, g̃) admits a connected transitive

group G of (uniform) quasi-isometries. Then the growth of the funda-

mental group π1(M̃) is finite if and only if G has type R.

1 – Basic concepts

We refer to the Alekseevsky-Kimelfeld work [1]. We recall that the

growth of a function f(t) of a real or natural argument is defined as

r(f) = r(t)(f(t)) = lim
t→+∞

log f(t)

log t
;

obviously, r(t)(t
a) = a, r(t)(e

at) = ∞ · sgn a).

Moreover, the growth of a Riemannian manifold (M, g) is defined

as r(M) = r(M, g) = r(t)(volBp(t)), where volBp(t) is the Riemannian

volume of the (closed) geodesic ball Bp(t) of radius t with center at p ∈ M .

It follows readily from the triangle inequality that r(M) is indepen-

dent of the choice of the point p ∈ M .
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Now, let G be a locally compact group with the left invariant Haar

measure µ, generated by its relatively compact neighborhood of unity

U(i.e.
⋃∞

n=1 U
n = G).

Such groups is called compactly generated groups. The growth of the

group G is defined as

re(G) = r(n)(µ(Un)) .

It is known (see [5]) that re(G) is independent of a choice of the Haar

measure µ or of the neighborhood U .

Moreover, we recall that a diffeomorphism ϕ ∈ Diff(M) is a quasi-

isometry of a Riemannian metric g on M if there exist λ− ≤ λ+ positive

constants such that:

(1) λ−g ≤ g′ =: ϕ∗g ≤ λ+g .

The metrics g and g′ which satisfy (1) are called to be quasi-isometric.

We will indicate this as g ∼ g′. Note that ∼ is an equivalence relation.

We will write g′ ≥ g for symmetric bilinear forms g′, g on a manifold

M if g′−g is non negatively defined form. Remark that if g′ ≥ g, then we

have the following inclusion between geodesic balls with respect to these

metrics:

Bg′
x (r) ⊂ Bg

x(r), x ∈ M, r > 0 ,

and (for oriented M) the following relation between volume forms:

volg
′ ≥ volg .

This implies the following lemma.

Lemma 1. Let (M, g) be a Riemannian manifold.

If a metric g′ is quasi-isometric to g, then r(M, g′) = r(M, g).

Remark. As the referee remarks, the inequality g′ ≥ g doesn’t imply

any relation between r(M, g′) and r(M, g).

Now, we give the following:

Definition 1. A group G of transformations of a Riemannian man-

ifold (M, g) is called a group of (uniform) quasi-isometries if there exist

λ± > 0 such that

(2) λ−g ≤ ϕ∗g ≤ λ+g ∀ϕ ∈ G .

Note that the constants λ−, λ+ do not depend on ϕ.
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In the future, we will omit the adjective “uniform” and will speak

about group of quasi-isometries, for simplicity.

Definition 2. If G is a group of quasi-isometries of (M, g), we will

say that the metric g is quasi-invariant with respect to G.

Remarks. 1) Any compact group G of transformations of a compact

Riemannian manifold (M, g) is a group of quasi-isometries.

2) There exist non compact Lie groups of transformations of a com-

pact Riemannian manifold (M, g) which are not group of quasi-isometries.

The example is the group of conformal transformations of the stan-

dard sphere S2.

Indeed, let ϕ : S2\{p} → IR2 be the stereographic projection s.t.

ϕ(q) = 0 where q is the antipodal point.

Then a homothety λid of IR2 defines a conformal transformation hλ =

ϕ−1 ◦ λid ◦ ϕ of S2 which preserves the antipodal points p, q and has the

differential hλ∗ |q = λid.

This shows that the 1-parameter group {hλ} of conformal transfor-

mations of S2 is not a group of quasi-isometries.

3) A non compact Lie group can also acts on a compact Riemannian

manifold as a group of quasi-isometries. For example, let M = T n be

a torus equiped with any Riemannian metric g. Then any 1-parameter

subgroup G ∼= IR of T n acts on (T n, g) as a group of quasi-isometries.

4) There exist compact groups G of transformations of a non compact

Riemannian manifold (M, g) which are not group of quasi-isometries.

The example is the group ZZ2 = {±} of transformations of the real

line M = IR equiped with the Riemannian metric g = exdx2.

Example. A simple construction of a group of quasi-isometries can

be given as follows. Let G be a group of isometries of a Riemannian

manifold (M, g). Let g1 a deformation of the metric g which is equal (or,

more generally, quasi-isometric) to g out of some compact domain K ⊂
M . Then G is a group of quasi-isometries of the Riemannian manifold

(M, g1).

Now we consider the case of transitive groups G of quasi-isometries

of (M, g).

Example. Let (M = G/H, g0) be a homogeneous Riemannian man-

ifold and f ∈ C∞(M) a positive function such that λ− ≤ f ≤ λ+ for some
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positive constants λ±. Then G is a transitive group of quasi-isometries

of (M = G/H, g = fg0).

2 – Proofs of Theorems 1, 2 and the corollaries

2.1 – Linear groups of quasi-isometries of an Euclidean vector space (V, g0).

We need the following characterization of linear groups of quasi-

isometries of the Euclidean vector space.

Lemma 2. A group G ⊂ GL(V ) of linear transformations of the

Euclidean vector space (V, g0) is a group of quasi-isometries if and only

if it is relatively compact.

Proof. It was remarked by the referee that the result follows from

the fact that a subset G of the space End(V ) of endomorphisms of V is

relatively compact if and only if it is bounded with respect of the norm

‖A‖ = max
x∈V \{0}

g0(Ax,Ax)1/2

g0(x, x)1/2
, A ∈ EndV ,

that is if

‖A‖ ≤ λ+ ∀A ∈ G

for some λ+ > 0.

Indeed, if G is a group the last condition can be rewritten as

λ−2
+ g0(x, x) ≤ g0(Ax,Ax) = (A∗g0)(x, x) ≤ λ2

+g0(x, x)

∀x ∈ V ∀A ∈ G.

This inequality means that G is a group of quasi-isometries of (V, g0).

2.2 – Proof of Theorem 2

To prove Theorem 2 we need the following lemma:

Lemma 3. Any two quasi-invariant metrics g, g′ on a homogeneous

manifold M = G/H are quasi-isometric.
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Proof. By assumption, there exist positive constants λ±, λ′
± such

that, for any ϕ ∈ G

λ−g ≤ ϕ∗g ≤ λ+g(5)

λ′
−g

′ ≤ ϕ∗g′ ≤ λ′
+g

′ .(6)

We may choose also positive constants µ± such that

(7) µ−gp ≤ g′p ≤ µ+gp .

Applying a transformation ϕ ∈ G to inequality (7) we get

(8) µ−(ϕ∗g)ϕ−1(p) ≤ (ϕ∗g′)ϕ−1(p) ≤ µ+(ϕ∗g)ϕ−1(p) .

Combining (5), (6), (8), we can write

λ−µ−gϕ−1(p) ≤ λ′
+g

′
ϕ−1(p)

λ′
−g

′
ϕ−1(p) ≤ λ+µ+gϕ−1(p) .

This implies
λ−µ−
λ′

+

gϕ−1(p) ≤ g′ϕ−1(p) ≤
λ+µ+

λ′
−

gϕ−1(p) .

This shows that g and g′ are quasi-isometric.

Now we prove Theorem 2.

The isotropy group j(Gx) is a linear group of quasi-isometries of the

Euclidean vector space (V = TxM, g|x). Then, by Lemma 2, it is relatively

compact. Hence, there exists a j(Gx)-invariant Euclidean metric g0
x on

V . It can be extended to a G-invariant metric g0 on M . This implies that

the isotropy representation is exact. The metrics g, g0 are quasi-invariant

with respect to G.

Hence, by Lemma 3, they are quasi-isometric.

2.3 – Proof of the Theorem 1

The hypothesis of Theorem 1 implies, by the Theorem 2, that there

exists a G-invariant metric g0 which is quasi-isometric to g.

Then, by Lemma 1, r(M, g) = r(M, g0).

Finally, by theorem of Alekseevsky-Kimelfeld:

re(G) = r(M, g0) .
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Combining these equalities, we have

re(G) = r(M, g) .

This finish the proof of the Theorem 1.

2.4 – Proof of the corollaries

The corollaries 2 and 3 follows from our Theorem 1 and the following

theorems by Guivarch, Günter and Schwarz-Milnor.

Theorem (Guivarch [5]). A connected Lie group G has finite growth

if and only if it is group of type R.

Theorem (Günter [6]). Let (M, g) be a Riemannian manifold and

(M̃, g̃) its Riemannian universal covering.

a) If the sectional curvature of M is non positive and not identically

zero, then r(M̃) = ∞.

b) If the Ricci curvature of M is non negative, then r(M) ≤ r(M̃) ≤
dimM .

Corollary 4 follows from Theorem 1, theorem of Guivarch and the

following theorem proved by A.S. Schwarz and independently by Milnor:

Theorem (Schwarz [10], Milnor [9]). Let M̃ be a universal covering

of the compact Riemannian manifold (M, g) and π1(M) its fundamental

group (with discrete topology).

Then

r(M̃) = re(π1(M)) .

Acknowledgements

We are grateful to P. Pansu, who indicate to us papers [3], [4], [11].

We are grateful to the referee for indication of a mistake in the first

version of the paper and for many useful remarks and suggestions, in

particular, a simple proof of Lemma 2.



[9] Transitive groups of quasi-isometries and growth 9

REFERENCES

[1] D.V. Alekseevsky – B. Kimelfeld B.: Structure of homogeneous Riemann
spaces with zero Ricci curvature, Func. Anal. Appl., 9 (1975), 97-102.

[2] A. Besse A: Einstein manifolds, Springer-Verlag, 1987.

[3] F.W. Gehring – B.P. Palka: Quasi conformally homogeneous domains, J. Anal.
Math., 30 (1976), 172-199.

[4] M. Gromov M.: Hyperbolic groups manifolds and actions, Ann. of Math. Stud-
ies, 97 (1981), 183-215.

[5] Y. Guivarch: Groupes de Lie a croissance polynomiale, C.R. Acad. Sci. Paris,
271, n. 4 (1970), 237-239.

[6] P. Günter: Einige sätze über das volumenelement eines Reimannschen raumes,
Publ. Math. Debrecen, 7 (1960), 78-93.

[7] S. Helgason: Lie groups, differential geometry and symmetric spaces, Academic
Press, New York, 1978.

[8] N. Jacobson: Lie algebras, Interscience Publ., New York, 1962.

[9] J. Milnor: A note on curvature and fundamental groups, J. Diff. Geom., 2
(1968), 1-7.

[10] A.S. Schwarz: A volume invariant of coverings, Dokl. Akad. Nauk. SSSR, 105
(1955), 32-34.

[11] P. Tukkia: On quasi-conformal groups, J. Anal. Math., 465 (1986), 318-346.

Lavoro pervenuto alla redazione il 21 novembre 1999
ed accettato per la pubblicazione il 9 maggio 2000.

Bozze licenziate l’8 febbraio 2001

INDIRIZZO DEGLI AUTORI:

Dmitri Alekseevsky – International Scientific Center – Sophus Lie – Moscow
E-mail: D.V.Alekseevsky@maths.hull.ac.uk

Renata Grimaldi – Ignazia Maniscalco – Università di Palermo – Dipartimento di Matematica
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