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Intersection results and fixed point

theorems in H-spaces

M. BALAJ

Riassunto: In questo lavoro si ottiene un teorema di raccordamento del tipo Fan
negli H-spazi. Sono date applicazioni riguardanti il punto fisso e disuguaglianze mini-
max.

Abstract: In this paper we obtain a Fan’s matching theorem in H-spaces. Appli-
cations concerning intersection results, fixed point theorems, minimax inequalities are
given.

1 – Introduction

In [12] Fan obtained a matching theorem as a consequence of the

Fan-Glicksberg-Kakutani fixed point theorem. Fan’s result is a versatile

toole in nonlinear functional analysis and was used in [1], [2], [5], [12], [24]

in order to prove fixed point theorems, selection theorems and minimax

results.

Motivated by Horvath’s papers [13], [14], Bardaro and Ceppi-

telli [3], [4] introduced the notion of H-space and proved some H −
KKM theorems. In this framework of H-spaces we extend, in the next
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section, Fan’s matching theorem. The remaining sections are devoted to

applications of this H-matching theorem.

A set-valued map (simply called map) will be denoted by capital

letters T : X → Y according to Berge’s notation, while small letters will

designate univalued functions.

As defined by Bardaro and Ceppitelli [3] an H-space is a pair

(X, {ΓA}) consisting of a topological space X and a family {ΓA} of no-

nempty contractible subsets of X, indexed by the finite subsets of X,

such that A ⊂ B implies ΓA ⊂ ΓB. A set Y ⊂ X is called H-convex if

ΓA ⊂ Y for every nonempty finite set A ⊂ Y . Observe that an arbitrary

intersection of H-convex sets is H-convex.

If (X, {ΓA}) is an H-space and D a nonempty subset of X, then:

(i) a family {Yx : x ∈ D} of subsets of X is called H −KKM family if

ΓA ⊂ ∪{Yx : x ∈ A} for each nonempty finite subset A of D;

(ii) a map S : D → X is said to be H −KKM if the family of subsets

of X {S(x) : x ∈ D} is an H −KKM family.

2 – Intersection results

The “closed” variant of the following H −KKM theorem is Propo-

sition 1 in [14] as well as Lemma 1 in [8].

Theorem 2.1. Let (X, {ΓA}) be an H-space, D a nonempty finite

subset of X and {Yx : x ∈ D} an H − KKM family of subsets of X.

Assume that the sets Yx are all open or all closed. Then

∩{Yx : x ∈ D} �= ∅ .

The statement remains valid if X is compact, D infinite and all sets Yx

are closed.

Proof. Let D = {x1, x2, . . . , xn} and let ∆ = conv{e1, e2, . . . , en}
be the standard simplex of dimension n − 1 ({e1, e2, . . . , en} being the

canonical basis of IRn). By Theorem 1 in [14] there exists a continuous

function f : ∆ → X such that for every nonempty set A ⊂ D f(conv{ei :
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xi ∈ A}) ⊂ ΓA. Then the subsets of ∆, f−1(Yx), x ∈ D, are all open in ∆

or all closed in ∆ and for every nonempty set A ⊂ D

conv{ei : xi ∈ A} ⊂ f−1(ΓA) ⊂ ∪{f−1(Yxi) : xi ∈ A} .

Using the “open” variant, respectively the “closed” variant of the

KKM principle (see [20] or [25]) we obtain ∩{f−1(Yx) : x ∈ D} �= ∅ and

consequently ∩{Yx : x ∈ D} �= ∅.
The final part of the theorem follows immediately using a standard

topological argument.

Theorem 2.1 may be restated in its contraposition form and in terms

of the complement Zx of Yx, obtaining in this way a generalization of

Fan’s matching theorem [12, Th 2].

Theorem 2.2. Let (X, {ΓA}) be an H-space, D be a nonempty

finite subset of X and {Zx : x ∈ D} be a family of subsets of X, all closed

or all open. If ∪{Zx : x ∈ D} = X, then there exists a nonempty (finite)

set A ⊂ D such that

ΓA ∩ ∩{Zx : x ∈ A} �= ∅ .

The statement remains valid if X is compact, D is infinite and all sets

Zx are open.

Theorem 2.3. In an H-space (X, {ΓA}), let {Yi : 1 ≤ i ≤ n} be

a family of H-convex sets, every n − 1 having a common point and let

{Zi : 1 ≤ i ≤ n} be a covering of X having all members closed or all

open. Then there exists a nonempty set I ⊂ {1, 2, . . . , n} such that

∩{Yj : j ∈ Ī} ∩ ∩{Zi : i ∈ I} �= ∅ ,

where Ī denotes the complement of I in {1, 2, . . . , n}.
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Proof. For each i ∈ {1, 2, . . . , n} select a single point xi in the inter-

section ∩j �=iYj and let D be the set of all selected points. By Theorem 2.2

there exists a nonempty set A ⊂ D such that ΓA ∩ ∩{Zi : xi ∈ A} �= ∅.
Denote by I the set {i ∈ {1, 2, . . . , n} : xi ∈ A}. Since xi ∈ ∩{Yj : j ∈ Ī}
for each i ∈ I and the set ∩{Yj : j ∈ Ī} is H-convex it follows ΓA ⊂
∩{Yj : j ∈ Ī} and thereby

∩{Yj : j ∈ Ī} ∩ ∩{Zi : i ∈ I} �= ∅ .

The above theorem generalizes a classical result of Klee [19] known

as Berge’s intersection theorem [6]. This corresponds to the particular

case when X is a convex subset of a Hausdorff topological vector space

and Yi = Zi for each i ∈ {1, 2, . . . , n}. Topological versions of Berge

and Klee type theorems, under conditions weaker than contractibility, as

well as short topological proof of Fan’s matching theorem can be found

in Horvath and Lassonde [16].

3 – Fan-Browder’s fixed point theorem in H-spaces

Based on Theorem 2.2 we shall extend to H-spaces a fixed point

theorem of Fan-Browder [9], [7] and other close results obtained by

Balaj [1], Kim [18], Park [25].

Theorem 3.1. Let (X, {ΓA}) be an H-space and T : X → X be a

map. Suppose that:

(a) T (x) is H-convex for each x ∈ X.

(b) There exists a finite set D ⊂ X such that:

(b1) T (x) ∩D �= ∅ for each x ∈ X;

(b2) the fibers T−1(y) are either all closed or all open, for y ∈ D.

Then there exists an element x0 ∈ X such that x0 ∈ T (x0).
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Proof. From (b1), X = ∪{T−1(y) : y ∈ D}. By Theorem 2.2, there

are a nonempty set A ⊂ D and a point x0 such that

x0 ∈ ΓA ∩ ∩{T−1(y) : y ∈ A} .

From x0 ∈ ∩{T−1(y) : y ∈ A} it follows that A ⊂ T (x0) and by (a)

x0 ∈ ΓA ⊂ T (x0).

The proof of the following corollary and of the others which will

appear in the paper use the same argument. For this reason the next

corollary will be the only one accompanied by proof.

Corollary 3.1. Let (X, {ΓA}) be a compact H-space and T :X→X

be a map satisfying the following conditions:

(a) For each x ∈ X, T (x) is nonempty and H-convex.

(b) For each y ∈ X, T−1(y) is open.

Then T has a fixed point.

Proof. Observe that X = ∪{T−1(y) : y ∈ X} so, by compactness

there exist y1, y2, . . . , yn ∈ X such that X = ∪n
i=1T

−1(yi). It suffices to

set D = {y1, y2, . . . , yn}.
Using the infinite version of the Knaster-Kuratowski-Mazurkiewicz

theorem, Fan proved in [9] a section theorem leading to a proof of Ty-

chonoff’s fixed point theorem. An open variant of Fan’s section theorem

appears in [1]. Both will be extended below to H-spaces.

Theorem 3.2. Let (X, {ΓA}) be an H-space and let E be a subset

of X ×X, having the following properties:

(a) (x, x) ∈ E for all x ∈ X.

(b) For each x ∈ X the set {y ∈ X : (x, y) /∈ E} is H-convex (possibly

empty).

(c) The sets {x ∈ X : (x, y) ∈ E} are either (c1) all closed or (c2) all

open, for y ∈ X.

Then for every nonempty finite set D⊂X there exists an element xD∈X

such that {xD} ×D ⊂ E.
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Proof. Suppose that the assertion of the theorem is false. Then

there exists a nonempty finite set D ⊂ X such that

{x} ×D �⊂ E for every x ∈ X .

Define a map T : X → X by T (x) = {y ∈ X : (x, y) /∈ E}. Then for

each x ∈ X, T (x) is H-convex, T (x) ∩ D �= ∅, and the fibers T−1(y) =

X \ {x ∈ X : (x, y) ∈ E} are either all open (in case (c1)), or all closed

(in case (c2)).

By Theorem 3.1, there exists an element x0 ∈ X such that x0 ∈
T (x0), hence (x0, x0) /∈ E, which contradicts (a).

Corollary 3.2. Let (X, {ΓA}) be a compact H-space and let E be a

subset of X×X satisfying the conditions (a), (b) and (c1) in Theorem 3.3.

Then there exists an element x0 ∈ X such that {x0} ×X ⊂ E.

In [10] Fan obtained an intersection theorem concerning finite fami-

lies of compact sets with convex sections. Fan’s result was generalized in

two directions. On the one hand it was extended by Ma [21] to arbitrary

families (finite or infinite) of compact sets and on the other, by Fan [12]

relaxing the compactness condition. A unified generalization has been gi-

ven by Shih and Tan in [26]. A close result was obtained by the author

in [1]. Fan’s result will be further extended to H-spaces.

Let I be an index set; in the case when I is finite we assume that I

contains at least two indices. Let {(Xi, {Γi
A})}i∈I be a family of H-spaces

and X =
∏

i∈I Xi. For each i ∈ I set

X i =
∏

j �=i

Xj (so that X = Xi ×X i)

and let pi : X → Xi and pi : X → X i be the projections. For each x ∈ X

we write pi(x) = xi and pi(x) = xi, hence x = (xi, x
i) for every i ∈ I.

For any subset Y of X let Yi = pi(Y ). With these notations we have:

Theorem 3.3. Let {Ei}i∈I be a family of subsets of X satisfying

the following conditions:
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(a) For each i ∈ I and any xi ∈ X i the section

Ei(x
i) = {xi ∈ Xi : (xi, x

i) ∈ Ei}

is H-convex and nonempty.

(b) There exists a finite set D ⊂ X such that:

(b1)
∏

i∈IEi(x
i) ∩D �= ∅, for each x ∈ X;

(b2) Either the sections

Ei(yi) = {xi ∈ X i : (yi, x
i) ∈ Ei}

are all closed or I is finite and the sections Ei(yi) are all open

for each i ∈ I and yi ∈ Di.

Then the intersection ∩i∈IEi is nonempty.

Proof. For every nonempty finite subset A of X let ΓA =
∏

i∈I Γi
Ai

;

then it’s clear that (X, {ΓA}) is an H-space. Consider the map T : X →
X given by T (x) =

∏
i∈I Ei(x

i) for all x ∈ X, where xi = pi(x). By (b1),

T (x) ∩D �= ∅ for each x ∈ D.

Let x be an element of X and A be a nonempty finite subset of T (x).

Then, for each i ∈ I Ai ⊂ Ei(xi) and by (a), Γi
Ai

⊂ Ei(x
i). It follows

ΓA ⊂ T (x), hence T (x) is H-convex.

For a given y ∈ D consider T−1(y) = {x ∈ X : y ∈ T (x)}. Then x

lies in T−1(y) iff yi ∈ Ei(x
i), that is xi ∈ Ei(yi) for all i ∈ I. So T−1(y) =

∩i∈I(Xi × Ei(yi)), and by (b2) it follows that either T−1(y) is closed for

each y ∈ D or T−1(y) is open for each y ∈ D.

By Theorem 3.1 there is an element z ∈ X such that z ∈ T (z). By

the definition of T , this means that zi ∈ Ei(z
i) i.e. z = (zi, z

i) ∈ Ei for

all i ∈ I. Hence z ∈ ∩i∈IEi and the proof is complete.

Corollary 3.3. The conclusion of Theorem 3.3 remains valid if I

is finite, each Xi is compact and conditions (b1), (b2) are replaced by the

following one:

(b′) For each i ∈ I and any xi ∈ Xi the section Ei(xi) is open.
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Given an H-space (X, {ΓA}), a function g : X → IR will be called

H-quasiconcave if for each λ ∈ IR the set {x ∈ X : g(x) > λ} is H-convex,

and H-quasiconvex if −g is H-quasiconcave. Similarly to [12], [21], [26].

Theorem 3.3 and Corollary 3.3 can receive an analytic formulation. For

instance Corollary 3.3 can be restated as follows:

Corollary 3.4. Let {(Xi, {Γi
A})}i∈I be a finite family of compact

H-spaces and X =
∏

i∈IXi. Let {fi}i∈I be a family of real-valued func-

tions defined on X and {ti}i∈I be a family of real numbers. Suppose that

the following conditions are satisfied:

(a) For each i ∈ I and any xi ∈ X i, fi(·, xi) is an H-quasiconcave func-

tion on Xi and the set {xi ∈ Xi : fi(xi, x
i) > ti} is nonempty.

(b) For each i ∈ I and any xi ∈ Xi, fi(xi, ·) is a lower semicontinuous

function on X i.

Then there exists a point z ∈ X such that fi(z) > ti for each i ∈ I.

As a consequence of Corollary 3.3 we get Nash’s equilibrium theo-

rem [23] in H-spaces.

Corollary 3.5. Let {(Xi, {Γi
A})}i∈I be a finite family of compact

H-spaces and for each i ∈ I let fi : X =
∏

i∈IXi → IR be a continuous

function such that for any xi ∈ X i fi(·, xi) is an H-quasiconcave function

on Xi. Then there exists a point z ∈ X such taht

fi(z) = max
yi∈Xi

fi(yi, z
i) for each i ∈ I

Proof. For any ε > 0 and i ∈ I let

Eε,i =
{
x = (xi, x

i) : fi(x) > max
yi∈Xi

fi(yi, x
i) − ε

}
.

From the uniform continuity of fi on X it is easily seen that the function

maxyi∈Xi
fi(yi, ·) is continous on X i, hence the sections Eε,i(yi) = {xi ∈

X i : (yi, x
i) ∈ Eε,i} are open for all yi ∈ Xi. Since fi is an H-quasiconcave

function of xi on Xi, the sections Ei(x
i) are H-convex and clearly no-

nempty for all xi ∈ X i. By Corollary 3.3 we have ∩i∈IEε,i �= ∅, for every
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ε > 0. Then, in view of compactness of X, there is a point z which is in

∩i∈I clEε,i, for every ε > 0. This point satisfies fi(z) = maxyi∈Xi
fi(yi, z

i)

for each i ∈ I.

4 – A fixed point theorem for composed maps and applications

The following result extends Theorem 1 in [2].

Theorem 4.1. Let (X, {ΓA}) be an H-space, S : X → X be an

H −KKM map and T : X → X be a map. Suppose that there exists a

finite set D ⊂ X such that:

(a) T (x) ∩D �= ∅ for all x ∈ X.

(b) The fibers T−1(y) are either all closed or all open, for y ∈ D.

Then S ◦ T has a fixed point.

Proof. From (a) X = ∪{T−1(y) : y ∈ D}. By Theorem 2.2 applied

to the closed (open respectively) covering {T−1(y) : y ∈ D} there exist a

nonempty set A ⊂ D and an element x0 ∈ ΓA ∩ ∩{T−1(y) : y ∈ A}.
Since S is an H −KKM map, x0 ∈ ΓA ⊂ ∪{S(y) : y ∈ A} hence for

at least one y0 ∈ A, x0 ∈ S(y0). By x0 ∈ T−1(y0) it follows y0 ∈ T (x0).

Therefore x0 ∈ S(y0) ⊂ S(T (x0)) and the proof is complete.

Corollary 4.1. Let (X, {ΓA}) be a compact H-space, S : X → X

be an H − KKM map, T : X → X be a map. Suppose that for each

x ∈ X, T (x) is a nonempty subset of X and T−1(x) is open. Then S ◦ T
has a fixed point.

From Corollary 4.1 we get the following generalization of Theorem 3

in [2] which is in turn a generalization of the known Fan’s minimax

inequality [11].

Theorem 4.2. Let (X, {ΓA}) be a compact H-space and f be a real-

valued function defined on X ×X such that for each fixed x ∈ X, f(x, ·)
is a lower semicontinuous function on X. If there exists a real-valued

function g on X ×X satisfying the following conditions:

(a) f(x, y) ≤ g(x, y) for all (x, y) ∈ X ×X,
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(b) g(x, x) ≤ 0 for all x ∈ X,

(c) for each fixed y ∈ X, the set {x ∈ X : g(x, y) > 0} is H-convex (or

empty),

then there exists a point y0 ∈ X such that f(x, y0) ≤ 0 for all x ∈ X.

Proof. Suppose that the conclusion of the theorem is false, i.e. for

each y ∈ X the set {x ∈ X : f(x, y) > 0} is nonempty. Define the maps

S, T : X → X by

S(x)={y ∈ X : g(x, y)≤0} and T (y)={x∈X : f(x, y) > 0}, x, y∈X .

We shall show that S is an H−KKM map. Suppose that there exists

a nonempty finite set D ⊂ X and a point y ∈ ΓD\∪{S(x) : x ∈ D}. Then

g(x, y) > 0 for each x ∈ D and by (c), ΓD ⊂ {x ∈ X : g(x, y) > 0}. Thus

g(y, y) > 0, in contradiction with (b). By hypothesis, for each x ∈ X,

T−1(x) = {y ∈ X : f(x, y) > 0} is open.

Thus, by Corollary 4.1, S ◦ T has a fixed point, that is there exist

x0, y0 ∈ X such that x0 ∈ T (y0) and y0 ∈ S(x0). These relations and (a)

lead to the following contradiction

0 < f(x0, y0) ≤ g(x0, y0) ≤ 0 .

Remark 4.1. Note that the condition (c) in Theorem 4.2 is implied

by the following condition:

(c′) for each fixed y ∈ X, g(·, y) is an H-quasiconcave function on X.

If we put aside the condition (b) and replace the condition (c) by (c′)

then the conclusion of Theorem 4.2 can be given by the following minimax

inequality:

inf
y∈X

sup
x∈X

f(x, y) ≤ sup
x∈X

g(x, x) .

Let X be an arbitrary set and IRX be the set of all real-valued func-

tions defined on X. A map S : X → IRX will be called monotone if for all

x, y ∈ X, each u ∈ S(x) and each v ∈ S(y), (v − u)(y) ≥ (v − u)(x). For

any H-space (X, {ΓA}) we denote by X̃ the set {u : X → IR|u continuous

and H-quasiconvex}. The next result generalizes under many aspects

Theorem 6 in [7].
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Theorem 4.3. Let (X, {ΓA}) be an H-space and S : X → IRX be

a monotone map such that for each x ∈ X, S(x) is a nonempty subset

of X̃. Then there exists an element y0 ∈ X such that

sup
u∈S(x)

(u(y0) − u(x)) ≤ 0 for all x ∈ X .

Proof. Let f, g : X → IR be the functions defined by

f(x, y) = sup
u∈S(x)

(u(y) − u(x)), g(x, y) = inf
v∈S(y)

(v(y) − v(x)) .

Then, for each fixed x ∈ X the function f(·, y) is lower semicon-

tinuous as the upper envelope of a family of continuous functions. By

monotonicity of S, for each x, y ∈ X, u ∈ S(x) and v ∈ S(y) we have

u(y) − u(x) ≤ v(y) − v(x), whence f(x, y) ≤ g(x, y). Clearly g(x, x) = 0

for all x ∈ X.

Theorem 4.2 is applicable as soon as we prove that {x∈X : g(x, y)> 0}
is H-convex for each y ∈ X.

The intersection of a family of H-convex sets as well as the union

of a family of H-convex sets totally ordered by inclusion are H-convex

(cf. [22], p. 282). Thus the above statement follows from

{x ∈ X : g(x, y) > 0} =
⋃

ε>0

⋂

v∈S(y)

{x ∈ X : v(x) < v(y) − ε} .

By Theorem 4.2 there is a point y0 ∈ X such that f(x, y0) ≤ 0 i.e.

sup
u∈S(x)

(u(y0) − u(x)) ≤ 0 for all x ∈ X .

The last result is a variant of Theorem 4.2 and it admits a similar

proof.

Theorem 4.4. Let (X, {ΓA}) be an H-space and f be a real-valued

function defined on X × X such that for each fixed x ∈ X, f(x, ·) is

an upper semicontinuous function on X. If there exists a real-valued

function g on X ×X satisfying the following conditions:

(a) f(x, y) ≤ g(x, y) for all (x, y) ∈ X ×X;
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(b) g(x, x) < 0 for all x ∈ X;

(c) for each fixed y ∈ X, the set {x ∈ X : g(x, y) ≥ 0} is H-convex,

then for every nonempty finite set D ⊂ X there exists a point yD ∈ X

such that f(x, yD) < 0 for all x ∈ D.

5 – Applications in hyperconvex metric spaces

There are a lot of examples of H-spaces (see [13]) and in each of them

the results of this paper could be interpreted in specific terms. The refe-

ree emphasized the connection between our intersection results and the

KKM type theorems in hyperconvex metric spaces obtained by Khamsi

in [17]. For this reason we shall make a little discussion of our results in

this framework of hyperconvex metric spaces. The basic definitions and

terminology are those of Khamsi [17].

Let M be a metric space. For a nonempty bounded subset A of M put

coA =
⋂

{B : B is a closed ball in M containing A} .

Let A(M) = {A ⊂ M : A = coA}; that is A ∈ A(M) if and only

if A is an intersection of closed balls. In this case we will say A is an

admissible subset of M .

A subset Y of a metric space M is called finitely closed (resp. open)

if for every finite set A ⊂ M the set coA ∩ Y is closed (resp. open).

A metric space (H, d) is called hyperconvex if for any family of points

{xi}i∈I in H and for each family {ri}i∈I of nonnegative reals such that

d(xi, xj) ≤ ri + rj, we have

⋂

i∈I

B(xi, ri) �= ∅ .

Here B(x, r) denotes the closed ball with center x∈H and radius r>0.

It is kown that any hyperconvex space (H, d) is an H-space (H, {ΓA})
with ΓA = coA for each nonempty finite set A ⊂ H (see Horvath [15]).

If D is a nonempty set in H, an H −KKM map S : D → H, regarding

H as an H-space will be called KKM map.

The “closed” version of the following result is Theorem 3 in Khamsi [17].
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Theorem 5.1. Let H be a hyperconvex metric space, X an arbitrary

subset of H and S : X → H a KKM map such that the values S(x) are

either all closed or all open for x ∈ X. Then the family {S(x) : x ∈ X}
has the finite intersection property.

Proof. Let D be a nonempty finite subset of X. Then {S(x)∩coD :

x ∈ D} is in the H-space (H, {ΓA}) an H −KKM family of subsets of

H having all members closed or all open. By Theorem 2.1 we obtain⋂
x∈D(S(x) ∩ coD) �= ∅, hence

⋂
x∈D S(x) �= ∅.

Using Theorem 4.2 we shall prove the following fixed point theorem

which is a slight improvement of Theorem 6 in [17].

Theorem 5.2. Let (H, d) be a hyperconvex metric space and X ∈
A(H) compact. Let h : X → H be a continuous function such that, for

every x ∈ X with x �= h(x) there exists α ∈ (0, 1) satisfying

X ∩B(h(x), αd(x, h(x))) �= ∅ .

Then h has a fixed point.

Proof. For each nonempty finite set A⊂X we have coA⊂coX=X,

hence (X, {ΓA}) is an H-space if we take ΓA = coA, for each nonempty

finite set A ⊂ X.

We intend to apply Theorem 4.2 in the case f = g : X × X → IR,

f(x, y) = d(y, h(y)) − d(x, h(y)). Since h is continuous, for each x ∈ X

and λ ∈ IR the set {y ∈ X : f(x, y) ≤ λ} is closed, hence f(x, ·) is a lower

semicontinuous function on X. Clearly condition (ii) of Theorem 4.2

holds. We shall prove that for each fixed y ∈ X the set

Z = {x ∈ X : d(y, h(y)) − d(x, h(y)) > 0}
is H-convex (that is Z∈A(X)). Let {x1, x2, . . ., xn}⊂Z and ε>0 such that

d(xi, h(y)) ≤ d(y, h(y)) − ε, for i ∈ {1, 2, . . . , n} .
Hence xi ∈ B(h(y), d(y, h(y)) − ε) for each i ∈ {1, 2, . . . , n}. Therefore

we have

co{x1, x2, . . . , xn} ⊂ B(h(y), d(y, h(y)) − ε) ⊂ Z

whence Z is H-convex.
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By Theorem 4.2 there exists y0 ∈ X such that f(x, y0) ≤ 0, that is

d(y0, h(y0)) ≤ d(x, h(y0)) for each x ∈ X.

We claim that such an element y0 is a fixed point of h. Indeed,

assume not, that is y0 �= h(y0). By hypothesis, there exist α ∈ (0, 1)

and x0 ∈ X ∩ B(y0, αd(y0, h(y0))). Since d(x0, y0) ≤ αd(y0, h(y0)) <

d(y0, h(y0)), we clearly get a contradiction. This completes our proof.

Each of our results can be effortlessly formulated in hyperconvex

metric spaces. For instance from Theorem 2.3 we obtain

Theorem 5.3. In a hyperconvex metric space X, let {Yi : 1 ≤ i ≤
n} be a family of admissible sets, every n−1 having a common point and

let {Zi : 1 ≤ i ≤ n} be a covering of X having all members closed or all

open. Then there exists a nonempty set I ⊂ {1, 2, . . . , n} such that

⋂
{Yj : j ∈ Ī} ∩

⋂
{Zi : i ∈ I} �= ∅ .
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