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A note on the monomiality principle

and generalized polynomials

G. DATTOLI – C. CESARANO – D. SACCHETTI

Riassunto: Si utilizza il principio di monomialità per stabilire forme generalizzate
dell’algoritmo di divisione e del teorema del resto per famiglie di polinomi scritte come
combinazioni lineari di polinomi di Hermite.

Abstract: The monomiality principle is used to state generalized forms of the
division algorithm and of the remainder theorem for families of polynomials written as
linear combination of Hermite polynomials.

1 – Introduction

The notion of quasi-monomiality has been exploited within different

contexts to deal with isospectral problems [1] and to study the properties

of new families of special functions [2]. The concept of quasi-monomiality

is fairly straightforward and can be summarized as follows:

a) let M̂ and P̂ two operators

b) let fn(x), (n ∈ N, x ∈ C) a polynomial,

fn(x) will be said a quasi-monomial, under the action of M̂ and P̂ , if:

(1) M̂fn(x) = fn+1(x) , P̂ fn(x) = nfn−1(x) .
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- Remainder theorem.
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The operators M̂ and P̂ are recognized as multiplicative and derivative

operators respectively, furthermore, if f0(x) = 1 from the first of (1) it

follows that:

(2) M̂n1 = fn(x) .

The Hermite polynomials have been shown to be quasi-monomials under

the action of:

(3) M̂ = x + 2y
∂

∂x
, P̂ =

∂

∂x
.

In this case we get indeed [3]:

(4)
M̂n1 = Hn(x, y) , Hn(x, y) = n!

[n/2]∑

r=0

yrxn−2r

r!(n− 2r)!

M̂mHn(x, y) = Hn+m(x, y) .

It has also been proved that:

(5) Hn(x, y) = e
y ∂2

∂x2 (xn)

and it is also worth noting that, more in general, the following operational

identities hold [3]:

(6) e
y ∂2

∂x2 f(x)= f̂
(
x+2y

∂

∂x

)
, e

y ∂2

∂x2 [f(x)g(x)]= f̂
(
x+2y

∂

∂x

)
e
y ∂2

∂x2 g(x) .

In the forthcoming sections we will exploit the previous simple rules, to

prove that the quasi-monomial nature of Hermite polynomials is a useful

tool to extend to more complicated polynomial structures, the elementary

properties of ordinary polynomials.
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2 – Generalized polynomials and division algorithm

If we introduce the linear combination of Hermite polynomials

(7) π(x, y) =
m∑

n=0

anHn(x, y) , an ∈ C

we can conclude that, according to (5):

(8) π(x, y) = e
y ∂2

∂x2 P (x) , P (x) =
m∑

n=0

anx
n

where P (x) is a polynomial in a field F [x], within the present framework

π(x, y) will be considered a polynomial in x in the field G[x], and y will

be viewed as a parameter.

According to the linearity of the operator e
y ∂2

∂x2 , we can also conclude

that:

(9) π1(x, y) ± π2(x, y) = e
y ∂2

∂x2 [P1(x) ± P2(x)]

and according to (6) we can derive the further important operational

identity:

(10) e
y ∂2

∂x2 (P1(x)P2(x)) = P̂1

(
x + 2y

∂

∂x

)
π2(x, y) .

It is well known that if P (x) and f(x) =
∑p

n=0 anx
n are polynomials in

F [x], there exist a unique pair of polynomials in F [x]q(x) =
∑s

n=0 bnx
n

and r(x) =
∑t

n=0 cnx
n called quotient and remainder respectively, such

that [4]:

(11) P (x) = q(x)f(x) + r(x) .

We can now state a generalization of the above division algorithm the-

orem. By applying the operator e
y ∂2

∂x2 to both sides of (5) we find, as a

consequence of equations (8) and (10):

(12)
π(x, y) = q̂

(
x + 2y

∂

∂x

)
ϕ(x, y) + ρ(x, y) ,

ϕ(x, y) = e
y ∂2

∂x2 f(x) , ρ(x, y) = e
y ∂2

∂x2 r(x) .
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It is clear that ϕ(x, y) and ρ(x, y) play the role of quotient and remainder

polynomials, within the present more general context.

In a less technical language we note that the theorem can be applied

as follows

1) Known π(x, y), we construct the corresponding P (x) polynomial;

2) We apply the division algorithm theorem for ordinary polynomials;

3) We use the operational rules to identify the quotient and remainder

polynomials in the field G(x).

The following example may better clarify the above results. Let

(13) π(x, y) = 2H4(x, y) + 3H2(x, y) − 5H1(x, y) − 2

a polynomial realized in terms of Hermite polynomials the corresponding

P (x) in F [x] is

(14) P (x) = 2x4 + 3x2 − 5x− 2 .

We get therefore

q(x) =
2

3
x2 − 2

9
x +

59

27
, q̂

(
x + 2y

∂

∂x

)
=

2

3
M̂ 2 − 2

9
M̂ +

59

27

f(x) = 3x2 + x− 5 , ϕ(x, y) = 3H2(x, y) + H1(x, y) − 5(15)

r(x) = −224

27
x +

241

27
, ρ(x, y) = −224

27
H1(x, y) +

241

27
.

We must however underline that, unlike the case of ordinary polynomials,

the decomposition (12) in not “unique” and owing to the commutativity

of q(x) and f(x), can also be written as:

(16)
π(x, y) = f̂

(
x + 2y

∂

∂x

)
σ(x, y) + ρ(x, y)

σ(x, y) = e
y ∂2

∂x2 q(x) .

The remainder theorem of ordinary polynomials writes

(17) P (x) = q(x)(x−K) + P (K)

where P (K) denotes the polynomial P (x) calculated in K.
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It is evident that since

(18) e
y ∂2

∂x2 P (K) = P (K)

and since H1(x, y) = x, the generalization of the remainder theorem

writes

(19) π(x, y) = q̂
(
x + 2y

∂

∂x

)
(x−K) + P (K) .

The extension of the fundamental theorem of algebra is also obvious and

reads:

(20) π̂(x, y) =
m∏

i=1

(M̂ − αi)

where αi are complex roots of the polynomial P (x) and should not be

confused with the zeros of π(x, y).

3 – Concluding remarks

Before closing the paper let us note that since

(21) e
−y ∂2

∂x2 [Hn(x, y)] = xn

if

(22) σ(x, y) =
m∑

n=0

anHn(x, y)

then

(23) P (x) = e
−y ∂2

∂x2 σ(x, y) .

The results discussed in the present note can be extended to any quasi-

monomial, this is indeed the case of Laguerre polynomials, which have

been proved to be quasi-monomial under the action of integral opera-

tors [5]. This more general aspect of the problem and the usefulness of

the results of the present note for the study of the zeros of generalized

polynomials will be discussed elsewhere.
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Possible extensions to polynomials of many variables and many in-

dices can also be done and division algorithm and remainder theorems can

be extended to Hermite-type polynomials with many variables and many

indices. This type of extension does not require any conceptual difficul-

ties, the only problems being connected with computational difficulties

which will be analyzed in a forthcoming paper.
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