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Fluctuations of a droplet in the one dimensional

stochastic Ginzburg Landau equation

E. ROSATELLI

Riassunto: In questo lavoro consideriamo la PDE stocastica studiata in [1], os-
sia l’equazione di Ginzburg-Landau nell’intervallo [−ε−1, ε−1], ε > 0 perturbata da un
rumore bianco additivo di intensità

√
ε e con condizioni di Neumann al bordo. Il dato

iniziale è vicino ad una goccia. Proviamo che per ε → 0 la soluzione é vicina ad una
goccia i cui centri si muovono come due moti Browniani indipendenti.

Abstract: In this paper we consider the stochastic PDE considered in [1], namely
the Ginzburg-Landau equation in the interval [−ε−1, ε−1], ε > 0 perturbed by an additive
white noise of strength

√
ε and Newmann boundary conditions. The initial datum is

close to a droplet. We prove that as ε → 0 the solution is close to a droplet whose
centers move as two independent Brownian Motions.

1 – Introduction

We consider the one dimensional stochastic Ginzburg-Landau equa-

tion considered by Brassesco, De Masi and Presutti, [1]:

(1)





∂

∂t
m(x, t) =

1

2

∂2

∂x2
m(x, t) − V ′(m(x, t)) +

√
εẇt(x),

x ∈ Λε := [−ε−1, ε−1], t ≥ 0
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where V ′(m) is the derivative of a double well potential V (m) = 1
4
m4 −

1
2
m2 and ẇt(x) is a white noise in space and time.

This equation appears in the literature as a model equation for phase

separation and interface dynamics in systems with non conserved order

parameter. In this context the minima ±1 of the double well potential

are the pure phases and the standing wave m(x) = tanhx is called the

interface. Thus an interface is a stationary solution of the deterministic

equation (that is the equation without noise) in the whole line (x ∈
R) that connects the pure phases at ±∞. Since all the translations of

m (as well −m) are interfaces, there is a one dimensional manifold of

stationary solutions of the deterministic equation in R. Brassesco, De

Masi and Presutti, [1], have considered the Cauchy problem for (1)

with an initial datum close to an interface mx0
(x) = tanh(x − x0). The

number x0 ∈ Λε is called the center of the interface. They prove that in

the limit ε→ 0, the solution approaches an interface with a center that

moves like a Brownian motion. Stronger results are obtained in [2]. The

case in which the limiting brownian motion has a drift due to a spacial

dependence of the noise strength is studied by Funaki, [3]. Moreover

Brassesco and Buttà, [4], have considered a non symmetric double

well potential with equal depth well at the minima proving that also in

this case the limiting brownian motion has a drift.

In this paper we consider an initial datum close to a droplet that is

a function qx0,y0
(x), x0 > 0, y0 < 0 given by

(2)
qx0,y0

(x) = tanh(x0 − x) for all x > 0

qx0,y0
(x) = tanh(x− y0) for all x ≤ 0

and we prove that in the limit ε → 0, the solution approaches a droplet

with centers that move like two independent Brownian motions. Pre-

cise definitions and statement of the results will be given in the next

section.

Our motivation for this analysis comes from the study of the phase

separation in stochastic spin dynamics. It is known, see [6] and references

therein, that the deterministic Ginzburg-Landau equation can be derived

as a suitable limit of the Glauber + Kawasaki process in the lattice. De

Masi, Pellegrinotti, Presutti, Vares [7] have completely characte-

rized the escape from the unstable state (m ≡ 0) for the spin dymanics
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in d = 1 dimensions. They prove that there is a sharp and non random

phase separation time. At this time the space is divided into large clusters

where the spin magnetization typically takes values alternatively equal to

±1, the clusters are separated by interfaces. The location of the centers

of the interfaces is random with known distribution. The problem left

out from their results is the study of the successive motion. They conjec-

ture, see [2], that at first the motion is deterministic, that is that the

centers will move following the deterministic equation according to the

results of [9], [10]. Thus at the beginning the shorter clusters disappear

and after some time the clusters that have survived are so long and the

deterministic mechanism so slow that fluctuations become relevant. The

analysis that we carry on in this paper is a first step in studying this last

regime: in fact, as we explain below, we hope to implement in the spin

dynamics the techniques used in the present paper.

The paper is organized as follows: in Section 2 we give the main

definitions and results that will be proven in Section 3. Similarly to [1],

the whole analysis is based on the study of the evolution of the centers

of functions close to the droplet, see Definition 2.0.3. First we prove that

the Ginzburgh Landau process starting close to a droplet, stays close to a

droplet up to times of order ε−1. The proof of this property is a simple co-

rollary of the results of [1]. On the other hand the proof of the invariance

principle for the centers that we give here is quite different from [1] since

does not use the coupling of two processes with same noise and different

initial data. This last fact gives us the hope to study this problem in the

spin dynamics. In fact in the Glauber + Kawasaki stochastic evolution

it is not clear how to give meaning to a coupling with same noise, while

it seems feasible the argument based on approximate centers that we use

here.

2 – Definitions and main results

We use the same construction of the process as the one given in [1]

that we briefly recall. Given any continuous function m in Λε, define its

extension m̌ to R by reflecting m through ε−1 and then extending to R

with period 4ε−1. Then define the process mt(x) that satisfies the Cauchy

problem (1) with initial datum m0 ∈ C(Λε), as the unique continuous
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solution of the following integral equation, (see Proposition 2.3 of [1])

(3) mt = Htm̌0 −
∫ t

0

dsH
(ε)
t−s(m

3
s −ms) +

√
εZt

with Ht equal to the Green operator in the whole line and

(4) Zt =
ˇ

Z
(ε)
t , Z

(ε)
t (x) =

∫ t

0

dẇt(x)H
(ε)
t−s(x, y) ,

H(ε) is the Green operator for the Heat equation with Neumann boundary

conditions in Λε.

We will use an equivalent realization of the process given in Propo-

sition 2.5 of [1]. Given any x0 ∈ Λε, we let

(5) mx0
(x) = tanh(x− x0)

and we denote by Lx0
the linearizated operator around mx0

:

(6) (Lx0
φ)(x) =

1

2

∂2

∂x2
φ(x) − V ′′(m(x0))φ(x)

Lx0
is a self-adjoint operator in L2(IR, dx) and m

′
x0

is an eigenvector of

Lx0
with eigenvalue 0. The remaining part of the spectrum is in the

negative axis at non zero distance from the origin. This holds also in

C0(IR), namely (see Theorem 2.4 of [1]) there are α > 0 and c so that for

any φ ∈ C0(IR) and x0 ∈ IR

(7) ‖eLx0 t[φ−Nw̃′
x0

]‖∞ ≤ ce−αt‖φ−Nw̃′
x0
‖∞

where

(8) w̃′
x0

=

√
3

2
m′

x0
, N =

∫
dxw̃′

x0
(x)φ(x) .

Denoting by gt,x0
= eLx0 t the semigroup generated by Lx0

, in Proposi-

tion 2.5 of [1] it has been proven that mt solves (3) with initial datum
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m0 = mx0
+ u0 if and only if for all t ≥ 0, mt = ut +mx0

where ut is the

unique solution of

(9) ut = gt,x0
u0 −

∫ t

0

dsgt−s,x0
(3mx0

u2
s + u3

s) + ε1/2Ẑt,x0

where

(10) Ẑt,x0
= Zt +

∫ t

0

dsgt−s,x0
V ′′(mx0

)Zs

In Proposition 5.4 of [1], it has been proved the following result:

Proposition 2.0.1. Given any ζ > 0, for any ε > 0 and any

|x0| ≤ (1 − ζ)ε−1, the process Ẑt,x0
has the representation:

(11) Ẑt,x0
=: Btm̃

′
x0

+ Rt,x0

with the following properties.

Bt is a process adapted to Zt, its law is the law of a Brownian motion

with diffusion coefficient Dε, with

|Dε − 1| ≤ ce−ζε−1

for a suitable constant c. For any a > 0 let

(12) Gε(a, x0) := {‖Ẑt,x0
‖∞ ≤ ε−a(t ∨ 1)1/2, ‖Rt,x0

‖∞ ≤ ε−a,∀t ≤ ε−2}

then for any n ≥ 1 there is cn so that

P ε(Gε(a, x0)) ≥ 1 − cnε
n

In the next definition we give the class of initial data to which our

results apply.

Definition 2.0.2. Recalling the definition (2) of the droplet, for

any ε > 0 and ζ ∈ (0, 1) we set

(14)

C(ε, ζ) = {m ∈ C0(Λε) : ‖m‖ε ≤ 2,

and there are x0 ∈ [ε−1ζ, ε−1(1 − ζ)] ,

y0 ∈ [−ε−1(1 − ζ),−ε−1ζ], such that ‖m− qx0,y0
‖ε ≤ ε1/4}
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where ‖ · ‖ε denotes the sup norm in Λε. We say that a function m is an

admissible function if there are ε and ζ such that m ∈ C(ε, ζ).

As in Brassesco et al., the notion of the centers of a function plays a

crucial role in our analysis.

Definition 2.0.3. Let m ∈ C0(IR).We say that ξ(m) ≡ x0, x0 > 0,

is the positive center of m if

(15)

∫ +∞

−∞
[m(x) + mx0

(x)]m̃′(x0 − x)dx = 0

We say that η(m) ≡ y0, y0 < 0, is the negative center of m if

(16)

∫ +∞

−∞
[m(x) −my0

(x)]m̃′(x− y0)dx = 0

where m̃′
x0

is the normalized version of m′
x0

, see (8). If m has not centers

we set ξ(m) = η(m) = 0.

The content of the next theorem is that an admissible function has

positive and negative center, the proof is the same as the one of Propo-

sition 3.2 of [1] and it is therefore omitted.

Theorem 2.0.4. For any 0 < ζ ′ < ζ < 1 there is ε0 such that for

all ε < ε0, any m ∈ C(ε, ζ) has a positive center ξ(m) ∈ [ε−1ζ ′, ε−1(1−ζ ′)]

and a negative center η(m) ∈ [−ε−1(1 − ζ ′),−ε−1ζ ′]. Furthermore there

is a suitable constant c > 0 such that

|x0 − ξ(m)| ≤ c(‖m + mx0
‖ε,+ + e−ε−1ζ′)(17)

|y0 − η(m)| ≤ c(‖m−my0
‖ε,− + e−ε−1ζ′)(18)

where ‖·‖ε,± denotes respectively the sup on [0, ε−1] and on [−ε−1, 0).

Let m� be a continuous function such that ‖m�‖∞ ≤ 2 and

‖m� −m‖ε ≤ δ

Then m�has a unique positive (negative) center ξ� (η�) in [ε−1ζ ′, ε−1(1−
ζ ′)] ([−ε−1(1 − ζ ′),−ε−1ζ ′]) and

|ξ(m) − ξ�| ≤ c

∫
dxm′

x0
|m�(x) −m(x)|(19)

|η(m) − η�| ≤ c

∫
dxm′

y0
|m�(x) −m(x)|(20)



[7] Fluctuations of a droplet in the one dimensional etc. 323

In the next two theorems we give our main results. As in Brassesco

et al. we prove that after a first time layer of order ε−b, b arbitrarily

small, the process mt with initial datum m0 ∈ C(ε, ζ), for all times t ∈
[ε−b, ε−1T ], T > 0, stays close to a droplet by ε1/2−a with a arbitrarily

small. Since this result is essentially a corollary of Proposition 3.4 and

Lemma 3.5 of [1] we give an outline of its proof at the end of the next

section.

Theorem 2.0.5. For any T > 0, 0 < ζ ′ < ζ < 1 and 0 < a < 1/4,

there are c > 0 and b < min(2a, 1/10), and given an integer n there is

cn so that the following holds. Let mt be the process with initial datum

m0 ∈ C(ε, ζ) that satisfies Neumann Boundary conditions. Let ξ0 > 0,

and η0 < 0 be the centers of m0. Let sk = kε−b, and ξk > 0, ηk < 0 be

the centers of msk . Then

(21)
P ε

(
sup
t≤ε−b

‖mt − qξ0,η0
‖ε<cε1/4, sup

ε−b≤sk≤ε−1T

‖msk − qξk,ηk‖ε≤ε
1
2−a

)
≥

≥ 1 − cnε
n .

In the next theorem we state our main result, i.e. an invariance

principle for the centers.

Theorem 2.0.6. Given any ζ > 0 and ε > 0, let mt be the process

with initial datum m0 ∈ C(ζ, ε) that satisfies Neumann Boundary con-

ditions. Let x0 > 0, and y0 < 0 be the centers of m0. For any t > 0,

define

(22) Y
(1)
t = ξε−1t − x0, Y

(2)
t = ηε−1t − y0

where ξε−1t and ηε−1t are the centers of mε−1t. Let Pε be the law on

C([0, T ],R2) of the two dimensional variable (Y (1), Y (2)). Then Pε, con-

verges weakly to the law of two independent Brownian motions starting

from 0 with diffusion coefficient D,

(23) D =

∫
((tanhx)′)2dx .



324 E. ROSATELLI [8]

3 – Proofs

We start with the proof of Theorem 2.0.6 using Theorem 2.0.5.

Given any T > 0 and b < 1/10, we decompose the time interval [0, T ]

in T/Tε intervals [tn, tn+1], where tn = nTε and

Tε = nεε
−b, nε = [ε−1/10+b], so that Tε > ε−

1
10 (1 − ε

1
10−b) .

We denote by ξn = ξ(mtn) and ηn = η(mtn) the positive and negative

centers of mtn and we define

(24)
v+
n (x, t) = m(x, tn + t) + mξn(x) t ∈ [tn, tn+1)

v−n (x, t) = m(x, tn + t) −mηn(x) t ∈ [tn, tn+1) .

In the next lemma we give some estimates on vn(x, t) that help us in the

rest of the proof.

Lemma 3.0.7. Let a be as in Theorem 2.0.5 and v±n as in (24).

Then for any n there is a cn so that the following holds.

P ε(‖v±n (x, Tε)‖ε ≤ 2ε1/2−a
√
Tε) ≥ 1 − cnε

n(25)

P ε(‖v±n (x, t) −√
εẐt,βn‖∞ ≤ 4ε1/2−a, t ≤ Tε) ≥ 1 − cnε

n(26)

P ε
( ∫ +∞

−∞
dxv±n (x, Tε)m̃

′
βn

(x) ≤ cε1/2−a
√
Tε

)
≥ 1 − cnε

n(27)

P ε
( ∫ +∞

−∞
dxv±n (x, Tε)m̃

′′
βn

(x) ≤ cε1/2−a
)
≥ 1 − cnε

n(28)

where βn = ξn for v+
n and it is equal to ηn for v−n .

Proof. We prove the Lemma for v+
n . Using the integral representa-

tion (9) and (12) with the positive semigroup g+
t,x0

we have that

‖v+
n (x, Tε)‖ε ≤ c‖v+

n (x, 0)‖ε + c

∫ Tε

0

ds|v+
n (x, s)|2 + ε1/2−a

√
Tε .

Now for t ∈ [0, Tε] we can use Theorem 2.0.5 and we obtain:

‖v+
n (x, Tε)‖ε ≤ ε1/2−a

√
Tε(1 + ε1/2−a

√
Tε + cT−1/2

ε ) ≤ 2ε1/2−a
√
Tε
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which proves (25). For the second estimate we have

‖v+
n (x, t) −√

εẐt,ξn‖∞≤cε1/2−a+cε1−2aTε≤cε1/2−a(1+ε1/2−aTε) ≤ 4ε1/2−a

which proves (26). (27) is a consequence of (25). The last estimate follows

from the fact that Ẑt,ξn has the representation, see (11),

Ẑt,ξn = Btm̃
′
ξn

+ Rt,ξn .

Then, being m̃′
ξn

orthogonal to m̃′′
ξn

, we have that

∫ +∞

−∞
dxvn(x, Tε)m̃

′′
ξn

(x) ≤ 4ε1/2−a + c
√
εRTε,ξn

hence, from (12), (28).

In the next lemma we give an apriori estimate on the increments of

the positive and negative centers in the time intervals [tn, tn+1].

Lemma 3.0.8. Let a and b be as in Theorem 2.0.5. Then for any n

there is cn such that

P ε(|ξn+1 − ξn| ≤ ε
1
2−a

√
Tε) ≥ 1 − cnε

n(29)

P ε(|ηn+1 − ηn| ≤ ε
1
2−a

√
Tε) ≥ 1 − cnε

n(30)

Proof. We prove (29); (30) is analogous.

From Lemma 3.0.7 v+
n (x, Tε) = m(x, tn+1)+mξn(x) is such that with

large probability

‖v+
n (x, Tε)‖ε ≤ ε1/2−a

√
Tε .

From (21) it follows that we can apply Theorem 2.0.4 therefore (29)

follows from (19).
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In the next definition we introduce two random variables that we call

approximate centers and in Lemma 3.0.10 we prove that they are close to

the true centers with large probability. This approach is different from

the one used by Brassesco et al. and indeed it can be used to prove their

invariance principle as well.

Definition 3.0.9. We define the linear approximate positive cen-

ter as:

(31) X(t) = X(tn) +

∫ ∞

−∞
dx[mt(x) + mξn(x)]m̃′

ξn
if tn ≤ t < tn+1 .

Analogously we define the linear approximate negative center as:

(32) W (t) = W (tn) +

∫ ∞

−∞
dx[mt(x) −mηn(x)]m̃′

ηn
if tn ≤ t < tn+1

where ξn and ηn are respectively the positive (negative) center of mtn .

The following holds.

Lemma 3.0.10. Let a and b be as in Theorem 2.0.5 and such that

there is γ > 0 so that
√
Tεε

2a = ε−γ. Then for any n there is cn such that

lim
ε→0

P ε(|X(tn) − ξn| ≤ εγ) ≥ 1 − cnε
n(33)

lim
ε→0

P ε(|W (tn) − ηn| ≤ εγ) ≥ 1 − cnε
n .(34)

Proof. We prove (33); (34) is analogous. As usual for t ∈ [tn, tn+1]

we consider v+
n (x, t) = mtn+t(x) + mξn(x) and for brevity we drop +.

Recalling the definition (15) we have

0 =

∫ +∞

−∞
[mtn+1

(x) + mξn+1
(x)]m̃′(ξn+1 − x)dx =

=

∫ +∞

−∞
[mtn+1

(x) + mξn(x)]m̃′(ξn − x)dx+

+

∫ +∞

−∞
[mtn+1

(x) + mξn(x)](m̃′(ξn+1 − x) − m̃′(ξn − x))dx+

+

∫ +∞

−∞
[mξn+1

(x) −mξn(x)]m̃′(ξn − x)dx+

+

∫ +∞

−∞
[mξn+1

(x) −mξn(x)](m̃′(ξn+1 − x) − m̃′(ξn+1 − x))dx .
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Using the fact that ξn+1 is close to ξn, see Lemma 3.0.8, we consider the

Taylor expansion of mξn+1
around mξn and we obtain

0 =

∫ +∞

−∞
[vn(Tε, x)]m̃′(ξn − x)dx+

+ (ξn+1 − ξn)
[ ∫ +∞

−∞
vn(Tε, x)m̃′′

ξn
dx + 1

]
+ o((ξn+1 − ξn)

3) .

Using the notation

(vn, w) =

∫ +∞

−∞
vn(Tε, x)w(x)dx ,

we can rewrite the last equation as

(35) 0 = −(vn, m̃
′
ξn

) + (ξn+1 − ξn)(1 + (vn, m̃
′′
ξn

)) + o((ξn+1 − ξn)
3) .

Using (29) and (25) we then get

(36) ξn+1 − ξn = (vn, m̃
′
ξn

) − (vn, m̃
′
ξn

)(vn, m̃
′′
ξn

) + A(ε, Tε)

where

P ε(|A(ε, Tε)| ≤ cε3/2−3aT 3/2
ε ) ≥ 1 − cnε

n .

Since X(tn+1) = X(tn) + (vn, m̃
′
ξn

) we get

X(tn+1) − ξn+1 = X(tn) − ξn + (vn, m̃
′
ξn

)(vn, m̃
′′
ξn

) + A(ε, Tε) .

If we iterate this equation, recalling that X(t0) = ξ0 we have that

X(tn+1) − ξn+1 =
n∑

k=1

(vk, m̃
′
ξk

)(vk, m̃
′′
ξk

) + nA(ε, Tε) .

Then using (27) and (28) of Lemma 3.0.7 we have that

lim
ε→0

P ε(|X(tn+1) − ξn+1| ≤ Cnε1−2a
√
Tε + ncε3/2−3aT 3/2

ε ) ≥ 1 − cnε
n .

Finally, being n = ε−1/Tε we have

lim
ε→0

P ε(|X(tn) − ξn| ≤ εγ) ≥ 1 − cnε
n

which proves the lemma.
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Given any τ > 0, we set

(37) Xε
τ = Xε−1τ − x0 W ε

τ = Wε−1τ + x0

and we call Pε
i , i = 1, 2, the laws on D(IR+, IR) of Xε

τ and W ε
τ . We denote

by Ft the σ-algebra generated by the process {Zs, s ≤ t}, recalling that

Zs is adapted to mt. In the next Proposition we state a criterion of

convergence to Brownian Motion that we use to prove the convergence of

the marginals Pε
i , i = 1, 2.

Proposition 3.0.11. Given any T > 0, the family {Pε, ε > 0}, on

D([0, T ], IR), is tight if there is c so that for all ε

(38) sup
tn≤ε−1t

Eε(γi(tn)
2) ≤ c, i = 1, 2

where, denoting by (Yt, t ∈ [0, T ]) the canonical variables in D([0, T ], IR),

γ1(tn) = (εTε)
−1Eε(Ytn+1

− Ytn |Ftn)(39)

γ2(tn) = (εTε)
−1Eε(Y 2

tn+1
− Y 2

tn
|Ftn)+(40)

− (εTε)
−12Y 0

tn
Eε(Ytn+1

− Ytn |Ftn)

with

(41) Y 0
tn

=
1

2
[Ytn + Eε(Ytn+1

|Ftn)] .

If (38) holds and if

(42) lim
ε→0

sup
tn≤ε−1T

(εTε)
−1Eε([Ytn+1

− Ytn ]4) = 0

then any limit point P of Pε is supported by C([0, T ], IR). Finally, if (38)

and (42) hold and if

lim
ε→0

sup
tn≤ε−1T

(εTε)
−1Eε(|γ1(tn)|) = 0(43)

lim
ε→0

sup
tn≤ε−1T

(εTε)
−1Eε(|D − (εTε)

−1Eε(Y 2
tn+1

− Y 2
tn
|Ftn)|) = 0(44)

then any limit point P is equal to P , the law of the brownian motion with

diffusion D that starts from 0.
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The proof of this proposition can be found in [1].

Using the above proposition we prove the invariance principle for the

approximate centers.

Theorem 3.0.12. For any T > 0, the laws Pε
i , i = 1, 2, in

D([0, T ], IR) converge to the law of a the brownian motion starting from

0 and with diffusion coefficient D given by (23).

Proof. We start by proving (38)-(44) for Xε
t . For t ∈ [tn, tn+1]

we consider vn(x, t) as usual. We use the integral representation (9)

observing that vn(x, 0) is orthogonal to m′
ξn

. From (31) we then get

(45)
X(tn+1) −X(tn) = −

∫
dxm̃′

ξn
(x)

∫ tn+1

tn

dsgtn+1−s,ξn [3mξnv
2
n+v3

n]+

+
√
ε

∫
dxm̃′

ξn
Ẑtn+1,ξn

with vn = vn(x, s). By Fubini’s theorem and observing that

∫
dxgt−s,ξn(x, y)m̃′

ξn
(x) = m̃′

ξn
(y)

we have that

(46)
X(tn+1) −X(tn) = −

∫ tn+1

tn

ds

∫
dym̃′

ξn
[3mξnv

2
n + v3

n]+

+
√
ε

∫
dxm̃′

ξn
Ẑtn+1,ξn

using (9) and (25), we obtain that with large probability

(47)
X(tn+1) −X(tn) = −3

∫ tn+1

tn

ds

∫
dym̃′

ξn
mξnv

2
n+

+
√
ε

∫
dxm̃′

ξn
Ẑtn+1,ξn + o((ε1/2−a

√
Tε)

3)

now from (26) and from the representation (10) of Ẑtn+1,ξn we get

(48) X(tn+1) −X(tn) = −
4∑

i=1

Ii + o((ε1/2−a
√
Tε)

3)
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where

I1 = 3ε

∫ tn+1

tn

ds

∫
dym̃′

ξn
mξn

∫ s

0

ds1

∫ s

0

ds2

∫
dy1×

×
∫

dy2H
ε
t−s1

(y, y1)H
ε
t−s2

(y, y2)dẇs1dẇs2 ;

I2 = 3ε

∫ tn+1

tn

ds

∫
dym̃′

ξn
mξn

∫
ds1g

2
t−s1,ξn

V ′′(mξn)2
∫ s1

0

ds2

∫ s1

0

ds3×

×
∫

dy2

∫
dy3H

ε
t−s2

(y, y2)H
ε
t−s3

(y, y3)dẇs2dẇs3 ;

I3 = 6ε

∫ tn+1

tn

ds

∫
dym̃′

ξn
mξn

∫ s

0

ds1

∫
dy1H

ε
s−s1

(y, y1)dẇs1×

×
∫ s

0

ds2gs−s2,ξnV
′′(mξn)

∫ s2

0

ds3

∫
dy3H

ε
s2−s3

dẇs3 ;

I4 = −√
ε

∫
dxm̃′

ξn
Ẑtn+1,ξn .

Now we calculate γ1(tn) = (εTε)
−1Eε(Xtn+1

− Xtn |Ftn) and we prove

that (43) holds. For I1 we have that:

(εTε)
−1Eε(I1|Ftn) = 3(Tε)

−1

∫ tn+1

tn

ds

∫
dym̃′

ξn
mξn×

×
∫ s

0

ds1

∫
dy1H

ε
t−s1

(y, y1)
2 =

= 3(Tε)
−1

∫ tn+1

tn

dsA(t− s)

∫
dym̃′

ξn
mξn .

Where A(t−s) =
∫ s

0 ds1

∫
dy1H

ε
t−s1

(y, y1)
2 is a function which not depends

by y. Then the last integral is zero, being mξn an odd function ans its

derivative an even one. For I2 and I3 the idea is the same: now we use

the fact that V ′′(mξn) and V ′′(mξn)2 are even functions, then we always

have an odd integrand function and therefore (43) holds also for I2 and

I3. The average of I4 is zero, hence (43) is completely proved.

To prove the remaining estimates we observe that by definition, see

Definition 2.0.3, |ξt| ≤ ε−1 for all t, and that by Theorem 2.0.5 and the
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definition of Tε

P ε(|ξtk | ≤ (1− ζ/2)ε−1; ‖mtk − qξtk ,ηtk‖ε ≤ ε1/2−a∀tk ≤ ε−1T ) ≥ 1− cnε
n .

Hence it suffices to prove:

Eε(γi(Tε)
2) ≤ c i = 1, 2(49)

lim
ε→0

Eε((εTε)
−1[XTε −X0]

4 + |D − (εTε)
−1[XTε −X0]

2|) = 0(50)

which are a consequence of the following lemma.

Lemma 3.0.13. Given η > 0, for any ε > 0, let x0 ∈ (ζε−1, (1−ζ)ε−1

and let mt be the Ginzburg-Landau process. Set

X� = XTε − x0 .

Then for any n there is cn so that

(51) |Eε(X�)| ≤ cnε
n

and for any positive p there is Cp so that

(52) |Eε(X�)p| ≤ Cp[εTε]
p/2 .

The proof of this lemma is similar to the proof of Lemma 4.2 of [1]

and then it is omitted.

To conclude the proof of (49) and (50) we observe that (49) follows

from (51). The first term of (50) vanishes by (52), the second by the

following argument. From (26) and (11) we have that

‖mTε − (−mx0
+ ε1/2BTεw̃

′
ξn

)‖∞ ≤ ‖ε1/2RTε,x0
‖∞ + cε1/2−a

since w̃′
x0

=
√
Dm′

x0
, D = 3/4, there is a c̄ so that

‖−mx0
+ ε1/2BTεw̃

′
x0

+ mx0+ε1/2
√
DBTε

‖∞ ≤ c̄εB2
Tε
.
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Then by (19) the centers ξTε of mTε and x0 +ε1/2
√
DBTε of mx0+ε1/2

√
DBTε

satisfy the following inequality

|ξTε − x0 − ε1/2
√
DBTε | ≤ c(‖ε1/2RTε,x0

‖∞ + εB2
Tε

+ ε1/2−a)

for a suitable constant c. Recalling (12),

|(εTε)
−1/2(ξTε − x0) − T−1/2

ε

√
DBTε | ≤ c(2T−1/2

ε ε−a + ε1/2T−1/2
ε B2

Tε
) .

Now, recalling that X� = XTε − x0, we have that the last term of (50)

vanishes observing that the distribution of T−1/2
ε BTε is a normal with 0

average and variance D given in Proposition 2.0.1. For W ε
t the proofs are

analogous and then theorem is completely proved.

Now we consider the bidimensional process on D(IR+, IR
2) Y ε

t =

(Xε
t ,W

ε
t ) and let Pε its law. Since the arguments to prove the tight-

ness for Pε are the same used to see the tightness of its marginals, for

brevity we omit the details. Therefore any limit point is supported by

C([0, T ], IR). To prove that any limit point is the law of two independent

Brownian motions we use the criterion given by the following theorem.

Theorem 3.0.14. Let Xt = (X1
t , X

2
t ), Ft, 0 ≤ t < ∞ be a conti-

nuous, adapted process in IR2, such that every component:

Mk
t = Xk

t −Xk
0 k = 1, 2

is a continuous local martingale relative to Ft and the cross-variations

〈Mk
t ,M

j
t 〉 = δk,jt .

Then Xt is a bidimensional brownian motion.

The proof of this theorem can be found in [5] (see Th. 3.16 page. 157).

The cross-variations 〈Mk
t ,M

j
t 〉 are defined as

〈X,Y 〉t +
1

4
(〈X + Y 〉t − 〈X − Y 〉t)

and they are such that XY − 〈X,Y 〉 is a martingale.



[17] Fluctuations of a droplet in the one dimensional etc. 333

Proof of Theroem 2.0.6 (conclusion). From Definition 3.0.9,

Lemma 3.0.10 and Theorem 3.0.12 it follows the convergence of each

marginal to a Brownian motion. To conclude the proof of Theorem 2.0.6

it remains to prove the independence of two two limiting Brownian mo-

tions. From Theorem 3.0.14 it is sufficient to prove that

(53) lim
ε→0

sup
tn≤ε−1Tε

Eε(Xtn+1
Wtn+1

−XtnWtn |Ftn) = 0 .

To see this, we write

Xtn+1
Wtn+1

−XtnWtn = Xtn+1
(Wtn+1

−Wtn) + Wtn(Xtn+1
−Xtn)

and from (31) we get

Xtn+1
Wtn+1

−XtnWtn =
3∑

i=1

Ji

where
J1 = Xtn(Wtn+1

−Wtn)

J2 = Wtn(Xtn+1
−Xtn)

J3 =

∫ +∞

−∞
dxm′

ξn
vn(x, tn+1)(Wtn+1

−Wtn) .

For J1 and J2, (53) is a straightforward consequence of Theorem 3.0.12.

For J3 we use the representation (48) for Wt:

J3 =
4∑

j=1

∫ +∞

−∞
dxm̃′

ξn
ẐTε,ξnIj + Rε(ε, Tε)

with

P ε(|Rε(ε, Tε)| ≤ (ε1/2−aTε)
3) ≥ 1 − cnε

n

from the definition of Ij, j = 1 . . . 4, and the fact that the third-moment

of white noise is zero, it follows that ∀j ∈ {1, . . . , 4}

Eε
( ∫ +∞

−∞
dxm̃′

ξn
ẐTε,ξnIj

∣∣Ftn

)
= 0

and then (53) is completely proved.
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Proof of Theorem 2.0.5. Being m0 ∈ C(ε, ζ) we have from (17)

that |ξ0−x0| ≤ cε/1/4 and |η0−y0| ≤ cε/1/4. Obviously it is also true that

|qx,y − qz,w| ≤ cmax{|x− y|, |z − w|}. Hence

‖m0 − qξ0,η0
‖ε ≤ ‖m0 − qx0,y0

‖ε +‖qx0,y0
− qξ0,η0

‖ε ≤ (1+ c)ε1/4 = C0ε
1/4 .

We next prove (21) only for x ≥ 0; for the negative x the proof is analo-

gous.

We define

w̃+
0 (x) =





1 if x− ξ0 ≤ −10−4ζ ′ε−1 − 1

m0(x) if |x− ξ0| ≤ 10−4ζ ′ε−1

−1 if x− ξ0 ≥ 10−4ζ ′ε−1 + 1

and a linear interpolation in the missing intervals completes the definition

of w̃0(x). Let w̃+
t and mt the solution of (3) with initial data respectively

w̃+
0 and m0. Using the Barrier lemma, see Proposition 5.3 of [1], for any

n, there is a cn so that

(54) P ε
(

sup
t≤ε−b

sup
|x−ξ0|≤10−5ζ′ε−1

|mt(x) − w̃+
t (x)| ≤ cnε

n
)
≥ 1 − cnε

n .

Given any a < 1/4, we will prove that there is â < a and, for any n, cn
so that

(55)

P ε
(

sup
t≤ε−b

sup
|x−ξ0|≤10−5ζ′ε−1

|w̃+
t (x) + mx̃0

(x)| ≤ cε1/4;

sup
|x−ξ0|≤10−5ζ′ε−1

|w̃+
ε−b(x) + mx̃0

(x)| ≤ ε1/2−â
)
≥ 1 − cnε

n

with x̃0 positive center of w̃+
0 . Observe that by (19) and by (20), there is

a suitable constant c so that

(56) |x̃0 − ξ0| ≤ cε1/4 .

Then from (54), (55), (56) we have:

(57)

P ε
(

sup
t≤ε−b

sup
|x−ξ0|≤10−5ζ′ε−1

|mt(x) + mξ0(x)| ≤ 2cε1/4;

sup
|x−ξ0|≤10−5ζ′ε−1

|mε−b(x) + mξ0(x)| ≤ 2ε1/2−â
)
≥ 1 − cnε

n .
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After proving (55) and consequently (57) we will extend the sup over the

whole [0, ε−1] and with the help of Theorem 2.0.4 we will conclude the

proof. Given a ≤ 1/4, let

a′ < a/4 b < 1/4 − 2a′ ã = a′ + b/2 < a

and let

Bε = Gε(a
′, x̃0) ∩

{
sup
t≤ε−b

‖w̃+
t ‖∞ ≤ 2

}

with Gε(a
′, x̃0) as in (12). For any n there is cn so that

P ε(Bε) ≥ 1 − cnε
n .

Let ut = w̃+
t + mx̃0

.

Then, by (9) there are constants C1 and C2 such that, in Bε, and for

x such that |x− ξ0| ≤ 10−5ζ ′ε−1,

(58)
|ut(x)| ≤ C1‖u0‖ε + C2

∫ t

0

ds‖us‖2
ε + ε1/2‖Ẑt,x̃0

‖ε ≤

≤ C1‖u0‖ε + C2

∫ t

0

ds‖us‖2
ε + ε1/2−a′−b/2

for all t ≤ ε−b. The last term is bounded by ε1/4. Now

(59) ‖u0(x)‖ε ≤ 2e10−5ζ′ε−1

+ cε1/4 ≤ C/C1ε
1/4

for a suitable constant C. Then for |x− ξ0| ≤ 10−5ζ ′ε−1

(60) |ut(x)| ≤ 2Cε1/4 +

∫ t

0

ds‖us‖2
ε for all t ≤ ε−b .

Now we extend the above estimates on the whole Λε. Using the Barrier

Lemma in the region {|x − ξ0| > 10−5ζ ′ε−1} we reduce to the case with

initial datum close to a function identically equal either to 1 or −1. We

then obtain an estimate similar to (55) by considering the equation linea-

rized around m ≡ ±1. The analysis is very similar to the previous one

since m ≡ ±1 is linearly stable for the deterministic evolution. We then

obtain that (60) holds for all x ∈ Λε. Now let

T = inf{t ≥ 0 s.t. ‖ut‖∞ ≥ 3Cε1/4} .
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We next prove by contradiction that ε−b ≤ T , in Bε. We thus suppose

that T < ε−b, then

‖ut‖∞ ≤ 3Cε1/4 and, by continuity of ‖ut‖ε, ‖uT‖∞ = 3Cε1/4 .

Hence

3Cε1/4 ≤ 2Cε1/4 + C2T (3Cε1/4)2

that is

Cε1/4 ≤ [9CC2ε
1/4−b]Cε1/4

which cannot hold for all ε small enough because b < 1/4. Hence ε−b ≤ T .

Hence:

‖uε−b‖∞ ≤ Ce−αε−b

ε1/4 + C2ε
−b(3C)2ε1/2 + ε1/2−â ≤ C̃ε1/2−â .

We have thus completed the proof of (55) hence also of (57).

Repeating same arguments for x < 0 we have finally that

(61)
P ε

(
sup
t≤ε−b

‖mt(x) − qξ0,η0
‖ε≤2cε1/4; ‖mε−b(x) − qξ0,η0

‖ε≤2ε1/2−â
)
≥

≥ 1 − cnε
n .

For the second term in (61) we can use the Theorem 2.0.4 to conclude

that

‖mε−b(x) − qξ0,η0
‖ε ≤ 2ε1/2−â implies |ξε−b − ξ0| ≤

≤ c2ε1/2−â and |ηε−b − η0| ≤ c2ε1/2−â .

Hence we have proved that

(62)

P ε
(

sup
t≤ε−b

‖mt(x) − qξ0,η0
‖ε≤cε1/4;

‖mε−b(x) − qξ
ε−b ,ηε−b

‖ε≤ c̃ε1/2−â
)
≥ 1 − cnε

n

for suitable constants c and c̃. To conclude the proof of the theorem we

state the following lemma:
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Lemma 3.0.15. Let ζ, a, b and m0 as in Theorem 2.0.5. Then there

is c′ and, given n, cn so that, setting sk = kε−b,

P ε
(

sup
ε−b≤sk≤ε−1−1/8

‖msk − qξsk ,ηsk‖ε ≤ ε1/2−a
)
≥ 1 − cnε

n(63)

P ε(|ξt − x0| ≤ c′(1 ∨ t)ε1/4 for all t < ε−1−1/8) ≥ 1 − cnε
n(64)

P ε(|ηt + x0| ≤ c′(1 ∨ t)ε1/4 for all t < ε−1−1/8) ≥ 1 − cnε
n .(65)

The proof of this lemma is the same as that of Lemma 3.5 of [1],

we omit details. Using (62) and this Lemma we have finally proved the

Theorem 2.0.5, namely that the Ginzburg-Landau process is close to a

droplet as ε → 0, for all times t ≤ ε−1−1/8.

Acknowledgements

The author acknowledges Anna De Masi for many helpful discussions

and suggestions on this work.

REFERENCES

[1] S. Brassesco – A.De Masi – E. Presutti: Brownian fluctuations of the in-
terface in the d = 1 Ginzburg-Landau equation with noise., Ann. Inst. Henry
Poincare, 31, (1995), 81-1185.
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