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On the positivity of some bilinear functionals

for discrete Sobolev orthogonal polynomials

A. DRAUX – C. ELHAMI

Riassunto: Si studia il carattere positivo del funzionale bilineare a(f, g) =
∑N

m=0

λmc(m)(∆mf,∆mg) in dipendenza dai parametri λm, essendo c(0) il prodotto interno

di Charlier o quello di Meixner mentre gli altri c(m) sono prodotti interni diversi. Si
studiano due diversi casi. Nel primo p è la successione di polinomi ortogonali rispetto
a c(0) e ∆mp è la successione di polinomi ortogonali rispetto a c(m). Nel secondo caso
si assume c(m) = c(0).

Abstract: The positivity of a bilinear functional a(f, g)=
∑N

m=0
λm c(m)(∆mf ,

∆mg) is studied as a function of coefficients λm. c(0) is or the Charlier inner product
either the Meixner inner product.

Two different cases are considered. If p is a polynomial orthogonal with respect
to c(0), ∆m p is orthogonal with respect to c(m), m = 1, . . . , N , in the first case. In
the second case c(m) = c(0), m = 1, . . . , N . As a consequence, when N = 1, the
corresponding Markov-Bernstein inequalities are given.

1 – Introduction

After two papers [4] and [5] devoted to the positivity of some bilinear

functionals a linked with some classical continuous inner products (Her-
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mite, Laguerre and Jacobi), it remained to study the discrete case with

the Charlier and Meixner measures. The greater part of the results of

the continuous case, published in these two papers, remains valid in the

discrete case.

In the first paper [4] it was studied the case where the different inner

products c(m), m = 1, . . . , N , appearing in the definition of a, are such

that the derivative of order m of the orthogonal polynomials with respect

to c(0) is orthogonal with respect to c(m). The concerned polynomials were

the Hermite polynomials with c(m) = c(0), m = 1, . . . , N , the Laguerre

polynomials with c(m)(.) = c(0)(xm .), m = 1, . . . , N , and the Jacobi

polynomials with c(m)(.) = c(0)((1 − x2)m .), m = 1, . . . , N . By analogy

with the continuous case we study in the second section of this paper the

Charlier polynomials with c(m) = c(0), m = 1, . . . , N , and the Meixner

polynomials with c(m)(.) = c(0)(cm(β + x + 1)m .), m = 1, . . . , N . Like

in [4] the domain D of positivity is a convex domain obtained from the in-

tersection of all the open half-spaces defined by (7) (see [4] for the detailed

proofs of these properties). In the case where N = 1, Markov-Bernstein

inequalities are obtained in a very natural way, as well as their extremal

polynomials which are the Charlier (resp. Meixner) polynomials.

The study of the case where c(0) is the Meixner inner product and

c(m) = c(0), m = 1, . . . , N , shows oneself to be the most original and

interesting one (as it was the case for the study of Laguerre, Gegenbauer

and Jacobi polynomials in [5]). In Section 3 the presentation of the

discrete analogous case takes one’s inspiration from that one in [5]. In

the general case where N > 1, the domain D of positivity of a can be

deduced from the results given in [5]. They do not need any new proofs.

So section 3 is particularly devoted to the case N = 1. Indeed we have

a new fact with respect to the continuous case: the domain of positivity

can contain a non empty interval of negative values of λ1. Moreover we

will give the corresponding Markov-Bernstein inequality.

In [4], [5] and in this paper, we have studied all the cases in which

appears a tridiagonal matrix. In the Jacobi case we already had a five

diagonal matrix. In more general inner products we would obtain matri-

ces with more diagonals. Then the study of the domain of positivity or

of Markov-Berstein inequalities cannot use the classical results of Jacobi

matrices. We hope, in spite of this limited number of inner products, but

containing the Lebesgue measure, to make easier the study of variational
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problems defined by (1) or by its continuous analogous. These expres-

sions can be derived from the variational formulation of linear partial

differential equations.

P (resp. Pi) will denote the vector space of polynomials (in one

variable) with real coefficients (resp. of degree at most i).

Let us begin to consider the following bilinear functional a:

(1) a(f, g) =
N∑

m=0

λmc
(m)(∆mf(x),∆mg(x)), ∀ f and g ∈ P ,

where c(m),m = 0, . . . , N , are symmetric bilinear functionals

c(m) : P × P → IR for m = 0, . . . , N ,

∆ is the difference operator

∆jf(x) = ∆j−1f(x + 1) − ∆j−1f(x) ∀ j ∈ IN, j ≥ 1 ,

∆0 = I ,

and where λm, m = 0, . . . , N , are N + 1 fixed real scalars with λ0 = 1

and λN �= 0.

Every functional c(m) is defined from its moments

c(m)(xi, xj) =

{
c
(m)
i+j if i ≥ 0 and j ≥ 0 ,

0 if i < 0 or j < 0 .

We look for the discrete formal orthogonal polynomials with respect to

a, that is to say, we look for the polynomials Sn, n ≥ 0, such that:

(2)
degSn = n ,

a(Sn, x
i) = 0 for i = 0, . . . , n− 1 .

These polynomials Sn will be called Sobolev discrete formal orthogonal

polynomials.

Setting M̃n = (a(xj, xi))n−1
i,j=0, we have the following obvious result:

Theorem 1.1. The discrete formal orthogonal polynomial Sn exists

and is unique up to a normalization for the leading coefficient is fixed, if

and only if the matrix M̃n is regular.
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Definition 1.2. The bilinear functional a is called quasi-definite if

the matrix M̃n is regular ∀n ≥ 1.

The matrix M̃n can be expressed by means of different Hankel ma-

trices.

Let M (m)
n be the Hankel matrices (c

(m)
i+j )

n−1
i,j=0 for m = 0, . . . , N and

∀n ∈ IN.

Let θn be the n×n matrix such that (θn)i,j =
(i
j

)
= i!/(j!(i− j)!) for

j ≤ i− 1 and equal to 0 for the other cases. Then we have:

Property 1.3.

(3) M̃n = (a(xj, xi))n−1
i,j=0 =

N∑

m=0

λmθ
m
n M (m)

n (θmn )T .

Proof. Since ∆xj =
∑j−1

k=0

(j
k

)
xk, we have

c(m)(∆xj,∆xi) =
i−1∑

�=0

j−1∑

k=0

(
i

�

)(
j

k

)
c(m)(xk, x�) = (θnM

(m)
n θTn )i,j .

If we assume that

(c(m)(∆r−1xj,∆r−1xi))n−1
i=j=0 = θr−1

n M (m)
n (θr−1

n )T ,

then

c(m)(∆rxj,∆rxi) = c(m)(∆(∆r−1xj),∆(∆r−1xi)) =

=
i−1∑

�=0

j−1∑

k=0

(
i

�

)(
j

k

)
c(m)(∆r−1xk,∆r−1x�) =

= (θn(θ
r−1
n M (m)

n (θr−1
n )T )θTn )i,j .

We are mainly interested by the positive definite character of a.

Definition 1.4. The bilinear functional a is called positive definite on

P × P if, ∀ f ∈ P − {0}, a(f, f) > 0.

A result, given in [5] in the continuous case, can be extended to the

discrete case without new proof.
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Theorem 1.5. The bilinear functional a is positive definite on P ×
P if and only if all the formal discrete orthogonal polynomials Sn, n ∈ IN,

exist with a positive leading coefficient and a(Sn, Sn) > 0, ∀n ∈ IN.

2 – Charlier-Sobolev and closely connected orthogonal polyno-

mials

We consider the case where c(0) is the inner product corresponding

to Charlier and Meixner polynomials (see [9]).

If d is a classical positive definite discrete linear functional, then d

can be characterized by the existence of two polynomials φ and ψ, with

deg φ ≤ 2 and degψ = 1, such that ∆(φd) = ψd (∆(φd) = φ(x− 1)∆d +

∆φ(x− 1)d).

Let {Pn}n be the monic orthogonal polynomial sequence associated

to the linear functional d (also denoted by d(0)), then ∆(m)Pn(x) is or-

thogonal with respect to the (classical) discrete linear functional d(m) =

φ(x)φ(x + 1) · · ·φ(x + m − 1)d(0). In fact, if we denote by {P (m)
n }n the

monic orthogonal polynomials sequence associated with d(m), we have

(4) ∆mPn(x) = (n)mP
(m)
n−m(x) ,

where (a)j, j ∈ IN, denotes the shifted factorial: (a)j = a(a− 1) · · · (a−
j + 1).

Moreover, if we denote by k(m)
n = d(m)((P (m)

n )2), we obtain the usual

expression

(5) ∆mPn(x) = ξ(m)
n

k(0)
n

k
(m)
n−m

P
(m)
n−m(x) .

All the elements corresponding to the Charlier and Meixner functionals

are given in Table 1 in which µm denotes the weight function for the

inner product d(m) (see [9], [6]). µm is a step function with jumps at

x = 0, 1, 2, . . .

In this section, since c(m)(f, g) = c(m)(1, fg), we study the case where

c(m)(f, g) = d(m)(fg), m = 0, 1, . . . , N . Then we have the obvious rela-

tion

a(Pn, Pn) =
N∑

m=0

λmc
(m)(∆mPn,∆

mPn) =
N∑

m=0

λm(n)2mk
(m)
n−m .
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Table 1

Name Charlier Meixner

φ a c(β + x + 1)

ψ −x + a− 1 β c− (x + 1)(1 − c)

Ω ]0,+∞[ ]0,+∞[

µm
e−aax+m

Γ(x+1)

cx+m Γ(m+β+x)

Γ(x+1) Γ(β)

k(m)
n ann! cn

(c−1)2n
(1 − c)−β−mn!(β + m + n− 1)n

ξ(m)
n a−m (1−c)m

cm(β+m−1)m

Restrictions a > 0 β > 0, 0 < c < 1

From that, all the following results are those presented in [4] in the con-

tinuous case for Hermite-Sobolev and closely connected orthogonal poly-

nomials, and they can be obtained with the same proofs. So we only give

the results interesting for illustrating our purpose.

a(Pn, Pi) = k(0)
n

(
1 +

N∑

m=1

C(m)
n λm

)
δn,i ,

where δn,i is the Kronecker symbol and

C(m)
n = (n)2m

k
(m)
n−m

k
(0)
n

= (n)mξ
(m)
n

with the convention that if n−m+1 ≤ 0 for an index m, then C(m)
n = 0,

or in other words this index does not exist in the sum.

Let us recall a result from [4].

Theorem 2.1 [4]. i) The bilinear functional a is quasi-definite

if and only if a(Pi, Pi) �= 0, ∀ i ∈ IN, that is to say if and only if the

coefficients λm, m = 1, . . . , N , satisfy the following conditions

(6) 1 +
N∑

m=1

C
(m)
i λm �= 0 ∀ i ≥ 1 .

ii) The bilinear functional a is positive definite on P × P if and only

if a(Pi, Pi) > 0, ∀ i ∈ IN, that is to say if and only if the coefficients
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λm, m = 1, . . . , N , satisfy the following conditions

(7) 1 +
N∑

m=1

C
(m)
i λm > 0 ∀ i ≥ 1 .

For a fixed integer i, the set of λ ∈ IRN of components λm, m =

1, . . . , N , satisfying relation (7) is an open half-space. Therefore Dn,

defined by

Dn = {λ ∈ IRN | a(p, p) > 0 ∀ p ∈ Pn − {0}} ,

is the intersection of these open half-spaces for i = 1, . . . , n, and D,

defined by

D = {λ ∈ IRN | a(p, p) > 0 ∀ p ∈ P − {0}} ,

is the same intersection for i ≥ 1.

Like in [4] it can be shown in the same way that, ∀λ ∈ D, λN > 0.

Thus if N = 1, the only positive definite inner products (1) corresponds

to λ1 > 0.

Let us denote by D+

n the domain of IRN

D+

n = {λ ∈ IRN , λ = (λ1, . . . , λN) | λi ≥ 0, i = 1, . . . , N} .

If N > 1, D \ D+

N is non empty (the correponding proof remains the

same as the one given in [4] (Property 12)). Finally the result concerning

the non normal case, given in [4] can also be extended to this particular

discrete case without additional elements in the proof.

Theorem 2.2 [4]. If λ ∈ IRN is such that λ ∈ Hj ∀ j ∈ J =

{j1, . . . , jp} with p ≤ N and 1 ≤ j1 < j2 < . . . < jp, then

i) If n ≤ j1, Sn = α̂(n)
n Pn, where α̂(n)

n is non-zero constant determined by

the wanted normalization of Sn.

ii) Let Jr be a subset of J : Jr = {j1, . . . , jr}, r ≤ p.

For r = 1, . . . , p− 1, and n such that jr < n ≤ jr + 1, then we have

Sn = α̂(n)
n Pn +

∑

j∈Jr

α̂
(n)
j Pj ,
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where α̂
(n)
j , j ∈ Jr, are r arbitrary constants, and α̂(n)

n a non-zero con-

stant.

iii) If n > jp, then Sn = α̂(n)
n Pn +

∑
j∈J α̂

(n)
j Pj, where α̂

(n)
j , j ∈ J , are p

arbitrary constants, and α̂(n)
n a non-zero constant.

In addition to [4] we will give the Markov-Bernstein inequalities in

the different cases for N = 1.

C(a)
n denotes the monic Charlier orthogonal polynomial of degree n,

depending on one real parameters a > 0, and m(β,c)
n denotes the monic

Meixner orthogonal polynomial of degree n, depending on two real pa-

rameters (β > 0 and 0 < c < 1).

Corollary 2.3 Markov-Bernstein inequalities. Let ‖ . ‖(m) be the

norm associated to the inner product c(m) respectively for m = 0, 1. Then

∀ p ∈ Pn − {0}, a(p, p) > 0 if and only if λ1 > − 1

C
(1)
n

. Thus ∀ p ∈ Pn,

‖ ∆p ‖(1)≤
√
C

(1)
n ‖ p ‖(0).

C(1)
n =





n

a
in the Charlier case ,

n(1 − c)

cβ
in the Meixner case .

√
C

(1)
n is the best constant.

An extremal polynomial is

• a Charlier polynomial C(a)
n (x) in the Charlier case,

• a Meixner polynomial m(β,c)
n (x) in the Meixner case.

3 – Meixner-Sobolev orthogonal polynomials

Like in [5] some matrix relations will be given from the relations (8)

to (10) satisfied by the monic Meixner polynomials (see [9], [6]).

(8) ∆m(β,c)
n (x) = n m

(β+1,c)
n−1 (x) .

m(β,c)
n (x) =

∆m
(β,c)
n+1 (x)

n + 1
+ e(β,c)

n

∆m(β,c)
n (x)

n
,(9)

= m(β+1,c)
n (x) + e(β,c)

n m
(β+1,c)
n−1 (x) ,(10)
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with e(β,c)
n = nc

1−c
. By convention we complete the set of the previous

relations (8) and (9) by the following ones:

(11)
m

(β,c)
−k = m

(β+1,c)
−k = 0 ,

∆m
(β,c)
−k+1 = m

(β+1,c)
−k

}
∀ k > 0 .

m̂
(β,c)
−k,n (resp. ∆m̂

(β,c)
−k,n) will represent the vector whose the components

are m
(β,c)
j (resp. ∆m

(β,c)
j ), j = −k, . . . , n.

Thus, from (8) we have:

(12) m̂
(β+1,c)
−k,n = D̂−k+1,n+1 ∆m̂

(β,c)
−k+1,n+1 ,

where D̂−k+1,n+1 is an (n + 1 + k) × (n + 1 + k) diagonal matrix whose

the entries are

D̂−k+1,n+1(i, i) =

{
1 i = 1, . . . , k ,
1
�

� = 1, . . . , n + 1 with i = k + � .

Moreover, from (10) we have:

(13) m̂
(β,c)
−k,n = E

(β,c)
−k,n m̂

(β+1,c)
−k,n

where E
(β,c)
−k,n is the (n + 1 + k) × (n + 1 + k) regular matrix whose the

elements are in row i and column j, i, j = 1, . . . , n + k + 1:

E
(β,c)
−k,n(i, j) =





1 ∀ i = j ,

e
(β,c)
i−k−1 ∀ i = j + 1, k + 2 ≤ i ≤ n + k + 1 ,

0 everywhere else .

Finally we get from (12) and (13):

(14) m̂
(β,c)
−k,n = J T

−k+1,n+1 ∆m̂
(β,c)
−k+1,n+1 ,

where J T
−k+1,n+1 is an (n+1+k)×(n+1+k) nonsingular matrix obtained

by multiplication of E
(β,c)
−k,n on the right by D̂−k+1,n+1.
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Let {Ri}i≥0 be a sequence of monic polynomials which satisfies the

following conditions:

degRi = i, ∀ i ∈ IN ,

∆iRi = i!m
(β,c)
0 = ρi,N m

(β,c)
0 , for 0 ≤ i ≤ N − 1 ,(15)

∆NRi = (i)N m
(β,c)
i−N = ρi,N m

(β,c)
i−N ,for i ≥ N .(16)

Let R̂n (resp. ∆jR̂n, ∀ j ∈ IN) be the vector of components Ri (resp.

∆jRi, ∀ j ∈ IN), i = 0, . . . , n, and Dn,N be the (n+ 1)× (n+ 1) diagonal

matrix (ρi,N)ni=0.

The matrix interpretation of (15) and (16) is

(17) ∆NR̂n = Dn,N m̂
(β,c)
−N,n−N .

Therefore, using the same technique as in [5], we get a similar relation to

relation (24) given in [5], that is to say

R̂n = Dn,N

(N−1∏

j=0

J−j,n−j

)T

m̂
(β,c)
0,n .

where
∏N−1

j=i J−j,n−j = J−i,n−i · · · J−N+1,n−N+1 in this order. If i > N−1,

then
∏N−1

j=i J−j,n−j will be taken equal to 1.

From that all the results given in Sections 4 and 5 in [5] remains

valid.

The most interesting results concern the case N = 1.

Let p and q be two polynomials of degree n. Since {Ri}i≥0 is a basis

of P, we can write p and q as:

(18) p = (R̂n)
Ty and q = (R̂n)

T z ,

where y and z are vectors of IRn+1 which contain the coordinates yi (resp.

zi) of p (resp. q) in the basis {Ri}ni=0. Then

a(p, q) = c(0)(p, q) + λ1c
(0)(∆p,∆q)(19)

= zTDn,1 (J0,n)
T Kn,0 J0,n Dn,1 y + λ1z

TDn,1 Kn,1 Dn,1 y .(20)
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where Kn,j is an (n + 1) × (n + 1) matrix such that

Kn,j = (c(0)(m
(β,c)
i ,m

(β,c)
� ))n−j

i,�=−j, j = 0, 1 .

Thus Kn,j is a diagonal matrix (ki)
n−j
i=−j where ki = (c(0)(m

(β,c)
i ,m

(β,c)
i ),

i ≥ 0, and ki = 0 if i < 0. Moreover (J0,n)
T Kn,0 J0,n is a tridiagonal

matrix.

From that (J0,n)
T Kn,0 J0,n + λ1 Kn,1 can be written as:

(21) (J0,n)
TKn,0J0,n+λ1Kn,1 =

(
k0 0

0 (Kn−1,0)
1
2 (Jn+λ1I)(Kn−1,0)

1
2

)
,

since the n last rows and columns of Kn,1 correspond to Kn−1,0 which

is a definite positive diagonal matrix. (Kn−1,0)
1
2 is the diagonal matrix

whose entries are the square roots of the entries of Kn−1,0.

Therefore the matrix Jn is:

Jn(i, j) =





k1

k0

=
cβ

(1 − c)2
for i = j = 1 ,

c2

(1 − c)2
+

ki
i2ki−1

=
c

(1 − c)2

(
c +

i + β − 1

i

)

for i = j = 2, . . . , n,

c

(1 − c)(i− 1)

√
ki−1

ki−2

=
c

(1 − c)2

√
c(i + β − 2)

i− 1

for i = j + 1 ,

For i = j − 1 the matrix is completed by symmetry,

0 everywhere else.

The three following properties of [5] still remain valid.

Property 3.1 [5]. Jn is a positive definite symmetric matrix.

Property 3.2 [5]. If µi,n, i = 1, . . . , n, are the eigenvalues of Jn

with 0 < µ1,n ≤ · · · ≤ µn,n, then limn→∞ µn,n < +∞.
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Theorem 3.3 [5].

Dn = {λ1 ∈ IR, λ1 > −µ1,n} ,

where µ1,n is the smallest eigenvalue of Jn.

Since Jn is a tridiagonal matrix, we immediately get a three-term

recurrence relation between the successive monic polynomials A�(x) =

det(xI − J�). Moreover the last coefficient in this recursion being strictly

positive, the zeros of all the polynomials A�, � ≥ 1, are real, positive,

distinct.

We summarize these results in the Meixner case in the following

theorem:

Theorem 3.4 (Meixner case). The eigenvalues µi,n, i = 1, . . . , n,

are the zeros of the orthogonal polynomials An(x) defined from the fol-

lowing three-term recurrence relation:

An(x) =
(
x− c2

(1 − c)2
− c

(1 − c)2
n + β − 1

n

)
×

×An−1(x) − c3

(1 − c)4
n + β − 2

n− 1
An−2(x), n ≥ 2 ,

with A0(x) = 1 and A1(x) = x− cβ
(1−c)2

.

These zeros are real, positive, distinct.

From the interlacing property of the zeros of orthogonal polynomials

satisfying the previous recursion, {µ1,n}n≥1 is a decreasing sequence.

Using γ and δ defined by

γ = lim
n→∞

( c2

(1 − c)2
+

c

(1 − c)2
n + β − 1

n

)
=

c(1 + c)

(1 − c)2
,

δ = lim
n→∞

( c3

(1 − c)4
n + β − 2

n− 1

)
=

c3

(1 − c)4
,

we get

σ = γ − 2
√
δ =

c(1 −√
c)2

(1 − c)2
> 0 ,

τ = γ + 2
√
δ =

c(1 +
√
c)2

(1 − c)2
.
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From Blumenthal’s theorem (see Chihara [2]) we know that the set

of all zeros (contained in [σ, τ ]) of all polynomials An is dense in the

interval [σ, τ ]. However some zeros of An can be lain on the outside of

[σ, τ ]. For example, if c = 1/4, then σ = 1/9. If 0 < β < 1/4, then

µ1,1 = cβ
(1−c)2

< 1/9 = σ.

The new fact is that infn µ1,n is not necessary equal to zero like in

the continuous case (see [4] and [5]). Hence, in the case N > 1, if λ ∈ D,

λN could be negative according to the following result.

Theorem 3.5 [5]. Let µi,n, i = 1, . . . , n, be the eigenvalues of Jn,

(0 < µ1,n ≤ · · · ≤ µn,n). µn,n is assumed to be bounded ∀n.

i) If limn→∞ µ1,n = 0 and if λ = (λ1, . . . , λN) ∈ D, then λN > 0.

ii) If infn µ1,n ≥ κ > 0 and if λi > 0, i = 1, . . . , N − 1, then there

exists κ̂ < 0 depending on the λi’s, i = 1, . . . , N − 1 such that ∀λN > κ̂,

λ = (λ1, . . . , λN) ∈ D.

Property 3.6. i) If 1−β > 0 and c < β, then there exists a constant

α > 0, depending only on β and c, such that α(β, c) ≤ infn µ1,n.

ii) If 1−β < 0 and c < min(infi ξ(i), 1), where ξ(i) is the smallest zero of

(22) c−√
c
(
√

β + i− 1

i
+

√
β + i− 2

i− 1

)
+

β + i− 1

i
,

then there exists a constant α̂ > 0, depending only on β and c, such that

α̂(β, c) ≤ infn µ1,n.

iii) If β = 1, then c
(1+

√
c)2

= infn µ1,n.

Proof. The Gerschgorin disks will be used for obtaining a location

of the eigenvalues of Jn. Let us denote by ϕ(i) the difference between the

center and the radius of the Gerschgorin disks corresponding to the ith

row of Jn.

If i = 1, ϕ(1) =
c
√
β

(1 − c)2
(
√
β −√

c)

If i ≥ 2, ϕ(i)=
c

(1 − c)2

(
c−√

c
(
√

β+i− 1

i
+

√
β + i− 2

i− 1

)
+
β + i− 1

i

)
.
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In this last relation, the factor of c
(1−c)2

which is exactly (22), has a

discriminant equal to

δ =
β + i− 2

i− 1
+ 2

√
(β + i− 1)(β + i− 2)

i(i− 1)
− 3

β + i− 1

i
.

The quantity 3β+i−1
i

− β+i−2
i−1

= (2i−3)(β+i−2)+3(i−1)

i(i−1)
> 0 ∀β > 0 and i ≥ 2.

Therefore for studying the sign of δ, it is sufficient to give the sign of

(23)

4
(β + i− 1)(β + i− 2)

i(i− 1)
−

(
3
β + i− 1

i
− β + i− 2

i− 1

)2

=

= −9
(β + i− 1

i
− β + i− 2

i− 1

)(β + i− 1

i
− β + i− 2

9(i− 1)

)
.

If 1 − β < 0, then the function β+i−1
i

decreases strictly. Thus (23) is

positive and ∆ too. If 1 − β > 0, then the function β+i−1
i

is strictly

increasing. Thus (23) is negative and ∆ too.

i) If 1−β > 0, then ∆ < 0 and thus ϕ(i) > 0 for i ≥ 2. ϕ(1) > 0 if c < β.

For i fixed, the minimum of ϕ(i) is obtained for cm = 1
2
(
√

β+i−1
i

+√
β+i−2
i−1

) and it is equal to −∆/4. When i tends to infinity, cm tends to

1 and ∆ tends to 0. Therefore result i) holds.

ii) If 1 − β < 0, then ∆ > 0 and β+i−1
i

> 1 ∀ i > 0. Therefore the two

real zeros ξ(i) and ζ(i) of ϕ(i) in c are such that

(24) 0 < ξ(i) < ζ(i) < +∞, for i ≥ 2 .

Indeed 1<ξ(i)ζ(i) = β+i−1
i

<+∞ and ξ(i)+ζ(i) =
√

β+i−1
i

+
√

β+i−2
i−1

> 0.

Depending on β, the smallest zero ξ(i) can be greater than 1 or less than 1.

Due to the bounded character of the product of the zeros, infi ξ(i) > 0.

Moreover ϕ(1) > 0. Thus if c < min(infi ξ(i), 1), then the result ii) holds.

iii) If β = 1, then ϕ(1) = c(1−√
c)

(1−c)2
> 0 and ϕ(i) = c

(1−c)2
(
√
c− 1)2 > 0 for

i ≥ 2. In the interval [ c
(1+

√
c)2

, c
(1−√

c)2
] the zeros of all polynomials An are

dense (see above-mentioned). Thus infn µ1,n = c(
√
c−1)2

(1−c)2
.
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Corollary 3.7. In the Meixner case the followingMarkov-Bernstein

inequality is satisfied

∀ p ∈ Pn, ‖ ∆p ‖≤ 1
√
µ1,n

‖ p ‖, n ≥ 1 ,

where ‖ . ‖ denotes the norm corresponding to the Meixner inner product.
1√
µ1,n

is the best constant.

An extremal polynomial is

(25) p =
n∑

i=1

w
(1,n)
i

i
√
ki−1

Ri ,

where w(1,n) = (w
(1,n)
1 , . . . , w(1,n)

n )T is an eigenvector of Jn corresponding

to the eigenvalue µ1,n.

In the cases i) and ii) of Property 3.6, there exists a positive constant

α depending only on β and c such that

∀ p ∈ P, ‖ ∆p ‖≤ 1√
α(β, c)

‖ p ‖, n ≥ 1 .

In particular if β = 1, then ∀ p ∈ P, ‖ ∆p ‖≤ 1 +
√
c√

c
‖ p ‖.

Proof. An extremal polynomial is an eigenfunction associated to

the eigenvalue µ1,n for the problem

a(p, p) = µ1,nc
(0)(p, p) .

Therefore, if w(1,n) is an eigenvector of Jn corresponding to the eigen-

value µ1,n, then relations (18) to (21) give the final expression (25) of an

extremal polynomial.

Concerning the case N > 1, the greater part of the results given

in [5], in particular all the properties of Section 6.2, remains valid in the

Meixner case. We give below the most important results.

Let us denote by k̃i,N the square norm a(Si, Si), ∀ i ∈ IN.
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Theorem 3.8 [5].

(26)

k̃0,N = k0 = Q0,N ,

k̃n,N =
Qn,N(λ1, . . . , λb(n))

Qn−1,N(λ1, . . . , λb(n−1))
for n ≥ 1 ,

where b(n) = min(n,N). Qn,N(λ1, . . . , λb(n)) is a polynomial in b(n)

variables λ1, . . . , λb(n) of total degree equal to n.

We think useful to mention that, in Theorem 6.13 in [5],Cn,n−2,n(n, n−
1) = n!(n−1)!c/(1−c)k1. Thus the result of this theorem, as well as The-

orem 6.14 and Corollary 6.15 hold in the Meixner case. Conjecture 6.16

can also be extended to the Meixner case.

On the other hand Qn,N(λ1, . . . , λb(n)) = 0 is the equation of an alge-

braic hypersurface in IRN . Let us denote by Fn(λ1, . . . , λb(n)) the nappe

corresponding to the largest zero of Qn,N(λb(n)) when (λ1, . . . , λb(n)−1)

∈ Db(n)−1. If λb(n) is greater than (resp. greater than or equal to) this

largest zero, we will denote the corresponding domain by the notation

Fn(λ1, . . . , λb(n)) > 0 (resp. Fn(λ1, . . . , λb(n)) ≥ 0). In the Meixner case

we also have, ∀n ≥ 1

Dn = {λ ∈ IRb(n) | Fn(λ1, . . . , λb(n)) > 0} ,

and the nappe Fn(λ1, . . . , λb(n)) = 0 is in Fn−1(λ1, . . . , λb(n−1)) ≥ 0.

Corollary 3.9 [5].

D = {λ ∈ IRN | lim
n→∞

Fn(λ1, . . . , λN) > 0} .

Property 3.10 [5]. Dn is a convex domain.

Let us denote by D+
n (resp. D+

n ) the domain of IRb(n)

D+
n = {λ ∈ IRb(n), λ = (λ1, . . . , λb(n)) | λi > 0, i = 1, . . . , b(n)} ,

(resp. D+

n = {λ ∈ IRb(n), λ = (λ1, . . . , λb(n)) | λi ≥ 0, i = 1, . . . , b(n)}) .
Of course, if λ ∈ D+

n , Qn,N(λ1, . . . , λb(n)) > 0.

Theorem 3.11 [5]. D \ D+

N is non empty.
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Moreover when Property 3.6 is satisfied, the domain D contains a

region of IRN in which λN is negative (see Theorem 3.5 ii)).
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