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A uniqueness result for quasilinear

elliptic equations with measures as data

J. DRONIOU – T. GALLOUËT

Riassunto: In questo lavoro si dimostra un teorema di unicità per le soluzioni
ottenute come limiti di approssimazioni per equazioni ellittiche quasilineari con vari
tipi di condizioni al contorno e con dati misure.

Abstract: We prove here a uniqueness result for Solutions Obtained as the Limit
of Approximations of quasilinear elliptic equations with different kinds of boundary
conditions and measures as data.

1 – Introduction

1.1 – Notations

In this paper, Ω is a bounded domain in IRN (N ≥ 2), with a Lipschitz

continuous boundary. The unit normal to ∂Ω outward to Ω is denoted

by n. We denote by x · y the usual Euclidean product of two vectors

(x, y) ∈ IRN × IRN ; the associated Euclidean norm is written |.|. The
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Lebesgue measure of a measurable subset E in IRN is denoted by |E|; σ
is the Lebesgue measure on ∂Ω (i.e. the (N−1)-dimensional Hausdorff

measure). Γd and Γf are measurable subsets of ∂Ω such that ∂Ω = Γd∪Γf

and σ(Γd ∩ Γf ) = 0.

For q ∈ [1,+∞], we denote by q′ the conjugate exponent of q (i.e. q′ =

q/(q − 1)). W 1,q(Ω) is the usual Sobolev space, endowed with the norm

‖u‖W1,q(Ω) = ‖u‖Lq(Ω) + ‖ |∇u| ‖Lq(Ω). W 1,q
Γd

(Ω) is the space of functions

of W 1,q(Ω) which have a null trace on Γd.

When q = 2, we write H1
Γd

(Ω) instead of W 1,q
Γd

(Ω). The space of the

traces of functions in H1
Γd

(Ω) is denoted by H
1/2
Γd

(Ω) and it is endowed

with the norm

‖u‖
H

1/2
Γd

(Ω)
= inf{‖f‖H1(Ω) | f ∈ H1

Γd
(Ω) , f|∂Ω = u} .

The hypotheses on the function a that will define our quasilinear elliptic

equation are the following:

a : Ω × IR × IRN → IRN is a Caratheodory function ,(1.1)

∃ γ > 0 , Θ ∈ L1(Ω) such that a(x, s, ξ) · ξ ≥ γ|ξ|2 − Θ(x)

for a.e. x ∈ Ω, for all (s, ξ) ∈ IR × IRN ,
(1.2)

∃β>0 and h∈L2(Ω) such that |a(x, s, ξ)| ≤ h(x)+β|s|+β|ξ|
for a.e. x ∈ Ω, for all (s, ξ) ∈ IR × IRN ,

(1.3)

∃α > 0 such that (a(x, s, ξ) − a(x, s, η)) · (ξ − η) ≥ α|ξ − η|2

for a.e. x ∈ Ω, for all (s, ξ, η) ∈ IR × IRN × IRN ,
(1.4)

∃Λ > 0 such that |a(x, s, ξ) − a(x, s, η)| ≤ Λ|ξ − η|
for a.e. x ∈ Ω, for all (s, ξ, η) ∈ IR × IRN × IRN ,

(1.5)

∃ δ > 0 such that

|a(x, s, ξ) − a(x, t, ξ)| ≤ δ|s− t| for a.e. x ∈ Ω,

for all (s, t, ξ) ∈ IR × IR × IRN .

(1.6)

Remark 1.1. Hypotheses (1.1)-(1.3) are classical for the Leray-

Lions operators in divergence form acting on H1(Ω); Hypothesis (1.4) is
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a stronger form of the classical monotonicity hypothesis

(1.7)
(a(x, s, ξ) − a(x, s, η)) · (ξ − η) > 0 for a.e. x ∈ Ω ,

for all (s, ξ, η) ∈ IR × IRN × IRN with ξ �= η .

of the Leray-Lions operators, but is nevertheless classical when we want to

obtain a uniqueness result, even in the variational case (see [7]). Hypoth-

esis (1.5) is not really demanding, since, for example, a(x, s, ξ) = ã(s)ξ

(with ã ∈ L∞(Ω)) satisfies this hypothesis, but Hypothesis (1.6) is really

strong and we would rather like to impose a weaker hypothesis, of the

kind

∃ δ > 0 such that |a(x, s, ξ) − a(x, t, ξ)| ≤ δ|s− t|(1 + |s| + |t| + |ξ|)
for a.e. x ∈ Ω, for all (s, t, ξ) ∈ IR × IR × IRN

to handle the case a(x, s, ξ) = ã(s)ξ with ã Lipschitz continuous.

Remark 1.2. There are however many functions which satisfy Hy-

potheses (1.1)-(1.6). For example, for M≥0, a(x, s, ξ)=(1+inf(M, ln(1+

|s| + |ξ|)))ξ + φ(x, s), with φ : Ω × IR → IRN a Caratheodory function,

Lipschitz continuous with respect to s ∈ IR (with a Lipschitz constant

not depending on x ∈ Ω) and such that sups∈IR |φ(., s)| ∈ L2(Ω).

Consider the problem

(1.8)

{
−div(a(x, u,∇u)) = f in Ω,

u = 0 on ∂Ω .

It is well known (see [6]) that, when f is a bounded measure on Ω and

a satisfies (1.1)-(1.3) and (1.7), we can find a solution to this problem

(even when we consider an operator acting on W 1,p
0 (Ω), 1 < p < ∞ —

see also [2] when p < 1 − 2
N

—, not only on H1
0 (Ω)). The main idea

of [6] is to approximate f by regular functions, find estimates on the

corresponding solutions and pass to the limit.

Moreover, when a does not depend on s and f is a function in L1(Ω),

we can find (see [2]) a formulation (so-called “entropy formulation”)

for (1.8) which ensures the uniqueness of the solution (the existence is

still obtained by approximation).
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In [12], the author defines another sense of solution, the “solution by

transposition”, which gives an existence and uniqueness result when a still

does not depend on s but f is a bounded measure. This definition requires

the introduction of a particular matrix-valued function M(., .) : IRN ×
IRN −→ MN(IR) satisfying a few properties (general algebraic properties,

completely independent of a); the formulation by transposition uses then

the matrix M(∇u − ∇v, a(.,∇u) − a(.,∇v)), where u is the solution by

transposition and v is any function in H1
0 (Ω). There can be many different

possible choices of the matrix M(., .) (the matrix chosen by the author

depends on a parameter λ, which is any real number in ]0, α[, where α

is given by (1.4)). The solution by transposition seems thus to depend

on the particular choice of M ; however, an additional work allows to

see that, with the methods of [12], we can prove the uniqueness of the

solution obtained as the limit of approximations (when a is independent

of s). When f is a bounded measure, a satisfies (1.1)-(1.5) but does

not depend on s and is of class C1 with respect to ξ, the uniqueness of

the solution obtained as the limit of approximations of Problem (1.8)

is proven in [3]. We will prove here that the ideas of [3] can lead to a

uniqueness result when f is a bounded measure, a depends on s (but

satifies (1.6)) and is only Lipschitz continuous with respect to ξ. The

main difficulty brought by the dependence of a on s is in the resolution of

the “dual equation” (2.3) in which the operator is not coercive (because

of the convection term). We will also consider more general boundary

conditions; they bring a few more difficulties (in particular the regularity

result we need on the solution of (2.3)) which are solved by the results

of [10].

The boundary conditions we consider are of the mixed or Fourier kind

(that is to say a condition on u on Γd and a condition on a(x, u,∇u)·n+λu

on Γf ). To get the coercivity that will ensure the existence of a solution,

we add the assumption

(1.9)

σ(Γd) > 0 and λ ∈ L∞(∂Ω) , λ ≥ 0 σ-a.e. on ∂Ω

or

Γd = ∅ and λ ∈ L∞(∂Ω) , λ ≥ 0 σ-a.e. on ∂Ω ,

σ({x ∈ ∂Ω | λ(x) > 0}) �= 0 .



[5] A uniqueness result for quasilinear etc. 61

Remark 1.3. Under Hypothesis (1.9), a classical reasoning shows

that, for all q∈ [1,+∞[, q∈ [1, q] and ρ>0, there exists Kq,q(ρ,Ω,Γd, λ) > 0

such that, for all v ∈ W 1,q
Γd

(Ω), we have

(1.10) ρ

∫

Ω

|∇v|q +
( ∫

Γf

λ|v|q dσ
)q/q

≥ Kq,q(ρ,Ω,Γd, λ)‖v‖q
W1,q(Ω)

.

The proof of uniqueness we present here uses an existence and reg-

ularity result of a solution to a dual problem. To obtain the required

regularity result, we need some hypotheses on the way Γd and Γf are

distributed along ∂Ω.

Let us introduce two kinds of mapping of ∂Ω:

(1.11)

O is an open subset of IRN ,

h : O → B := {x ∈ IRN | |x| < 1} is a Lipschitz continuous

homeomorphism with a Lipschitz continuous inverse mapping,

h(O ∩ Ω) = B+ := {x ∈ B | xN > 0},

h(O ∩ ∂Ω) = BN−1 := {x ∈ ∂B+ | xN = 0}

(since Ω has a Lipschitz continuous boundary, there exists a finite number

of (Oi, hi)i∈[1,m], such that, for all i ∈ [1,m], (Oi, hi) satisfies (1.11) and

∂Ω ⊂ ∪m
i=1Oi) and

(1.12)

O is an open subset of IRN ,

h : O → B is a Lipschitz continuous homeomorphism

with a Lipschitz continuous inverse mapping,

h(O ∩ Ω) = B++ := {x ∈ B | xN > 0 , xN−1 > 0},

h(O ∩ Γf ) = Γ1 := {x ∈ ∂B++ | xN−1 = 0},

h(O ∩ Γd) = Γ2 := {x ∈ ∂B++ | xN = 0}.
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The additional assumption we make on Γd and Γf is the following:

(1.13)

There exists a finite number of (Oi, hi)i∈[1,m] such that

∂Ω ⊂ ∪m
i=1Oi and, for all i ∈ [1,m], (Oi, hi)

is of one of the following types:
∣∣∣∣∣∣

(D) Oi ∩ ∂Ω = Oi ∩ Γd and (Oi, hi) satisfies (1.11)

(F ) Oi ∩ ∂Ω = Oi ∩ Γf and (Oi, hi) satisfies (1.11)

(DF ) (Oi, hi) satisfies (1.12) .

1.2 – The SOLA and the main result

We recall here some facts about the solutions obtained as the limit of

approximations for quasilinear elliptic equations with measures as data.

We denote by M(Ω) the space of bounded measures on Ω and M(∂Ω)

the space of bounded measures on ∂Ω.

If µ ∈ M(Ω) and µ∂ ∈ M(∂Ω), we consider the problem

(1.14)





−div(a(x, u,∇u)) = µ in Ω ,

u = 0 on Γd ,

a(x, u,∇u) · n + λu = µ∂ on Γf .

The technique of approximation introduced in [6] is the following:

let (µn)n≥1 ∈ L1(Ω) ∩ (H1
Γd

(Ω))′((1)) such that µn → µ for the weak-∗
topology of (C(Ω))′, (µ∂

n)n≥1 ∈ L1(∂Ω) ∩ (H
1/2
Γd

(∂Ω))′ such that µ∂
n → µ∂

for the weak-∗ topology of M(∂Ω) and take un a solution to

(1.15)





un ∈ H1
Γd

(Ω) ,
∫

Ω

a(x, un,∇un) · ∇ϕ+

∫

Γf

λunϕdσ = 〈µn, ϕ〉(H1
Γd

(Ω))′,H1
Γd

(Ω)+

+ 〈µ∂
n, ϕ〉(H1/2

Γd
(∂Ω))′,H1/2

Γd
(∂Ω)

, ∀ϕ ∈ H1
Γd

(Ω) .

We can prove that the sequence (un)n≥1 is bounded in W 1,q
Γd

(Ω) for all

q < N/(N −1); thus, up to a subsequence, un → u strongly in Lq(Ω) and

(1)This means that µn is a function of L1(Ω) such that there exists C > 0 satisfying,
for all ϕ ∈ L∞(Ω) ∩H1

Γd
(Ω), |

∫
µnϕ| ≤ C‖ϕ‖H1(Ω); by density of L∞(Ω) ∩H1

Γd
(Ω) in

H1
Γd

(Ω), there exists then a unique extension of µn as an element of (H1
Γd

(Ω))′. The

same kind of definition and consideration apply to µ∂
n ∈ L1(∂Ω) ∩ (H

1/2
Γd

(∂Ω))′.
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weakly in W 1,q
Γd

(Ω); it is then possible to prove that, up to a subsequence,

∇un → ∇u a.e. on Ω, which allows us to pass to the limit in the equation

of (1.15) to see that u satisfies

(1.16)





u ∈
⋂

q<N/(N−1)

W 1,q
Γd

(Ω) ,

∫

Ω

a(x, u,∇u) · ∇ϕ +

∫

Γf

λuϕ =

∫

Ω

ϕdµ+

+

∫

∂Ω

ϕdµ∂ , ∀ϕ ∈
⋃

r>N

W 1,r
Γd

(Ω) .

A Solution Obtained as the Limit of Approximations (a SOLA) for (1.14)

is any u obtained by the method detailed above.

Remark 1.4. In [6], where the SOLA (without this name, used

for the first time in [8]) have been introduced, the authors study the

pure homogeneous Dirichlet case (with Θ = 0). But the adaptation of

their methods to the non-homogeneous mixed or Fourier case is quite

straightforward (see [14] for the Fourier case with Θ ≡ 0), even with a

non-null Θ ∈ L1(Ω).

When N ≥ 3, the solution of (1.16) is not always unique; indeed, a

counter-example by J. Serrin [15] modified by A. Prignet [13] gives a

non-null solution of (1.16) in the linear (a(x, s, ξ) = A(x)ξ) Dirichlet case

when µ = µ∂ = 0 (see also [10] for the adaptation of this counter-example

to the mixed case).

However, there is uniqueness of the SOLA for this problem, and this

is the main result of this paper:

Theorem 1.1. Under Hypotheses (1.1)-(1.6), (1.9) and (1.13),

Problem (1.14) has one and only one SOLA.

Remark 1.5. In fact, the proof of the existence of a SOLA to (1.14)

does not use all our hypotheses on a (it only uses (1.1)-(1.3), (1.7)

and (1.9)). Our proof of the uniqueness of the SOLA does not use all the

Hypotheses we put on a too; indeed, we will see that we do not use (1.2)

and (1.3) in this paper, we only use the fact that a SOLA exists. Thus,

this result of uniqueness can be extented to other equations for which

we know a SOLA exists. For example, in [4], L. Boccardo proves a wide
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existence result (for a pure Dirichlet problem — this is quite important

— with a right-hand side in L1) that entails the existence of a SOLA for

an operator defined by a function of the kind

a(x, s, ξ) = a0(x, s, ξ) + φ(s) ,

where a0 satisfies (1.1)-(1.6) and φ : IR → IRN is a Lipschitz continuous

function; the hypotheses on φ in [4] are in fact much weaker and require

thus f ∈ L1(Ω), but our stronger hypotheses allow us to take a right-hand

side in M(Ω). Thus, a satisfies (1.1), (1.4)-(1.6) and the existence and

uniqueness result of Theorem 1.1 is still valid for such an operator in the

pure Dirichlet case.

We will also see that this uniqueness result implies the following (very

simple) stability result.

Theorem 1.2. Let (µn)n≥1 ∈ M(Ω) converges to µ in (C(Ω))′

weak-∗ and (µ∂
n)n≥1 ∈ M(∂Ω) converges to µ∂ in M(∂Ω) weak-∗. Under

Hypotheses (1.1)-(1.6), (1.9) and (1.13), if un is the SOLA of (1.14) with

(µn, µ
∂
n) instead of (µ, µ∂) and u is the SOLA of (1.14), then un → u

strongly in W 1,q
Γd

(Ω) for all q < N
N−1

.

Remark 1.6. In fact, we will prove the following more general result:

under Hypotheses (1.1)-(1.3), (1.7) and (1.9), if un is a SOLA — of a

slightly particular kind, see in the proof of Theorem 1.2 — of (1.14)

with (µn, µ
∂
n) instead of (µ, µ∂), there exists a subsequence (unk

)k≥1 and

a SOLA u of (1.14) such that unk

k→∞−→ u strongly in W 1,q
Γd

(Ω) for all

q < N/(N − 1). The fact that we can, with stronger hypotheses, get rid

of the subsequence is of course due to the uniqueness of the SOLA in this

case.

Remark 1.7. Once again, the proof of this stability result only uses

the existence and uniqueness of the SOLA, not all the hypotheses on a

(especially, we do not use (1.2) and (1.3)); thus Theorem 1.2 is also valid

for other kinds of quasilinear equations for which we know a SOLA exists,

such as the example given in Remark 1.5.

A uniqueness result for a linear equation is very often linked to an ex-

istence result for a dual equation. It is also the case here, although (1.14)
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is not a linear problem; so, before the proof of Theorem 1.1, we study in

Section 2 an equation which will appear as the dual equation of a problem

coming from (1.14).

2 – The “dual” equation

We make the following hypotheses:

A : Ω → MN(IR) is a measurable matrix valued

function which satisfies:

∃α > 0 such that A(x)ξ · ξ ≥ α|ξ|2

for a.e. x ∈ Ω , for all ξ ∈ IRN ,

∃M > 0 such that ‖A(x)‖ := sup{|A(x)ξ| , ξ ∈ IRN ,

|ξ| = 1} ≤ M for a.e. x ∈ Ω ,

(2.1)

v ∈ (L∞(Ω))N ,(2.2)

and we take αA a coercivity constant for A, ΛA an essential upper bound

of ‖A(.)‖ on Ω and Λv an upper bound of ‖ |v| ‖L∞(Ω).

We will prove the following existence result:

Theorem 2.1. Under Hypotheses (2.1), (2.2), (1.9) and (1.13),

if θ ∈ L∞(Ω) then, by denoting by Λθ an upper bound of ‖θ‖L∞(Ω),

there exists κ ∈]0, 1[ depending on (Ω, αA,ΛA,Λv, λ), C0 depending on

(Ω,Γd, αA,ΛA,Λv, λ,Λθ) and C1 depending on (Ω,Γd, αA,Λv,Λθ) such

that there exists a solution to

(2.3)





f ∈ H1
Γd

(Ω) ∩ C0,κ(Ω) ,
∫

Ω

A∇f ·∇ϕ+

∫

Ω

v·∇fϕ+

∫

Γf

λfϕdσ=

∫

Ω

θϕ , ∀ϕ ∈ H1
Γd

(Ω)

satisfying ‖f‖C0,κ(Ω) ≤ C0 and ‖f‖H1(Ω) ≤ C1.
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Remark 2.1. We have denoted by C0,κ(Ω) the space of κ-Hölder

continuous functions on Ω, endowed with the norm

‖f‖C0,κ(Ω) = ‖f‖L∞(Ω) + sup
x�=y

|f(x) − f(y)|
|x− y|κ .

Remark 2.2. Without Hypothesis (1.13), we obtain a solution of

the equation in Problem (2.3) in the space H1
Γd

(Ω) ∩ L∞(Ω), with the

same kind of estimates (we will notice it in the course of the proof);

Hypothesis (1.13) is only useful to apply the results of [10] in order to

obtain the Hölder continuity of the solution.

To prove the existence result of Theorem 2.1, we need an a priori

estimate on the solutions of (2.3) (an L1 estimate is enough). This is the

aim of Lemma 2.1 for the proof of which the authors wish to thank Lucio

Boccardo (for having given them the key estimate of Step 2).

Lemma 2.1. Let A satisfy (2.1), w ∈ (L∞(Ω))N and τ ∈ L∞(Ω);

we denote by Λw an upper bound of ‖ |w| ‖L∞(Ω) and Λτ an upper bound

of ‖τ‖L∞(Ω). Under Hypothesis (1.9), there exists C0 depending on (Ω,

Γd, αA, Λw, λ, Λτ ) and a solution to

(2.4)





g ∈ H1
Γd

(Ω) ∩ L∞(Ω) ,
∫

Ω

AT∇g ·∇ϕ+

∫

Ω

gw·∇ϕ+

∫

Γf

λgϕdσ=

∫

Ω

τϕ , ∀ϕ ∈ H1
Γd

(Ω)

such that ‖g‖H1(Ω) + ‖g‖L∞(Ω) ≤ C0.

Remark 2.3. Once we know that g satisfies (2.4), since ϕ → ∫
Ω gv ·

∇ϕ is in (W 1,1
Γd

(Ω))′ (because g is essentially bounded), the results of [10]

show that, under Hypothesis (1.13), g is in fact Hölder continuous on Ω.

Remark 2.4. The conclusions of Theorem 2.1 and Lemma 2.1 also

hold when θ or τ only belong to
⋃

p>N(W 1,p′
Γd

(Ω))′ (the proof of this uses

the same ideas we present here; see [16] or [10] for the details concerning

the treatment of right-hand sides of this kind).

Remark 2.5 (Lucio Boccardo [5]). A close examination of the second

step of the proof of Lemma 2.1 shows that the bound we obtain on ‖ ln(1+
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|gn|)‖H1
Γd

(Ω) depends on the L1-norm of the right-hand side τ . Thus, we

can easily prove (by approximation) an existence result for

(2.5)





−div(AT∇g) − div(gv) = τ in Ω ,

g = 0 on Γd ,

AT∇g · n + λg = 0 on Γf ,

(this problem has, when τ is regular, (2.7) as variational formulation)

when τ is a bounded measure on Ω; we must however be careful with the

formulation of (2.5) since we only obtain a “solution” g such that, for all

k ≥ 0, Tk(g) ∈ H1
Γd

(Ω) (where Tk(s) = min(k,max(s,−k))).

Remark 2.6. Using the results of Theorem 2.1 and Lemma 2.1 and

the ideas of their proofs, we can prove, when L ∈ (H1(Ω))′, the existence

and uniqueness of solutions to

(2.6)





f ∈ H1
Γd

(Ω) ,
∫

Ω

A∇f · ∇ϕ +

∫

Ω

v · ∇fϕ +

∫

Γf

λfϕdσ =

= 〈L,ϕ〉(H1
Γd

(Ω))′,H1
Γd

(Ω) , ∀ϕ ∈ H1
Γd

(Ω)

and

(2.7)





g ∈ H1
Γd

(Ω) ,
∫

Ω

AT∇g · ∇ϕ +

∫

Ω

gv · ∇ϕ +

∫

Γf

λgϕdσ =

= 〈L,ϕ〉(H1
Γd

(Ω))′,H1
Γd

(Ω) , ∀ϕ ∈ H1
Γd

(Ω) .

Remark 2.7. In fact, to prove Lemma 2.1 and Theorem 2.1 (as well

as the results of Remark 2.6), we only need v ∈ (Lr(Ω))N with a r > N .

But since such an hypothesis on v would not allow us to consider really

better conditions in Theorem 1.1 (using the result of Theorem 2.1 with

v ∈ (Lr(Ω))N for a r > N would allow us to weaken Hypothesis (1.6), but

not enough to handle the case of functions of the form a(s, ξ) = ã(s)ξ),

we prefer to consider the stronger Hypothesis (2.2), which is sufficient to

our purpose here.

Proof of Lemma 2.1. We will approximate Problem (2.4) by prob-

lems for which we have, thanks to the Schauder fixed point theorem, a
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solution; then, by proving estimates on the solutions of these approxi-

mate problems, we will obtain a solution to (2.4) (without passing to the

limit!).

Step 1. The approximate problems.

For t ≥ 0, define Tt(s) = min(t,max(−t, s)). Let n be an integer and,

if g ∈ L2(Ω), define F (g) = g as the unique solution to

(2.8)





g ∈ H1
Γd

(Ω) ,
∫

Ω

AT∇g · ∇ϕ +

∫

Γf

λgϕdσ =

∫

Ω

τϕ+

−
∫

Ω

Tn(g)w · ∇ϕ , ∀ϕ ∈ H1
Γd

(Ω)

(the bilinear form is coercive on H1
Γd

(Ω) thanks to (1.10) applied to q =

q = 2 and ρ = αA).

We notice that F : L2(Ω) → L2(Ω) is continuous; indeed, if gm → g∞
in L2(Ω), and if (for m ∈ IN or m = ∞) Lm is the linear form

〈Lm, ϕ〉(H1
Γd

(Ω))′,H1
Γd

(Ω) =

∫

Ω

τϕ−
∫

Ω

Tn(gm)w · ∇ϕ ,

then Lm → L∞ in (H1
Γd

(Ω))′, so that gm = F (gm) → g∞ = F (g∞) in

H1
Γd

(Ω), thus in L2(Ω).

Moreover, there exists R > 0 such that, for all g∈L2(Ω), ‖F (g)‖H1(Ω)≤
R; indeed, by taking g as a test function in (2.8), we get

αA‖ |∇g| ‖2
L2(Ω)+

∫

Γf

λ|g|2 dσ≤‖τ‖(H1
Γd

(Ω))′‖g‖H1(Ω)+n‖ |w| ‖L2(Ω)‖g‖H1(Ω) ,

which gives, thanks to (1.10),

K2,2(αA,Ω,Γd, λ)‖g‖H1(Ω) ≤ ‖τ‖(H1
Γd

(Ω))′ + n‖ |w| ‖L2(Ω) ;

thus, R = K2,2(αA,Ω,Γd, λ)−1(‖τ‖(H1
Γd

(Ω))′ + n‖ |w| ‖L2(Ω)) satisfies the

property.

F : L2(Ω) → L2(Ω) is thus a compact application (thanks to the

Rellich theorem) which sends the whole space L2(Ω) in the ball of center
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0 and radius R in L2(Ω). By the Schauder fixed point theorem, F has a

fixed point in the ball of center 0 and radius R; we have thus proven that

there exists gn solution to

(2.9)





gn ∈ H1
Γd

(Ω) ,
∫

Ω

AT∇gn · ∇ϕ +

∫

Ω

Tn(gn)w · ∇ϕ+

+

∫

Γf

λgnϕdσ =

∫

Ω

τϕ , ∀ϕ ∈ H1
Γd

(Ω)

satisfying

‖gn‖H1(Ω) ≤ K2,2(αA,Ω,Γd, λ)−1(‖τ‖(H1
Γd

(Ω))′ + n‖ |w| ‖L2(Ω)) ≤

≤ K2,2(αA,Ω,Γd, λ)−1(Λτ |Ω| 12 + nΛw|Ω| 12 ) .

Step 2. We prove that (ln(1+ |gn|))n≥1 is bounded in H1
Γd

(Ω), using

the technique introduced in [6].

Let us first prove an estimate on
∫
Γf

λ|gn| dσ. Take ϕ = Tk(gn)/k ∈
H1

Γd
(Ω) as a test function in (2.9). We obtain, since |Tk(s)/k| ≤ 1 for

all s ∈ IR and ∇(Tk(gn)) = 1{0<|gn|<k}∇gn a.e. on Ω (where 1E is the

characteristic function of a set E),

(2.10)

∫

Γf

λ
Tk(gn)

k
gn dσ ≤ 1

k

∫

Ω

AT∇gn∇(Tk(gn))+

∫

Γf

λ
Tk(gn)

k
gn dσ≤

≤
∫

Ω

|τ | +
∫

{0<|gn|<k}
|w‖gn|

|∇gn|
k

≤

≤
∫

Ω

|τ | + ‖ |w| ‖L2(Ω)

( ∫

{0<|gn|<k}
|∇gn|2

) 1
2
.

But gnTk(gn)/k → |gn| on ∂Ω as k → 0 (if gn(x) = 0, gn(x)Tk(gn(x))/k =

0 and, if gn(x) �= 0, Tk(gn(x))/k → sgn(gn(x))) and |gnTk(gn)/k| ≤ |gn| ∈
L1(∂Ω); thus, by the dominated convergence theorem,

∫
Γf

λgn(Tk(gn)/k)

dσ → ∫
Γf

λ|gn|. Moreover, since ∇gn ∈ L2(Ω) and |{0 < |gn| < k}| → 0

as k → 0 (this is the non-increasing continuity of the measure, associated

to the fact that ∩k>0{0 < |gn| < k} = ∅), we obtain
∫
{0<|gn|<k} |∇gn|2 → 0

as k → ∞. Thus, passing to the limit k → 0 in (2.10), we obtain

(2.11)

∫

Γf

λ ln(1 + |gn|) dσ ≤
∫

Γf

λ|gn| dσ ≤
∫

Ω

|τ | ≤ |Ω|Λτ .
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Let us now prove an estimate on the derivatives of gn. Let k ∈ IN

and denote rk(s) = T1(s− Tk(s)), that is to say




rk(s) = −1 if s < −k − 1

rk(s) = s + k if −k − 1 ≤ s ≤ −k

rk(s) = 0 if −k < s < k

rk(s) = s− k if k ≤ s ≤ k + 1

rk(s) = 1 if k + 1 < s .

We know that rk(gn) ∈ H1
Γd

(Ω) with ∇(rk(gn)) = 1Bn
k
∇gn, where

Bn
k = {x ∈ Ω | k ≤ |gn| < k + 1}.

Using rk(gn) as a test function in (2.9), we get thus, since |gn| ≤ k+1

on Bn
k and gnrk(gn) ≥ 0 on ∂Ω,

αA‖ |∇(rk(gn))| ‖2
L2(Ω)≤

∫

Ω

AT∇(rk(gn)) · ∇(rk(gn))+

∫

Γf

λgnrk(gn) dσ =

=

∫

Ω

AT∇gn · ∇(rk(gn)) +

∫

Γf

λgnrk(gn) dσ =

=

∫

Ω

τrk(gn) −
∫

Ω

Tn(gn)w · ∇(rk(gn)) ≤

≤ ‖τ‖L1(Ω) +

∫

Bn
k

|w‖gn||∇(rk(gn))| ≤

≤ Λτ |Ω| + (k + 1)‖ |w| ‖L2(Bn
k

)‖ |∇(rk(gn))| ‖L2(Ω) ≤

≤ Λτ |Ω| + αA

2
‖ |∇(rk(gn))| ‖2

L2(Ω) +
‖ |w| ‖2

L2(Bn
k

)

2αA

(k + 1)2.

Thus, we obtain

(2.12) ‖ |∇(rk(gn))| ‖2
L2(Ω) ≤

2Λτ |Ω|
αA

+
‖ |w| ‖2

L2(Bn
k

)

α2
A

(k + 1)2 .

We will use this to show that (∇(ln(1+|gn|)))n≥1 is bounded in L2(Ω).

We have, since Ω is the disjoint union of (Bn
k )k≥0, and |gn| ≥ k on Bn

k ,

∫

Ω

|∇(ln(1 + |gn|))|2 =

∫

Ω

|∇(|gn|)|2
(1 + |gn|)2

=

=
∑

k≥0

∫

Bn
k

|∇gn|2
(1 + |gn|)2

≤
∑

k≥0

∫

Ω

|∇(rk(gn))|2
(1 + k)2

.
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Using (2.12), this gives

∫

Ω

|∇(ln(1 + |gn|))|2 ≤
2Λτ |Ω|
αA

∑

k≥0

1

(1 + k)2
+

1

α2
A

∑

k≥0

∫

Bn
k

|w|2 ≤

≤ π2Λτ |Ω|
3αA

+
‖ |w| ‖2

L2(Ω)

α2
A

.

This last estimate, associated to (2.11) and to (1.10) (with q = 2 and

q = 1) gives

‖ ln(1+ |gn|)‖2
H1(Ω) ≤

1

K2,1(1,Ω,Γd, λ)

(π2Λτ |Ω|
3αA

+
Λ2

w|Ω|
α2

A

+ |Ω|2Λ2
τ

)
:= C1

(C1 depends on (Ω,Γd, αA,Λw, λ,Λτ )).

Step 3. We conclude by proving that (gn)n≥1 is bounded in L∞(Ω).

Let Sk(s) = s − Tk(s); we have Sk(gn) ∈ H1
Γd

(Ω) with ∇(Sk(gn)) =

1En
k
∇gn (where En

k = {x ∈ Ω | |gn(x)| > k}). Since Sk(gn) = 0 outside

En
k and since gnSk(gn) = |gn‖Sk(gn)| ≥ |Sk(gn)|2, we have, using Sk(gn)

as a test function in (2.9),

(2.13)

αA‖|∇(Sk(gn))| ‖2
L2(Ω) +

∫

Γf

λ|Sk(gn)|2 dσ ≤

≤
∫

Ω

AT∇gn · ∇(Sk(gn)) +

∫

Γf

λgnSk(gn) dσ ≤

≤ Λτ

∫

Ω

|Sk(gn)| +
∫

Ω

|w‖gn||∇(Sk(gn))| ≤

≤ Λτ‖Sk(gn)‖L2(Ω)|En
k |

1
2 +

∫

En
k

|w|(|Sk(gn)|+k)|∇(Sk(gn))|≤

≤ Λτ‖Sk(gn)‖L2(Ω)|En
k |

1
2 +‖ |∇(Sk(gn))| ‖L2(Ω)(k‖ |w| ‖L2(En

k
)+

+ ‖ |w|Sk(gn)‖L2(En
k

))

≤ Λτ‖Sk(gn)‖H1(Ω)|En
k |

1
2 + kΛw‖ |∇(Sk(gn))| ‖L2(Ω)|En

k |
1
2 +

+ ‖ |∇(Sk(gn))| ‖L2(Ω)Λw‖Sk(gn)‖L2(En
k

) .

Thanks to the Hölder inequality we have, when p > 2,

‖Sk(gn)‖L2(En
k

) ≤ ‖Sk(gn)‖Lp(Ω)|En
k |

1
2− 1

p .
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Since 2 < 2N/(N − 2), there exists, by the Sobolev injection, p > 2 and

C2 only depending on Ω such that

‖Sk(gn)‖Lp(Ω) ≤ C2‖Sk(gn)‖H1(Ω) .

Thus, with (2.13) and (1.10), we get

(2.14)
K2,2(αA,Ω,Γd, λ)‖Sk(gn)‖2

H1(Ω)≤Λτ‖Sk(gn)‖H1(Ω)|En
k |

1
2+

+Λwk‖Sk(gn)‖H1(Ω)|En
k |

1
2 +C2Λw|En

k |
1
2− 1

p ‖Sk(gn)‖2
H1(Ω) .

The Tchebycheff inequality reads

|En
k | = |{ln(1 + |gn|) > ln(1 + k)}| ≤ 1

(ln(1 + k))2
‖ ln(1 + |gn|)‖2

L2(Ω) ≤

≤ 1

(ln(1 + k))2
‖ ln(1 + |gn|)‖2

H1(Ω) ≤
C2

1

(ln(1 + k))2

where C1 is the constant given by Step 2. Since 1/2 > 1/p, there exists

thus k0 depending on C2, Λw, p, C1 and K2,2(αA,Ω,Λd, λ), i.e. depend-

ing on (Ω,Γd, αA,Λw, λ,Λτ ), such that, for all k ≥ k0 and all n ≥ 1,

C2Λw|En
k |

1
2− 1

p ≤ K2,2(αA,Ω,Γd, λ)/2.

We obtain thus, for all k ≥ k0, thanks to (2.14),

‖Sk(gn)‖H1(Ω) ≤
( 2Λτ

K2,2(αA,Ω,Γd, λ)
+

2Λwk

K2,2(αA,Ω,Γd, λ)

)
|En

k |
1
2 ≤

≤ C3(1 + k)|En
k |

1
2 ,

where C3 depends on (Ω,Γd, αA,Λw, λ,Λτ ).

By noticing that, when h > k, |Sk(gn)| ≥ (h − k) on En
h , we get,

thanks to the Sobolev injection W 1,1(Ω) ↪→ LN/(N−1)(Ω) (the norm of

which, denoted by C4, only depends on Ω),

(h− k)|En
h |(N−1)/N ≤ ‖Sk(gn)‖LN/(N−1)(Ω) ≤ C4‖Sk(gn)‖W1,1(Ω) ≤

≤ C4|En
k |

1
2 ‖Sk(gn)‖H1(Ω) ≤ C3C4(1 + k)|En

k | .

Thus, as soon as h > k ≥ k0, we have, with β = N/(N − 1) > 1,

|En
h | ≤

(C3C4)
β(1 + k)β

(h− k)β
|En

k |β ≤ (C3C4(1 + k0))
β(1 + k − k0)

β

(h− k)β
|En

k |β
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(because, when k ≥ k0, (1 + k0)(1 + k − k0) ≥ 1 + k). Lemma 2.2 given

just after the end of this proof, and applied to the non-increasing function

Gn(k) = |En
k+k0

|, allows us to see that, if

H0 = exp
( ∑

m≥0

2
1
βC3C4(1 + k0)|Ω|

β−1
β

(2
β−1
β )m

)
≥

≥ exp
( ∑

m≥0

2
1
βC3C4(1 + k0)Gn(0)

β−1
β

(2
β−1
β )m

)
,

(notice that H0<+∞ depends on (Ω,Γd, αA,Λw, λ,Λτ )), then Gn(H0)=0,

that is to say |gn| ≤ H0 + k0 a.e. on Ω for all n ≥ 1.

Thus, by taking n0 an integer greater than H0 + k0 (n0 depends on

(Ω,Γd, αA,Λw, λ,Λτ )) and letting g = gn0
, we have a solution to (2.4)

(because Tn0
(gn0

) = gn0
= g) which satisfies ‖g‖L∞(Ω) ≤ H0 + k0 and

‖g‖H1(Ω) = ‖gn0
‖H1(Ω) ≤ K2,2(αA,Ω,Γd, λ)−1(Λτ |Ω| 12 + n0Λw|Ω| 12 ). This

completes the proof of Lemma 2.1.

Lemma 2.2. Let G : IR+ → IR+ be a non-increasing function. If

there exist β > 1 and C > 0 such that

∀h > k ≥ 0 , G(h) ≤ Cβ(1 + k)β

(h− k)β
G(k)β

then, with

H = exp
( ∑

m≥0

2
1
βCG(0)

β−1
β

(2
β−1
β )m

)
< +∞ ,

we have G(H) = 0.

For the proof of this lemma, which is a slight generalization of a

lemma by G. Stampacchia ([16] Lemma 4.1, i)), we refer the reader to

Lemma 2.2 in [10].

Proof of Theorem 2.1. The proof of the existence of a solution

to

(2.15)





f ∈ H1
Γd

(Ω) ,
∫

Ω

A∇f · ∇ϕ+

∫

Ω

v · ∇fϕ+

∫

Γf

λfϕdσ=

∫

Ω

θϕ , ∀ϕ∈H1
Γd

(Ω) ,
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(i.e. Problem (2.3) without the regularity f ∈ C0,κ(Ω)) uses the topologi-

cal degree (see [9]); the proof of the Hölder continuity of the solution, as

well as the estimates in the Hölder space, uses a result of [10].

Step 1. On a cut-off problem.

Let n be an integer. Recall that Tn(s) = min(n,max(−n, s)). We

know that, for all ϕ ∈ H1
Γd

(Ω), Tn(ϕ) ∈ H1
Γd

(Ω) with ∇(Tn(ϕ)) =

1{|ϕ|<n}∇ϕ.

Let f ∈ H1
Γd

(Ω); since v ·∇(Tn(f)) ∈ L2(Ω) ⊂ (H1
Γd

(Ω))′, there exists

a unique solution f = F (f) to

(2.16)





f ∈ H1
Γd

(Ω) ,

∫

Ω

A∇f · ∇ϕ +

∫

Γf

λfϕdσ =

∫

Ω

θϕ+

−
∫

Ω

v · ∇(Tn(f))ϕ , ∀ϕ ∈ H1
Γd

(Ω) .

This defines an application F : H1
Γd

(Ω) → H1
Γd

(Ω).

We will prove, using the topological degree, that F has a fixed point

(conversely to the proof of Lemma 2.1, the Schauder fixed point theorem

seems not applicable here).

Notice first that F is continuous; indeed, if fm → f in H1
Γd

(Ω), then

Tn(fm) → Tn(f) in H1
Γd

(Ω), so that v · ∇(Tn(fm)) → v · ∇(Tn(f)) in

L2(Ω), thus also in (H1
Γd

(Ω))′ and the solution F (fm) of (2.16) when f is

replaced by fm tends thus in H1
Γd

(Ω) to the solution F (f) of (2.16).

We will now prove that, if (fm)m≥1 is a bounded sequence in H1
Γd

(Ω), then

there exists a subsequence (still denoted (fm)m≥1) such that (F (fm))m≥1

converges in H1
Γd

(Ω). Since (fm)m≥1 is bounded inH1
Γd

(Ω), (v·∇(Tn(fm)))m≥1

is bounded in L2(Ω) and there exists thus a subsequence, still denoted

(fm)m≥1, such that v · ∇(Tn(fm)) → Φ weakly in L2(Ω).

Since (F (fm))m≥1 is bounded in H1
Γd

(Ω) (because of the coercivity of

the operator in (2.16) and of the fact that (v ·∇(Tn(fm)))m≥1 is bounded

in L2(Ω)), its trace is bounded in L2(∂Ω) and we can also suppose that,

up to a subsequence, (F (fm))m≥1 converges to F0, weakly in H1
Γd

(Ω),

strongly in L2(Ω) and its trace weakly in L2(∂Ω); we see then that F0 is
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the solution to

(2.17)





F0 ∈ H1
Γd

(Ω) ,
∫

Ω

A∇F0 ·∇ϕ+

∫

Γf

λF0ϕdσ=

∫

Ω

θϕ−
∫

Ω

Φϕ , ∀ϕ∈H1
Γd

(Ω) .

We have now to prove that the convergence of (F (fm))m≥1 to F0

is strong in H1
Γd

(Ω); to see this, we subtract the equation satisfied by

F0 from the equation satisfied by F (fm) and we use the test function

ϕ = F (fm) − F0 ∈ H1
Γd

(Ω) to find

αA‖|∇(F (fm) − F0)| ‖2
L2(Ω) +

∫

Γf

λ|F (fm) − F0|2 dσ ≤

≤
∫

Ω

A∇(F (fm) − F0) · ∇(F (fm) − F0)+

+

∫

Γf

λ(F (fm) − F0)(F (fm) − F0) dσ =

=

∫

Ω

(Φ − v · ∇(Tn(fm)))(F (fm) − F0) ≤

≤ ‖Φ − v · ∇(Tn(fm))‖L2(Ω)‖F (fm) − F0‖L2(Ω) .

Since (v ·∇(Tn(fm)))m≥1 is bounded in L2(Ω) and F (fm) → F0 in L2(Ω),

this inequality, associated to (1.10), gives

‖F (fm) − F0‖H1(Ω) → 0 .

Thus, F : H1
Γd

(Ω) → H1
Γd

(Ω) is a compact operator. To prove that

F has a fixed point by an application of the Leray-Schauder topological

degree, it remains to find R > 0 such that, if t ∈ [0, 1] and f ∈ H1
Γd

(Ω)

satisfies f − tF (f) = 0, then ‖f‖H1
Γd

(Ω) �= R.

Suppose we have such a t ∈ [0, 1] and such a f ∈ H1
Γd

(Ω); then f

satisfies

∫

Ω

A∇f ·∇ϕ+

∫

Γf

λfϕdσ= t

∫

Ω

θϕ−t

∫

Ω

v · ∇(Tn(f))ϕ for all ϕ ∈ H1
Γd

(Ω) .
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Take ϕ = f ; since ∇(Tn(f)) = 1{|f |<n}∇f , we find, with (1.10),

K2,2(αA,Ω,Γd, λ)‖f‖2
H1(Ω) ≤ αA

∫

Ω

|∇f |2 +

∫

Γf

λ|f |2 dσ ≤

≤ ‖θ‖(H1
Γd

(Ω))′‖f‖H1(Ω) + n‖ |v| ‖L2(Ω)‖ |∇f | ‖L2(Ω) ≤

≤ (‖θ‖(H1
Γd

(Ω))′ + n‖ |v| ‖L2(Ω))‖f‖H1(Ω) ,

which gives

‖f‖H1(Ω) ≤
‖θ‖(H1

Γd
(Ω))′

K2,2(αA,Ω,Γd, λ)
+

n‖ |v| ‖L2(Ω)

K2,2(αA,Ω,Γd, λ)
.

Thus, by taking R=1+(‖θ‖(H1
Γd

(Ω))′+n‖ |v| ‖L2(Ω))/K2,2(αA,Ω,Γd, λ),

we deduce from the properties of the topological degree that F has a fixed

point in the ball of center 0 and radius R in H1
Γd

(Ω).

We denote by fn such a fixed point, which satisfies

(2.18)





fn ∈ H1
Γd

(Ω) ,
∫

Ω

A∇fn · ∇ϕ +

∫

Ω

v · ∇(Tn(fn))ϕ+

+

∫

Γf

λfnϕdσ =

∫

Ω

θϕ , ∀ϕ ∈ H1
Γd

(Ω)

and ‖fn‖H1(Ω) ≤ 1 + (‖θ‖(H1
Γd

(Ω))′ + nΛv|Ω| 12 )/K2,2(αA,Ω,Γd, λ).

Step 2. We prove an L1 estimate for the sequence (fn)n≥1 con-

structed in Step 1.

Let wn = 1{|fn|<n}v; we have, for all ϕ ∈ H1
Γd

(Ω),

(2.19)

∫

Ω

A∇fn · ∇ϕ +

∫

Ω

wn · ∇fnϕ +

∫

Γf

λfnϕdσ =

∫

Ω

θϕ .

Since Λv is an upper bound for ‖ |wn| ‖L∞(Ω), we can find, thanks to

Lemma 2.1, a gn ∈ H1
Γd

(Ω) satisfying, for all ϕ ∈ H1
Γd

(Ω),

(2.20)

∫

Ω

AT∇gn · ∇ϕ +

∫

Ω

gnwn · ∇ϕ +

∫

Γf

λgnϕdσ =

∫

Ω

sgn(fn)ϕ ,
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and such that ‖gn‖L∞(Ω) ≤ K0, where K0 depends on (Ω,Γd, αA,Λv, λ)

but not n (sgn denotes the sign function, and we have thus ‖sgn(fn)‖L∞(Ω)

≤ 1).

By putting ϕ = fn in (2.20) and ϕ = gn in (2.19), we get

(2.21) ‖fn‖L1(Ω) =

∫

Ω

sgn(fn)fn =

∫

Ω

θgn ≤ K0‖θ‖L1(Ω) .

Step 3. With the same methods as in Step 3 of the proof of Lem-

ma 2.1, we prove an L∞ estimate on (fn)n≥1.

Define Sk as in Step 3 of the proof of Lemma 2.1, and use Sk(fn) as a

test function in (2.18): we get, by denoting En
k = {x ∈ Ω | |fn(x)| > k},

and since fnSk(fn) ≥ |Sk(fn)|2,

αA‖ |∇(Sk(fn))| ‖2
L2(Ω) +

∫

Γf

λ|Sk(fn)|2 dσ ≤(2.22)

≤
∫

Ω

A∇fn · ∇(Sk(fn)) +

∫

Γf

λfnSk(fn) dσ ≤

≤ Λθ‖Sk(fn)‖L2(Ω)|En
k |

1
2 +

∫

{|fn|<n}
|v‖∇fn||Sk(fn)| ≤

≤ Λθ‖Sk(fn)‖L2(Ω)|En
k |

1
2 +

∫

Ω

|v‖∇(Sk(fn))||Sk(fn)| ≤

≤Λθ‖Sk(fn)‖H1(Ω)|En
k |

1
2 +‖ |∇(Sk(fn))| ‖L2(Ω)‖ |v|Sk(fn)‖L2(Ω)≤

≤Λθ‖Sk(fn)‖H1(Ω)|En
k |

1
2 +‖ |∇(Sk(fn))| ‖L2(Ω)Λv‖Sk(fn)‖L2(Ω) ,(2.23)

because ∇fn = ∇(Sk(fn)) where Sk(fn) �= 0.

As before, we notice that, thanks to the Sobolev injection of H1,

there exists p > 2 and K1 only depending on Ω such that

‖Sk(fn)‖L2(Ω) ≤ ‖Sk(fn)‖Lp(Ω)|En
k |

1
2− 1

p ≤ K1‖Sk(fn)‖H1(Ω)|En
k |

1
2− 1

p ,

which gives, introduced in (2.23) and thanks to (1.10),

(2.24)
K2,2(αA,Ω,Γd, λ)‖Sk(fn)‖2

H1(Ω) ≤
≤ Λθ‖Sk(fn)‖H1(Ω)|En

k |
1
2 + K1Λv|En

k |
1
2− 1

p ‖Sk(fn)‖2
H1(Ω) .
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But, with (2.21) and the Tchebycheff inequality, we see that

|En
k | ≤

1

k
‖fn‖L1(Ω) ≤

K0|Ω|Λθ

k
;

there exists thus k0 depending on (K1,Λv, p,K0,Ω,Λθ,K2,2(αA,Ω,Γd, λ))

(i.e. on (Ω,Γd, αA,Λv, λ,Λθ)), such that, for all n ≥ 1 and all k ≥ k0,

K1Λv|En
k |

1
2− 1

p ≤ K2,2(αA,Ω,Γd, λ)/2.

Returning to (2.24), we have then, for all k ≥ k0,

‖Sk(fn)‖H1(Ω) ≤
2Λθ

K2,2(αA,Ω,Γd, λ)
|En

k |
1
2 = K2|En

k |
1
2

where K2 depends on (Ω,Γd, αA, λ,Λθ).

Then, reasoning as in the end of Step 3 of the proof of Lemma 2.1,

we get, for all h > k ≥ k0,

|En
h | ≤

MKβ
2

(h− k)β
|En

k |β ,

with β = N/(N − 1) > 1 and M depending on Ω.

Using Lemma 2.2 (or, more directly, Lemma 4.1 i) in [16]), we see

thus that there exists H0 depending on (Ω, β,M,K2), i.e. depending on

(Ω,Γd, αA, λ,Λθ) [notice that a dependence on Ω takes into account a

dependence on N ] such that, for all n ≥ 1, |En
H0+k0

| = 0, that is to say

‖fn‖L∞(Ω) ≤ K3 = H0 + k0, where K3 depends on (Ω,Γd, αA,Λv, λ,Λθ).

By taking any integer n0 ≥ K3 (such a choice of n0 depends on K3,

thus on (Ω,Γd, αA,Λv, λ,Λθ)) and letting f = fn0
, we get a solution to

(2.25)





f ∈ H1
Γd

(Ω)
∫

Ω

A∇f ·∇ϕ+

∫

Ω

v·∇fϕ+

∫

Γf

λfϕdσ=

∫

Ω

θϕ , ∀ϕ∈H1
Γd

(Ω) ,

(because, since n0 ≥ K3 ≥ ‖fn0
‖L∞(Ω), Tn0

(fn0
) = fn0

= f) such that

‖f‖H1(Ω) ≤ 1+
‖θ‖(H1

Γd
(Ω))′ + n0Λv|Ω| 12

K2,2(αA,Ω,Γd, λ)
≤ 1+

Λθ|Ω| 12 + n0Λv|Ω| 12
K2,2(αA,Ω,Γd, λ)

:= C1 ,



[23] A uniqueness result for quasilinear etc. 79

where C1 depends on (Ω,Γd, αA,Λv, λ,Λθ); notice also that

(2.26) ‖f‖L∞(Ω) ≤ K3 .

Since, up to now, we have not used Hypothesis (1.13), this proves

what we have claimed in Remark 2.2.

Step 4. Conclusion.

It remains to prove that the solution f ∈ H1
Γd

(Ω) of (2.25) we found

in the preceding section is in fact in C0,κ(Ω) for a κ > 0. This is the only

part of the proof where we need Hypothesis (1.13).

We have, for all ϕ ∈ H1(Ω),

∣∣∣
∫

Ω

ϕv·∇ϕ
∣∣∣ ≤ ‖ |∇ϕ| ‖L2(Ω)Λv‖ϕ‖L2(Ω) ≤

αA

2
‖ |∇ϕ| ‖2

L2(Ω)+
Λ2

v

2αA

‖ϕ‖2
L2(Ω) .

Thus, by taking b = 1 + Λ2
v

2αA
, the bilinear continuous form

(ϕ,ψ) ∈ H1(Ω) →
∫

Ω

A∇ϕ · ∇ψ +

∫

Ω

v · ∇ϕψ +

∫

Ω

bϕψ

is coercive (notice that the choice of b depends on (Ω, αA,Λv)).

The function f is the solution to

(2.27)





f ∈ H1
Γd

(Ω) ,
∫

Ω

A∇f ·∇ϕ+

∫

Ω

v·∇fϕ+

∫

Γf

λfϕdσ+

∫

Ω

bfϕ=

∫

Ω

θ̃ϕ ,

∀ϕ∈H1
Γd

(Ω) ,

where θ̃ = θ + bf ∈ L∞(Ω).

Thus, θ̃∈(W 1,1
Γd

(Ω))′ and, thanks to (2.26), the norm of θ̃ in (W 1,1
Γd

(Ω))′

is bounded by K4 depending on (Ω,Γd, αA,Λv, λ,Λθ). With our choice

of b, a slight adaptation of the methods of [16] and [10] shows then

that (thanks to Hypothesis (1.13)), there exists κ ∈]0, 1[ depending on

(Ω, αA,ΛA,Λv, λ, b), i.e. depending on (Ω, αA,ΛA,Λv, λ) and K5 depend-

ing on (Ω, αA,ΛA,Λv, λ, b,K4), i.e. depending on (Ω,Γd, αA,ΛA,Λv, λ,Λθ),

such that the solution f of (2.27) is in C0,κ(Ω) with ‖f‖C0,κ(Ω) ≤ K5.



80 J. DRONIOU – T. GALLOUËT [24]

3 – Proof of the uniqueness and stability theorems

We will use, in the course of this proof, the following result.

Lemma 3.1. Let f : Ω → IR, F : Ω → IRN and G : Ω → IRN be

measurable functions such that |F −G| ∈ L1(Ω). Under Hypotheses (1.1),

(1.4) and (1.5), there exists a measurable matrix-valued function M : Ω →
MN(IR) such that

M(x)τ · τ ≥ α|τ |2 for a.e. x ∈ Ω, for all τ ∈ IRN ,(3.1)

‖M(x)‖ ≤ Λ for a.e. x ∈ Ω ,(3.2)

a(x, f(x), F (x)) − a(x, f(x), G(x)) = M(x)(F (x) −G(x))(3.3)

for a.e. x ∈ Ω .

Remark 3.1. Notice that α and Λ do not depend on f , F or G (only

on a).

Proof of Lemma 3.1. When a is of class C1 with respect to ξ, it

is very simple: just take

M(x) =

∫ 1

0

∂a

∂ξ
(x, f(x), F (x) + t(G(x) − F (x)) dt

(where ∂a
∂ξ

, the partial derivative of a with respect to ξ, is identified to a

N ×N matrix; it is easy to see that this partial derivative satisfies (3.1)

and (3.2)).

When a is only Lipschitz continuous with respect to ξ, it has a par-

tial derivative for a.e. ξ ∈ IRN , but we can not take the preceding ex-

pression since F (.) + t(G(.) − F (.)) could take (on the whole of Ω and

for any t ∈ [0, 1]) its values where a is not derivable with respect to ξ.

We solve this problem by the following trick: by denoting (ρn)n≥1 a se-

quence of mollifiers in IRN , we take an(x, s, ξ) = (a(x, s, .) ∗ ρn)(ξ); an is

a Caratheodory function which is of class C1 with respect to ξ. We have

thus

(3.4) an(x, f(x), F (x)) − an(x, f(x), G(x)) = Mn(x)(F (x) −G(x)) ,



[25] A uniqueness result for quasilinear etc. 81

where Mn(x) =
∫ 1

0
∂an
∂ξ

(x, f(x), F (x)+ t(G(x)−F (x)) dt; by noticing that
∂an
∂ξ

(x, s, ξ) = (∂a
∂ξ

(x, s, .) ∗ ρn)(ξ), we see that ∂an
∂ξ

— and thus Mn —

satisfies (3.1) and (3.2) for all n ≥ 1.

Thus, (Mn)n≥1 being a bounded sequence in (L∞(Ω))N×N , there

exists a subsequence, still denoted (Mn)n≥1, which converges to M in

(L∞(Ω))N×N weak-∗; it is then quite clear that M satisfies (3.1) and (3.2).

Moreover, since |F − G| ∈ L1(Ω), Mn(F − G) → M(F − G) in the

sense of distributions. Since an(x, f(x), F (x)) − an(x, f(x), G(x)) →
a(x, f(x), F (x)) − a(x, f(x), G(x)) for a.e. x ∈ Ω (for all x ∈ Ω such

that a(x, ., .) is continuous) and is dominated by Λ|F −G| ∈ L1(Ω), the

convergence is also true in (L1(Ω))N (and thus in the sense of distribu-

tions). By passing to the limit (in the sense of distributions) in (3.4), and

since the limits are functions, we get

a(x, f(x), F (x)) − a(x, f(x), G(x))=M(x)(F (x) −G(x)) for a.e. x∈Ω ,

and the measurable matrix valued function M is thus convenient.

Proof of Theorem 1.1. Let µ ∈ M(Ω), µ∂ ∈ M(∂Ω) and u, v

two SOLA of (1.14).

By definition, there exists (µn, νn)n≥1 ∈ L1(Ω)∩ (H1
Γd

(Ω))′ satisfying

µn → µ and νn → µ in (C(Ω))′ weak-∗, (µ∂
n, ν

∂
n)n≥1 ∈ L1(∂Ω)∩ (H

1/2
Γd

(Ω))′

satisfying µ∂
n → µ∂ and ν∂

n → µ∂ in M(∂Ω) weak-∗, un a solution of (1.15)

and vn a solution of (1.15) with (νn, ν
∂
n) instead of (µn, µ

∂
n) such that

un → u and vn → v in L1(Ω) (in fact, the convergence is much stronger

but we will not need it).

By substracting the equation satisfied by vn from the equation satis-

fied by un, we have, for all ϕ ∈ H1
Γd

(Ω),

(3.5)

∫

Ω

(a(x, un,∇un) − a(x, vn,∇vn)) · ∇ϕ +

∫

Γf

λ(un − vn)ϕdσ =

= 〈µn − νn, ϕ〉(H1
Γd

(Ω))′,H1
Γd

(Ω) + 〈µ∂
n − ν∂

n , ϕ〉(H1/2
Γd

(Ω))′,H1/2
Γd

(Ω)
.

Let V : Ω× IR× IR× IRN → IRN defined, for all (x, s, t, ξ) ∈ Ω× IR×
IR × IRN , by





V(x, s, t, ξ) =
a(x, s, ξ) − a(x, t, ξ)

s− t
if s �= t ,

V(x, s, t, ξ) = 0 if s = t .
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Thanks to Hypothesis (1.1), V is Borel-measurable (it is Borel-measurable

on the Borel set {s �= t} and on the Borel set {s = t}) and, by (1.6),

|V(x, s, t, ξ)| ≤ δ for a.e. x ∈ Ω, for all (s, t, ξ) ∈ IR × IR × IRN ; we also

have, for all (x, s, t, ξ) ∈ Ω × IR × IR × IRN ,

a(x, s, ξ) − a(x, t, ξ) = (s− t)V(x, s, t, ξ) .

If V is Borel-measurable and un, vn, ∇vn are measurable, then vn(.) =

V(., un(.), vn(.),∇vn(.)) is measurable on Ω and, for a.e. x ∈ Ω, we have

|vn(x)| ≤ δ.

By denoting Mn : Ω → MN(IR) the measurable matrix-valued func-

tion given by Lemma 3.1 applied to f = un, F = ∇un and G = ∇vn
(notice that |F −G| ∈ L2(Ω) ⊂ L1(Ω)), we obtain, for a.e. x ∈ Ω,

a(x, un(x),∇un(x)) − a(x, vn(x),∇vn(x)) =

= a(x, un(x),∇un(x)) − a(x, un(x),∇vn(x))+

+ a(x, un(x),∇vn(x)) − a(x, vn(x),∇vn(x)) =

= Mn(x)(∇un(x) −∇vn(x)) + (un(x) − vn(x))vn(x) .

By (3.5), wn = un − vn is thus a solution to

(3.6)





wn ∈ H1
Γd

(Ω) ,
∫

Ω

Mn∇wn · ∇ϕ +

∫

Ω

wnvn · ∇ϕ+

+

∫

Γf

λwnϕdσ = 〈µn − νn, ϕ〉(H1
Γd

(Ω))′,H1
Γd

(Ω)+

+〈µ∂
n − ν∂

n , ϕ〉(H1/2
Γd

(∂Ω))′,H1/2
Γd

(∂Ω)
, ∀ϕ ∈ H1

Γd
(Ω) .

MT
n is a measurable matrix-valued function which satisfies Proper-

ties (3.1) and (3.2) (notice that α and Λ do not depend on n) and we

have vn ∈ L∞(Ω) with δ ≥ ‖ |vn| ‖L∞(Ω) (notice that δ does not depend

on n).

Thanks to Theorem 2.1, since sgn(u−v) ∈ L∞(Ω), there exists κ > 0

and C > 0 depending on (Ω,Γd, α,Λ, δ, λ) (i.e. κ and C do not depend
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on n) and, for all n ≥ 1, a solution to

(3.7)





fn ∈ H1
Γd

(Ω) ∩ C0,κ(Ω) ,
∫

Ω

MT
n ∇fn · ∇ϕ +

∫

Ω

vn · ∇fnϕ+

+

∫

Γf

λfnϕdσ =

∫

Ω

sgn(u− v)ϕ , ∀ϕ ∈ H1
Γd

(Ω)

such that ‖fn‖C0,κ(Ω) ≤ C.

Using fn as a test function in (3.6) and wn as a test function in (3.7),

we obtain

(3.8)

∫

Ω

wnsgn(u− v) =

∫

Ω

Mn∇wn · ∇fn +

∫

Ω

wnvn · ∇fn+

+

∫

Γf

λwnfn dσ=

∫

Ω

fn(µn − νn)+

∫

∂Ω

fn(µ
∂
n − ν∂

n) dσ .

Since (fn)n≥1 is bounded in C0,κ(Ω), it is relatively compact in C(Ω)

(thanks to the Ascoli-Arzelà theorem) and we can thus suppose that, up

to a subsequence still denoted (fn)n≥1, we have fn → f in C(Ω). Since

µn − νn → 0 in (C(Ω))′ weak-∗ and µ∂
n − ν∂

n → 0 in M(∂Ω) weak-∗, we

get ∫

Ω

fn(µn − νn) +

∫

∂Ω

fn(µ
∂
n − ν∂

n) → 0 .

Using the fact that wn → u− v in L1(Ω), we deduce then from (3.8),

by passing to the limit n → ∞, that

0 =

∫

Ω

sgn(u− v)(u− v) =

∫

Ω

|u− v| ,

which gives u = v a.e. on Ω and concludes the proof.

Proof of Theorem 1.2. We first prove the more general result

stated in Remark 1.6. We suppose thus, to begin, only Hypotheses (1.1)-

(1.3), (1.7) and (1.9) and we take (un)n≥1 satisfying: for all n ≥ 1,

there exists three sequences (µn,m)m≥1 ∈ L1(Ω)∩ (H1
Γd

(Ω))′, (µ∂
n,m)m≥1 ∈
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L1(∂Ω) ∩ (H
1/2
Γd

(∂Ω))′ and (un,m)m≥1 ∈ H1
Γd

(Ω) such that

(3.9)

µn,m
m→∞−→ µn in (C(Ω))′ weak-∗, µ∂

n,m

m→∞−→ µ∂
n in M(∂Ω) weak-∗ ,

∃C > 0 such that ‖µn,m‖M(Ω) + ‖µ∂
n,m‖M(∂Ω) ≤ C

for all n ≥ 1 and m ≥ 1 ,

∀m ≥ 1 , un,m is a solution of (1.15) with (µn,m, µ
∂
n,m)

instead of (µn, µ
∂
n) ,

un,m
m→∞−→ un in W 1,q

Γd
(Ω) for all q ∈ [1, N/(N − 1)[

((3.9) is the additional hypothesis we must make — see below for the

reason).

Let {ϕk , k ≥ 1} (respectively {ψk , k ≥ 1}) be a countable dense

subset of C(Ω) (respectively C(∂Ω)). For all n ≥ 1, there exists mn ≥ 1

such that

• | ∫Ω ϕk dµn,mn − ∫
Ω ϕk dµn| ≤ 1/n for all k ∈ [1, n],

• | ∫∂Ω ψk dµ
∂
n,mn

− ∫
∂Ω ψk dµ

∂
n| ≤ 1/n for all k ∈ [1, n],

• ‖un,mn − un‖W1,N/(N−1)−1/n
Γd

(Ω)
≤ 1/n.

It is then quite clear that (νn)n≥1 = (µn,mn)n≥1 ∈ L1(Ω) ∩ (H1
Γd

(Ω))′ and

(ν∂
n)n≥1 = (µ∂

n,mn
)n≥1 ∈ L1(∂Ω) ∩ (H

1/2
Γd

(∂Ω))′ converge respectively to

µ in (C(Ω))′ weak-∗ and to µ∂ in M(∂Ω) weak-∗. Indeed, (νn)n≥1 =

(µn,mn)n≥1 is bounded in M(Ω) by C (this is where we need (3.9)) and,

for all k ≥ 1, if n ≥ k,

∣∣∣
∫

Ω

ϕk dνn −
∫

Ω

ϕk dµ
∣∣∣ ≤ 1

n
+

∣∣∣
∫

Ω

ϕk dµn −
∫

Ω

ϕk dµ
∣∣∣ → 0 as n → ∞ .

The bound of (νn)n≥1 and this convergence on a dense subset of C(Ω)

gives the weak-∗ convergence. We can do the same for (ν∂
n)n≥1.

Thus, by definition of a SOLA, since vn = un,mn is a solution of (1.15)

with (νn, ν
∂
n) instead of (µn, µ

∂
n), there exists a subsequence (vnk

)k≥1 and a

SOLA u of (1.14) such that vnk
→ u in W 1,q

Γd
(Ω) for all q ∈ [1, N/(N−1)[.

Let q ∈ [1, N/(N − 1)[; for all k ≥ (N/(N − 1) − q)−1, since nk ≥ k, we
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have then (with rk = N/(N − 1) − 1/nk > q),

‖unk
− u‖W1,q(Ω) ≤ ‖unk

− vnk
‖W1,q(Ω) + ‖vnk

− u‖W1,q(Ω) ≤
≤ |Ω|1/q−1/rk‖unk

− vnk
‖W1,rk (Ω) + ‖vnk

− u‖W1,q(Ω) ≤

≤ sup(1, |Ω|)
nk

+ ‖vnk
− u‖W1,q(Ω) → 0 as k → ∞ ,

which gives the convergence of (unk
)k≥1 to u in W 1,q

Γd
(Ω), for all q ∈

[1, N/(N − 1)[.

Suppose now that we add the hypotheses of Theorem 1.1, or that we

are in the case of Remark 1.5. We have then the uniqueness of the SOLA.

The SOLA un thus does not depend on the way we approximate

(µn, µ
∂
n), and we can always take (µn,m, µ

∂
n,m)m≥1 which approximate these

measures and satisfy moreover ‖µn,m‖M(Ω) ≤ ‖µn‖M(Ω) and ‖µ∂
n,m‖M(∂Ω)

≤ ‖µ∂
n‖M(∂Ω) for all m ≥ 1; in this case, since (µn)n≥1 is bounded in

M(Ω) and (µ∂
n)n≥1 is bounded in M(∂Ω) (they converge for the weak-∗

topology), we see that (µn,m, µ
∂
n,m)n≥1,m≥1 satisfy (3.9).

By supposing that (un)n≥1 does not converge to the SOLA u of (1.14),

we would take ε > 0 and a subsequence, still denoted (un)n≥1, such that,

for a q0 ∈ [1, N/(N − 1)[, ‖un − u‖W1,q0 (Ω) > ε for all n. Applying the

preceding reasoning, we get a subsequence (unk
)k≥1 which converges in

W 1,q0
Γd

(Ω) to a SOLA v of (1.14). The SOLA being unique, we have in

fact u = v and this leads to a contradiction, thus proving Theorem 1.2

and Remark 1.7.
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J. Droniou – T. Gallouët – Université de Provence – CMI – Technopôle de Château Gombert
– 39 rue F.Joliot Curie – 13453 Marseille Cedex 13
E-mails: droniou@cmi.univ-mrs.fr / gallouet@cmi.univ-mrs.fr


