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Hydrodynamic scale for a driven tracer particle

Rigorous results

M. SOLOVEITCHIK

To my parents

Riassunto: Noi consideriamo la dinamica di una particella avente massa e carica
interagente con un ambiente omogeneo in equilibrio, consistente di particelle classiche
identiche. Noi discutiamo in modo rigoroso i risultati sulla transizione al limite per lo
spostamento della particella carica. In qualche caso speciale noi rappresentiamo una
conseguenza del Teorema del Limte Centrale e la relazione di Einstein.

Abstract: We consider dynamics of a massive charged particle interacting with
a homogeneous equilibrium evironment consisting of identical classical particles. We
discuss rigorous results on the limit transition for the displacement of the massive par-
ticle. In some special cases we represent a derivation of the Central Limit Theorem
and the Einstein relation
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0 – Introduction

0.1 – Physical motivation

We begin with the fundamental Physical description of driven Brow-

nian motion, that is the motion of a charged massive particle in a neutral

gas in presence of a constant electrical field. We follow the approach

developed by Einstein and Smoluchowski. In modern and slightly sim-

plified terms the theory of Brownian motion accepted in Physics may

be exposed as follows. Consider a massive charged ball moving in the

Euclidean space IRd that is filled by a neutral gas of identical particles.

We assume that the ball undergoes on action of an external electrical

field f . The ball interacts with particles of the gas by a suitable repulsive

potential. (The reader may think of a gas of point-like material parti-

cles colliding elastically with the ball). It is assumed that the system is

in thermodynamic equilibrium. Namely, we set f = 0 and fix a Gibbs

measure on the space of all possible configurations of the system. This

Gibbs measure corresponds as usual to certain values of the inverse tem-

perature β and the average particle density. In the case of f = 0 this

measure is invariant with respect to the dynamics. Denote by Q(t) the

position of the ball at time t. The following fundamental relations are

accepted as main assumptions of the theory of Brownian motion. They

were discovered almost 90 years ago and agree with numerous physical

experiments.

1. Drift and diffusion.

(0.1.1) Q(t) = D(f)t + Σ(f)Wt + o(
√

t), as t → ∞ .

Key Words and Phrases: Brownian motion – Central Limit Theorem, drift, diffusion.
A.M.S. Classification: 82C21 – 82C22 – 82C31 – 60F05
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Here D(f) is a vector called the mean drift and Σ(f) is a positive

defined operator; Σ2 is called the diffusivity of the Brownian parti-

cle. Wt denotes the standard Wiener process.

2. Einstein relation.

(0.1.2) D(f) =
β

2
Σ2(0)f + o(f), as f → 0

Terminological remark. The principles indicated above are

known as “Einstein-Smoluchowski” theory. There exists an alternative

approach, called “Ornstein-Uhlenbeck” theory, which postulates that the

basic random process describing the velocity of the Brownian particle

should be the stationary Ornstein-Uhlenbeck process Ut satisfying the

stochastic equation:

dUt = −γUt + σdWt .

If so, the Einstein-Smoluchowski theory for the displacement of the par-

ticle appears as a limiting case of the Ornstein-Uhlenbeck one. For

a detailed discussion of connections between the two theories see Nel-

son’s classical notes [18]. An attempt to obtain a unified theory is con-

tained in [29]. It seems that in physical literature the term “Brown-

ian motion” is more often associated to “Ornstein-Uhlenbeck” than to

“Einstein-Smoluchowski”. In the present text we deal with the Einstein-

Smoluchovsky theory only.

The main subject of our interest is a rigorous mathematical justifica-

tion of the physical picture described above. In more precise terms this

means the following.

1. We must consider a mechanical system of the type “classical test

object + constant external force acting on the test object + gas of

classical particles”. The underlying dynamics of the system have to

be deterministic and Hamiltonian. No resorting to stochastic evolu-

tion is allowed.

2. Randomness may enter only through initial data. A measure on the

space of initial data is of the Gibbs type and allow to determine

correctly the temperature of the system. This measure has to be

invariant under the dynamics corresponding to the trivial external

field f = 0.
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3. The only “large parameter” is time. All physical parameters, for

instance, density of particles, temperature, masses of particles etc.

should be constant.

4. The Einstein relation should be considered in the physically correct

(strong) form. That means, the limit transition with respect to the

force value should follow after the limit transition in time.

In other words we have to consider the system in the hydrodynamic

limit. The problem of justification is difficult even if one resorts to

stochastic evolution, introduces additional parameter scaling or consid-

ers the Einstein relation in the so called “weak” form, when the limit

transitions in time and in force are coupled so that f = f0/
√

t. (See for

example [29], [8], [6], [15].) In the present text we consider the “pure me-

chanical” case, described above, only. Our aim is to outline the progress

achieved recently in this area emphasizing mathematical methods moti-

vated by the problem.

0.2 – Description of the main models

So far, there have been no rigorous mathematical models based only

on the above physical postulates. A significant progress has been achieved

only under some “special” geometrical assumptions. Below we describe

the main models we shall deal with.

i) One-dimensional Rayleigh gas. This model consists of a massive

(charged) particle (M.P.) of mass M on a line immersed in an ideal gas

of identical point-like particles of equal mass m ≤ M . Gas particles do

not interact and move according to the free dynamics until a collision

with the massive particle occurs. Collisions of M.P. with gas particles

are elastic. More precisely, let us define the extended phase space of the

system by Ω̂ = IR2 × Y, where

Y = {Y ⊂ IR2 : card(Y ∩ K) < ∞ for any compact K ⊂ IR2} .

Any point of Y is called a particle of the ideal gas and denoted by (q, v) ∈
Y ∈ Y. Here q and v are the position and the velocity of the particle

respectively.

We will denote a point ω̂ ∈ Ω̂ by ω̂ = ((Q,V ), Y ), where Q,V are

the position and the velocity of the massive particle. Let us define the
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action of the one-dimensional translation group on Ω̂ by the formula:

Ra(ω̂) = ω̂1 : (q, v) ∈ Y (ω̂1) ⇔ (q − a, v) ∈ Y (ω̂) ,

Q(ω̂1) = Q(ω̂) + a, V (ω̂1) = V (ω̂) .

The phase space Ω is defined as the quotient of Ω̂ with respect to this

action. We may and will identify Ω with the subset of Ω̂ corresponding to

Q = 0. A point ω ∈ Ω is written as a pair ω = (V, Y ). We endow Ω (and

Ω̂) with the standard topology and the corresponding sigma-algebra of

Borel sets. For this purpose we define a fundamental set of neighborhoods

of the point Y0 ∈ Y by US(Y0) = {Y ⊂ IR2 : card(Y ∩S) = card(Y0 ∩S)},
where S ⊂ IR2 is bounded and open. The space Y with the given topology

is a polish space. The topology on both Ω and Ω̂ is the product one. We

denote by B (and B̂ respectively), the corresponding Borel σ-algebras.

Introduce the basic reference measure on (Ω,B):

µ(dω) =

√
βM

2π
exp

(
− βM

V 2

2

)
dV P(dY ) ,

where P denotes the Poisson field on the one-particle phase space M =

IR2 with the intensity measure

n(dq dv) = ρ

√
βm

2π
exp

(−βmv2

2

)
dv dq .

Here ρ and β are positive constants corresponding to the density of parti-

cles and the inverse temperature of the system. Note that any P-typical

configuration of particles is locally finite with respect to the q coordinate.

The main reference measure for the extended phase space is

µ̂ = µ × exp(βfQ)dQ .

The dynamics {T̂ t} on Ω̂ corresponds to elastic collisions. All par-

ticles keep their velocities until they collide with M.P., which moves be-

tween collisions with constant acceleration f
M

, where f is the force acting

on M.P. Since T̂ tRa = RaT̂
t we may correctly define the corresponding

dynamics {T t} on the quotient space Ω. Note that µ is invariant under

{T t} only by f = 0. Our main object is the displacement of M.P. defined

on Ω by

Q(t, ω) =

∫ t

0

V (T s(ω)) ds .
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ii) Modified Rayleigh gas. This system is a modification of one-

dimensional Rayleigh gas proposed by J. L. Lebowitz. The system lives in

the plane IR2, the points of which will be denoted by q = (q,q2). By con-

vention, we use the adjectives “horizontal” and “vertical” for the first and

the second coordinate axis, respectively. The system is two-dimensional

and consists of a rod of mass M and of a gas of infinitely many point-

like particles with equal masses m < M . The rod is supposed to be of

length �, and infinitely thin. Its center point is constrained to move on

the horizontal q1-axis, and the rod keeps a vertical position, i.e. its ori-

entation is fixed and orthogonal to the q1-axis. The horizontal velocity of

the rod will be denoted by V and its coordinate on the q1-axis by Q. The

ideal gas in this case is described by a locally (in q) finite subset Y of the

one-particle phase space M = IR2 × IR2. A configuration of the whole

system is described by a point in the extended phase space Ω̂. A point

ω̂ ∈ Ω̂ will be written as ω̂ = ((Q,V ), Y ), where Q,V denote the position

and the velocity of the rod, respectively, and Y is the particle configura-

tion. In the same manner as above, we define Ω as the quotient of Ω̂ with

respect to the group of horizontal space translations. A point ω ∈ Ω is

written in obvious notations as a pair ω = (V, Y ). One can introduce the

Borel sigma-algebras B̂ and B on Ω̂ and Ω respectively, as above. The

main reference measure on (Ω,B) in this case is

µ(dω) =

√
βM

2π
exp

(
− βMV 2

2

)
dV P(dY ) ,

where P is the Poisson field on the one particle phase space M with the

intensity measure

n(dq dv) = ρ

√
βm

2π
exp

(
− βm

v1
2

2

)
h(dv2)dv1 dq .

h(.) is a distribution of the vertical velocity. We assume that:

∫ +∞

−∞
h(dw)|w| < ∞

and that there exists a > 0 such that h([−a , a]) = 0.
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The last condition ensures that there are no particles whose vertical

velocities are too small and thus that any particle which is inside the re-

gion available to the rod will leave it after a renewal time. (This property

is crucial since it removes, at least partially, the conservation of memory

provided by recollisions of particles with the rod. We shall discuss it in

details somewhat later.) The dynamics on Ω̂ (and on Ω) is the usual

dynamics of elastic collisions. All particles keep their velocities until they

collide with the rod, and, upon collisions, the vertical velocities do not

change. The rod moves between collisions with constant acceleration f
M

,

where f is the force acting on the rod. The main problem is to investigate

the displacement of the rod in the horizontal direction.

Let us emphasize that our list of appropriate models is far from being

complete. For instance, we do not consider hard rods systems and Lorentz

gas [7]. In the last system the absorption of energy by the medium is

simulated by the “Gaussian dynamics”. It is assumed that the Gaussian

dynamics can mimic the absorption of energy by the scatters when they

are not fixed. For the corresponding arguments see the discussion in [7].

In case the reader is interested in obtaining a more complete picture of the

subject we strongly recommend to make use of the references indicated

at the end of the text.

0.3 – Formulation of the results. Discussion

0.3.1 – Existence of the Dynamics

Let us consider the dynamics associated with the above models. We

have chosen elastic collisions as a convenient idealization. On the other

hand this assumption leads to certain mathematical difficulties. There

are examples of initial configurations ω for which the dynamics {T t(ω)}
can be constructed only up to some finite time τ . A more detailed analysis

reveals the following reasons for that:

a) there are infinitely many particles coming into some bounded neigh-

borhood of the M.P. (rod) in a finite time;

b) a non-transversal collision may occur. This means that the collision

is multiple (two or more gas particles and M.P. (or the rod) collide

simultaneously) or M.P. (or the rod) and the colliding particle have

equal (horizontal) velocities at the time of collision;

c) infinitely many collisions may occur during a finite interval of time.
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In order to construct the dynamics mathematically rigorously we

have to show that all these situations occur only for a “small” set of

initial conditions. For our purposes it is sufficient to understand the ad-

jective “small” as “of µ-measure zero”. The difficulty indicated in (a)

is typical for all infinite-particle systems. In our case one may easily

overcome it making use of the Gaussian distribution of velocities, which

guarantees good spatial localization of the particles placed far away from

M.P. (or the rod). The cases (b) and (c) concern actually the dynamics

of a closed subsystem containing finite number of particles. The difficulty

here is specific for systems with singular (elastic) interaction. It is easy

to see that the initial conditions leading to the case (b) correspond to a

subset of codimension at least 1. Thus the main problem is to estimate

the set Z∞ of initial conditions possessing a finite accumulation point of

collision moments. It turns out that this set is also of codimension at

least 1 and by f = 0 is empty. In Section 1 we consider the problem

in full generality. The techniques developed there is of independent in-

terest and has application to many systems important for mathematical

physics.

0.3.2 – One-dimensional Rayleigh gas

Assuming that the desired dynamics is correctly constructed, we

get down to the main business of the present text. Consider the one-

dimensional Rayleigh gas. The first problem we deal with is the lack of

a suitable stationary distribution when the external field f is not equal

to zero. The natural way to overcome this difficulty is to construct this

distribution as the limit of the main reference measure under the time

evolution. One can do this rigorously at the moment only for modified

Rayleigh gas. For one-dimensional Rayleigh gas the problem is open and

we have to restrict our attention to the equilibrium case (f = 0). We

are interested in proving the central limit theorem for the displacement

Q(t, ω) of M.P. The first result was obtained for the degenerated case

M = m. The dynamics in this case is relatively simple since the motion

of the M.P. just copies the trajectory of the last collided gas particle.

This observation was used in the paper [26] (1969) where the displace-

ment of the M.P. was explicitly represented as a functional of the gas

configuration.
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Theorem 0.3.1 [26]. Assume that M =m. Then the random process

1√
N

Q(tN, .)

converges (as N → ∞) in the sense of week convergence of path measures

to the Wiener process Wσ2t. The limit variance

σ2 =

√
2

π

1

ρ
√

mβ
.

The case M > m is much harder. The way of reasoning here is

based on “balance equations” which, roughly speaking, combine a suitable

conservation low with the stationarity of the reference measure. Balance

arguments relied on the conservation of the number of particles were used

in [22] to establish that the distributions of Q(t)√
t

are tight. Moreover, it

was shown that any limit distribution of this tight family has the following

properties:

1. It may be represented as a distribution of a sum of two identically

distributed Gaussian variables with variance

1√
2π

1

ρ
√

mβ
.

2. It may be represented as a distribution of the random variable γ + ξ,

where γ is the Gaussian variable with the expectation 0 and the

variance

σ2
+ =

√
π

8

1

ρ
√

mβ
,

and ξ is a random variable independent of γ;

3. It is absolutely continuous and its density is analytic;

4. The variance σ2
∞ of this limit distribution satisfies the inequalities:

(0.3.2) σ2
− =

√
π

8

1

ρ
√

mβ
≤ σ2

∞ ≤ σ2
+ =

√
8

π

1

ρ
√

mβ
.

These properties are not sufficient for to conclude that each limit distribu-

tion is Gaussian. The inequality (0.3.2) is remarkable, since the boundary
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values of the asymptotic variance do not depend on M . D. Szasz and

B. Toth [28], by a completely different idea, obtained the same lower

bound for the limit variance and improved the upper bound:

σ2
∞ ≤ σ2

+ =

√
2

π

1

ρ
√

mβ
.

The upper bound above is sharp and coincides with the limit variance

in the case of M = m. Intensive numerical simulations [1] show that

the limit variance strongly depends on M . Moreover, as seen from the

simulations, the lower bound given above is also sharp and occurs when

M → ∞. Existence of the boundary values for the limit variance inde-

pendent of M is perhaps a pure one-dimensional phenomenon. No similar

bounds are known for the modified Rayleigh gas. Note that the results

concerning the one-dimensional Reyleigh gas are obtained without use of

ergodic properties of the system. In fact there are no results of this kind.

Let us formulate the following open problem. Prove that in the case of

the Reyleigh gas and M 	= m the dynamical system is ergodic, mixing,

has K-property, etc.

The main reason why we expect this system to be ergodic and the

process V (t) to be “close to markovian” is based on the following ob-

servation: fresh particles which, after a long time, achieve M.P. become

statistically almost independent of its past trajectory since they come

from well separated regions of the space. The best situation is: when a

“new”, particle comes-“old” ones escape for ever and give no contribution

to the velocity of M.P. Of course it is not the case because recollisions are

possible. Moreover, we have no apriori restrictions on the number of pos-

sible recollisions between a given gas particle and M.P. This number may

be infinite as well. The following result shows that the situation is not so

hopeless: For µ-almost every ω each particle has finitely many collisions

with M.P. Let particle x ∈ Y (ω). Denote by ∆(x) the time interval be-

tween the first and the last collision of x with M.P. This interval is not

empty and due to what we said above is finite. Set D(ω) = ∪x∈Y (ω)∆(x).

We say that ω provides a cluster decomposition if D(ω) = ∪Jk, where

each Jk is a finite interval and Jk ∩ Ji = ∅ provided i 	= k. An abun-

dance of ergodic properties of the system is due to the fact that cluster

decomposition is a typical property. This fact was established for slightly
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different systems, where M.P. was localized by an external potential in-

creasing in infinity or by elastic barriers. It may be used to prove K and

Bernoulli regularity. We refer the reader to [13], [2], [24], [25].

In Section 2 we consider the one-dimensional Rayleigh gas and derive

the balance equations as in [22]. We do not prove all the known results

referring to the original papers indicated above.

In the case of Rayleigh gas, the problem of recollisions seems too

difficult.

0.3.3 – Modified Rayleigh gas

We return to the general non-equilibrium case and consider the mod-

ified version of Rayleigh gas described above. Introduce the part of one-

particle configuration and phase space available to the rod:

S = {q ∈ IR2 : |q| < �/2},MS = {(q, v) : q ∈ S} .

The subsystem in S is described by

X(ω) = (V (ω), Y (ω) ∩ MS) .

The evolution of the configuration inside the strip S in terms of entire

configuration is given by

Xt(ω) = X(T t(ω)) ,

where the process Xt is markovian. The transition probabilities are given

in terms of the Poisson measure:

(0.3.3) P t(X,A) = P{Y : T t(X ∪ (Y \ MS) ∈ A} .

This reduction of a similar system to a Markov process appeared in a

different context in [13] and then later in [9]. The strategy of prov-

ing (0.1.1) consists of establishing strong ergodic properties of the process

X(t) which imply a central limit theorem for the velocity V . We empha-

size the lack of a natural invariant measure to X(t) given in advance

(unless f = 0). The required values of σ(f) and d(f) arise as asymp-

totic parameters in the central limit theorem and already their existence

presents a difficult problem.
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The next question we are dealing with is the validity of the Einstein

relation. The crucial observation is the following

Proposition 0.3.4 [3]. Let µt =µ(T−t(.)) be the family of the mea-

sures generated by the dynamics. Then for each t the measure µt is equiv-

alent to the measure µ and the Radon Nikodym derivative is equal to

dµt

dµ
= exp

(
βf

∫ t

0

V (T−t+s(ω)) ds
)
.

This proposition implies the following summation rule:

(0.3.5)

∫

Ω

µ(dω) exp
(
− βf

∫ t

0

V (T s(ω)) ds
)

= 1 .

independently of t. This equality is an important technical tool and gives

the basic argument for the following heuristic derivation of the Einstein

relation. Suppose for a minute that the “drift + diffusion” representa-

tion (0.1.1) is valid exactly:

∫ t

0

V (T s(ω)) ds = td(f) + σ(f)Wt .

Substituting this equation into the summation rule we obtain that

E(exp(−βf(td(f) + σ(f)Wt)) = 1 .

Thus

d(f) =
σ2(f)

2
βf =

σ2(0)

2
βf + o(f)

under the assumption that the variance is continuous with respect to the

value of the external field. In fact, the equality (0.1.1) is far from being

explicitly valid. We may understand it in an approximative form only.

To make the above arguments work we need a control of convergence in

the central limit theorem uniform in f .

Section 3 contains the proof of the fact that the modified Rayleigh gas

in the hydrodynamic limit admits a complete diffusion theory including

the Einstein relation. This section is based on the results of papers [3],
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[4], though some proofs differ from those of [3] and [4]. Section 3 is the

center of the present text. Let us formulate the results rigorously:

I. Existence of the drift. The limit

d(f) ≡ lim
t→∞

Qf (t, ω)

t
= νf (V )

exists, is finite, and does not depend on ω for µ -a.a. ω ∈ Ω. Moreover

fd(f) > 0 for f 	= 0.

II. Diffusion. The process

ξεt =
√

ε
(

Qf

( t
ε
, ω
)
− d(f)

t

ε

)

converges weakly, as ε → 0 in the space of continuous functions of t to the

Wiener process Wσ2(f)t with nondegenerate diffusion constant σ2(f) > 0.

III. Einstein relation. The drift d(f) and the diffusivity σ2(f) are

continuous functions of f . Moreover, the Einstein relation holds, i.e.,

lim
f→0

d(f)

f
=

β

2
σ2(o) .

1 – Dynamics of particles with elastic collisions

1.1 – Finite systems

1.1.1 – Preliminary observations

Consider a mechanical system consisting of finitely many classical

point-like particles on a line colliding elastically with each other. Assume

in addition that between collisions the particles are subject to force fields

of a general type. We allow long-range interaction forces as well as exter-

nal forces acting on each particle. To be precise, denote by Q1 ≤ . . . ≤ QN

and V 1, . . . , V N the positions and the velocities of the particles respec-

tively. Let m1, . . . ,mN be their masses. Suppose that

V̇ i =
1

mi

· F (i)(Q1, . . . , QN) .
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In coordinates qi = Qi · √mi, v
i = V i · √mi we have:

q̇ = v , v̇ = f(q) : v, q ∈ IRN .

Moreover, elastic collisions ensure that the system is contained in the

(coordinate) polyhedral angle defined by

Qi ≤ Qi+1

or, equivalently,

qi/
√

mi ≤ qi+1/
√

mi+1

Trajectories of the system undergo elastic reflections at the boundary of

the angle, provided that the corresponding intersections are transversal.

From now on we deal with the problem posed for a conservative system

inside a polyhedral angle or more generally inside a polyhedron. The par-

ticular case of interacting particles we have started with will be referred

to as particle system.

We say that the evolution is well defined for a given initial condition x

if in any finite time interval at most finitely many collisions with the

boundary may occur and each collision is transversal. In the present

section we study the set of configurations for which the evolution (or

dynamics) is well defined.

1.1.2 – Conservative system in a polyhedron

The extended phase space of the system is X = IR2N . Each point

x ∈ X is represented as follows:

x = (q, v), where q ∈ IRN , v ∈ IRN ; q = (q1, . . . , qN) , v = (v1, . . . , vN) .

We endow X = IR2N with the usual topology, sigma-algebra of Borel

subsets and Lebesgue measure m(dx) =
∏N

1 dqidvi. Set

||q||2 =
N∑

j=1

(qj)
2
, ||v||2 =

N∑

j=1

(vj)
2

and

||x||2 = ||q||2 + ||v||2 .
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Let

BR = {x : ||x|| ≤ R} .

By 〈., .〉 we denote the standard scalar product in IRN . Let θ1, . . . , θK ∈
IRN be given and satisfy:

||θi|| = 1, i = 1, . . . ,K .

We introduce the linear forms

ϑi(q) = 〈q, θi〉 − di

and define

Ω = {x ∈ X : ϑi(q(x)) ≥ 0 for all i = 1, . . . ,K} ,

Ξ = {q ∈ IRN : ϑi(q) ≥ 0 for all i = 1, . . . ,K} .

Denote by ∂Ω the boundary of Ω:

∂Ω = {x ∈ X : ϑi(q(x)) = 0 for some i = 1, . . . ,K} .

We assume from the very beginning that Ω is not empty and does not

coincide with its boundary. This means that there exists ζ ∈ IRN such

that

(1.1.1) ϑi(ζ) > 0 for all j = 1, . . . ,K .

We also assume that none of the forms ϑ1, . . . , ϑK may be omitted. In

other words, for any k = 1, . . . ,K

ϑk 	∈
{∑

j �=k

pjϑj : pj ≥ 0
}

.

We say that Ξ is a polyhedral angel if dj = 0, j = 1, . . . ,K or, in other

words, ϑj(0) = 0 for any j. Define

Γ±
i ={x ∈ Ω : ϑi(q(x))=0,±〈v(x), θi〉 > 0;ϑj(q(x)) 	=0 for all j 	= i} ;

Γ± =
⋃

i=1,... ,K

Γ±
i ;

Γ = Γ+ ∪ Γ−,Γi = Γ+
i ∪ Γ−

i ;

∂Ωsing = ∂Ω \ Γ .
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The phase space of the system is

Ω0 = (Ω \ ∂Ω) ∪ Γ+ .

Notice that

(1.1.2) ∂Ωsing ⊂
( ⋃

i �=j

Ri,j

)
∪
(⋃

i

Πi

)
,

where
Ri,j = {x ∈ X : ϑi(q(x)) = ϑj(q(x)) = 0} ;

Πi = {x ∈ X : ϑi(q(x)) = 〈v(x), θi〉 = 0} .

Each Ri,j, i 	= j, as well as Πi is a linear submanifold in IR2N of codimen-

sion 2.

The force field F = F (q) is assumed to be defined on the whole

configuration space IRN . We also assume that F is sufficiently smooth

(at least C1). Set

(1.2) ξ(x) =
N∑

i=1

vi(x)
∂

∂qi
+ F (i)(q(x))

∂

∂qi
.

We assume that the vector field ξ is complete. That is, there exists a one

- parameter group of transformations {St}t∈IR such that

d

dt
(St(x)) = ξ(x) .

For x ∈ Γ we define Φ(x) called a boundary reflection transformation. To

this end for x ∈ Γi set:

q(Φ(x)) = q(x) ;

v(Φ(x)) = v(x) − 2〈v(x), θi〉 · θi .

Notice that Φ(Φ(x)) = x and Φ(Γ±) = Γ∓. It will be convenient in the

sequel to define Φ(x) for x /∈ Γ just putting Φ(x) = x. We shall also use

the notation x for (q(x),−v(x)).
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Definition. For x ∈ Ω0 a positive semitrajectory is said to be

defined up to time τ > 0 if there exists a right continuous mapping t →
T t(x) ∈ Ω0 of the closed interval [0, τ ] satisfying the following conditions:

a) T 0(x) = x

b) Card{t ∈ [0, τ ] : T t(x) ∈ Γ} < ∞
c) If {t ∈ [0, τ ] : T t(x) ∈ Γ} = {τ1, . . . , τk}, τj < τj+1 then for any

t ∈ [τj , τj+1) T t(x) = St−τj (T τj (x)).

d) T τj (x) = Φ(T τj−(x)), where T τj− = limt↑τj T t(x).

e) If {t ∈ [0, τ ] : T t(x) ∈ Γ} = ∅ then T t(x) = St(x).

Denote by Ωτ , τ > 0 the subset of phase points x ∈ Ω0 for which a

positive semitrajectory is well defined up to time τ . Ωτ is an open subset

of the phase space. Observe that

Ωτ =
⋂

ε>0

Ωτ+ε, T t(Ωτ ) ⊆ Ωτ−t .

A negative semitrajectory is said to be well defined for x ∈ Ω0 up to time

τ < 0 if Φ(x) ∈ Ω|τ |. In this case we put:

T t(x) = Φ(T |t|(Φ(x))) .

Ωτ is defined for τ < 0 by Ωτ = Φ(Ω|τ |).

It is easy to see that T t+s(x)=T t(T s(x)) provided that T t+s(x) and

T s(x) are correctly defined. For x ∈ Ω0 define:

τ+(x) = sup{t > 0 : x ∈ Ωτ} ;

τ−(x) = inf{t < 0 : x ∈ Ωτ} ;

D(x) = (τ−(x) , τ+(x)) ;

Dc(x) = {t ∈ D(x) : T t(x) ∈ Γ+} .

Notice that Dc(x) is a discrete subset of D(x). Set

Ω∞ =
⋂

τ∈R

Ωτ =
⋂

τ∈Z

Ωτ ,

Ω±∞ =
⋂

τ∈IR±

Ωτ =
⋂

τ∈IZ±

Ωτ .
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Clearly Ω∞ is an invariant (under {T t}) subset of the phase space. A

fundamental property of the dynamics described above is contained in the

following assertion: {T t} preserves the Lebesgue measure. More precisely,

assume that t ∈ D(x) for any x contained in a measurable subset A ⊆ Ω0,

then:

(1.1.3) m(T t(A)) = m(A) .

Henceforth we accept the following

Assumption. For any given R > 0, τ > 0 one may find a constant

R = R(R, τ) such that for any t : 0 ≤ t ≤ τ and any x ∈ BR ∩ Ωt holds

(1.1.4) ||Tt(x)|| ≤ R .

This assumption is valid under usual requirements concerning the force

field.

Namely, it is sufficient to suppose that

||F (q)|| < C(||q|| + 1) .

In the Hamiltonian case where

F (q) = − grad(U(q))

we may require that

U(q) > −C||q||2, C > 0 .

In the forthcoming sections we will prove the following

Theorem 1.1.5.

m(Ω0 \ Ω∞) = 0 .

Since Ω∞ =
⋂

τ∈IZ Ωτ and each Ωτ is open in the phase space, we get

Corollary 1.1.6. Ω0 \ Ω∞ is a first category subset in Ω0.
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In some particular cases (of a constant or linear force field, for in-

stance) we give much more strength topological characterization of Ω0 \
Ω∞. It is worth mentioning the following strong result of Sinai [21] and

Galperin [12] which concerns the case F = 0.

Theorem 1.1.7. Assume that F = 0 and Ξ is a polyhedral angle.

Then there exists a constant C > 0 such that Card(Dc(x)) < C for any x.

Under the same assumption

m(Ω0 \ Ω∞) = 0 .

1.1.3 – Proof of Theorem 1.1.5

It is sufficient to prove that

m(Ω0 \ Ω+∞) = 0 .

That is,

m({x ∈ Ω0 : τ+(x) < ∞}) = 0 .

Set
Z∞ = {x ∈ Ω0 : τ+(x) < ∞, Card(Dc(x) ∩ IR+) = ∞} ,

Zfin = {x ∈ Ω0 : τ+(x) < ∞, Card(Dc(x) ∩ IR+) < ∞} .

Clearly

Ω0 \ Ω+∞ = Z∞ ∪ Zfin .

Lemma 1.1.8. The set Zfin is measurable and m(Zfin) = 0.

Proof. Set

∆ =
⋃

t>0

S−t(∂Ωsing) .

Clearly ∆ is a measurable subset of X. Due to (1.1.2) m(∆) = 0. Define

for x ∈ Ω0

σ(x) = inf{t > 0 : St(x) ∈ ∂Ω} .

Let

A = {x : Sσ(x) ∈ ∂Ωsing} .
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Notice that σ is a measurable function of x and that

(1.1.9) Ω0 \ A = {x : σ(x) = ∞} ∪ {x : Sσ(x) ∈ Γ} .

The first set in the r.h.s. of (1.1.9) is measurable, the second one is open

in the phase space. Hence A is a measurable set. Since A ⊂ ∆, m(A) = 0.

Consider x ∈ Zfin. There exists

y = lim
t↑τ+(x)

T t(x) = lim
t↑τ+(x)−η(x)

St(T η(x)) ,

where η(x) = sup{t ∈ Dc(x)}. Clearly y ∈ ∂Ωsing, otherwise we should

come to a contradiction with the definition of τ+. This observation shows

that

Zfin =
⋃

t∈IQ+

(Ωt ∩ T−t(A)) .

Taking into account 1.1.3 we obtain the result.

In addition to the assertion of the lemma the preceding proof shows

that Zfin is in a certain sense of codimension 1. The next and the main

step is to show that

m(Z∞) = 0 .

Let x ∈ Z∞ be given. Define

I∞(x) = {i : Card{t ∈ Dc(x) ∩ IR+ : T t(x) ∈ Γi} = ∞} .

Since x ∈ Z∞, this set is not empty. Let Dc(x) ∩ IR+ = {τ1 < . . . < τk <

. . . }. We have

(1.1.10) lim
k→+∞

τk = τ+ .

This follows from the fact that Dc(x) is a discrete subset of D(x) and

x ∈ Z∞.

Lemma 1.1.11. Let x ∈ Z∞ be as above. There exist:

a) q+(x) = lim
t↑τ+(x)

q(T t(x)) ;

b) v+(x) = lim
t↑τ+(x)

v(T t(x)) .



[21] Hydrodynamic scale for a driven tracer particle etc. 21

Proof. Due to assumption (1.1.4) we see that

(1.1.12) sup{||v(T t(x)|| : t ∈ [0, τ+(x))} < C(x) < ∞ .

Thus there exists

(1.1.13) q+(x) = lim
t↑τ+(x)

q(T t(x)) = q(x) +

∫ τ+−

0

v(T s(x)) ds .

Moreover,

(1.1.14) ϑj(q+(x)) = 0

for any j ∈ I∞(x). Indeed:

0 = lim inf
s↑τ+(x)

|ϑj(q(T
s(x)))| = |ϑj(q+(x))|

To prove b) we notice that

(1.1.15) v(T t(x)) = v(x) +

∫ t

0

F (q(T s(x)) ds +
t∑

0

∆v(T s(x)) ,

where ∆v(T s(x)) = v(T s(x)) − v(T s−(x)) differs from 0 only for

s ∈ [0 , t] ∩ Dc(x) .

Thus the sum
∑t

0 ∆v(T s(x)) contains a finite number of terms and is

correctly defined for any t < τ+(x). The second term in (1.1.15) converges

as t ↑ τ+(x) since

sup{||F (q(T s(x))|| : s < τ+(x)} < F < ∞ .

To estimate the last term in (1.1.15) choose c > 0 and ζ ∈ IRN such that

ϑi(ζ0) > c for all i = 1, . . . ,K .

Set ζ = ζ0 − q+(x). Taking into account (1.1.14) we conclude that

〈θj, ζ〉 > c ,
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as j ∈ I∞(x).

By (1.1.12) and the previous observation we see that

sup
{∥∥∥

t∑

0

∆v(T s(x))
∥∥∥ : t ∈ [0, τ+(x))

}
< ∞ .

Thus

sup
{∣∣∣
〈
ζ ,

t∑

0

∆v(T s(x))
〉∣∣∣ : t ∈ [0, τ+(x))

}
< ∞ .

On the other hand the boundary reflection rule gives, provided that

T s(x) ∈ Γj and j ∈ I∞(x),

〈ζ , ∆v(T s(x))〉 = 2〈ζ , θj〉||∆v(T s(x))|| .

Thus

〈ζ , ∆v(T s(x))〉 > 2c||∆v(T s(x))|| .
Note that for all s ∈ Dc(x) except a finite number holds:

T s(x) ∈ Γj and j ∈ I∞(x)

Hence

τ(x)−∑

0

||∆v(T s(x))||<C(x)+
1

2c
sup
{∣∣∣
〈
ζ,

t∑

0

∆v(T s(x))
〉∣∣∣ : t∈ [0, τ+(x))

}
<∞ .

Summarizing:

(1.1.16)
τ(x)−∑

0

||∆v(T s(x))|| < ∞ .

This implies the assertion b).

Lemma 1.1.17. Under the previous assumptions

ϑj(q+(x)) = 〈 v+(x) , θj〉 = 0

for any j ∈ I∞(x).
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Proof. The equality ϑj(q(x)) = 0, as θ ∈ I∞(x) is already proved.

(See above.) If T s(x) ∈ Γj then

∆v(T s(x)) = 2〈 v(T s(x)) , θj〉θj .

(1.1.16) implies

0 = lim inf
s↑τ+(x)

|〈 v(T s(x)) , θj〉| = |〈 v+(x) , θj〉| .

Define

ZR,t = {x ∈ Z∞ : ||x|| < R, τ+(x) < t} .

We complete the proof of Theorem 1.1.5 by the following

Lemma 1.1.18. For any R > 0 and t > 0

m(ZR,t) = 0 .

Proof. Let x ∈ ZR,t. We introduce

β(x) = sup{|〈v(T s(x)) , θj〉| : t ∈ [0, τ+(x)), j ∈ I∞(x)} .

Note that β(T s(x)) is a non-increasing function of s. Moreover, by

(1.1.11), (1.1.17)

(1.1.19) lim
s↑τ+(x)

β(T s(x)) = 0 .

Furthermore, choose R(R, t) as in assumption 1.1.4. This choice guaran-

tees that T s(x) ∈ BR for all

x ∈ ZR,t, s < τ+(x) .

We define then

γ(x) = min{|ϑj(q(x))| : j ∈ I∞(x)} .
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Clearly,

(1.1.20) m{x ∈ R : γ(x) ≤ δ} ≤ C · δ

for some constant C(R) > 0. Note that

(1.1.21) γ(x) ≤ β(x) · τ+(x), if x ∈ Z∞ .

To see this, note that there exist s ∈ [0, τ+(x)) and j ∈ I∞(x) such that

ϑj(q(T
s(x))) = 0 .

Thus:

γ(x) ≤ |ϑj(q(x))| ≤ β(x)s ≤ β(x)τ+(x) .

Set

τ (k)(x) = max
{ i

2k
:

i

2k
< τ+(x), i = 0, 1, . . .

}
;

G
(k)
i =

{
x ∈ ZR,t : τ (k)(x) =

i

2k

}
, i = 0, 1, . . . , [2kt] .

Let β(k)(x) = β(T τ(k)(x)(x)). Clearly τ(x) − τ (k)(x) ≤ 1
2k

. Thus

lim
k→+∞

β(k)(x) = 0 .

To conclude the proof, choose ε > 0 and arbitrary integer k > 0.

Consider A(k)
ε = {x ∈ ZR,t : β(k)(x) < ε}. Denoting for simplicity sj = j

2k

we may write

(1.1.22) m(A(k)
ε ) =

[2kt]∑

i=0

m(A(k)
ε ∩ G

(k)
i ) =

[2kt]∑

i=0

m(T si(A(k)
ε ∩ G

(k)
i )) .

Let

y ∈ T si(A(k)
ε ∩ G

(k)
i ), y = T si(x), where x ∈ A(k)

ε ∩ G
(k)
i .

We have

(1.1.23) β(y) = β(k)(x) < ε ,
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since x ∈ A(k)
ε . Moreover,

(1.1.24) τ+(y) = τ+(x) − τ (k)(x) ≤ 1

2k
.

In view of (1.1.21) this implies that

γ(y) ≤ ε

2k
.

Hence

T si(A(k)
ε ∩ G

(k)
i ) ⊂

{
y : γ(y) ≤ ε

2k

}
∩ BR .

Taking into account (1.1.20), we see that

m(T si(A(k)
ε ∩ G

(k)
i )) ≤ Cε

2k
.

Hence

m({x ∈ ZR,t : β(k)(x) < ε}) ≤ Ctε .

Since limk→+∞ β(k)(x)=0, the previous inequality implies that m(ZR,t)≤
Ctε. Since ε is arbitrary, m(ZR,t) = 0.

1.1.4 – Dimension of Z∞: some examples

In this section, we develop sufficient conditions for the set Z∞ to be of

codimension 1 or even empty. The results obtained here are of indepen-

dent interest and much stronger than those provided by Theorem 1.1.5.

Throughout, a set B ⊂ X = IR2N is said to be of (at least) codimension L

if there exists a countable family Λi, i = 1, . . . of smooth submanifolds

such that dim(Λi) ≤ N − L and satisfying B ⊆ ∪∞
i=1Λi. We will write

codim(B) ≥ L.

For a subset I ⊆ {1, . . . ,K} let us denote by ΘI the linear space

generated by the vectors θi, i ∈ I and by PI the orthogonal projection

onto ΘI . In the case of polyhedral angle a self-adjoint linear operator

Ψ : IRN → IRN is said to be compatible (with the polyhedral angle) if

PIΨ = ΨPI
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for any I ⊆ {1, . . . ,K}. By definition

ΨI = PIΨ = ΨPI = PIΨPI .

From now on we make the following assumptions on the force field F :

There exist an open neighborhood O containing the boundary of the

polyhedron Ξ, a constant vector F∗ and, in case, where Ξ is a polyhedral

angle, a compatible self-adjoint operator Ψ such that

(1.1.25) F (q) = F∗ − Ψ(q)

for any q ∈ O ∩ Ξ.

Proposition 1.1.26. Under the assumptions above codim(Z∞)≥1.

Proof. We expose the proof for the case of a polyhedral angle. In

the general case we assume just that the force field is constant near the

boundary and the proof becomes simpler. A point x ∈ Z∞ is said to

be regular if for any t ∈ [0, τ+(x)) q(T t(x)) ∈ O and T t(x) ∈ Γi ⇒
i ∈ I∞(x). By W∞ we denote the set of all regular points. Clearly, for

any x ∈ Z∞ there exists a rational number r ∈ [0, τ+(x)) satisfying

T r(x) ∈ W∞. Thus it is reasonable to estimate first codim(W∞). For

I ⊆ {1, . . . ,K} we define

HI(x) =
1

2
||PI [v(x)]||2 +

1

2
〈ΨI [q(x)] , q(x)〉 − 〈F∗, PI [q(x)]〉 .

Set

H∗(x) = HI∞(x)(x) .

Let x ∈ W∞ be given. Consider the trajectory

q∗(t) = PI∞(x)[q(T
t(x))], v∗(t) = PI∞(x) [v(T t(x))] .

It is governed by the equations q̇∗ = v∗, v̇∗ = PI∞(x)[F∗] − ΨI∞(x)(q∗) and

by elastic reflections at the boundary of ΘI∞(x) ∩ {q : ϑi(q) ≥ 0, i ∈
I∞(x)}. Hence we have the following conservation low:

(1.1.27) H∗(T
t(x)) = H∗(x), t ∈ [0, τ+(x)) .
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On the other hand Lemma 1.1.18 implies that

PI∞(x)(v+(x)) = PI∞(x)(q+(x)) = 0 .

That is, limt↑τ+(x) H∗(T
t(x)) = 0. Thus

(1.1.28) H∗(x) = 0 .

We conclude that

(1.1.29) W∞ ⊂
⋃

I⊆{1,...,K}
{x : HI(x) = 0} .

Thus

Z∞ ⊂
⋃

I⊆{1,...,K}

⋃

r∈IQ+

T−r({x : HI(x) = 0} ∩ Ω−r) .

This representation implies the result.

Proposition 1.1.30. Suppose that in addition to the assumptions

of proposition (1.1.26):

(1.1.31) 〈F∗, PI [q]〉 = 〈PI [F∗], q〉 ≤ 0

for any

I ⊆ {1, . . . ,K}, q ∈ O ∩ Ξ

and, in the case of a polyhedral angle, ΨI is non-negative defined as

I ⊆ {1, . . . ,K}:

(1.1.32) ΨI ≥ 0

Then Z∞ = ∅.
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Proof. We present the proof for the case of a polyhedral angle. Let

x ∈ W∞ be given. We have

−〈PI [F∗], q〉 +
1

2
〈ΨI [q(x)] , q(x)〉 ≥ 0 ,

for any I ⊆ {1, . . . ,K}. Since H∗(x) = 0,

−〈PI∞(x)[F∗], q(x)〉 +
1

2
〈ΨI∞(x)[q(x)] , q(x)〉 +

1

2
||PI∞(x)[v(x)]||

2

= 0 .

Hence

−〈PI∞(x)[F∗], q(x)〉 +
1

2
〈ΨI∞(x)[q(x)] , q(x)〉 =

1

2
||PI∞(x)[v(x)]||

2

= 0 .

Thus

PI∞(x)[v(T t(x))] = 0, t ∈ [0, τ+(x)) ,

and ϑi(T
t(x)) = const for any i ∈ I∞(x). That is, ϑi(T

t(x)) = 0, i ∈
I∞(x), t ∈ [0, τ+(x)). It is impossible, since Dc(x) is discrete.

Remark to Proposition 3.2. In the particular case, where Ψ = 0,

it is sufficient to require that (1.1.31) holds for all I : Card(I) ≥ 2. It

follows from the observation that Card(I∞(x)) ≥ 2 for any x ∈ Z∞. To

see this suppose that I∞(x) = {i}. Without any loss of generality we

may assume that x ∈ W∞ . Due to the previous argument 〈F∗, θi〉 > 0.

But it implies that at most one collision with Γi is possible.

Example 1. Particle system in a constant force field.

Let us return to the particle system. Assume that all the external

forces are constant : F (i)(Q1, . . . , QN) = F (i). The scalar product we

have to consider corresponds to the quadratic form

〈Q, Q〉 =
N∑

i=1

mi(Q
i)2 .

The polyhedral angle is given by N −1 linear inequalities (in coordinates

Q1, . . . , QN)

Qi+1 − Qi ≥ 0, i = 1, . . . N − 1 .



[29] Hydrodynamic scale for a driven tracer particle etc. 29

Note that in this case |i − j| > 1 implies that 〈θi, θj〉 = 0. That means

that we may verify condition (1.1.31) only for each integer subinterval I

of {1, . . . , N−1} containing at least 2 points. This observation has a clear

mechanical interpretation. Letx ∈ W∞. Thus I∞(x) may be decomposed

into subintervals:

I∞(x) = ∪I(n)

such that I(n) = {i(n), i(n) +1, . . . , i(n) + |I(n)|−1} and |i−j| > 1 provided

i ∈ I(n1), j ∈ I(n2), n1 	= n2. It is easy to see that each I(n) corresponds

to a group of particles (cluster) moving separately, i.e. without collisions

with other particles. Hence |I(n)| ≥ 2 which means that there are at

least three particles in each cluster. Condition (1.1.31) applied to a given

cluster of particles assumes the following form.

Consider a cluster labeled by J ⊂ {1, . . . , N}, J = {j, j + 1, j +

2, . . . , j + L− 1}, where L denotes the number of particles in the cluster.

Set
MJ =

∑

i∈J

mi- the mass of the cluster ,

AJ =
1

MI

∑

i∈J

F (i)- the barycenter acceleration .

Then

(1.1.33)
∑

i∈J

(F (i) − miAJ)Qi ≤ 0, for any Qj ≤ Qj+1 ≤ · · · ≤ Qj+L−1 .

This is equivalent to the following monotonicity condition:

For any subcluster with the same leftmost particle, that is, labeled

by J (r) ⊂ J, J (r) = j, . . . , j + r holds:

(1.1.34) AJ(r) ≥ AJ ,

or, equivalently

(1.1.35) AJ(r) ≥ AJ\J(r) .

Summarizing we obtain the following assertion.

Proposition 1.1.36. If the above monotonicity condition holds for

any cluster J containing at least three particles, then Z∞ = ∅.
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In particular, this is the case when the particles move with nonin-

creasing accelerations:

A{1} ≥ A{2} ≥ . . . A{N} .

If all the inequalities above (1.1.35) are strict then we have a particle

system which provides infinitely many collisions between any two neigh-

boring particles but satisfying Z∞ = ∅. If all the accelerations are equal:

A{1} = A{2} = . . . A{N}

then the system is equivalent to that of Sinai and Galperin, since we may

place the origin at the barycenter.

Example 2. A system of one - dimensional balls with gravity (due

to M.P. Wojtkowski).

This is a particle system satisfying

F (i)

mi

= −g, g > 0

and with the following additional restriction: Q1 ≥ 0. In other words,

the particles are restricted by an elastic wall from the left. From M. P.

Wojtkovski [30] this system, under certain conditions on the particle

masses, has nonvanishing Lyapunov exponents almost everywhere.

Proposition 1.1.37. Z∞ = ∅ for any masses and any number of

particles.

Proof. The conditions of Proposition 1.1.30 have the following form.

First of all the monotonicity condition introduced in the previous exam-

ple has to be valid - that is, no accumulation of collisions is possible when

the particles move separately and do not interact with the wall. This con-

dition holds automatically, since the accelerations are equal (See above).

In addition to that, the following inequalities have to hold:
L∑

i=1

F (i)Qi ≤ 0 for any L > 1, 0 ≤ Q1 ≤ · · · ≤ QL .

The l.h.s. equals −g
∑L

i=1 miQ
i ≤ 0.
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Example 3. Harmonic Oscillator in a Polyhedral angle.

Set
Ψ = ψE, ψ > 0 ;

F∗ = 0 .

Obviously, Z∞ = ∅ independently of the angle geometry.

1.2 – Infinite systems

In this section we study the dynamics of one - dimensional Rayleigh

gas and its modified version introduced above. Our aim is to construct

the dynamics, corresponding to the interaction we have assumed, and

correctly defined on a “large” set of phase points. We present a detailed

proof for Rayleigh gas, the argument for modified Rayleigh gas requires

just an unessential change of notations. Recall that we work in the ex-

tended phase space of the system

Ω̂ = IR2 × Y ,

where

Y = {Y ⊂ IR2 : card(Y ∩ K) < ∞ for any compact K ⊂ IR2} .

Any point of Y is called a particle of the ideal gas and denoted by (q , v) ∈
Y ∈ Y. Here q and v are the position and the velocity of the particle

respectively. A point ω̂ ∈ Ω̂ is given by ω̂ = ((Q,V ), Y ), where Q,V are

the position and the velocity of the massive particle (M.P.). The basic

reference measure we are dealing with is (infinite) Gibbs measure

µ̂(dω̂) =

√
βM

2π
exp

(
− βM

V 2

2
+ βfQ

)
dV dQ P(dY ) ,

where P denotes the Poisson field on the one-particle phase space M =

IR2 with the intensity measure

n(dq dv) = ρ

√
βm

2π
exp

(−βmv2

2

)
dv dq .
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Introducing the energy of M.P. by

H(Q,V ) = M
V 2

2
− fQ ,

we see that

µ̂(dω̂) =

√
βM

2π
exp(−βH(Q,V ))dV dQ P(dY ) .

We recall some elementary properties of the ideal gas (Y,P(dY )). Let

B ⊂ M be a measurable subset of the one-particle phase space and t ∈ IR.

Define

Ct(B) = {(q, v) ∈ M : q + sv ∈ B for some s ∈ [0, t]} .

That is, Ct(B) contains all the phase points whose (free dynamics) tra-

jectory up to time t intersects the set B. Furthermore, set

v+(B) = sup{|v| : (q, v) ∈ B} .

For L > 0

ΛL = {(q, v) : |q| ≤ L} .

Elementary calculations show that

P{Y : v+(Y ∩ Ct(ΛL)) > a}

is estimated from above by

2ρL

√
mβ

2π

∫

|v|>a

exp
(
− mβv2

2

)
dv + 2ρ|t|

√
2

mβπ
exp

(
− mβa2

2

)
.

Therefore, for C > 1 and arbitrary t holds:

(1.2.1)
∑

L∈IN

P
{
Y : v+(Y ∩ Ct(ΛL)) > 2C

√
log L

mβ

}
< ∞ .

This implies
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Proposition 1.2.2. Let C > 1 be given. There exists a measurable

subset Y∗ ⊂ Y such that

P(Y \ Y∗) = 0

and for Y ∈ Y∗ holds:

lim sup
L→∞

v+(Y ∩ Ct(ΛL))√
log L

<
2C√
mβ

for any t. Moreover, the set Y∗ is invariant with respect to the free

dynamics {T t
0}.

Proof. Set

Y∗ =
⋂

t∈IZ

⋃

L0∈IN

⋂

L≥L0,
L∈IN

{
Y :

v+(Y
⋂

Ct(ΛL))√
log L

<
2C√
mβ

}
.

Note that

v+(T s
0 (Y ) ∩ Ct(ΛL)) ≤ v+(Y ∩ Cτ (ΛL)) ,

as [s, t + s] ⊆ [0, τ ].

From now on we identify Y and Y∗. To construct the infinite-particle

dynamics we approximate the system by a finite-particle one.

Definition. We say that the dynamics is well defined up to time t

for ω̂ = ((Q,V ), Y ) if there exists

L0 ∈ IN, L0 > |Q|

such that for any L ∈ IN, L ≥ L0 the dynamics is well defined for the

finite system

ω̂L = ((Q,V ), Y ) ∩ Ct(ΛL) .

The evolution of ω̂L will be denoted by

T̂ s(ω̂L), s ∈ [0, t] .
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For L large enough velocities of all the particles contained in ω̂L, including

M.P., satisfy

|v| ≤ Const
√

log L .

Without loss of generality we may also assume that

|Q(ω̂)| ≤
√

log L .

By the evolution {T̂ s}, |s| ≤ t the following estimate holds:

v+(T s(ω̂L)) ≤ Const
√

log L +
|f |
M

|s| .

As L is large enough, this guarantees that M.P. is up to time t inside

the segment [−
√

L,
√

L]. Therefore, no particles of Y ∩ Ct(ΛL)c moving

according to the free dynamics interact with M.P. Thus for s ∈ [0, t] it

makes sense to write:

T s(ω̂) = T s(ω̂L) ∪ T s
0 (Y ∩ Ct(ΛL)c) .

Clearly the expression above is independent of L, as L is large enough.

Denote by Ω̂t the set of all configurations for that the dynamics is well

defined up to t. Set

Ω̂∞ =
⋂

t∈IZ

Ω̂t .

It is easily seen that Ω̂∞ is a measurable {T t} invariant set. We want to

show that this set is of full µ̂ measure and that

µ̂T̂ t = µ̂ .

To this end for N ∈ IN and ω̂ ∈ Ω̂ such that |Q(ω̂)| ≤ N we define T̂ t
N(ω̂)

as follows. First,

T̂ t
N(ω̂) ∩ Λc

N = ω̂ ∩ Λc
N ,

i.e. the configuration outside the interval [−N,N ] remains constant. In-

side the interval [−N,N ] all the particles, including M.P., move according

to the usual dynamics and reflecting elastically at the boundary {−N,N}.
For |Q(ω̂)| > N we set

T̂ t
N(ω̂) = ω̂ .
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Our previous results concerning dynamics of finite particle systems show

that T̂ t
N(ω̂) is correctly defined for all t and ω̂ contained in a full µ̂ -

measure invariant set Ω̂N . Moreover, each T̂ t
N preserves the measure µ̂.

Set

Ω̂∗ =
⋂

Ω̂N .

For ω̂ ∈ Ω̂∗ holds:

(1.2.3) T̂ t(ω̂) = lim
N→∞

T̂ t
N(ω̂) .

Moreover, for fixed t and any given L > 0 there exists N0(L, t, ω̂) such

that

T̂ t
N(ω̂)

⋂
ΛL = T t

N0
(ω̂)
⋂

ΛL ,

as N ≥ N0. To see this, note again that for N large enough velocities of

all the particles inside [−N,N ], including M.P., satisfy

|v| ≤ Const
√

log N .

Without loss of generality we may also assume that

|Q(ω̂)| ≤
√

log N ,

and

v+(T s
N(ω̂) ∩ ΛN) ≤ Const

√
log N +

|f |
M

|s| .

As N is large enough this guarantees that M.P. is up to time t inside the

segment [−
√

N,
√

N ] and

ω̂ ∩ Ct(Λ√
N) ⊂ ΛN

2
.

Therefore, no particle of ω̂ ∩ Ct(Λ√
N) may collide with the boundary,

since any particle, which does, will never achieve the segment [−N
2
, N

2
].

Choosing N0 so large that the previous assertions hold true and L ≤ √
N0

we see that particles of ω̂ contained in

Ct(Λ√
N0

)
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evolute separately and their evolution is independent of N ≥ N0:

T̂ s
N(ω̂) ∩ Λ√

N0 = T̂ s(ω̂ ∩ Ct(Λ√
N0

)) ∩ Λ√
N0 .

This implies

Ω̂∗ ⊆ Ω̂∞ .

As Ω̂∗ is of full µ̂ measure so is Ω̂∞.

Proposition 1.2.4. The measure µ̂ is invariant with respect to the

shift {T t}.

Proof. Suppose, a function φ satisfies the following conditions:

||φ||∞ = sup{|φ(ω̂)|} < ∞ ;(1.2.5)

φ(ω̂2) = φ(ω̂1) ,(1.2.6)

as ω̂1 ∩ ΛL = ω̂2 ∩ ΛL;

(1.2.7) φ(ω̂) = 0 ,

as |Q(ω̂)| ≥ L.

Consider φ(T̂ t
N(.)). Since φ depends on the configuration of particles

inside the segment [−L,L], it is easily seen that for any t

(1.2.8) lim
N→∞

φ(T̂ t
N(ω̂)) = φ(T t(ω̂)) ,

as ω̂ ∈ Ω∗. Let us study the convergence above. Evidently,

φ(T̂ t
N) ∈ L1(µ̂)

and

||φ(T̂ t
N)||1 = ||φ||1 .

We state that for a given t there exists c > 0 such that

(1.2.9)

∫

|Q(ω̂)|>R

φ(T̂ t
N(ω̂))µ̂(dω̂) ≤ 1

c
exp(−cR2) .
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Indeed,

∫

{|Q(ω̂)|>R}
φ(T̂ t

n(ω̂))µ̂(dω̂) ≤

≤ C

∫ ∞

|Q|>R

eβfQdQ

∫
exp

(
− βMV 2

2

)
dV P(dY )IDN,Q

(V, Y ) ,

IDN,x
(V, Y ) denotes the characteristic function of the set

DN,x = {(V, Y ) : |Q(T̂ t
N((V,Q = x), Y ))| ≤ L} .

On the other hand

DN,Q ⊆
{
(V, Y ) : max{|V |, v+(Ct(ΛQ))} >

|Q| − L

t
− |f |

M
|t|
}

,

as |Q| > L. Thus

∫

DN,Q

exp
(
− βMV 2

2

)
dV P(dY ) ≤ C exp(−cQ2) .

and therefore (1.2.9) holds. It is easily seen that the estimate (1.2.9)

provides uniform µ̂ -integrability of φ(T̂ t
N), N = 1, . . . ,. (t is fixed.) Hence

∫
φ(T̂ t(ω̂))µ̂(dω̂) = lim

N→∞

∫
φ(T̂ t

N(ω̂))µ̂(dω̂) =

∫
φ(ω̂)µ̂(dω̂) .

Noting that the functions φ under consideration are dense in L1(µ̂) we

complete the argument.

2 – One - dimensional Rayleigh gas in equilibrium

The goal of this section is to present several rigorous results con-

cerning the asymptotic behavior of a massive particle (M.P.) of mass M

moving in one direction under the action of elastic collisions with particles

of equal masses m. We do not have a goal to represent all the known re-

sults, instead we derive the balance equations - at the moment, the main

tool of obtaining rigorous results on the one-dimensional Rayleigh gas.
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The external force field acting on the M.P. assumed to be trivial: f = 0.

Rigorous definitions and notations are given in the introduction. For a

mathematically correct construction of the dynamics we refer the reader

to the previous section. We work in the phase space Ω of configurations

related to the position of the M.P. By convention, the position of M.P.

is identified with the origin. The main reference measure µ is invariant

under the dynamics {T t}.

2.1 – The case of equal masses

We start by studying the simplified case, m = M .

Theorem 2.1.1 [26]. Assume that M = m. Then the random process

1√
N

Q(tN, .)

converges (as N → ∞) in the sense of week convergence of path measures

to the Wiener process Wσ2
+
t. The limit variance

σ2
+ =

√
2

π

1

ρ
√

mβ
.

Proof. We present briefly the argument which is due to Dürr, Gold-

stein, and Lebowitz. Let us label the positions of all the particles, i.e.

gas particles and the M.P., at time t in their natural order:

· · · < q−2(t) < q−1(t) < q0(t) ≤ 0 < q1(t) < . . .

For instance q0(0) = Q = 0. Whenever a particle crosses the origin the

above labeling shifts by one unit. Set

N+(t) = {(q, v) ∈ Y : q < 0, q + tv > 0} ,

N−(t) = {(q, v) ∈ Y : q > 0, q + tv < 0} .

Define
N+(t) = card{N+(t)} ,

N−(t) = card{N−(t)} .
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Evidently N+(t) and N−(t) are independent identically distributed Pois-

son variables with parameter

ρt√
2πmβ

.

Set

ψ(ω) = I{V >0}(ω)

and let

j(t) = N+(t) − N−(t) + ψ .

The key observation is

Q(t) = qj(t) .

By stationarity the ideal gas particles including the M.P. are Poisson

distributed at any time t. Thus estimating “large deviations” we see

that

µ
{

sup
|n|≤N

{∣∣∣qn − n

ρ

∣∣∣
}
≥ N

1
2+α
}
≤ exp(−c1N

2α)

for some constant c1. A similar estimate holds for j(t):

µ{ sup
|t|≤T

{|j(t)|} ≥ T
1
2+α} ≤ exp(−c2T

2α) .

The estimates above imply that

lim
N→∞

µ
{

sup
t≤T

1√
N

∣∣∣Q(Nt) − j(Nt)

ρ

∣∣∣ > N− 1
8

}
= 0 .

Further,
1

ρ
√

N
j(Nt)

converges as N → ∞, to the Wiener process Wσ2
+
t, where

σ2
+ =

√
2

π

1

ρ
√

mβ
.
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2.2 – The case of unequal masses M 	= m

The case where M 	= m does not provide a precise expression for

Q(t). The dynamics is too complicated for to be analyzed directly. The

arguments working relatively effective in this situation may be called

“balance arguments.” They make use of various conservation laws and

stationarity of the reference measure.

2.2.1 – An estimate of the displacement of the M.P

Lemma 2.2.1. For a given ε > 0 there exists a constant c1 > 0 such

that

µ{ω : max
0≤s≤t

|V (T s(ω))| > tε} ≤ exp(−c1t
2ε) .

Proof. Take L(t) = (1 + t2). Set

Bt = {ω : |V (ω)| ≤ tε, v+(Ct(ΛL)) ≤ tε} .

Evidently µ(Bt) > 1 − exp(−ct2ε). For ω ∈ Bt

max
0≤s≤t

|V (T s(ω))| ≤ tε

Theorem 2.2.2. For any ε > 0 and µ - almost every ω there exists

t0(ω, ε) > 0, such that for all t > t0(ω, ε)

sup{|Q(s, ω)| : 0 ≤ s ≤ t} ≤ t1/2+ε .

There exists a constant c > 0 such that

µ{ω : sup{|Q(s, ω)| : 0 ≤ s ≤ t} > t1/2+ε} ≤ exp(−ct2ε) .
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Proof. Let us start by proving the second assertion. Suppose,

Q(t, ω) > R(t) ,

where t ∈ IZ, 0 ≤ t ≤ t. Set R(t) = t1/2+ε, d(t, ω) = Q(t, ω) − 1
2
R(t).

We will consider the configuration of particles at the moment t inside the

segment

∆(t, ω) = [d(t, ω), Q(t, ω)] .

The M.P. at the time t coincides with the right vertex of the segment ∆.

Since µ is an invariant measure, the distribution of particles inside ∆(t)

is equal to that of particles inside [− 1
2
R(t), 0] at the moment t = 0. Set

C(t) = {ω : Q(t, ω) > R(t)} .

For ω ∈ C(t) we define

τ(ω) = max{s : Q(s, ω) = d(t, ω); 0 ≤ s ≤ t} .

Then

C(t) =
t−1⋃

k=0

C
(t)
k ,

where

C
(t)
k = {ω : k < τ(ω) ≤ k + 1} .

Our next goal is to estimate the µ measure of each C
(t)
k . Let us define

the following set

N−(t, ω) = {(q, v) ∈ Y : q(t) ∈ ∆(t, ω), v(t) < 0} ,

where q(t) and v(t) denote the position and velocity of the particle at

time t. Set

N−(t, ω) = card{N−(t, ω)} .

The random value N−(t, ω) is easy to handle since

N−(t, ω) = card
{
(q, v) ∈ Y (T t(ω)) : q ∈

[
− 1

2
R(t), 0

]
, v < 0

}
.
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Taking into account that the measure µ is stationary under the dynam-

ics we conclude that N−(t, ω) is a Poisson variable with the parameter
1
4
ρR(t). Further, define

K(t,Y )={(q, v)∈Y (ω) :q(t)<d(t), v(t)<0, q(s)=Q(s) for someS∈ [τ, t]}.

K(t, Y ) contains the particles which had a collision with the M.P. in the

time interval [τ, t] and then left the segment ∆(t). Set

K(t, ω) = card{K−(t, Y )}

By a similar manner we define

M(t, ω) = {(q, v) ∈ Y : q < 0, q(s) = Q(s) for some s : τ ≤ s ≤ t} ,

and

M(t, ω) = card{M(t, ω)} .

The key observation is contained in the obvious inequality:

(2.2.3) N−(t, ω) ≤ M(t, ω) − K(t, ω)

As we mentioned above, the left hand side of this inequality is easy to

handle: it is a Poisson variable. The values on the right hand side are of a

more complicated structure. We will estimate them by poisson variables

as well. First, if some particle at the moment t is on the left of d(t),

has negative velocity and under the inverse free dynamics will cross the

point d(t) up to time k + 1, then this particle belongs to K(t, ω), as

ω ∈ C
(t)
k . This long statement may be expressed formally as follows. For

ω ∈ C
(t)
k .

K(1)(t, ω) ⊆ K(t, ω) ,

where

K(1)(t, ω)={(q, v)∈Y :q(t)<d(t), v(t)<0, q(t)−(t−(k+1))v(t)≥d(t)} .

Thus

K(t, ω) ≥ K(1)(t, ω) ,
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where

K(1)(t, ω) = card{K(1)(t, ω)} .

The random variable K(1)(t, ω) has Poisson distribution with parameter

γ =
ρ√

2πmβ
(t − (k + 1)) .

It remains to estimate the value M(t, ω) from above. To this end set

Dt = {ω : max
0≤s≤t

V (T s(ω)) ≤ tε} .

We know that there exists a constant c1 > 0 such that

µ(Dt) ≥ 1 − exp(−c1t
2ε) .

Put

M(1)(t, ω) = {(q, v) ∈ Y : q(k) < Q(k), v(k) > 0 ,

q(k) + (t − k)v(k) > Q(k) − tε} ,

and

M (1)(t, ω) = card{M(1)} .

The random variable M (1) has Poisson distribution with parameter

δ =
ρ
√

mβ√
2π

∫ 0

−∞
dq

∫ ∞

max{0,− q+tε

t−k
}
exp

(
− mβv2

2

)
dv .

Evidently

δ ≤ ρ
√

mβ√
2π

∫ 0

−∞
dq

∫

− q+tε

t−k

exp
(
− mβv2

2

)
dv =

=
ρ(t − k)√

2πmβ
exp

(
− mβt2ε

2(t − k)2

)
+

ρtε
√

mβ√
2π

∫ ∞

− tε
t−k

exp
(
− mβv2

2

)
dv .

Thus

(2.2.4) δ ≤ ρ(t − k)√
2πmβ

+ ρtε .
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The inequality

M (1)(t, ω) > M(t, ω)

holds under the condition

Q(k, ω) ≤ d(t) + tε .

On the other hand

Q(τ, ω) = d(t)

for k < τ ≤ k + 1.

Thus if Q(k) > d(t) + tε then

max
k<s≤k+1

V (T s(ω)) > tε

Thus

(2.2.5) M (1)(t, ω) > M(t, ω), as ω ∈ Dt .

This means that

(2.2.6) µ(C
(t)
k ∩ Dt) ≤ µ{ω : N−(t, ω) ≤ M (1)(t, ω) − K(1)(t, ω)}

The right hand side of (2.2.6) contains Poisson variables only. Thus it may

be easily estimated by using “Large deviations” of a Poisson distribution.

For a given constant c2 > 0 we set

A+ =
{
ω : M (1)(t, ω) ≥ ρ(t − k)√

2πmβ
+ ρtε + c2R(t)

}
,

A− =
{
ω : K(1)(t, ω) ≤ ρ(t − (k + 1))√

2πmβ
− c2R(t)

}
.

From general properties of Poisson distribution it follows that for c3 > 0

µ(A±) ≤ exp(−c3t
2ε) .

Further, for

ω ∈ C
(t)
k ∩ Dt \ (A+ ∪ A−)



[45] Hydrodynamic scale for a driven tracer particle etc. 45

we have:

N−(t, ω) ≤ ρtε + 2c2R(t) .

But N−(t, ω) has Poisson distribution with parameter ρ
4
R(t). If c2 is

chosen sufficiently small then for a constant c4 > 0 we have:

µ(C
(t)
k ∩ Dt \ (A+ ∪ A−)) ≤

≤ µ
{
ω : N−(t, ω) ≤ ρ

4
R(t) + ρtε +

(
c2 − ρ

4

)
R(t)

}
≤ exp(−c4t

2ε) .

Thus, taking into account the estimations of µ(A±) and µ(Dt), we get

µ(C
(t)
k ) ≤ exp(−c5t

2ε) .

Hence

µ(C(t)) ≤
t−1∑

k=0

µ(C
(t)
k ) ≤ exp(−c6t

2ε) ,

where the constant c6 > 0. Thus

µ{ω : sup{|Q(s, ω)| : s ∈ IZ, 0 ≤ s ≤ t} > t1/2+ε} ≤ exp(−c7t
2ε) ,

for some constant c7 > 0. Taking into account that

(2.2.7) µ{ω : sup
0≤s≤1

|V (T t+s)| > tε} ≤ exp(−c8t
2ε) ,

we obtain the required assertion.

Further, Borell-Cantelly argument shows that

sup{|Q(t, ω)|, 0 ≤ t ≤ t} ≤ t1/2+ε/2 ,

as

t ∈ IZ+, t ≥ t0(ω) .

This implies the result.

2.2.2 – Restriction on the number of collisions

The following theorem may be considered as an infinite - particle

analog of that of Sinai and Galperin (see the previous section).

Theorem 2.2.8. For µ - almost every ω each particle of the ideal

gas has finitely many collisions with M.P.
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Proof. Let us denote by Γ∞(ω) the set of all particles of Y (ω) that

are at the left of M.P. and undergo infinitely many collisions as t > 0.

It follows from the previous theorem that the velocity of any particle

contained in Γ∞(ω) has to be positive for each t > 0, because if it becomes

negative, then the particle escapes to infinity. Define

(q+(ω), v+(ω)) ∈ Γ∞(ω)

by

q+(ω) = max{q : (q, v) ∈ Γ∞(ω)} .

Set w(ω) = v+(ω) if Γ∞(ω) 	= ∅ and w(ω) = 0 otherwise. Evidently

w(ω) ≥ 0. The key observation is:

∫ t

0

w(T s(ω))ds ≤ Q(t, ω) − q+(ω) ,

as Γ∞(ω) 	= ∅. It follows from the previous theorem that

lim
t→∞

1

t
Q(t, ω) = 0 a.e.

Thus

lim
t→∞

1

t

∫ t

0

w(T s(ω))ds = 0 a.e.

and by the ergodic theorem w = 0 a.e. This is equivalent to Γ∞ = ∅ a.e.

The same argument works for particles at the right of M.P.

2.2.3 – An expression for the displacement of the Massive Particle

We start with several notations:

A+(t, ω) = {(q, v) ∈ Y (ω) : q < 0, q + tv > 0} ,

A−(t, ω) = {(q, v) ∈ Y (ω) : q < Q(t), q − tv > Q(t)} .

The values A±(t, ω) = card{A±(t, ω)} are identically distributed Poisson

variables. Note that these variables are, however, strongly dependent

and we have no information on their joint distribution. Our purpose is

to present the displacement of the M.P. as a function of A±. Set

B(t, ω) = {(q, v) ∈ Y (ω) : q < 0, q(s) = Q(s) for some s : 0 ≤ s ≤ t} ,
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and

B(t, ω) = card{B(t, ω)} .

Lemma 2.2.9.

A+(t, ω) =
ρ

2
Q(t, ω) + B(t, ω) + α(t, ω) ,

where
α(t, .)√

t
→ 0

in probability as t → ∞.

Proof. In view of Theorem 2.2.2 we may consider only those ω and t

for which

sup{|Q(s, ω)|, 0 ≤ s ≤ t} ≤ t1/2+ε

for sufficiently small ε. Assume that Q(t, ω) > 0. The set

L(t, ω) = A+(t, ω) \ B(t, ω)

consists of particles (q, v) ∈ Y (ω) such that:

1. q(t) ∈ [0, Q(t, ω)],

2. v(t) > 0,

3. q(s) < Q(s), for all s ∈ [0, t].

Denote

E(t, ω) = {(q, v) ∈ Y : v(t) > 0, q(t) ∈ [0, Q(t)]} ,

E(t, ω) = card{E(t, ω)} .

Evidently

L(t, ω) ⊆ E(t, ω) .

Considering the difference

E1(t, ω) = E(t, ω) \ L(t, ω) ,
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we see that it consists of particles with positive velocities which are at

the moment t in the segment [0, Q(t)] and interacted with the M.P. at

the moment s ∈ [0, t]. We state that

E1(t, .)√
t

→ 0

in probability, where

E1(t, ω) = card{E1(t, ω)} .

To see this, for (q, v) ∈ E1(t, ω) we introduce the moment τ((q, v), ω)

equal to the last moment of collision with M.P. in the time interval [0, t].

Consider separately two cases.

Case 1. τ < 1−t3/4. Denote by p1(t, ω) the number of particles with

this property. Each of these particles moves freely in the time interval

(τ, t) with a positive velocity and therefore, for the displacement δq(τ, t)

of this particle during the interval (τ, t) we have:

v(t) ≤ δq(τ, t)

t3/4
≤ Q(t, ω) − Q(τ, ω)

t3/4
≤ t−1/4+ε .

Also for these particles holds the inclusion:

q(t) ∈ [0, Q(t)] ⊂ [Q(t) − t1/2+ε, Q(t)] .

Thus the p1(t, ω) is no more than the number of particles (q, v)∈Y (T t(ω))

such that q ∈ [−t1/2+ε, 0] and 0 ≤ v ≤ t−1/4+ε. Thus p1(t, ω) is estimated

from above by the Poisson variable with parameter

γ < const t1/4+ε .

For sufficiently small ε we have

p1(t, .)√
t

→ 0

in probability as t → ∞.
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Case 2. τ ≥ t − t3/4. The number of particles with this property is

denoted by p2(t, ω). Let us put

θ(t, ω) = max
s∈[t−t3/4,t]

{|Q(t, ω) − Q(s, ω)|}

It follows from Theorem 2.2.2 that a.e

θ(t, ω) ≤ t3/8+2ε

as t is sufficiently large. Assume that we deal with so large t. Thus

q(t) ∈ [Q(t) − θ(t), Q(t)] .

The number of particles satisfying q(t) ∈ [Q(t) − θ(t), Q(t)] has Poisson

distribution with parameter

γ ≤ const t3/8+ε .

Assuming ε to be sufficiently small, we conclude that

p2(t, .)√
t

→ 0

in probability as t → ∞.

Finally we get

1√
t
E1(t, ω) =

1√
t
(E(t, ω) − card{A+(t, ω) \ B(t, ω)) → 0 .

Taking into account the equality

A+(t, ω) = B(t, ω) + E1(t, ω) − card{B(t, ω) \ A+(t, ω)} ,

we see that

A+(t, ω) = B(t, ω) + E(t, ω) − card{B(t, ω) \ A+(t, ω)} + α1(t, ω) ,

where
α1(t, .)√

t
→ 0
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in probability. From the strong low of large numbers

E(t, ω) =
ρ

2
Q(t, ω) + α2(t, ω) ,

where
α2(t, .)√

t
→ 0

in probability. To complete our argument (in the case Q(t) > 0) we have

to show that

card{B(t, ω) \ A+(t, ω)}

is o(
√

t) in probability. The set B(t, ω) \ A+(t, ω) consists of particles

(q, v) ∈ Y with q < 0, v < 0 and of particles (q, v) ∈ X with q < 0, v >

0, q + tv < 0 and interacting with the M.P. during the interval (0, t). The

set of particles of the first (second) group is denoted by P3(t, ω)(P4(t, ω)).

Set

card{Pi} = pi, i = 3, 4 .

For the particles of the first group we have

q ∈ [−t1/2+ε, 0] .

Again we introduce the moment τ of the last collision with the M.P. If

τ < t3/4, then as above q ∈ [−t3/4(1/2+ε), 0]. and the number of such

particles is o(
√

t) in probability. If τ > t3/4 then the velocity of the

particle must be small:

0 < v < t1/4 ,

which together with the inclusion

q ∈ [−t1/2+ε, 0] .

shows that

p3(t, .) = o(
√

t)

in probability. Now we shall estimate p4(t, ω). Define

τ1(q, v, ω) = inf{s : q(s) = Q(s)}, (q, v) ∈ P4 ,
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and put
n1(t, ω) = card{(q, v) ∈ P4 : Q(τ1) > −t1/2−ε} ,

n1(t, ω) = card{(q, v) ∈ P4 : Q(τ1) ≤ −t1/2−ε} .

We have

p4(t, ω) = n1(t, ω) + n2(t, ω) .

To estimate n1(t, ω) we observe that if Q(τ1) > −t1/2−ε, then

q + tv ≥ q + τ1v = Q(τ1) > −t1/2−ε ,

that is,

q + tv ∈ [−t1/2−ε, 0] .

The number of particles satisfying the last inclusion has the Poisson dis-

tribution with the parameter γ ≤ const t1/2−ε. This gives

n1(t, .) = o(
√

t)

in probability. In order to estimate n2(t, ω), we remark that from in-

equalities

Q(τ1) ≤ −t1/2−ε

and

Q(t) ≥ 0

we have Q(t) − Q(τ1) > t1/2−ε. Thus we may restrict our consideration

to the case

(t − τ1)
1/2+ε > t1/2−ε .

Hence

t − τ1 > t1/2−5ε ,

as ε is sufficiently small. From another side

q + vτ1 + v(t − τ1) = Q(τ1) + v(t − τ1) < 0 .

Thus

v(t − τ1) ≤ −Q(τ1) ≤ t1/2+ε

and

v ≤ t−1/2+6ε .
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This yields

q + tv ∈ [−t1/2+ε, 0], 0 ≤ v ≤ t1/2+6ε .

This immediately gives n2(t, .) = o(
√

t) in probability. Thus the lemma

is proven in case Q(t) > 0.

Now we assume that Q(t) ≤ 0. Introduce

F(t, ω) = {(q, v) ∈ Y : v > 0, q < 0, q + tv > Q(t, ω)} .

If Q(t, ω) < 0, then

A+(t, ω) ⊆ F(t, ω) .

Our next goal is to show that

card{B(t, ω) \ F(t, ω)} = o(
√

t)

in probability. We have

B(t, ω) \ F(t, ω) = L+(t, ω) ∪ L−(t, ω) ,

where
L−(t, ω) = {(q, v) ∈ B(t, ω) : v < 0} ,

L+(t, ω) = {(q, v) ∈ B(t, ω) : v > 0, q + tv < Q(t)} .

For a particle (q, v) ∈ L±(t, ω) we define

τ((q, v), ω) = inf{s : s ∈ [0, t], q(s) = Q(s)} .

Let us estimate the number of particles contained in L−. As above, we

consider separately two groups of particles:

L(1)
− = {(q, v) : τ((q, v)) < t3/4} ,

L(2)
− = {(q, v) : τ((q, v)) ≥ t3/4} .

For (q, v) ∈ L(1)
− we have:

q ≥ Q(τ) ≥ −τ 1/2+ε ≥ −t3/4(1/2+ε) ,

which implies

q ∈ [−t3/8+3/4ε, 0] .
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and therefore

card{L(1)
− } = o(

√
t)

in probability. If (q, v) ∈ L(2)
− , then

q ≥ q + t3/4v ≥ min
0≤s≤t

Q(s) ≥ −t1/2+ε .

This implies

|v| ≤ t−1/4+ε .

Taking into account that

q ∈ [−t1/2+ε, 0]

we conclude:

card{L(2)
− } = o(

√
t)

in probability. Estimating

card{L+}
we remark that

q + τv = Q(τ) ∈ [−t1/2+ε, 0] .

Again we decompose

L+ = L(1)
+ ∪ L(2)

+ ,

where
L(1)

+ = {(q, v) : (q, v) ∈ L+, q + τv < −t1/2−ε} ,

L(2)
+ = {(q, v) : (q, v) ∈ L+, q + τv ≥ −t1/2−ε} .

In the first case as above

Q(t) − Q(τ) > t1/2−ε .

Considering convergence in probability we may restrict to the set where

(t − τ)1/2+ε > t1/2−ε

and thus

t − τ > t1−4ε .
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Notice that

Q(t) > q + tv > q + τv + t1−4εv = Q(τ) + vt1−4ε ,

which gives

vt1−4ε ≤ Q(t) − Q(τ) .

Thus

0 < v ≤ 2t1/2+εt4ε−1 = 2t−1/2+5ε .

Taking into account the inclusion

q + tv ∈ [−t1/2+ε, 0] ,

we easily get that

card{L(1)
+ (t, .)}/

√
t → 0

in probability. If (q, v) ∈ L(2)
+ , then

(2.2.10) q + tv ∈ [Q(τ), Q(t)] ⊆ [Q(t) − t1/2−ε, Q(t)] ⊆ [−2t1/2+ε, 0] .

This implies that

card{L(2)
+ (t, .)}/

√
t → 0

in probability. The last step is to show that in probability

(2.2.11) lim
t→∞

1√
t

(
card{F(t, ω) \ A+(t, ω)} − ρ

2
|Q(t, ω)|

)
= 0 .

The set F(t, ω) \ A+(t, ω) consists of particles for which

q + tv ∈ [Q(t), 0], v > 0 .

Setting

ζε,t(ω) = sup
L

| card{(q, v) : v > 0, q + tv ∈ [−L, 0]} − ρ
2
L|

L1/2+ε



[55] Hydrodynamic scale for a driven tracer particle etc. 55

and noting that the average value of ζε,t is uniformly (in t) bounded we

get (2.2.11). Summarizing we have

card{F(t, ω)} = card{B(t, ω)} + o(
√

t) =

= card{A+(t, ω)} + card{F(t, ω) \ B(t, ω)} + o(
√

t) =

= A+(t, ω) +
ρ

2
|Q(t, ω)| + o(

√
t) .

Thus

A+(t, ω) = B(t, ω) +
ρ

2
Q(t, ω) + o(

√
t) .

Theorem 2.2.12.

Q(t, ω) =
1

ρ
(A+(t, ω) − A−(t, ω)) + ε(t, ω) ,

where
1√
t
ε(t, .) → 0

in probability with respect to µ as t → ∞.

Proof. Consider the involution

φ : Ω → Ω

changing the signs of velocities. It is clear that

φ ◦ T t = T−t ◦ φ .

We remark that

A+(t, φ ◦ T t(ω)) = A−(t, ω) .

The number of particles colliding with the M.P is the same for the “back-

ward” dynamics:

B(t, φ ◦ T t(ω)) = B(t, ω) .

At the same time

Q(t, ω) = −Q(t, φ ◦ T t(ω)) .



56 M. SOLOVEITCHIK [56]

We know that

(2.2.13) A+(t, ω) = B(t, ω) +
ρ

2
Q(t, ω) + α(t, ω) ,

where

lim
t→∞

α(t, .)√
t

= 0

in µ - probability. Substituting φ ◦ T t instead of ω we get

(2.2.14)
A−(t, ω) = B(t, ω) − ρ

2
Q(t, ω) + α(t, φ ◦ T t(ω)) ,

α(t, φ ◦ T t(ω)) = o(
√

t)

since φ ◦ T t is measure preserving. Comparing (2.2.13) and (2.2.14) we

conclude that

Q(t, ω) =
1

ρ
(A+(t, ω) − A−(t, ω)) + o(

√
t) .

Let us write the assertion of the previous theorem in the following

form. Set

a±(t, ω) = A±(t, ω) −
∫

A±(t, ω)µ(dω) .

Since ∫
A+(t, ω)µ(dω) =

∫
A−(t, ω)µ(dω)

we get:

(2.2.15) Q(t, ω) =
1

ρ
(a+(t, ω) − a−(t, ω)) + ε(t, ω) .

a±(t, ω) are identically distributed centered Poisson processes and the

distribution of
a±(t, .)√

t

converges as t → ∞ to the Gaussian one with the variance

ρ√
2πmβ

.
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This implies immediately that the family of distributions corresponding

to the variables
Q(t, ω)√

t
, t ∈ IR+

is tight. Hence we may introduce the set of limit points O, which contains

all the distributions representable as

lim
tn→∞

Q(tn, ω)√
tn

.

Given a random variable ξ we shall write ξ ∈ R(O) if the distribution of ξ

is contained in O. We know that O is not empty and weakly compact.

Our next goal is to study the distributions contained in O. Unfortunately

we are not able to prove the Central Limit Theorem, which says that O

consists of the unique Gaussian distribution. We may, however, get some

precise results in this direction.

Theorem 2.2.16. Any random variable ξ ∈ R(O) may be repre-

sented in the form

ξ = ξ+ + ξ− ,

where ξ± are identically distributed Gaussian variables with the variance

1

ρ
√

2πmβ
.

The variance of ξ ∈ R(O) is estimated from above by

√
8

π

1

ρ
√

mβ
.

Proof. Assume that

Q(tn, .)√
tn

→ ξ

in distribution. Due to the Prochorov theorem the joint distributions

(a+(tn, .)

ρ
√

tn
, −a−(tn, .)

ρ
√

tn

)
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are tight. Thus, considering if necessarily a suitable subsequence of tn,

we may and will assume that

(a+(tn, .)

ρ
√

tn
, −a−(tn, .)

ρ
√

tn

)
→ (ξ+, ξ−) .

Thus

ξ = ξ+ + ξ− ,

where

ξ± = ± lim
a±(tn, .)

ρ
√

tn

are the required identically distributed Gaussian variables. The estimate

for the variance of ξ follows from the Schwartz inequality.

Let us emphasize the surprising fact that the upper bound for the

variance does not depend on M , i.e. on the mass of the M.P. On the other

hand the results we have do not exclude that the scaling rate
√

t is trivial

and O consists of the distribution concentrated in 0. We know that it is

not true as M = m. The general case needs additional arguments.

2.2.4 – Lower bounds for the limit variance

In this section we briefly represent an elegant argument, invented by

D. Szasz and B. Toth [28], to show that that the limit variance of the

normalized displacement of the M.P. is bounded from below:

lim inf IE
(Q2(t)

t

)
≥ σ2

− ,

where

σ2
− =

√
π

8

1

ρ
√

mβ
.

1. Return first to the Lemma 2.2.9. The assertion of the lemma deals

with a number of particles contained in certain regions of the phase space.

It is easily seen that replacing the counting function

card(A) =
∑

(q,v)∈A

1
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by an additive translation invariant function

cardf (A) =
∑

(q,v)∈A

f(v)

we do not violate neither the assertion nor the proof of the lemma. Let

us formulate the refinement, we obtain this way.

Let f : IR1 → IR1 satisfy

∫
f2(v) exp

(
− mβv2

2

)
dv < ∞ .

Set as before

A+(t, ω) = {(q, v) ∈ Y (ω) : q < 0, q + tv > 0} ,

and define A+
f (t, ω) = cardf{A±(t, ω)}. Analogously for

B(t, ω) = {(q, v) ∈ Y (ω) : q < 0, q(s) = Q(s) for some s : 0 ≤ s ≤ t} ,

set

Bf (t, ω) = cardf{B(t, ω)} .

Lemma 2.2.17.

A+
f (t, ω) = a+(f)Q(t, ω) + Bf (t, ω) + α(t, ω) ,

where

a+(f) = ρ

√
mβ

2π

∫ ∞

0

f(v) exp
(
− mβv2

2

)
dv ,

and
α(t, .)√

t
→ 0

in probability as t → ∞.
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Proof. A straightforward inspection of the arguments, applied to

Lemma 2.2.9, but replacing card( ) by cardf ( ) everywhere. See also [28].

Lemma 2.2.18. Under the previous assumptions the correction

α(t, .)√
t

converges to zero in L2(Ω, µ).

Proof. See [28]. The way of reasoning is close to that of (2.2.9) but

makes use of a more precise information concerning the fluctuations of a

Poisson point process.

2. Which choice of the function f is reasonable? To make arguments close

to those of the previous section work, the function f should correspond

to a certain conservation law. For instance, f = 1 corresponds to the

number of particles. Consider in addition:

1. f(v) = mv. Conservation of momentum.

2.

f(v) =
mv2

2
.

Conservation of energy.

The second case contains no new information in addition to the case

where f = 1, since in the both cases the function f is even. The first

case is expected to be more interesting. To make the notations more

transparent, set
P+(t, ω) = A+

v (t, ω) ,

R+(t, ω) = B+
v (t, ω) .

We have

(2.2.19) P+(t) = R+(t) +
ρ√

2πmβ
Q(t) + o(

√
t) .

In addition we have, as before,

(2.2.20) A+(t) =
ρ

2
Q(t, ω) + B+(t) + 0(

√
t) ,
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where

A+(.) = A+
1 (.), B+(.) = B+

1 (.) .

3. There exist two natural measure preserving involutions of Ω. The

involution φ : Ω → Ω changing the signs of velocities was used in the

preceding section. The involution ψ : Ω → Ω reflects the configuration

with respect to the origin:

ψ((V, Y )) = (−V,−Y ) ,

where −Y = {(q, v) : (−q,−v) ∈ Y }. Clearly

ψ ◦ T t = T t ◦ ψ ,

and

Q(t, ψ(ω)) = −Q(t, ω) .

Set:

A(t, ω) = A+(t, ω) − A+(t, ψ(ω)), B(t, ω) = B+(t, ω) − B+(t, ψ(ω)) ,

P (t, ω) = P+(t, ω) − P+(t, ψ(ω)), R(t, ω) = R+(t, ω) − R+(t, ψ(ω)) .

From what is said above we conclude that in L2(Ω, µ):

P (t) = R(t) + ρ

√
2

πmβ
Q(t) + o(

√
t) ,(2.2.21)

A(t) = B(t) + ρQ(t) + o(
√

t) .(2.2.22)

Denote by Z∗
t the process

Z∗(t, ω) = Z(t, φ ◦ T t(ω)) .

The values involved into equations (2.2.21), (2.2.22) have the following

properties with respect to the transformation *:

B∗(t) = B(t), Q∗(t) = −Q(t), R(t) + R∗(t) = (V (t) − V (0))M .

Since φ ◦ T t is a measure preserving transformation, we conclude from

the preceding equations that

IE(Q(t)B(t)) = 0 .
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By (2.2.22)

IE
(Q2(t)

t

)
=

1

ρ2

(
IE
(A2(t)

t

)
− IE

(B2(t)

t

))
+ o(1) .

Thus

lim sup
t→∞

IE
(Q2(t)

t

)
≤ 1

ρ2
lim
t→∞

IE
(A2(t)

t

)
=

1

ρ

√
2

πmβ
.

Further,

IE(B(t)R(t))=IE(B∗(t)R∗(t))=−IE(B(t)R(t))+M IE(B(t)(V (t)−V (0))) .

Since B(t)/
√

t and V (t) are both L2 bounded,

IE(B(t)R(t)) = O(
√

t) .

Let us multiply the both sides of (2.2.22) by P (t)/t. Taking then the

expectation we have

IE
(A(t)P (t)

t

)
= IE

(B(t)P (t)

t

)
+ ρIE

(Q(t)P (t)

t

)
+ o(1) .

Replace in the first term of the right hand side above P (t) by its repre-

sentation in (2.2.21):

IE
(A(t)P (t)

t

)
= IE

(B(t)R(t)

t

)
+ ρIE

(Q(t)P (t)

t

)
+ o(1) .

We have used the equality

IE
(Q(t)B(t)

t

)
= 0 .

Recalling then that

IE(B(t)R(t)) = O(
√

t) ,

we obtain

IE
(A(t)P (t)

t

)
= ρIE

(Q(t)P (t)

t

)
+ o(1) .
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By Schwartz inequality

ρ2IE
(Q2(t)

t

)
≥
(
IE
(A(t)P (t)

t

))2(
IE
(P 2(t)

t

))−1

+ o(1) .

Note then that the values

IE
(A(t)P (t)

t

)
, IE
(P 2(t)

t

)

do not depend on t and may be easily calculated directly. Omitting this

elementary step we obtain

IE
(Q2(t)

t

)
≥ 1

ρ

√
π

8mβ
+ o(1) .

Summarizing we have

Proposition 2.2.23.

1

ρ

√
π

8mβ
≤ lim inf

t→∞
IE
(Q2(t)

t

)
≤ lim sup

t→∞
IE
(Q2(t)

t

)
≤ 1

ρ

√
2

πmβ
.

The upper estimate is sharp and coincides with the limit variance in the

case where M = m.

Remark. A completely different method of proving the lower esti-

mate is contained in [22]. The arguments there are more complicated,

essentially make use of the Gaussian distribution of velocities, but give

more information concerning the structure of possible limit distributions.

2.2.5 – Numerical evidence

It is a very nontrivial numerical and statistical problem to simulate

the process of displacement of the M.P. for large times and to test whether

it is asymptotically Wiener. From our point of view the highest level of

computational precision was achieved in [1]. The results obtained there

support the following assertions:

1. The process

ξε(t) =
√

εQ(t/ε)

is, for small ε, asymptotically Wiener for all values of the mass M .
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2. The limit variance σ2
∞(M) of the normalized displacement depends

on the mass M . The theoretical lower bound obtained above is sharp

and appears as M → ∞.

3. The Einstein relation holds for any value of M .

3 – Complete diffusion theory for the modified Rayleigh gas

This section is the center of the text. We consider here a mechanical

system in the plane, consisting of a vertical rod of length �, with its

center moving on the horizontal axis, subject to elastic collisions with

the particles of a free gas, and to a constant horizontal force f acting

on the rod only. The rigorous construction of the system and the basic

notations the reader may find in the introduction. Recall that the initial

measure µ is chosen so that the vertical velocity distribution of a gas

particle has a “hole” in 0, i.e. we assume that the vertical velocity v2

satisfies |v2| > u0 > 0 for all particles. This ensures that all particles

which are at a given time available for the rod will get out of it after a

renewal time τ = �/u0. The distribution “in the horizontal direction” is

assumed to be a Gibbs measure for the system for f = 0, corresponding to

some particle density ρ and some inverse temperature β. That is, particle

positions are Poisson distributed in the plane IR2, and the horizontal

velocities of the rod and of the particles have maxwelian distribution.

The verticle velocity distribution is denoted by h(dv2) and is assumed

to have at least finite first moment. The special choice of the vertical

velocity distribution and the geometrical restrictions on the motion of

the test object remove, at least partially, the problem connected with

possible recollisions. The dynamics of the system is still very nontrivial:

an arbitrary number of recollisions of a particle with the rod are possible,

though we control their duration in time. The evolution of the rod is

not markovian and, what is very special for this system, the presence of

the external force destroys the equilibrium: there is no natural invariant

measure given in advance, unless f = 0. We consider the displacement

of the rod Q(t) in the hydrodynamic limit

√
εQ(tε−1)

and establish existence of the two basic macroscopic values: drift d(f)
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and diffusion constant σ2(f). From the probabilistic point of view we

prove the central limit theorem for the displacement of the rod. As the

values d(f) and σ2(f) are correctly determined (which is alone a very

nontrivial problem) we establish the famous Einstein relation between

them:

lim
f→0

d(f)

f
=

β

2
σ2(0) .

Let us emphasize that we follow the physically correct order of the limit

transitions: first we consider the limit as t → ∞ and then the limit

f → 0. Abusing a bit the standard terminology, we say that the Einstein

relation is valid in the strong form. (There exists a weak form of the

Einstein relation where the limit transitions are coupled so that f =

f0/
√

t.) It is worth mentioning that, so far, it is the unique example of a

deterministic mechanical system, describing Brownian motion, for which

all axioms of the classical diffusion theory are proved completely and in

the strong form. Another example of the diffusion theory constructed for

a deterministic (but not mechanical) system is Lorentz gas with Gaussian

dynamics.

3.1 – Basic properties of the dynamics

3.1.1 – Definitions and notations

In this section we deal with a family of dynamical systems {T t
f}

depending on the parameter f ∈ IR (external force acting on the rod.)

The phase space of {T t
f} denoted by Ωf ⊂ Ω consists of configurations

for which the dynamics is well defined. We know that for any f

µ(Ωf ) = 1 .

Without loss of generality we may and will assume that the external force

f ≥ 0. Moreover, it suffices for our purposes to consider f contained in a

finite interval [0, fmax].

A particular role will be played by the region of the plane accessible

for the rod:

S = {q ∈ IR2 : |q2| < �/2} .

The corresponding subset of the one - particle phase space M is denoted

by

MS = S × IR2
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and, more generally, for t ≥ 0 we set

MS
t =

⋃

0≤s≤t

◦
T−s(MS) .

Here
◦
T t denotes the free dynamics on the phase space M. Thus MS

t

consists of the points that pass through MS by the free dynamics in

the time interval [0, t]. Recall that the distribution of vertical velocities

h(dv2) is chosen so that for some u0 > 0 h([−u0, u0]) = 0. Set

τ =
�

u0

.

The notation S will be used for the subset MS
τ ⊂ M. Let us also

introduce some special notations related to S:

M± = {(q, v) ∈ M \S : ±q2v2 > 0} ,

and

Y S = Y ∩S, Y in = Y ∩ M+, Y out = Y ∩ M− .

M+(M−) is the portion of the phase space where the particles that visit

S in the future (in the past) are located. Y in and Y out are called the

“ingoing” and “outgoing” configurations respectively. The corresponding

spaces are

Yin = {Y in : Y ∈ {Y}
and

Yout = {Y out : Y ∈ {Y} .

The marginal distributions of Y in, Y out induced by P will be denoted by

the same symbol P.

An important object of interest is the subsystem in S. That subsys-

tem is described by

X = X(ω) = (V, Y S) .

The corresponding phase space and σ - algebras are denoted by X and

BS respectively. Let π be the measure induced by µ on S:

π(A) = µ{ω : X(ω) ∈ A}, A ∈ BS .
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The evolution of the configuration inside S in terms of the entire

configuration is given by

Xf (t, ω) = X(T t
f (ω)) ,

where the process Xf (t) is markovian. The transition probabilities are

given in terms of the Poisson measure:

(3.1.1) P t
f (X,A) = P{Y : T t

f (X ∪ Y in) ∈ A} .

To be precise, we define the phase space of the Markov process Xf (t):

Xf = {X : P{Y : X ∪ Y in ∈ Ωf} = 1} .

Clearly π(Xf ) = 1. We leave to the reader a slightly tedious inspection

of the fact that Xf is an absorbing set with respect to the transition

probabilities indicated above.

3.1.2 – Transformation of the main measure

As just asserted the initial measure µ is not invariant under the dy-

namics as the external force f 	= 0. We start considering evolution of µ

under the dynamics {T t
f}.

Lemma 3.1.2. Let µt = µ(T−t
f (.)) be the family of the measures gen-

erated by the dynamics. Then for each t ∈ IR the measure µt is equivalent

to the measure µ and the Radon Nikodym derivative is equal to

dµt

dµ
= exp

(
βf

∫ t

0

V (T−t+s
f (ω)) ds

)
.

Proof. Let us consider the dynamics in the extended phase space.

In coordinates ω̂ = (Q,ω) we have:

T̂ t
f (ω̂) =

(
Q +

∫ t

0

V (T s
f (ω)) ds, T t

f (ω)
)
.

The Gibbs measure µ̂f = exp(βfQ)dQµ(dω) is invariant for {T̂ t
f}. Define

ψ(ω̂) = IIJ(Q)φ(ω), where φ(.) is a bounded measurable function and IIJ
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denotes the indicator function of the finite interval (a, b). ψ is summable

with respect to µ̂f . The invariance condition for the Gibbs measure im-

plies that µ̂f (ψ) = µ̂f (ψ(T̂ t
f (.)) After elementary manipulations we get

∫

Ω

µ(dω)φ(ω) ·
∫ b

a

exp(βfQ)dQ =

=

∫

Ω

µ(dω)φ(T t
f (ω)) ·

∫ b

a

exp
(
βf
(
Q −

∫ t

0

V (T s
f (ω))ds

))
dQ .

Thus ∫
µ(dω)φ(ω) =

∫
µ(dω)φ(T t

f (ω))e−βf
∫ t

0
V (T sω)ds

and the result follows if we replace ω by T−t
f (ω).

Note that the same argument works for the standard Rayleigh gas as

well. The previous proposition implies the following summation rule:

(3.1.3)

∫

Ω

µ(dω) exp
(
− βf

∫ t

0

V (T s
f (ω))ds

)
= 1 .

Lemma 3.1.4. For any t ≥ 0 the measures πP t
f and π are equivalent

on BS and the Radon Nikodym derivative �f (t,X) of πP t
f with respect to π

is given by the formula

�f (t,X) =
dπP t

f

dπ
(X) =

∫
P(dY ) exp

(
βf

∫ t

0

V (T−s
f (X ∪ Y out))ds

)
.

Proof. For A ∈ BS we have:

πP t
f (A) = µt{ω : X(ω) ∈ A} .

Thus, in view of the previous lemma

πP t
f (A) =

∫

A

π(dX)

∫

Y

P(dY ) exp
(
βf
( ∫ t

0

V (T−s
f (X ∪ Y out)ds

))
.
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3.1.3 – Construction of a Lyapunov function

In this section we construct a function W defined on X. This function,

roughly speaking, controls the deviations of the subsystem in S from the

“normal” or in certain sense typical state, where the energy of the rod

and the neighboring particles is relatively small. The term “Lyapunov

function” will be justified somewhat later.

For B ⊂ M and X ∈ X introduce the quantities

W (B) = sup
{
|v1| : (q, v) ∈ B : τ |v1| >

1

4
|q1|
}

,

(3.1.5) W (X) = max{|V (X)|,W (Y S(X))} .

Let X = (V, Y S) The condition W (X) < U implies that |V | < U and

Y S ∩ {(q, v) : |q1| ≤ 4τ |v1|, |v1| > U} = ∅ .

Assume that W (X) < U and consider the dynamics {T s
f (X), s ∈ IR}, i.e.

the dynamics of the point ω = (V, Y S). If (q, v) ∈ Y S is a particle with

|v1| > U then

|v1| ≤
|q1|
4τ

.

If no collisions occurs then the horizontal position at time 2τ

q1(2τ) = q1 + 2τv1

and

|q1(τ)| ≥ 4τ |v1| − 2τ |v1| ≥ 2τU .

So its distance from the origin (I.e. from the position of the rod at

tome 0 is larger then 2Uτ for all s ∈ [0, 2τ ]. If the rod does not collide

with particle having velocity larger than U in absolute value it cannot

travel more than a distance

Uτ +
f

2M
(2τ)2 .
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If U is so large that
2fτ

UM
≤ 1

4
,

then Uτ + f
2M

(2τ)2 ≤ 3
2
Uτ . Hence the condition W (X) < U implies that

in the dynamics

{T s
f (X)}

the rod does not collide in the time interval [0, τ ] with particles having

velocity larger in absolute value than U . The preceding assertion holds

true for all U > U0, where U0 may be chosen uniformly in all values of f

under consideration. (Recall that 0 ≤ f ≤ fmax.)

Lemma 3.1.6. There is a constant c > 0 such that for all U large

enough

π{X : W (X) ≥ U} < e−cU2

.

Proof. Set dk = max{1, |k| − 1} and

Ak = {max{|v1| : (q, v) ∈ Y S, q1 ∈ [4kτ, 4(k + 1)τU)} > dkU} .

We have

{W (X) > U} ⊂
⋃

k∈IZ

Ak

⋃
{|V | > U} .

Since π(Ak) ≤ c1e
−c2d

2
kU

2
for some c1, c2 > 0 we get the result summing

over k.

As a consequence we have W (X) < ∞ π, a.e. We may and will

assume that the condition

W (X) < ∞

is included into the definition of X. For U > 0 we set

(3.1.7) AU = {X ∈ X : W (X) < U} .
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3.1.4 – Properties of the transition kernels P t
f (X0, dX)

In this section we prove some important properties of the dynamics

{T t
f}. We formulate these properties as assertions concerning the tran-

sition probabilities P t
f (X0, dX). First, introduce some notations. For

(q, v) ∈ M we consider the parameters

te(q, v) = inf{t : q + tv ∈ MS}, to(q, v) = sup{t : q + tv ∈ MS} ,

which are the entrance and exit times in S. Introduce also the horizontal

coordinates of the particles at those times:

qe1(q, v) = q1 + te(q, v)v1, qo1(q, v) = q1 + to(q, v)v1 .

For t1 < t2 and B ⊂ M we denote by

N (t1, t2, B) =
⋃

t∈(t1,t2)

◦
T−t(B) .

the set of the points that pass through B by the free dynamics in the

time interval (t1, t2). For L > 0 set

SL = {q ∈ S : |q1| < L} ,

MS
L = {(q, v) ∈ MS : |q1| < L}

and

SL = {(q, v) ∈ S : |q1| < L} .

Lemma 3.1.8. For any X0 ∈ Xf and t > 4τ the measure π is

absolutely continuous with respect to P t
f (X0, dX).

Proof. We begin with brief intuitive arguments which explain our

strategy. The main idea of the proof relies on a simple mechanism that

brings the initial point X0 into any other fixed but arbitrary point X at

time t. Consider the image T−s1
f (X) of X under the backward dynamics

in the absence of particles outside S. Here s1 > τ .

T−s1
f (X) = (V (T−s1

f (X)), Y (T−s1
f (X))) ,
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and the particles of Y (T−s1
f (X)) are outside S. Let now Y in be such that

in the dynamics T s
f (X0 ∪ Y in) the following happens:

(i) no particles of Y in enter the strip SL up to time s0 > 2τ , except

one particle (q∗, v∗). Suppose that L > 4s0U , where U > W (X0) is

large enough. The particle (q∗, v∗) is such that it collides with the

rod at time s0 and the velocity of the rod jumps from V (T s0
f (X0)) to

V (T−s1
f (X)).

(ii) the configuration of the particles of Y in that at time t = s0 + s1 are

in S, shifted forward by s0 in time and seen from the rod position at

that time (i.e. the configuration

◦
T s0(Y in) ∩

◦
T−s1(S) − Q(s0, X0))

coincides with Y (T−s1
f )(X). If no recollisions with the particle (q∗, v∗)

occur it is easy to see that X(T t
f (X0 ∪ Y in))) = X, since the particle

(q∗, v∗) is out of S by time t and the dynamics T s1
f applied to

(V (T−s1
f (X)), Y (T−s1

f (X)))

will restore X.

The technical part of the proof consists in showing that the configu-

rations Y in constructed in this way such that X(T t
f (X0 ∪ Y in)) ∈ A with

π(A) > 0 have positive measure P. Condition (i) may be changed into

a positive measure condition for each X0 by assuming that the colliding

particle is in a small neighborhood U of (q∗, v∗). To accomplish the proof

we then use the fact that the velocity of the rod after collision is a C1

map of full rank on U and the absolute continuity of the time shift of µ

with respect to µ.

Remark. Some of the formulas we use are valid only for f 	= 0. The

case f = 0 is simpler but requires to rewrite certain expressions. We omit

this evident modification leaving details to the reader.

Let X0 ∈ X be fixed. Choose a positive number U > W (X0). Fix

some positive numbers τ ′, τ ′′ and L so that

(3.1.9) 2τ + τ ′′ < t − τ ′ < t − τ, L > 4
(
Ut +

f

M
t2
)
.
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We split the incoming configuration Y in as Y = Ŷ1∪Ŷ2∪Ŷ3. The particles

of Ŷ1 cross S and are out of S at time t− τ ′. That is, to(q, v) < t− τ ′ for

any particle (q, v) ∈ Ŷ1. The particles of Ŷ3 are defined by the condition

te(q, v) > t + τ Those particles enter MS only after time t + τ and S

after t. Set

Ŷ2 = Y in \ (Ŷ1 ∪ Ŷ3) .

For the particles of Ŷ1 holds:

te(q, v) ≤ t + τ, t0(q, v) ≥ t − τ ′ .

We further set
Y1 = Ŷ1 ∩ N (0, t − τ ′,MSL) ,

Ŷ2 = Y2 ∪ Y2 ,

where

Y2 = Ŷ2 ∩
◦
T−t(S), Y2 = Ŷ2 \ Y2 .

We shall construct a subset YU ⊂ Yin by giving Y1, Y2, andY2 a special

form so that at some time s ∈ (2τ, t−τ) the velocity of the rod is brought

close to the value V (T−t+s
f (X)) for X ∈ AU . The difference

∆(X) = V (T−t+s
f (X)) − V (T s

f (X0))

is constant for s ∈ (2τ, t − τ) as no collision take place in the dynamics

T u
f (X) for u < −τ or u > 2τ (all particles are out of S).

We fix v∗
2 ∈ supp h(dv2) and denote by

τ ∗ = �/v∗
2 < τ

the corresponding “crossing time”. Let X ∈ AU be fixed and such that

(3.1.10) |∆(X)| > (1 − α)τ
f

M
= ∆0 ,

where the collision parameter

α =
M − m

M + m
.
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We choose

Y1 = {(q∗, v∗)}

with the value of v∗
2 fixed above and q∗2 such that te∗ = te(q∗, v∗) ∈ (2τ, 2τ+

τ ′′). This ensures, by the first inequality in (3.1.9), that to∗ = to(q∗, v∗) <

te∗ + τ ∗ < t − τ ′. That is, the particle (q∗, v∗) is out of S at time t − τ ′.

The values q∗1 , v
∗
1 are chosen as functions of

V 0 = V (T
te∗
f (X0)), V ∗ = V (T

t−te∗
f (X)), Q0 =

∫ te∗

0

V (T s
f (X0))ds .

Suppose that V ∗ − V 0 = ∆(X) > 0. We should have

q̂∗1 = q∗1 + v∗
1t

e
∗ − Q0 < 0 ,

since the velocity of the rod has to increase, and the collision is on the

left. We fix the collision time t∗ ∈ (te∗, t
o
∗) and determine q∗1 and v∗

1 solving

the equations

(v∗
1 − V 0)

2 + 2q̂∗1
f

M
=

∆2

(1 − α2)
;(3.1.11)

t∗ − te∗ =
M

f

(
v∗
1 − V 0 − ∆

1 − α

)
.(3.1.12)

The dynamics T s
f (X0∪Y1) is then such that a single collision with (q∗, v∗)

takes place at the time t∗, and the velocity of the rod jumps by ∆. For

∆ < 0 the collision is on the right, i.e. q∗1 > 0. We can again determine

(q∗1 , v
∗
1) by the conditions (3.1.11), (3.1.12) but we have to discuss possible

recollisions. Inequality (3.1.10) shows that no recollision occurs for the

configuration X0 ∪ (q∗, v∗), since recollision time is

t∗ + 2
M

f
(V (T t∗

f (X0)) − v∗
1) > te∗ + 2

M

f
(1 − α)|∆| > te∗ + τ ∗ .

Only for |∆| ≤ ∆0/2 recollisions may occur for negative ∆. We then

construct Y1 as a configuration of two particles . The first one (q+, v+) is

chosen exactly as above, for a velocity jump ∆′ = −2∆0. Denote by te+
and t+ the entrance and the collision time of (q+, v+). The second particle
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(q∗, v∗) ∈ Y1 is now fixed in such a way that the entrance time te∗ and the

collision time t∗ satisfy the inequalities

te∗ ∈ (2τ, 2τ + τ ′′)

and

t∗ ∈ (t+, t+ + τ ∗) .

q∗1 and v∗
1 are then determined by equations analogue to (3.1.11), (3.1.12)

in such a way as to provide further jump of the velocity of the rod by

2∆0 +∆ > ∆0. The collision with (q∗, v∗) is on the left, since the velocity

of the rod has to increase. Possible recollisions with (q+, v+) are avoided

by choosing t∗ so that t∗−te∗ ∈ (δ∗, τ ∗) where δ is some constant close to τ ∗,

depending on ∆0 and on the parameters of the model. Summarizing,

we have shown that for all X ∈ AU we can construct a configuration

Y1, card(Y1) ≤ 2 depending on X, such that in the dynamics of X0 ∪ Y1

the rod collides with a particle (q∗, v∗) at some time t∗ ∈ (2τ, 2τ + τ ′′),

and the outgoing velocity of the rod for s > t∗ is given by V (T−t+s
f (X)).

From now on q∗2 , v
∗
2 and t∗ are assumed to be fixed and independent of

X ∈ AU . Let Oδ(x, y), (x, y) ∈ IR2 denote the open disk with radius δ

and

Uδ(q, v) = Oδ(q1, v1) × Oδ(q2, v2) .

For X ∈ AU , and denoting symmetrization by [.]Σ, we set

Y
(1)
X = Uδ(q

∗(X), v∗(X)) if |∆| > ∆0 ,(3.1.13)

Y
(1)
X = [Uδ(q

+(X), v+(X)) × Uδ(q
∗(X), v∗(X))]Σ else .(3.1.14)

Let Z(X)=(q∗(X), v∗(X)) if |∆(X)|>∆0 and Z(X)=(q+(X), v+(X))∪
(q∗(X), v∗(X)) if |∆(X)| ≤ ∆0. For any X ∈ AU and Y1 ∈ Y

(1)
X the

dynamics {T s
f (X0 ∪ Z(X)} and {T s

f (X0 ∪ Y1} are close for s ∈ [0, t − τ ′)

if δ is small. (Moreover, the mentioned dynamics are close uniformly in

f ∈ [0, fmax]) In particular the particles of Y1 collide only once, before

t − τ ′ and produce a jump in velocity which is continuous function of

Y1 ∈ Y
(1)
X and close to ∆(X). Set

(3.1.15) Y(1) =
⋃

X∈AU

Y
(1)
X .
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For Y1 ∈ Y(1) we set:

(3.1.16) Q0(Y1) =

∫ t−τ ′

0

V (T s
f (X0∪Y1))ds, V0(Y1) = V (T t−τ ′

f (X0∪Y1)) .

Introduce the set

YU = {Y ∈ Yin : Y1 ∈ Y(1), (Y 2 + Q0(Y1)) ∩ N (t − τ ′, t,SL) = ∅ .

Remind that Y 2 consists of particles which are in S∪M+ at time t− τ ′

and by time t have left S. Our next goal is to find a proper expression

for the P measure of YU . For the sack of simplicity we use the same

notation P to denote restriction of the measure P on some subset of Y.

We have

P(YU) =

∫

Y(1)
P(dY1)P({Y : (Y 2 − Q0(Y1)) ∩ N (t − τ ′, t,SL) = ∅}) =

= P(Y(1)) · p ,

where

p = P({Y : (Y 2 − Q0(Y1)) ∩ N (t − τ ′, t,SL) = ∅}) =

= P({Y : Y ∩ (M \ M−) ∩
◦
T−τ ′(M−) ∩ N (0, τ ′,SL) = ∅}) > 0 .

Here we have used the independence of Y1 and Ŷ2, as configurations in

nonintersecting regions of M+, and the invariance of P with respect to

horizontal translations and to the free dynamics. Let now A be fixed and

such that π(A) > 0. We can assume that A ⊂ AU for some U < ∞. If

Y ∈ YU , then

(3.1.17) Xt = X(T t
f (X0 ∪ Y )) = X(T τ ′

f (V0(Y1),
◦
T t−τ ′(Y2) − Q0(Y1))) .

In fact, in the time interval (t − τ ′, t] the rod can only collide with the

particles of
◦
T t−τ ′(Y2), since, by the last inequality in (3.1.9) and by the

definition of AU , it cannot get out of SL and thus cannot collide with the

particles of
◦
T t−τ ′(Y 2). Hence Xt is a function of Y1 and Ỹ =

◦
T t−τ ′(Y2)−

Q0(Y1). Taking into account that Y1 and Y2 are independent and that the
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distribution P(dY2) is invariant with respect to horizontal translations

and the free dynamics we see that Y1 and Ỹ are independent and the

distribution of Ỹ coincides with the restriction of P on
◦
T−τ ′(S). Set

G =
◦
T−τ ′(S) ,

Y G = Y ∩ G .

Suppose that |∆(X)| > ∆0. Then

Y
(1)
A =

⋃

X∈A

Y
(1)
X ⊂ Y

(1)
U .

is an open set of one particle configurations. Set

U = {(q1, v1) : (q, v) ∈ Y
(1)
A } .

We have

P t(X0, A) ≥
∫

YU

P(dY )IIA(X(T t
f (X0 ∪ Y ))) ≥

≥
∫

Y
(1)
A

P(dY1)P({Y G : (V0(Y1), Y
G) ∈ T−τ ′

f (A)}) =

=

∫

U
m(dq1, dv1)P({Y G : (V0(q1, v1), Y

G) ∈ T−τ ′
f (A)}) ,

where m is the measure induced on U by the restriction P(dY1) on Y
(1)
A .

m is equivalent to the Lebesgue measure dq1dv1 on the open set U , since

∫

Oδ(q
∗,v∗)

dq2h(dv2) > 0 .

The function V0(Y1) depends, as Y1 ∈ Y
(1)
A only on the horizontal coor-

dinates (q1, v1). That justifies the notation V0(q1, v1) in the above for-

mula. The same holds for Q0(Y2) = Q0(q1, v1). Set CV = {Ỹ : (V ; Ỹ ) ∈
T−τ ′
f (A)} and note that we have to prove that the set

U ′ = {(q1, v1) ∈ U : P(CV0(q1,v1)) > 0}
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is of positive Lebesgue measure. First we show that the set

V = {V : P(CV ) > 0}

is of positive Lebesgue measure. To do this let us add to all configurations

X ∈ A configurations in M\S constructed in a special way. Namely, set

D = M− ∩
◦
T τ ′(M \ M−) .

In words (q, v) ∈ D means that (q, v) is an outgoing particle, which by

the backward free dynamics

◦
T−s, s ∈ [0, τ ′) ,

cross S. By Y D = Y ∩ D we denote the particles of Y contained in D.

Set

(3.1.18) A =
{
ω :X(ω)∈A,

(
Y D(ω)−

∫ τ ′

0

V (T−s
f (X))ds

)
∩N (−τ ′, 0,S4L)=∅

}
.

By translation invariance of P(dY ) and independence of X and Y , we

have

µ(A) = π(A)P({Y : Y D ∩ N (−τ ′, 0,S4L) = ∅}) > 0 .

By Lemma 3.1.2

µ(T−τ ′
f (A)) > 0 .

Let us consider what the set T−τ ′
f (A) is. As X ∈ AU ,

∣∣∣
∫ r

0

V (T−s
f (X))ds

∣∣∣ < L, r ∈ [0, τ ′) .

This means that the particles of Y D(ω) do not intersect SL and do not

interact with the rod. Recall that

G =
◦
T−τ ′(S) ,

Y G = Y ∩ G ,
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and set

Y ∗(ω) = Y ∩ (M \ M−) ∩
◦
T−τ ′(M−) .

We have

T−τ ′
f (A) = {ω : (V (ω), Y G(ω)) ∈ T−τ ′

f (A); Y ∗(ω) ∩ N (0, τ ′,S4L) = ∅} .

Hence, using the independence of Y G and Y ∗ we find:

(3.1.19) µ(T−τ ′
f (A)) = p1

∫
g(dV )P(dY G)IICV

(Y G) > 0 .

Here p1 is a positive constant and g denotes the Gaussian distribution

of Y induced by µ. Thus V is of positive Lebesgue measure. Return to

the mapping

V0 : U → IR1, V0 = V0(q1, v1) .

By our construction V
(−1)
0 (V) ⊂ U ′. The function V0 is differentiable with

derivatives

∂V0

∂q1

= −(1 − α)
f

M(V (T tc
f (X0)) − v1)

,

∂V0

∂v1

= (1 − α)
(
1 − f

M(V (T tc
f (X0)) − v1)

)
,

where tc is the collision time which is close to t∗ as δ is small. The

expression above shows that dV0 	= 0 on U and thus V0 is a C1 mapping

of full rank. Hence the Lebesgue measure of V −1
0 (V) ⊂ U ′ is positive and

the Lebesgue measure of U ′ is also positive.

If A is such that |∆(X)| > ∆0 on A the proof is somewhat more

complicated but goes the same lines. We omit the details.

We prove next a property of nondegeneracy of the distribution of

the displacement which will be used for to establish nondegeneracy of

the limiting brownian motion. In what follows we denote by λPf the

distribution of the markov process Xt(ω) = X(T t
f (ω)) with initial mea-

sure λ. By IEf (.|X0, Xt) we denote the conditional expectation with re-

spect to the σ-algebra generated by X0 and Xt. Formally the previous

value involves the initial distribution of the process Xs. In fact it is of

no importance, since it may be represented as IEf (.|Xt), assuming that
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the expectation corresponds to the distribution δX0
P t

f . Recall that for a

given σ-algebra L the conditional dispersion of a random variable ξ

ID(ξ|L) = IE((ξ − IE(ξ|L))2|L)

where IE(.|L) denotes the conditional expectation with respect to the σ-

algebra L. Recall some basic properties of the conditional dispersion we

shall use. If σ-algebras L and K are such that L ⊂ K, then

ID(ξ|L) ≥ IE(ID(ξ|K)|L) .

For a finite σ-algebra L:

L = {C1, . . . , Cn}, Ci ∩ Cj = ∅, i 	= j ,

we have:

ID(ξ|L) =
n∑

j=1

IICj
IDCj

(ξ) ,

where IDCj
denotes the dispersion with respect to the probability re-

stricted to Cj and properly normalized.

By the sigma algebra generated by X0, Xt we use the obvious notation

IDf (.|X0, Xt) .

Introduce

D(X0, Xt) = IDf (Q(t)|X0, Xt) .

Corollary 3.1.20. Let t be as in the previous lemma and A ∈ BS

be of positive π-measure. Then the function

JA(X0) =

∫

A

P t
f (X0, dXt)D(X0, Xt)

is π-almost everywhere positive. In particular

JX(X0) =

∫
P t

f (X0, dXt)D(X0, Xt)

is π-almost everywhere positive.



[81] Hydrodynamic scale for a driven tracer particle etc. 81

Proof. The result is intuitively obvious, since D(X0, Xt) = 0 on a

set of positive measure would imply that on that set Q(t) is a function of

X0, Xt only, which is impossible since X0 and Xt are relative to the rod

position and cannot determine the absolute shift Q(t).

Let X0 ∈ Xf be fixed. It is not restrictive to assume that for some U

large enough we have both W (X0) < U and A ⊂ AU , where as above

AU = {X : W (X) < U} .

Going back to the mechanical system we express Xs, 0 ≤ s ≤ t as a

function of Y in ∈ Yin:

Xs = X(T s
f (X0 ∪ Y in) .

We denote by Mt
0 the σ-algebra of subsets of Yin generated by

Xs, 0 ≤ s ≤ t .

By Mt we denote the σ-algebra generated by Xt. Obviously Mt ⊂ Mt
0.

IEf,X0
denotes the expectation with respect to the measure induced by P

on Mt
0. Clearly,

JA(X0) =

∫

Xt∈A

IEf,X0
((Q(t) − IEf,X0

(Q(t)|Mt))
2|Mt)P(dY in) .

Assume that A is such that |∆(X)| > ∆0 for all X ∈ A. Let YU and

Y
(1)
A be the same as in the course of the previous proof. Set

Y = {Y in ∈ YU : Y (1) ∈ Y
(1)
A } .

We again consider the variables Y2, Ỹ . By (3.1.17) the restriction of Mt

on Y coincides with the σ-algebra generated by

V0(Y1) = V0(q1, v1), (q1, v1) ∈ U

and by Ỹ =
◦
T t−τ ′(Y2) − Q0(Y1). We denote this restriction by M∗

t . Ob-

serve that on Y holds

Q(t) = Q0(Y1) + Q∗
t , Q

∗
t =

∫ t

t−τ ′
V (T s

f (V0(Y1), Ỹ ))ds .
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The value Q∗
t is M∗

t -measurable, in other words it is a function of Xt

only. Thus, with respect to the distribution δX0
P t

f , restricted to Y and

properly normalized, we have:

ID(Q(t)|M∗
t ) = ID(Q0|M∗

t ) = ID(Q0|V) ,

where V is the σ-algebra of subsets of U generated by V0. The equality

ID(Q0|M∗
t ) = ID(Q0|B) ,

holds, since Y1 and Ỹ are independent. By the properties of the condi-

tional distribution we have:

JA(X0) ≥
∫

Y∩{Xt∈A}
ID(Q(t)|Mt)P(dY ) =

= P(Y)

∫

{Xt∈A}
IE((Q(t) − IE(Q(t)|Mt))

2|M∗
t )PY(dY ) ≥

≥ P(Y)

∫

{Xt∈A}
ID(Q0|V)PY(dY ) ,

where PY(dY ) denotes the normalized restriction of P on Y. The value

ID(Q0|V) = ID(Q0|V0)

is almost everywhere positive. Indeed, V0 and Q0 are functions of Y1.

Recall that Y1 may be identified with (q1, v1) ∈ U and the distribution

P(dY1) coincides with some measure m(dq1, dv1) on U equivalent to the

Lebesgue measure. On the other hand the jacobian of the transformation

(q1, v1) → (V0(q1, v1), V0(q1, v1))

is positive everywhere. (In fact the jacobian is equal to the constant

(1 − α)2.) Hence JA(X0) is positive if P(Y ∩ {Xt ∈ A}) > 0. But this

property is, as shown in the course of the previous proof, a consequence

of the condition π(A) > 0. The proof when A is such that |∆(X)| > ∆0

on A follows the same line.

Corollary 3.1.21. For given U > 0 and t > 4τ there exists a

positive nontrivial measure λU on X such that for all f ∈ [0, fmax]

(3.1.22) P t
f (X0, dX) ≥ IIAU

(X0)λ(dX) .
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Proof. The proof again makes use of the construction of the previous

lemma. Let X0 ∈ AU be fixed. Set ∆(X0) = −V (T t(X0)). Suppose that

|∆| > ∆0. We determine (q∗, v∗) as a function of ∆ and t∗ < t − τ ′ by

equation (3.1.11), (3.1.12):

(v∗
1 − V 0)

2 + 2q̂∗1
f

M
=

∆2

(1 − α2)
;

t∗ − te∗ =
M

f

(
v∗
1 − V 0 − ∆

1 − α

)
.

Here, as above

V 0 = V (T
te∗
f (X0)), V ∗ = V (T

t−te∗
f (X)), Q0 =

∫ te∗

0

V (T s
f (X0))ds ,

q̂∗1 = q∗1 + v∗
1t

e
∗ − Q0 .

In words, we choose the particle (q∗, v∗) so, that after a single collision

the velocity of the rod becomes equal to 0 at time t.

Consider the dynamics {T s(X0 ∪ Y1)} for Y1 ∈ Uδ(q
∗, v∗). δ may be

chosen here uniformly in X0 ∈ AU , f ∈ [0, fmax]. Let Vt = V (T t
f (X0∪Y1))

and

Qt =

∫ t

0

V (T s
f (X0 ∪ Y1))ds

denote the velocity and the displacement at time t. Define the mapping

ΨX0,f : Oδ(q
∗
1 , v

∗
1) → IR2 by

ΨXo,f (q1, v1) = (Q(t), V (t)) .

Note that

det (dΨXo,f ) = (1 − α)2

and there exists a constant C1 > 0 such that

||dΨXo,f || < C1 < ∞

uniformly in X0 ∈ AU , f ∈ [0, fmax]. These two properties imply that

there exists a constant C such that

max(||dΨXo,f ||, ||(dΨXo,f )
(−1)||) < C .
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Since the dynamics brings the velocity of the rod to 0, we have:

ΨXo,f (q
∗
1 , v

∗
1) = (Q∗, 0) .

The image of Oδ(q
∗
1 , v

∗
1) is an open neighborhood of (Q∗, 0) which,

due to the properties of the mapping ΨXo,f indicated above, contains a

square

|Q − Q∗| < θ, |V | < θ ,

where θ > 0 may be chosen uniformly in X0 ∈ AU , f ∈ [0, fmax]. Taking

into account that

det (dΨXo,f ) = (1 − α)2 ,

we conclude that for all X0 and f under consideration the measure in-

duced on

J = {V : |V | < θ}

by the Lebesgue measure on Oδ(q
∗
1 , v

∗
1), via the mapping Vt is absolutely

continuous with respect to dV , with some density GX0,f : 0 < a <

GX0,f (V ), where the constant a does not depend on X0 and f . For a

given X0 ∈ AU let

Y(X0) = {Y : Y1 ∈ Uδ(q
∗, v∗), (Ŷ2−Q(T t

f (X0∪Y1))∩N (t−τ ′, t,SL) = ∅} .

Then, by repeating the arguments used in the proof of the lemma , we

see that:

P t(X0, A) ≥
∫

P(dY )IIA(Xt)IIY(X0)(Y ) ≥ constλ̂(A) ,

λ̂(dV, dY S) = dV P(dY S)IIJ(V )IINL
(Y S) ,

where

NL = {Y : Y ∩ N (−τ ′, 0,SL) = ∅} .

Hence the result follows. On the set X0 ∈ AU : |∆| ≤ ∆0 we can repeat

the same arguments, by taking Y1 in a set of two - particles configurations.

The procedure is a bit more complicated but straightforward. We omit

the details.
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In the following lemma we turn to the Lyapunov function W (X).

We use this function for to describe the phenomenon of energy relaxation

in the system. Roughly speaking, we show that large velocities in a

neighborhood of the rod slow down with large probability. Recall the

definition of W . W (B) is defined for any B ⊂ M by

W (B) = sup
{
|v1| : (q, v) ∈ B : τ |v1| >

1

4
|q1|
}

.

W (X) is also defined for X ∈ X by

(3.1.23) W (X) = max{|V (X)|,W (Y S(X))} .

Lemma 3.1.24. Let 4τ < t ≤ 10τ . There exists a positive num-

ber U0 such that the following inequalities hold for U > U0 and some

positive constants κ, c1, c2:

P t
f (X, {W ≥ U}) < exp(−c1U

2), if W (X) < U − f

M
t ,

P t
f (X, {W ≥ U}) < exp(−c2U), if W (X) < U exp(κU) .

The constants c1,c2, U0, κ do not depend on f .

Proof. We begin with a short description of the main idea. Suppose

that the rod keeps a high velocity U for some time t. Then typically it

will collide with particles with horizontal velocity not exceeding log(Ut) in

absolute value, except for a set with measure of the order e− const logU . This

follows from the Gaussian distribution of incoming horizontal velocities.

If no particles with velocities larger than log(Ut) collide with the rod,

then the rod can keep a velocity larger than O(log(U)) only if it collides

with a small number of slow particles. Indeed, each time that it collides

with a slow particle its velocity drops by a factor α. The probability to

collide with a small number of slow particles turns to be of the order

e−c log(U) Passing to the proof of the first assertion set

Û =
(
U − f

M
t
)
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and

L = 100tU .

Consider the event BU defined by the following condition on the incoming

particles: all incoming particles passing through SL until the time t have

horizontal velocities in absolute value not larger than γÛ , where γ ∈ (0, 1)

is a fixed constant. Formally this event is defined as follows. Set

Y = Y in ∩
◦
T−t(M \ M+) .

Y consists of particles crossing S up to time t. Divide Y into two groups:

Y L = Y ∩ N (0, t,SL), ZL = Y \ Y L .

Then

BU = {Y : sup{|v1| : (q1, v1) ∈ Y L} < γÛ} .

Elementary estimates show that for some constant θ1 > 0 and U large

enough

(3.1.25) P(BU) > 1 − exp(−θ1U
2) .

Consider the dynamics T s
f (X ∪ Y ), 0 ≤ s ≤ t for X : W (X) < U − f

M
t

and Y ∈ BU . Evidently the conditions W (X) < U − f
M

t and Y ∈ BL

imply that as long as the rod collides with particles of Y L∪Y S its velocity

is bounded in absolute value by U . Thus the displacement of the rod is

bounded by tU < L/100. That shows that the rod does not collide with

particles of ZL at all:

T s
f (X ∪ Y ) = T s

f (X ∪ Y L) ∪ (
◦
T s(ZL) − Qs(YL)) .

for 0 ≤ s ≤ t. Here

Qs(Y L) =

∫ s

0

V (T r
f (X ∪ Y L))dr .

All the particles included into X ∪ Y L keep the horizontal velocities

not larger in absolute value than U and thus may not violate the condition

W (Xt) < U . Hence the condition W (Xt) ≥ U implies that

(3.1.26) W
( ◦
T t(ZL) ∩S−

∫ t

0

V (T s
f (X ∪ Y L))ds

)
> U .
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The configuration Z∗
t =

◦
T t(ZL)∩S is P - independent of Y L. Since P is

translation invariant, we have:

P({W (Z∗−Qt)≥U}|Y L) = P({W (Z∗
t −Qt) ≥ U}) ≤ P({W (Y S) ≥ U}) .

We have then

P({Y : W (X(T t
f (X ∪ Y )) ≥ U}) ≤ P(Bc

U) + P(BU)P({W (Y S) ≥ U}) .

Taking into account lemma (3.1.6) and (3.1.25) we obtain the required

assertion.

Consider the second assertion of the lemma. Choose some constant

κ > 0. The restrictions on κ will be formulated somewhat later. We set

L = 100
(
tUeκU +

f

M
t2
)

and define Y L, ZL, BU as above. We may and will assume that U is

large enough to imply (3.1.25). Repeating our analysis of T s
f (X ∪ Y ), for

Y ∈ BU we see that the rod cannot travel by the time t more than a

distance L/4 and no collisions with particles of ZL occur. The resulting

configuration

Xs = T s
f (X ∪ Y )

may be again represented as follows:

Xs = X̂s ∪ (Z∗
s − Qs) ,

where
X̂s = X(T s

f (X ∪ Y L)) ,

Z∗
s =

◦
T s(ZL) ∩S ,

and Qs is defined as above. Let

DU = {Y ∈ BU : inf
s∈(2τ,t−τ)

|V (Xs)| < Û} .

Suppose that Y ∈ DU , then W (X̂t) < U . In fact all particle that collide

in the time interval (2τ, t) come from Y L and have velocity less than γÛ
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in absolute value. Some of those particles may be accelerated by the

rod but then become “outgoing” i.e. directed away from the rod and

cannot accelerate it. Once the absolute value of the velocity of the rod

has fallen under Û it can only increase by the acceleration up to the value

Û + tf < U . The particles of Y L that have been accelerated by the rod

to velocities larger than U will leave S during the time interval (t− τ, t].

Hence all the particles involved into X̂t (and the rod) have velocities not

exceeded U . This implies

W (X̂t) < U .

Then the conditional probability

P({W (Xt) ≥ U} ∩ DU |Y L) ≤ P(W (Z∗
t − Qt(Y L)) ≥ U)

for Y L ∈ BU . As above,

P(W (Z∗
t − Qt(Y L)) ≥ U) < P(W (Y S) ≥ U) < exp(−constU 2) .

Thus

P({W (Xt) ≥ U} ∩ DU) < exp(−constU 2) .

It remains to estimate the probability of

ΓU = BU \ DU .

In other words, we estimate the probability of configurations in BU sat-

isfying

inf
s∈(2τ,t−τ)

|V (Xs)| ≥ Û .

The collision rule

V ′ = αV + (1 − α)v1

shows that if V and V ′ have opposite signs, then

|V ′| < (1 − α)|v1| .

Hence in the dynamics

T s
f (X ∩ Y ), Y ∈ BU ,
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the velocity of the rod cannot change sign in the time interval (2τ, t− τ)

without dropping below γÛ < Û . Thus ΓU splits into two nonintersecting

subsets Γ±
U , according to the sign of the rod velocity. The arguments

we use in the sequel are analogous for Γ+ and Γ−, so we may and will

consider Γ+ only.

Another consequence of the collision rules is that for Y ∈ BU , a

particle that collides at some time s ∈ (2τ, t − τ), when the incoming

velocity of the rod

V −(Xs) = lim
ε↗0

V (Xs−ε) > Û ,

cannot recollide. To see this, note that for such a particle |v1| < γÛ , and

the outgoing velocity

v′
1 = V − + α(V − − v1) ≥ V − + α(1 − γ)Û .

The outgoing velocity of the rod

V (Xs) = V − + (1 − α)(v1 − V −) ≤ V − .

The next incoming particles can not accelerate the rod up to V − +α(1−
γ)Û since their horizontal velocities are smaller than γÛ . If U is so large

that

α(1 − γ)Û > (t − τ)
f

M
,

then any recollision can occur only after the moment t when the particle

will leave the strip S.

From now on we take

BU , P r(.) = P(.|BU)

as the main probability space. Vs = V (Xs) is a random process on

BU , P r(.). Define a stopping time

t∗ = min{s ≥ 0 : |Vs| ≤ Û}

and set

Ṽs = Vs∧t∗ .
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We consider then the process Ṽs at the time interval s ∈ [3τ, t − τ ]. The

basic observation is that Ṽ restricted to the mentioned time interval is

a Markov process with jumps and absorbing boundary conditions. In

fact, by the observation above, the condition |Vs| > Û implies that all

particles that collide in the interval [3τ, t−τ ] cannot recollide, while those

that collided in the time interval (0, 2τ ] are out of the game. Assuming

positive velocities Ṽs > Û we conclude that collisions may occur only with

“fresh” particles on the right. That is, for given Ṽr > Û, r ∈ [3τ, t − τ)

the distribution of

Ṽs, s ≥ r

depends on Vr and the configuration of particles

Yr =
◦
T r(Y in) ∩ ({(q, v) ∈ M \ M− : q1 ∈ (0, L/4)} + Qr) .

This observation relies on the fact that at time r no particles with q1>Qr

and |v1| < γÛ could collide with the rod in the past. The distribution of

Yr induced by Pr is Poisson with intensity measure

n(dq, dv)IIAr ,

Ar = ({(q, v) ∈ M \ M− : q1 ∈ (0, L/4), |v1| < γÛ} + Qr) .

Using invariance of the Poisson distribution with respect to translations

and free dynamics we conclude that the process Ṽs, 3τ ≤ s ≤ t − τ

corresponds to a collision process with Poisson distributed particles, no

recollisions, instantaneous collision rate

R(Vs) = ρ�

√
βm

2π

∫

|v1|<γÛ

|Vs − v1|e(−βmv2
1/2)dv1

and absorbing boundary conditions in the region |V | < Û . To estimate

Pr(D+
U |Ṽ3τ ) = Pr( inf

3τ≤s≤t−τ
Ṽs ≥ Û | Ṽ3τ )

we may and will assume that

Ṽ3τ = V ∈
[
Û , UeκU +

f

M
2τ
]
.
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Summarizing and simplifying notations we may reduce the problem the

following one. Let

Vt, t ≥ 0

be a right continuous Markov process with jumps governed by the in-

finitesimal operator A:

AF (V )=ρ�

√
βm

2π

∫

|v1|<γÛ
|V −v|(F (αV +(1−α)v)−F (V ))e(−βmv2/2)dv+

+
f

M

∂F

∂V
.

The collision rate of this process is

R(V ) = ρ�

√
βm

2π

∫

|v1|<γÛ

|V − v|e(−βmv2/2)dv .

Suppose that the starting point

V0 ∈
[
Û , UeκU +

f

M
2τ
]
.

We are interested in estimating

PV0
(inf
s∈I

Vs ≥ Û) ,

where I = [0, t − 4τ ] is a fixed interval of time.

Let 0 = to < t1 < t2 < . . . be the moments of jumps and

Vt1 ,Vt2 , . . .

the corresponding velocities. Introduce

τk = tk − tk−1 .

The conditional distribution of τk, as Vtk−1
is fixed, is given by

FVtk−1
(t) = PVtk−1

(τk ≤ t) ,
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where

FV (t) = 1 − exp
(
−
∫ t

o

R
(
V +

f

M
s
)
ds
)
.

If V ≥ Û then R(V ) ≥ CU for some suitable constant C > 0. Set

ν(U) = CU and introduce

G(t) = 1 − exp(−ν(U)t) .

Evidently G(t) ≤ FV (t) provided

V +
f

M
s > Û, 0 ≤ s ≤ t .

Define new random variables σk, k = 1, . . . by

σk = G(−1) ◦ FVtk−1
(τk) .

That is,

σk =
1

ν(U)

∫ τk

o

R(Vs)ds .

By construction, the distribution of σk is exponential and independent of

Vtk−1
:

PVtk−1
(τk ≤ t) = G(t) .

Thus σk, k = 1, . . . is a sequence of independent identically distributed

exponential variables. On the set where

inf
tk−1≤s≤tk

Vs ≥ Û

we have σk ≥ τk. Let j be the number of jumps inside the time interval

I = [0, t − 4τ ]. For any integer n the inequality j > n is equivalent to

n∑

k=1

τk < |I| = t − 4τ .

Thus, setting as above

D+
U = {inf

s∈I
Vs ≥ Û} ,
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we have: { n∑

k=1

σk < |I|
}
∩ D+

U ⊂ {j > n} ∩ D+
U .

The probability of
{ n∑

k=1

σk < |I|
}

is easy to estimate since it coincides with the probability that a Poisson

variable with parameter ν(U)|I| is larger than n. Take for definiteness

n(U) =
[1
2
ν(U)|I|

]
.

We have, using the standard large deviations estimate for a Poisson vari-

able:

P
({ n∑

k=1

σk < |I|
})

> 1 − exp(−aU) ,

where a > 0 is a suitable constant. On the other hand, on D+
U by each

jump inside the interval I value of V decreases by a constant factor:

Vtk < αVtk− + (1 − α)γÛ ≤ θVtk− ,

where θ = α + (1 − α)γ < 1. After n(U) jumps we have:

V ≤ θn(U)
(
UeκU + 2τ

f

M

)
.

This value is o(1) for U large enough if we assume κ to be sufficiently

small:

κ < −C

2
log(θ)|I| .

Hence, for U large enough

{j > n(U)} ∩ D+
U = ∅

and thus { n∑

k=1

σk < |I|
}
∩ D+

U = ∅ .
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This implies

P (D+
U ) < 1 − P

({ n∑

k=1

σk < |I|
})

≤ exp(−aU) .

The proof is complete.

3.1.5 – Transition to a Markov chain

We now discretize time and consider the Markov chain (Xf , IPf ),

where IPf = P τ
f . The results above imply some important properties

of the chain (Xf , IPf ) that we formulate in the following

Proposition 3.1.27. The chain Pf is defined on the absorbing set

Xf of full π - measure. Moreover:

(i) The chain (Xf , IPf ) is π - irreducible and aperiodic.

(ii) πIPf are equivalent to π and π is a maximal irreducibility measure.

(iii) For all X ∈ Xf π is absolutely continuous with respect to IP5
f (X, .).

(iv) For a π - almost everywhere positive function W , defined on X, and

U > U0 the following conditions hold:

∫
exp(bW 2(X))π(dX) < C < ∞

IPf (X, {W ≥ U}) < exp(−c1U
2), if W (X) < U − f

M
τ ,

IPn
f (X, {W ≥ U}) < exp(−c2U), if W (X) < U exp(κU) ,

for any n : 5 ≤ n ≤ 10. Here the constants Uo, c1, c2, κ, b, C do not

depend on f ∈ [0, fmax].

(v) The set AU = {X : W (X) < U}, U > U0 is a uniformly “small”

set for the family of chains IPf , f ∈ [0, fmax]. That is, there exists a

nontrivial positive measure λU such that

IP5
f (X0, dX) ≥ IIAU

(X0)λU(dX) .
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Our main object, the displacement of the rod, may be represented in

terms of the Markov chain introduced above. Set

Vf (X) =

∫ τ

0

V (T s
f (X))ds .

Then

Qf (nτ) =
n−1∑

i=0

Vf (Xi) ,

where Xi denotes a trajectory of the chain. It easily seen that the func-

tion Vf satisfies the following inequality

(3.1.28) |Vf (X)| ≤ Const(1 + W (X)) ,

where Const does not depend on f ∈ [0, fmax].

Suppose we forget the concrete dynamical system under consideration

and just deal with an abstract family of Markov chains IPf and functions

Vf satisfying the above conditions. Which results may be obtained in

this general situation? We find that this problem (in a bit more general

setting) is of independent interest and devote a separate section to it. The

corresponding considerations appeal to relatively advanced probabilistic

techniques. Now we just formulate the main results.

Theorem 3.1.29. Under the conditions on IPf and Vf formulated

above the following statements hold true:

1. For each f there exists a unique probability measure νf , which is

invariant with respect to the chain IPf :

νf IPf = νf .

The measure νf is equivalent to π.

2. ∫
νf (dX) exp(bW (X)) ≤ Const ,

where b and Const do not depend on f .
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There exist κ > 0,Const > 0 and αmax > 0 such that

IEπ

(
exp

(
α

N−1∑

j=0

W (Xj)
))

< Const exp(κNα)

for 0 < α ≤ αmax, arbitrary N = 1, 2, . . . and f : |f | ≤ fmax.

3. There exists an absorbing subset

Hf ⊆ Xf : π(Xf \ Hf ) = 0

such that the chain (IPf ,Hf ) is Harris recurrent. Moreover there exist

exist positive constants A,B and γ0 independent of f such that for any

X ∈ Hf

(3.1.30) ||IPn
f (X, dY ) − νf (dY )|| ≤ A exp(−γ0n) log(2 + W (X))

and

(3.1.31) ||πIPn
f (dY ) − νf (dY )|| ≤ B exp(−γ0n)

for all n = 1, 2 . . . and f : |f | ≤ fmax.

4. There exist positive constants γ1,D independent of f such that

(3.1.32)

∣∣∣
∫

IPn
f (X0, dX) (Vf (X) − νf (Vf ))

∣∣∣ ≤
≤ D (1 + log W (X0)) exp(−γ1n) ,

for n ≥ m0 = 5.

5. For any initial distribution of X0 the sum

Sf,n =
Qf (τn) − d(f)τn√

n
=

1√
n

n−1∑

j=0

(Vf (Xj) − νf (Vf ))

converges in distribution to the centered Gaussian variable with the

variance

τσ2(f) =

∫
νf (dX)(Vf (X) − νf (Vf ))

2+

+2
∞∑

n=1

∫
νf (dX)(Vf (X)−νf (Vf ))

∫
IPn(X, dY )(Vf (Y ) − νf (Vf )) .
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6. The sum

∞∑

n=1

∫
νf (dX)(Vf (X) − νf (Vf ))

∫
IPn

f (X, dY )(Vf (Y ) − νf (Vf ))

converges absolutely and uniformly in f .

7. There exist positive constants �0, L such that

(3.1.33) IEπ exp(�Sf,n) ≤ L

for any � : |�| < �0, n ≥ 1 and f : |f | ≤ fmax.Each function

Φf,n(w) = IEπ exp(wSf,n)

is analytic inside the strip Γ defined by the inequality |�(w)| < �.

The family of analytic functions

{Φf,n(w) : n ≥ 1, |f | ≤ fmax}

is tight with respect to the topology of uniform convergence on each

compact subset of Γ. A sequence Φfk,nk
: nk → ∞ converges in the

mentioned topology to a limit analytic function Φ∞ if and only if

σ2(fk) converges to some σ2
∞ and

Φ∞(w) = exp
(w2τσ2

∞
2

)
.

3.2 – Drift and diffusion

In this section we introduce the drift and diffusion constant. In view

of Theorem 3.1.29 the existence of the mentioned values is pretty obvious.

The nontrivial part of the section contains the proof of their nondegen-

eracy.

We first proof that the measure νf is invariant with respect to P t
f

and has strong mixing properties.
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Lemma 3.2.1. For any t ≥ 0

νfP
t
f = νf .

Moreover there exists constants χ > 0, C > 0 such that for X ∈ H

||P t
f (X, .) − νf || < C log(2 + W (X)) exp(−χt) .

Proof. By Theorem 3.1.29 νfP
τ
f = νf and by 3.1.30 we have

||P τn
f (X, dY ) − νf (dY )|| = ||IPn

f (X, dY ) − νf (dY )|| ≤
≤ A exp(−γ0n) log(2 + W (X)) ,

provided X ∈ Hf . Note first that νfP
t is equivalent to π. (We shall

denote it by νfP
t ∼ π.) Indeed, νf ∼ π implies that

νfP
t ∼ πP t ∼ π .

Thus

νfP
t(Xf \ Hf ) = 0 .

Hence

νfP
t
f = νfP

nτ
f P t

f = νfP
t
fP

nτ
f → νf

as n → ∞. Taking

m(t) =
[ t
τ

]
,

we have, for any X ∈ H:

||P t
f (X, ·) − νf || = ||(IPf (X, ·) − νf )P

t−τm(t)|| ≤ ||IPf (X, ·) − νf || ≤
≤ C log(2 + W (X)) exp(−γm(t)) ≤
≤ C log(2 + W (X)) exp

(
− γ

τ
t
)
.

Hence the result.

Proposition 3.2.2. There are finite constants d(f) and σ2(f)

such that such that for any initial distribution Λ of the Markov process

{Xt, t ≥ 0} for which

lim
t→∞

||λP t
f − νf || = 0
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the following assertions hold:

(i) (Existence of the drift)

lim
t→∞

1

t

∫ t

0

V (Xs)ds = νf (V ) = d(f)

πPf or νfPf a.e. In particular

lim
t→∞

Q(T t
f (ω))

t
= d(f)

for µ - typical ω.

(ii) (Diffusion) The distribution of the process

ξεt =
√

ε

∫ t
ε

0

(V (Xs) − df )ds

induced by λPf converges as ε → 0 to that of Wiener process Wσ2(f)t.

Proof. The first statement follows from Theorem 3.1.29 and the fact

that |V (X)| < W (X) and the function V is exponentially integrable with

respect to νf . As for assertion (ii), let Mt and Mt be the σ - algebras

generated by the variables {Xs, s ≥ t} and {Xs, s ≤ t} respectively.

Consider the operator

Πt
p,r : Lp(Ω,Mt, νfPf ) → Lr(Ω,M0, νfPf ), p, r ≥ 1

defined by setting

Πt
p,r(ξ) = IE(ξ|M0) − IE(ξ) ,

where the expectation IE refers to the measure νfPf . By Lemma 3.2.1

||Πt
∞,1|| ≤ 2C exp(−χt)

∫
νf (dX) log(2 + W (X)) ,

and obviously

||Πt
p,p|| ≤ 2

for any p > 1. Taking p = 4 and noting that

1

3
+

1

4

(
1 − 1

3

)
=

1

2
,
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we get using the Riesz-Thorin Interpolation theorem (see [20]) that

||Πt
6,2|| ≤ Const exp

(
− χ

3
t
)
.

Since V (Xt) ∈ Lp(Ω,Mt, νfPf ) for any p ≥ 1, we have:

||IE(V (Xt) − d(f))|M0||L2
≤ ||V ||L6

||Πt
6,2|| ≤ Const exp

(
− χ

3
t
)
.

We can apply, for example, Theorem 3.79 of [14] and obtain the result.

The constants d(f) and σ2(f) defined above coincide, of course, with

those mentioned in Theorem 3.1.29. The following proposition concludes

the proof of the (nontrivial) diffusive asymptotic behavior of the rod

displacement.

Proposition 3.2.3. The following assertions hold.

1. σ2(f) > 0 for all f ∈ IR

2. fd(f) > 0 if f 	= 0.

Proof. We denote by

∆Qn =

∫ 5τn+1

5τn

V (X(T s
fω))ds

the displacement between 5τn and 5τ(n + 1), and by

Sm =
m−1∑

k=0

∆Qk

the total displacement up to time 5mτ . Let T denote the σ - alge-

bra generated by the variables X0, X5τ , . . . , X5τk, . . . The displacements

∆Qn, n = 1, 2, . . . are conditionally independent with respect to T. De-

noting by ID(· |T) the conditional variance, we get

ID(Sm|T) =
m−1∑

k=0

ID(∆Qk|T) =
m−1∑

k=0

ID(∆Qk|X5τk, X5τ(k+1))
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By Corollary 3.1.20, we have

IEνf (ID(∆Qk|X5τk, X5τ(k+1))) = a > 0 .

Hence

1

m
ID(Sm) ≥ 1

m
IEνf (ID(Sm) |T) =

=
1

m

m−1∑

k=0

IEνf (ID(∆Qk|X5τk, X5τ(k+1))) = a > 0 .

The first assertion is proved.

As for the next assertion, assume f > 0 and suppose that d(f) ≤ 0

Recall the summation rule 3.1.3:

∫

Ω

µ(dω) exp
(
− βf

∫ t

0

V (T s
f (ω))ds

)
= 1 .

By the Chebyshev inequality

(3.2.4) µ({ω : Q(t, ω) ≤ −ε
√

t}) ≤ exp(−βfε
√

t) .

On the other hand, by the central limit theorem and the first assertion

(3.2.5)

µ({ω : Q(t, ω) − td(f) ≤

≤ −ε
√

t}) → 1√
2πσ(f)

∫ +∞

ε

exp
(
− s2

2σ2(f)

)
ds .

The right-hand side of (3.2.5) is positive, and the right-hand side of

(3.2.4) tends to 0 as t → ∞, so that they are incompatible if f > 0

and d(f) ≤ 0.

Let us summarize the results we have proved concerning the displace-

ment Qf (t, ω) and the initial distribution µ(dω).

I. Existence of the drift. The limit

d(f) ≡ lim
t→∞

Qf (t, ω)

t
= νf (V )
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exists, is finite, and does not depend on ω for µ-a.a. ω ∈ Ω. Moreover

fd(f) > 0 for f 	= 0.

II. Diffusion. The process

ξεt =
√

ε
(

Qf

( t
ε
, ω
)
− d(f)

t

ε

)

converges weakly, as ε → 0 in the space of continuous functions of t to the

Wiener process Wσ2(f)t with nondegenerate diffusion constant σ2(f) > 0.

3.3 – Einstein relation

In this section we, assuming that the assertions of Theorem 3.1.29

hold true, prove our main result:

III. Einstein relation. The drift d(f) and the diffusivity σ2(f)

are continuous functions of f . Moreover, the Einstein relation holds, i.e.,

lim
f→0

d(f)

f
=

β

2
σ2(o) .

As above we consider f : 0 ≤ f ≤ fmax.

Lemma 3.3.1. The family of stationary measures νf : 0 ≤ f ≤ fmax

is continuous with respect to f in the variation norm.

Proof. By inequality 3.1.31 of Theorem 3.1.28

||πIPn
f (dY ) − νf (dY )|| ≤ B exp(−γ0n) ,

where the constants B, γ0 do not depend on f and || || denotes the variation

norm. Thus

||νf − πP n
f ||

converges to zero uniformly in f . It remains to show that the single terms

πP n
f
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are continuous with respect to f . As asserted in Lemma 3.1.4, the exact

expression for the density

�f,n =
∂πP n

f

∂π

is given by the formula

�f,n(X) =
dπP τn

f

dπ
(X) =

∫
P(dY ) exp

(
βf

∫ τn

0

V (T−s
f (X ∪ Y out))ds

)
.

We have to prove that �f,n is continuous in L1(π). Further, �f is nothing

else than the conditional expectation of the density

Rf,n(ω) =
∂µ(T−nτ

f (.))

∂µ
(ω) ,

given by Lemma 3.1.2, with respect to the sigma-algebra generated by

X(ω). Thus it is sufficient to show that Rf,n is continuous with respect

to f in L1(µ). We first show that it is continuous in probability. We

have:

Rf,n(ω) = exp
(
βf

∫ τn

0

V (T−s
f (ω))ds)

)
.

In the previous expression we assume that ω belongs to the full µ-measure

subset Ω
(n)
f ⊂ Ω of those ω ∈ Ω, where the dynamics T t

f is well defined

up to time nτ and −τn and 0 are not collision times. Set by convention

Rf,n(ω) = 0 ,

as ω /∈ Ω
(n)
f .

Suppose ω ∈ Ω
(n)
f∗ . Note that if we take f in some small interval

containing f∗, then the dynamics

T t
f (ω), t ∈ (−τn, 0]

is well defined and the rod will collide with the same particles as for f∗
and the collision times and incoming velocities vary continuously with f .

Hence the function

f

∫ τn

0

V (T−s
f (ω))ds)
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is continuous at f∗ with respect to f . Thus Rf,n(ω) is continuous with

respect to f at the point f∗, provided ω ∈ Ω
(n)
f∗ . Consequently, Rf,n is

continuous with respect to f in µ - probability. At the same time the

family of functions Rf,n is uniformly µ - integrable:

(3.3.2)

∫
(Rf,n(ω))(1+δ)µ(dω) ≤

∫
exp(Knvn(ω))µ(dω) ,

where Kn = τnfβ(1 + δ), and

vn(ω) = sup
s∈[0,τn]

|V (T s
−f (ω))| .

It is easily seen (Section 1) that

µ{ω : vn > a} ≤ c1n exp(−c2a
2) ,

where c1, c2 are independent of f for f in any bounded interval.

Hence the integral in (3.3.2) is uniformly bounded and Rf,n is contin-

uous with respect to f in the space L1(µ). This achieves the proof that

νf is continuous in f .

Lemma 3.3.3. Let Hf (X) be a family of tempered functions, that

is satisfying

|Hf (X)| ≤ Const(1 + W (X))p

and π - stochastically (i.e. in π -probability) continuous with respect to f .

Then

νf (Hf ) =

∫
Hf (X) νf (dX)

is continuous in f .

Proof. Observe that
∫

νf (dX)W pII{Wp≥N} → 0

as N → ∞ uniformly in f . This follows from the inequality

∫
νf (dX) exp(bW (X)) ≤ Const ,
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where b and Const do not depend on f . Thus it suffices to show that for

each N ∫
νf (dX)Hf (X)I{Wp<N}(X)

is continuous in f . Note: H
(N)
f (X) = Hf (X)II{Wp<N}(X) is uniformly

bounded and π - stochastically continuous in f . At the same time νf is

continuous in the variation norm. Suppose that fj → f∗.

|νf∗(H
(N)
f∗ ) − νfj (H

(N)
fj

)| ≤ Const ||νf∗ − νfj || + |νf∗(H
(N)
f∗ − H

(N)
fj

)| .

The first term here converges to zero, as for the second one, we observe

that since π ∼ νf∗ ,

H
(N)
fj

→ H
(N)
f∗

in νf∗ probability as well. As |H(N)
fj

| ≤ Const

|νf∗(H
(N)
f∗ − H

(N)
fj

)| → 0 .

Hence the result.

Since the function

Vf (X) =

∫ τ

0

V (T s
f (X))ds

satisfies the conditions of the previous lemma, we have the following

Corollaryt 3.3.4. The drift

d(f) =
1

τ
νf (Vf )

is continuous in f .

Lemma 3.3.5. The limit variance

σ2(f)=
1

τ

(
ν(Vf−τd(f))2+2

∞∑

n=1

∫
ν(dX)(Vf−τd(f))(X)P n

f (X,Vf−τd(f))
)

is a continuous function of f .
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Proof. We know that the sum above converges uniformly in f . It

remains to show that each term is continuous. In view of the previous

lemma we have just to show that P n
f (X, Vf ) is π stochastically continuous

with respect to f . (It is evidently a tempered function of X). But

P n
f (X,Vf ) = P(dY )

( ∫ (n+1)τ

nτ

V (T s
f (X ∪ Y ))ds

)
.

This representation implies the continuity with respect to f . To be pre-

cise, fix f∗. The family of functions

∫ nτ

0

V (T s
f (X ∪ Y ))ds

is P stochastically continuous at f∗ with respect to f for π a.e. X. On

the other hand this family is P uniformly integrable:

P(dY )
( ∫ (n+1)τ

nτ

V (T s
f (X∪Y ))ds

)2

=P n
f (X,V2

f )≤Const(1+log(W (X))2e−n).

Hence P n
f (X, Vf ) is continuous at f∗ for π a.e. X (may be depending

on f∗). This completes the proof.

Consider the characteristic functions:

Φn,f (w) = µ
(

exp
( w√

n

∫ τn

0

(V (T s
f ) − d(f)

)
ds
)
.

We know that

|Φn,f (w)| ≤ L

as |�(w)| ≤ �0. This family of analytic functions is tight. Combining

results of Theorem 3.1.29 and the continuity of σ2(f) we conclude that

for any sequence fn : fn → 0

Φfn,n(w)

converges as n → ∞ uniformly on compact sets to

exp
(σ2(0)τw2

2

)
.
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Choose a sequence {fn} satisfying:

fn = Fn/
√

n; 0 < a < Fn < b ,

where a, b are (small) fixed constants. As Φfn,n(w) converges uniformly

in w from a compact subset of Γ we may take wn = −Fnβ and get:

∣∣∣µ
(

exp
( wn√

n

∫ τn

0

(V (T s
fn

) − d(fn))ds
))

− exp
(σ2(0)τw2

n

2

)∣∣∣→ 0 .

That is,

∣∣∣µ
(

exp
(
− βfn

∫ τn

0

(V (T s
fn

) − d(fn))ds
))

− exp
(σ2(0)τ(βFn)

2

2

)∣∣∣→ 0 .

At the same time summation rule (3.1.3) says that:

µ
(

exp
(
− βfn

∫ τn

0

V (T s
fn

)ds − d(fn)
))

= exp(βτfnnd(fn)) =

= exp
(
βF 2

nτ
d(fn)

fn

)
.

Hence ∣∣∣ exp
(
βF 2

nτ
d(fn)

fn

)
− exp

(σ2(0)τ(βFn)
2

2

)∣∣∣→ 0 .

This implies:

F 2
n

(d(fn)

fn
− β

σ2(0)

2

)
→ 0 .

Since Fn > a > 0, we may conclude that

d(fn)

fn
→ β

σ2(0)

2
,

provided

(3.3.6) a < fn
√

n < b .

To avoid the restriction (3.3.6) notice that for any sequence {fn} : fn > 0,

fn → 0 one may construct a sequence {f̂n} satisfying (3.3.6) and such

that

card({f̂n} ∩ {fn}) = ∞ .
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This is because the intervals

( a√
n
,

b√
n

)

cover without leaving gaps an interval (0, r) for some r > 0. Thus

lim
f→0

d(f)

f
=

β

2
σ2(0)

as claimed. The Einstein relation is proved.

3.4 – Markov chains satisfying relaxation conditions

In this section we prove Theorem 3.1.29 which is a corollary of more

general assertions we consider. We think that the techniques developed

here is of independent interest.

Let (X , B) be a separable measurable space. That is, the σ- algebra

B is generated by a countable family of subsets. For a Markov chain on

(X , B) we denote by P (x, dy) the corresponding transition probability.

X = (Xj, j = 0, 1, ) . . . denotes a trajectory (path) of the chain. Let F

be a measurable function defined on the space of trajectories:

F : (X∞,B∞) → IR1 .

By IEn
x(F ) we denote the n-shifted expectation:

IEn
x(F ) = IEx(T

n ◦ F ); Tn ◦ F (X) = F (Xn, Xn+1, . . . ) .

In the same sense we understand the notation P n
x . M1(X ) denotes the

space of probability measures on X .

Suppose that the following objects are given:

• A positive valued, B measurable function W : X → IR+;

• A probability measure π satisfying

∫

X
exp(bW 2(x)) π(dx) < ∞

for an appropriate positive constant b;
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• A mapping IR+ → M1(X ) which corresponds to U ∈ IR+ a probabil-

ity measure λU absolutely continuous with respect to π;

• A real valued function θ defined on R+ such that 0 < θ(U) < 1 for

any U ∈ IR+;

• An (at least) exponentially increasing function φ : IR+ → IR+. (The

reader may have in mind φ(t) = exp(kt), k > 0);

• Positive constants: U0, c, a, u0;

• An integer number m0 ≥ 1.

Introduce the class of Markov chains on (X , B) with transition prob-

abilities P satisfying the following relaxation conditions:

(0) P is well defined and π - irreducible on a measurable absorbing set

XP ⊂ X such that π(XP ).

(i) π ∼ πP ;

(ii) π � P n(x, .) for any x ∈ XP and n ≥ m0;

(iii) Set W(X) = max{W (Xj) : 0 ≤ j < m0}. If U ≥ U0 and W (x) ≤
φ(U) then:

Pm0
x ({W > U}) < exp(−aU) ;

(iv)

Px({W > U}) ≤ exp(−bU 2) ,

provided U > W (x) + u0;

(v) Set AU = {x : W (x) ≤ U}. Then the following inequality holds:

Pm0(x, dy) ≥ θ(U)IIAU
(x)λU(dy) .

The class of Markov chains introduced above will be denoted by

℘ = ℘(π,W,m0, . . . ) .

We shall write P ∈ ℘ indicating that the Markov chain with the transition

probability P is contained in the mentioned class. The objects π,W, . . .

defining the class ℘ will be called parameters of ℘.

Let us briefly comment conditions (i)-(v).

If no ambiguity arises, we will identify XP and X as long as we deal

with a given Markov chain. Since only sufficiently large values of W are

essential, we may and will assume that W (x) > W0 > 0, where W0 may
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be chosen large enough. More precisely, the conditions above hold true

if W is replaced by max{W,U0}.
Without any loss of generality we may assume that λU(AU) = 1 for

U(U) large enough. Otherwise we could replace λU by

λUIA
U
/λU(AU)

and θ(U) by θ(U)λU(AU).

Given a Markov chain X, we introduce the coupled chain X with the

state space X = X × X assuming that the projections are independent

Markov chains, coinciding (in the sense of distribution) with X. The

transition probability P = P × P . If P ∈ ℘ then, obviously,

P ∈ ℘ = ℘(π,W,m0, . . . ) ,

where, for instance,

W (x(1), x(2)) = max{W (x(1)),W (x(2))}, π = π × π .

Note that the m0 - iterated chain X̂ = (Xm0j; j = 0, 1, . . . ) with the

transition probability P̂ = Pm0 belongs to ℘ with m0 = 1.

Our main goal is to estimate the rate of convergence of P n;n → ∞
to an equilibrium measure νP uniformly in P ∈ ℘. It will be often needed

to emphasize that certain constants C, α, γ . . . depend on the parameters

of ℘ rather than on a concrete choice of P ∈ ℘. We shall indicate this

writing C(℘), C = C(℘), α(℘), . . .

3.4.1 – Preliminary estimates

Let ξ be a random variable defined on the probability space (Ω,F ,P)

and taking values in IR+. Suppose that the following inequality holds:

(3.4.1) P{ω ∈ Ω : ξ(ω) ≥ t} ≤ f(t) ≤ 1, provided t ≥ a ≥ 0 .

The function f is assumed to be decreasing and vanishing in infinity.

Notice that (3.4.1) is valid only for t ≥ a, concerning t < a no assumptions

are made. Furthermore, let g be a continuous, positive valued, strictly

increasing function on IR+ satisfying

(3.4.2)

∫ ∞

0

f(g(−1)(s)) ds < ∞ ,
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where g(−1) denotes the inverse function. We are interested in estimating

E(g(ξ)) =

∫
g(ξ(ω))P(dω) .

Clearly

E(g(ξ)) =

∫ ∞

0

P{g(ξ) ≥ s}ds =

=

∫ ∞

0

P{ξ ≥ g(−1)(s)}ds =

=

∫ g(a)

0

P{ξ ≥ g(−1)(s)}ds +

∫ ∞

g(a)

P{ξ ≥ g(−1)s}ds ≤

≤ g(a) +

∫ ∞

g(a)

f(g(−1)(s)) ds .

Summarizing,

(3.4.3) E(g(ξ)) ≤ g(a) +

∫ ∞

g(a)

f(g(−1)(s)) ds .

This implies

(3.4.4) E(g(ξ)) ≤ g(a) + C(f, g) ,

where

C(f, g) =

∫ ∞

0

f(g(−1)(s)) ds .

In the particular case of (3.4.3), where

g(s) = f−γ(s) : 0 < γ < 1 ,

(3.4.3) becomes:

E(g(ξ)) ≤ g(a) +

∫ ∞

g(a)

ds

s1/γ
= g(a)

(
1 +

γ

1 − γ
f(a)

)
.

That is,

(3.4.5) E(g(ξ)) ≤ g(a)
(
1 +

γ

1 − γ
f(a)

)
≤ g(a)

(
1 +

γ

1 − γ

)
.
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It is sufficient to consider γ : 1
2
> γ > 0 and thus to replace in (3.4.5)

(
1 +

γ

1 − γ

)

by exp(2γ). Finally:

(3.4.6) E(g(ξ)) ≤ g(a)e2γ =
( e2

f(a)

)γ
;

1

2
> γ > 0 .

Let us apply the above assertions to the relaxation conditions in-

troduced above. Consider first condition (iii). The role of ξ is played

by W.

a = max{U0, φ
(−1)(W (x))} = χ(W (x)) ,

where we set for brevity χ(t) = max{U0, φ
(−1)(t)}. Evidently f(s) =

exp(−as). We have:

(3.4.7)

Em0
x (g(W)) ≤ g(χ(W (x))) + C(g) .

C(g) =

∫ ∞

0

exp(−a(g(−1)(s))) ds .

We may choose g. Take first

g(s) = f−γ(s); 0 < γ <
1

2
.

That is,

g(s) = exp(γas) .

(3.4.6) gives:

IEm0
x (exp(γaW)) ≤ exp(γaχ(W (x)))e2γ ≤(3.4.8)

≤ (W (x))
γa
k exp(γ(2 + aU0)) .(3.4.9)

In the sequel we will make use of the following estimate which easily

follows from the previous one:

IEm0
x (exp(αW)) ≤ (exp(rαW (x)))eακ ,
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where κ(℘) > 0 and r(℘) < 1 are some suitable constants. α is assumed

here to be sufficiently small, namely:

α <
a

2
.

Iterating we obtain:

IEm0n
x (exp(αW)) ≤ exp(rnαW (x)) exp

(κα(1 − rn)

1 − r

)
≤(3.4.10)

≤ exp(rnαW (x)) exp
( κα

1 − r

)
.(3.4.11)

By the same manner we may estimate the moments of W. For this

purpose set g(s) = sp, p ≥ 1. We get immediately:

IEm0
x (Wp) ≤ (χ(W (x))p +

∫ ∞

0

e−a
√

[p]sds .

This obviously implies:

(3.4.12) IEm0
x (Wp) ≤ ψp(W (x)) ,

where ψp(t) = log(cp + t)p. The constant cp is chosen so that the function

ψp is concave and has a unique stationary point. Iterating we have:

(3.4.13) IEm0n
x (Wp) ≤ ψ(n)

p (W (x)), n ≥ 1

where ψ(n)
p denotes the n-th iteration of ψp. We may and will assume

that these iterations converge superexponentially to the unique stable

stationary point. Combining (3.4.13) and (3.4.9) we may obtain that for

n ≥ 2

(3.4.14) IEm0n
x (exp(αW)) ≤ (ψ

(n−1)
1 (W (x)))

α
k exp

(
α
(2

a
+ U0

))

Finally consider condition (iv). The same method gives:

IEx(g(W)) ≤ g(W (x) + u0) + Const(g) .
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In particular,

IEx(exp(αW2)) ≤ Constα exp(αW (x)2) ,

and analogously:

IEx(exp(αW)) ≤ Constα exp(αW (x)) .

Simplifying notations we summarize:

Lemma 3.4.15. There exist constants αmax(℘)>0, κ(℘)>0, δ(℘)>0

and r(℘) : 1 > r > 0 such that for any α : αmax > α > 0 and for any

Markov chain in ℘:

(1):

IEnm0
x (Wp)) ≤ ψ(n)

p (W (x)), n ≥ 1 ,

where ψp(s) = log(cp + t)p is a concave function having a unique

stable stationary point. cp depends on the parameters of ℘ only;

(2):

IEm0n
x (exp(αW)) ≤ (ψ

(n−1)
1 (W (x)) )δα exp(κα), n ≥ 2 ;

(3):

IEm0n
x (exp(αW)) ≤ exp(rnαW (x)) exp(κα), n ≥ 1 ;

(4):
IEx(exp(αW2)) ≤ eκα exp(αW (x)2) ,

IEx(exp(αW)) ≤ eκα exp(αW (x)) .

Lemma 3.4.16. There exist κ5 = κ5(℘) > 0 and α5(℘) > 0 such

that

IEx

(
exp

(
α

N−1∑

j=0

W (Xj)
))

< exp(κ5Nα) exp
( αm0

1 − r
W (x)

)

for 0 < α ≤ α5, arbitrary N = 1, 2, . . . and uniformly in P ∈ ℘. Constant

0 < r < 1 is here the same as in Lemma 3.4.15
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Proof. Set

Jk(N) = {j : 0 ≤ j < N, j = k modm0}, k = 0, 1 . . . ,m0 − 1 ;

card(Jk(N)) = Nk ;

ΣN
k (X) =

∑

j∈Jk(N)

W (Xj) .

Since

IEx

(
exp

(
α

N∑

j=0

W (Xj)
))

≤
m0−1∏

k=0

(IEx(exp(αm0Σ
N
k (X))))

1
m0 ,

it is sufficient to estimate each term

Ek(x,N) = IEx(exp(αm0Σ
n
k(X)))

separately. Let αmax be the same as in Lemma 3.4.15. Choose then α

satisfying
m0α

1 − r
< αmax .

Fix k and set for simplicity of notations

Yn = Xk+(n−1)m0
; n = 1, . . . , Nk

We may apply iterated conditioning and note that by Lemma 3.4.15

IEYNk−1
(exp(αm0W (YNk

))) ≤ eαm0κ exp(rαm0W (YNk−1)) .

Thus

Ek(x,N) ≤ eαm0κIEx

(
exp

(
αm0

(Nk−2∑

j=1

W (Yj)
)
+

+ αm0(1 + r)W (YNk−1)
))

.

As αm0(1 + r) < αmax, we may apply Lemma 3.4.15 to

IEYNk−2
(exp(αm0(1 + r)W (YNk−1)))
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and obtain the following estimate from above:

exp(αm0κ(1 + r)) exp(m0(r + r2)αW (YNk−2)) .

Hence

Ek(x,N) ≤ exp(αm0κ(2 + r))×

× IEx

[
exp

(
m0α

(Nk−3∑

j=1

W (Yj)
)

+ αm0(1 + r + r2)W (YNk−2)
)]

.

We may continue iteratively and obtain:

Ek(x,N) ≤ exp(αck(N))IEx

(
exp

( αm0

1 − r
(W (Xk))

))
,

where

ck(N) = m0κ
Nk−1∑

j=0

rj(Nk − j) ≤ ConstN .

In view of Lemma 3.4.15 the result follows.

3.4.2 – Stationary measures νP

Lemma 3.4.17.

1. For any chain P ∈ ℘ there exists an absorbing set HP ⊂ X such that

the chain restricted to HP is Harris recurrent. There exists a unique

invariant probability measure νP . νP is equivalent to the measure π

and νP (HP ) = 1.

2. There exists a positive constant b1(℘) such that for sufficiently small

α < αmax(℘) and any Markov chain in ℘ holds:

IEνP ( exp(αW)) ≤ exp(b1α) .

3.

lim
n→∞

||P n(x, dy) − νP (dy)|| = 0

for any x ∈ HP .
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Proof. Obviously the chain P is π-irreducible. Consider the poten-

tial kernel

G(x, ·) =
∞∑

j=0

P j(x, ·) .

Inequality (3.4.11) implies that

lim inf
n→∞

P n
x (AU) ≥ 1 − C(℘)e−αU > 0

for U sufficiently large. Thus

(3.4.18) G(x,AU) = ∞

for any x. As AU is a small set, (3.4.18) implies (see [19]) that the chain is

recurrent. Hence one can find an absorbing set HP and a P -invariant σ-

finite measure νP , supported on HP , such that π is absolutely continuous

with respect to νP , and νP (B) > 0 implies that for x ∈ HP

Px

( ∞∑

j=0

IIB(Xj) = ∞
)

= 1 .

Since πP ∼ π, the measure π is a maximal irreducibility measure. The

above equality shows that the chain P restricted to the absorbing set HP

is νP irreducible. Hence νP ∼ π. According to standard terminology P

is a Harris recurrent chain. Relaxation condition (ii) implies that P

is aperiodic. We next show that νP is a finite measure. Since π is a

maximal irreducibility measure, λU(dx) has to be absolutely continuous

with respect to π:

λU(dx) = �(x)π(dx) .

We can find a positive γ and a set

D ⊂ {x : �(x) > γ}

such that π(D) > 0 and νP (D) < ∞. For any choice of x and n > n0(x)

large enough we have:

P nm0(x,D) ≥
∫

AU

P (n−1)m0(x, dy)Pm0(y,D) ≥

≥ γπ(D)P (n−1)m0(x,D) > γ > 0 .
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Thus

νP (D)=

∫

X
νP (dx)P nm0(x,D)≥

∫

X
νP (dx) lim inf

n
P nm0(x,D)≥γνP (X ) .

Since νp(D) < ∞, we conclude that

νP (X ) < ∞ .

From now on we assume that νP is normalized to a probability measure.

As the chain is Harris recurrent and aperiodic, we have by Orey’s theorem

that for x ∈ HP

lim
n→∞

||P (x, ·) − νP (·)|| = 0 .

Uniqueness of the invariant measure νP is a standard fact. The inequality

IEνP (exp(αW)) ≤ exp(b1α)

follows from (3.4.11) since

IEnm0
x ( exp(αW)) ≤ exp(b1α) ,

provided n > n0(x). More precisely, for any L > 0

νP (exp(α(W ∧ L))) = lim
n→∞

IEnm0
x ( exp(α(W ∧ L)) ) ≤ exp(b1α) .

As L is arbitrary, the result follows.

3.4.3 – Recurrence time τAU

For a measurable set B ⊂ X we define

τB(X) = min{j ≥ 1 : Xjm0
∈ B} .

Set τ
(1)
B (X) = τB(X) and iteratively:

τ
(i)
B (X) = min{j > τ

(i−1)
B (X) : Xjm0

∈ B} .

Set

KU(x) = min{n : W (x) ≤ φ(n)(U)} ,
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where φ(n) = φ(n−1) ◦φ, n = 1, . . . . For U fixed KU(x) is extremely slowly

increasing with respect to W (x), an appropriate upper bound is given,

for instance, by Const(U) log log(W (x)).

Lemma 3.4.19. There exist positive constants C3 and b3 such that

for U large enough and for all chains in ℘

Px(τAU
> n + k) < C3 exp(−b3kU) ,

provided KU(x) < n.

Proof. It is sufficient to prove the assertion for m0 = 1, the general

case follows immediately by considering the chain Pm0 .

Recall that for all U large enough φ(U) > W (x) implies that

(3.4.20) P (x,Ac
U) < exp(−aU) .

Let n and k be given. Suppose that x satisfies the condition

W (x) < φ(n)(U) .

Consider P n(x,Ac
U).

P n(x,Ac
U) =

∫
P n−1(x, dy)P (y,Ac

U) =

=

∫

Ac
φ(U)

P n−1(x, dy)P (y,Ac
U) +

∫

Aφ(U)

P n−1(x, dy)P (y,Ac
U) .

According to (3.4.20) the second integral is not larger than

exp(−aU)

is. As for the first one, it may be estimated from above by

P n−1(x,Ac
φ(U)) .

Thus:

P n(x, U) ≤ P n−1(x,Ac
φ(U)) + exp(−aU) .



120 M. SOLOVEITCHIK [120]

We may continue iteratively and obtain that

P n(x,Ac
U) ≤

n−2∑

j=0

exp(−aφ(j)(U)) + P (x,Ac
φ(n−1)(U)

) .

As W (x) < φ(n)(U), we may apply (3.4.20) to the last term and get

P n(x, U) ≤
n−1∑

j=0

exp(−aφ(j)(U)) .

From here on we may and will assume that the values of U under consid-

eration are large enough for to imply

φ(j)(U) > (j + 1)U, j = 0, 1, . . . .

Hence we may conclude that

P n(x,Ac
U) ≤ δ(n)(U) =

e−aU

1 − e−a(n−1)U
.

Let us define

G
(n)
k (x)=

∫

Ac
U

P n(x,dy0)

∫

Ac
U

P (y0,dy1)· · ·
∫

Ac
U

P (yk−2,dyk−1)

∫

Ac
U

P (yk−1,dyk).

Clearly

Px(τAU
> n + k) ≤ G

(n)
k .

Splitting the integration in yk−1 over the regions Aφ(U) and Ac
φ(U) we

obtain that

∫

Ac
U

P (yk−2, dyk−1)P (yk−1, A
c
U) ≤ exp(−aU) + P (yk−2, A

c
φ(U)) .

Thus

G
(n)
k (x) ≤ exp(−aU)G

(n)
k−1(x)+

+

∫

Ac
U

P n(x,dy0)

∫

Ac
U

P (y0,dy1) . . .

∫

Ac
U

P (yk−3,dyk−2)P (yk−2,A
c
φ(U)).
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Iterating we get the following recursive inequality

(3.4.21) G
(n)
k (x) ≤

k∑

s=1

exp(−aφ(s−1)(U))G
(n)
k−s(x) + P n(x,Aφ(k)(U)) ,

where

G(n)
o (x) = P n(x,Ac

U) .

Since φ(k)(U) ≥ (k + 1)U , we have, setting ε(U) = exp(−aU):

G
(n)
k (x) ≤

k∑

s=1

εsG
(n)
k−s(x) + δ(n)(φ(k)(U)) .

Let us emphasize that the above inequality is similar to that arising in

the renewal theory. Suppose that we have

G(n)
r (x) < Cθr, θ < 1 .

for r = 0, 1, . . . k − 1 and consider G
(n)
K (x) :

G
(n)
k (x) ≤ C

k∑

s=1

εsθk−s + δ(n)(φ(k)(U)) = Cθk∆k ,

where

∆k =
k∑

s=1

( ε

θ

)s
+

δ(n)(φ(k)(U))

Cθk
.

If ∆k < 1 then we may conclude that

G
(n)
k (x) ≤ Cθk .

Thus the condition sufficient to apply the inductive argument for all k is

∞∑

s=1

( ε

θ

)s
+

δ(n)(φ(k)(U))

Cθk
< 1, k = 0, 1, . . .

Suppose, we consider U large enough to imply

ε(U) = exp(−aU) <
1

4
,
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and take

θ(U) = 4ε .

For k = 0 we have

G(n)
o (x) = P n(x,AU) < δ(n)(U) < C =

1

1 − e−aUo
.

It remains to prove that for U large enough

δ(n)(φ(k)(U))

Cθk
<

1

2

for all k, n. Taking into account the precise expressions for δ(n)(U) and

θ(U) we have

δ(n)(φ(k)(U))

θk
<

exp(−a(φ(k)(U) − kU))

4k(1 − e−aU0)
≤ Const exp(−aU) .

The next is an obvious consequence of the preceding lemma.

Lemma 3.4.22. There exists a positive constant κ4(℘,U) such that

for all chains in ℘ the following assertion holds:

IEx(exp(ατAU
)) < eκ4α exp(αKU(x)) ,

provided α < αmax(℘).

Corollary 3.4.23.

IEx(exp(ατ
(n)
AU

)) < qαn exp(αKU(x)) ,

where q = eκ4 sup{exp(αKU(x)) : x ∈ AU}.
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3.4.4 – The split chain. Uniform convergence to equilibrium

Here and in the sequel we fix U > U0 large enough. As U is fixed, we

will often, when no ambiguity arises, omit the symbol U in the notations.

Suppose that a chain (Xn;n ≥ 0) with a transition probability P is

contained in the class ℘. Until otherwise stated we assume that m0 = 1

(or, equivalently, consider the iterated chain X̂ = (Xm0j; j ≥ 0)). We

correspond to P the split chain defined on the phase space Z = X×{0, 1}.
The points of Z will be denoted as z = (x, ε), with ε ∈ {0, 1}. The

construction is as follows (see [19]). Set

s(x) = θ(U)IIAU
(x) ,

Q(x,B) = (1 − s(x))−1(P (x,B) − s(x)λU(B)) ,

where x ∈ X , B ∈ B. Clearly Q is a transition probability on X . Let a

point z0 ∈ Z; z0 = (x0, ε0) be given. Define a rule of transition from z0

to a new state z. First, we choose x = x(z) according to the following

distribution:

Prob(x ∈ B) = ε0λ(B) + (1 − ε0)Q(x0, B) = def = Gε0(x0, B) .

As x = x(z) is chosen, we obtain ε = ε(z) by a random experiment,

setting

Prob ({ε = 1}) = s(x) .

Note, that ε = 0, whenever x 	∈ AU . The rule described above defines the

transition probability P(z0, dz), which is easy to write down.

Let Z = {Z0, Z1, . . . Zn, . . . } denote the Markov chain, corresponding

to the transition probability P(z0, dz). Here Zn = (Xn, εn). For the

conditional expectation and probability in the path space we will use the

symbols Pz and Ez respectively. The pleasing property of the split chain

defined above is that, roughly speaking, the natural projection p : Z → X
transforms Z to the original chain X. To be precise,

Prob (p(Zj) ∈ B | p(Zj−1) = z0) = Prob ({ε(Zj−1) = 1})G1(p(z0), B)+

+ Prob ({ε(Zj−1) = 0})G0(p(z0), B) = s(p(z0))λ(B)+

+ (1 − s(p(z0)))Q(p(z0), B) = P (p(z0), B) .
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In other words, with respect to the increasing family of sigma-algebras

{Fn} : Fn = Σ{X0, . . . , Xn ; ε0, . . . , εn−1}

Xj = p(Zj) is a Markov chain with transition probability P . The next

important property of the split chain Z is the existence of a proper atom.

Namely, consider

∆ = X × {1} .

Clearly

P(z1, dz) = P(z2, dz) = def = P(∆, dz)

for any z1, z2 ∈ ∆. The stopping times

τ∆(Z) = τ
(1)
∆ (Z), τ

(2)
∆ (Z), . . . ,

called renewal moments for the chain Z, will be denoted by t(j); j = 1, . . . .

Instead of t(1) we shall write t. Let m be a probability measure on X .

We correspond to m the measure m̂ ∈ M1(Z) as follows.

m̂(dx, dε) = m(dx)(s(x)δ{1}(dε) + (1 − s(x))δ{0}(dε) , .

If F = F (X0, . . . , Xn, . . . ) is a measurable function on the path space of

the chain X, then

Em̂(F (p(.))) = IEm(F ) .

Note that

En
z (F (p(.))) = Gε(z)(p(z), dx)IEn−1

x (F ) ;n = 1, . . .

Lemma 3.4.24. There exist positive constants C6(℘) and γ6(℘) such

that the following inequality holds for all α ∈ [0, α6), P ∈ ℘ and z =

(x, ε) ∈ Z:

Ez(e
αt) ≤ Cα

6 exp(αKU(x)) .
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Proof. Set, as above, X = p(Z) and consider the sequence

ηj = ε(τ
(j)
AU

(X)); j = 1, . . . .

Note that ηj are independent identically distributed variables taking val-

ues in {0, 1} and Pz{ηj = 1} = θ. Moreover, ηn is independent of

τ
(1)
AU

(X), . . . , τ
(n)
AU

(X); η1, . . . ηn−1 .

Let

J = min{j : ηj = 1} .

We have

t = τ
(J)
AU

(X) .

Thus

Ez(expαt) =
∞∑

j=1

Ez(II{J=j} exp(ατ
(j)
AU

(X))) .

This implies

Ez(expαt) ≤
∞∑

j=1

√
Pz{J = j}Ez(exp(2ατ

(j)
AU

(X))) =

=
∞∑

j=1

√
θ(1 − θ)j−1

√
Ez(exp(2ατ

(j)
AU

(X))) .

Consider

Ez(exp(2ατ
(j)
AU

(X))) ,

where z = (x, ε). Suppose first that x ∈ AU . In this case s(x) = θ and,

since the averaging with respect to ε reproduces the original transition

probability, we have

[θE(x,1) + (1 − θ)E(x,1)](exp(2ατ
(j)
AU

)) = IEx(exp(2ατ
(j)
AU

)) .

Combining this with the assertion of Corollary 3.4.23 we obtain that:

[θIE(x,1) + (1 − θ)IE(x,0)](exp(2ατ
(j)
AU

)) < q2αj ,
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provided α < αmax/2 and q is a sufficiently large constant. Hence, ap-

plying the Jensen inequality, we conclude that for α < α1 and q1 large

enough

E(x,ε)(exp(2ατ
(j)
AU

)) < q2αj
1 .

Let now x ∈ Ac
U and ε = 0. In this case

Prob (X1 ∈ B) = P (x,B) .

That is,

E(x,ε)(exp(2ατ
(j)
AU

)) = IEx(exp(2ατ
(j)
AU

)) < q2αj exp(2αKU(x)) .

The estimate for z = (x, 1), x ∈ Ac
U is the same as for x ∈ AU , since P(x,1)

does not depend on X. Finally,

Ez(exp(2ατ
(j)
AU

)) < q2αj exp(2αKU(x)) .

Thus

Ez(exp(αt)) ≤ exp(αKU(x))
∞∑

j=1

√
θ(1 − θ)j−1qαj .

For α ≤ α6(℘) small enough the sum in the r.h.s. of the preceding in-

equality converges. The result follows then from the Jensen inequality.

For each P ∈ ℘ we consider the product chain Z = (Z(1), Z(2)) con-

sisting of two independent copies of the split chain Z.

Z = Z × Z

is the phase space of the product chain and

P = P × P

is the transition probability. Expectations are denoted by E. We also use

the obvious notations z = (x, ε) with

x = (x(1),x(2)), ε = (ε(1), ε(2)) ,

W (x) = max{W (x(1)),W (x(2))} ,

KU(x) = max{KU(x(1)),KU(x(2))}
∆ = ∆ × ∆ .
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Consider the returning time to ∆

t = min{j ≥ 1 : Z
(1)
j ∈ ∆ and Z

(2)
j ∈ ∆} .

Lemma 3.4.25. There exist positive constants C8(℘), α8(℘) such that

for any α ∈ [0, α8) and all P ∈ ℘

E(z)(exp(αt)) ≤ Cα
8 exp(αKU(x)) .

Proof. The way of reasoning is similar to that of the preceding

lemma. Consider

sj = τ
(j)
AU×AU

(X) = τ
(j)
AU×AU

(X(1), X(2)) ,

where as above X(i) = pZ(i). The transition probability P = P ×P of X

is contained in the class ℘ depending on ℘. In particular the Lyapunov

function

W (X(1), X(2)) = max{W (X(1)),W (X(2))} .

Thus by (3.4.23):

IE(x(1),x(2))(exp(αsj)) ≤ Const(℘)αj exp(αKU(x)) .

Set

ηj = ε(Z(1)
sj

) · ε(Z(2)
sj

); j = 1, . . . .

Note that ηj are independent identically distributed variables taking val-

ues in {0, 1} and

P(z(1),z(2)){ηj = 1} = θ2 .

We proceed in very much the same way as we did in the proof of (3.4.24).

Set

J(η) = min{j : ηj = 1} .

Next, note that

t = sJ .
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Thus

Ez(exp γt) ≤
∞∑

j=1

√
Pz{J = j}Ez(exp 2γsj) .

Repeating then arguments of Lemma 3.4.24 word to word we obtain the

result.

Observation. Let f be an arbitrary measurable function on Z
satisfying

||f ||∞ = sup{|f(z)|; z ∈ Z} ≤ 1 .

Let z = (z(1), z(2)) ∈ Z. We want to estimate

|En
z(1)(f) − En

z(1)(f)| .

For this purpose consider the product chain Z. Set

F (z) = f(z(1)) − f(z(2)) .

We have:

En
z(1)(f) − En

z(2)(f) = E
n

ẑ (F ) .

Furthermore:

E
n

z (F ) = Ez(II{t≥n}F (Zn)) + Ez(II{t<n}F (Zn)) .

The first term here is estimated from above by

Pz({t ≥ n})||F ||∞ ≤ 2Pz({t ≥ n})

The second one is equal to zero:

Ez(II{n>t}F (Zn)) = Ez(II{n>t}E
n−t

Zt
(F ))) =

= Ez(II{n>t}E
n−t

∆×∆(F ))) = 0 ,

since ∆ is a proper atom and E
k

∆×∆(F ) = 0 for any k ≥ 1. Hence

|En
z(1)(f) − En

z(1)(f)| ≤ 2P
n

z ({n ≤ t}) .
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Taking supremum over f we obtain the coupling inequality:

(3.4.26) ||Pn(z(1), dz)−Pn(z(2), dz)|| ≤ 2Pz({n ≤ t}); z=(z(1), z(2)) .

Here || || denotes the variation norm. Making use of the estimate given

by the preceding lemma we obtain that for a fixed α < α8

||Pn(z(1), dz) − Pn(z(2), dz)|| ≤
≤ 2 Cα

8 exp(−αn)) exp(αKU(x)) .

This inequality implies that for two given initial distributions ν1 , ν2 on Z
holds true:

||ν1P
n − ν2P

n|| ≤ 2 Cα
8 exp(−αn)(ν1(H) + ν2(H)) ,

where H(z) = exp(αKU(x)).

We may choose νi = δ̂{xi} where xi ∈ X and obtain that

||P n(x1, dy) − P n(x2, dy)|| ≤
≤ Const exp(−αn)(log(2 + W (x(1))) + log(2 + W (x(2)))) .

Thus

(3.4.27)
||P n(x, ·) − νP (·)|| ≤
≤Const exp(−αn)(log(2+W (x))+

∫
νP (dy) log(2 + W (y))) ,

where νP , as above, denotes the stationary distribution of the chain with

the transition probability P . Although νP depends on P , the integral

∫
νP (dy) log(2 + W (y)) ≤ Const(℘)

for some suitable Const(℘) independent of P ∈ ℘. We have obtained the

estimate (3.4.27) under the assumption m0 = 1, and thus for the chain

Xjm0
. This restriction is of no importance. Indeed, setting L(n) = [n/m0]

we have in the general case:

||P n(x,·) − νP (·)|| ≤ ||Pm0L(n)(x,·) − νP (·)|| ≤ Const exp(−αL(n)) . . .
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Thus (3.4.27) holds for arbitrary m0 (with α = α/m0 and, may be, an-

other suitable Const). Simplifying notations we formulate the main result

of the present section towards which our efforts have been directed:

Proposition 3.4.28. There exist positive constants A(℘) and γ0(℘)

such that the following inequality holds for any n = 1, 2, . . . and for any

choice of P ∈ ℘:

(3.4.29) ||P n(x,dy) − νP (dy)|| ≤ A exp(−γ0n) log(2 + W (x)) .

This implies, in particular, that

||πP n − νP || ≤ A exp(−γ0n)

∫
π(dx) log(2 + W (x)) ,

and

(3.4.30) ||πP n − νP || ≤ B(℘) exp(−γ0n)

uniformly in P ∈ ℘.

3.4.5 – The Central Limit Theorem for tempered functions

A real valued function V : X → R is said to be tempered if for some

p ≥ 0

||V||(p)∗ = def = sup
{ |V(x)|

(1 + W (x))p
: x ∈ X

}
< ∞ .

Let B
(p)
R denote the set

{V : ||V||(p)∗ ≤ R} .

Fix p and V such that ||V||(p)∗ < ∞. Let P ∈ ℘ and νP be the correspond-

ing stationary measure. Clearly,

||(V − ν(V))||(p)∗ ≤ ||V||(p)∗ (1 + ν((1 + W )p)) ≤ ||V||(p)∗ Const(℘, p) .

Note that the r.h.s. here does not depend on P ∈ ℘. Let V be a tempered

function, satisfying νP (V) = 0. Consider

∫
P n(x, dy)V(y) ,
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where n ≥ m0. By linearity we may assume that ||V||(p)∗ = 1. Write

∫
P n(x, dy)V(y)

in the following form:

(3.4.31)

∫

{|V|≤exp(δn)}
P n(x, dy)V(y) +

∫

{|V|>exp(δn)}
P n(x, dy)V(y) ,

where
γ0

4
> δ > 0 ,

γ0 is the same as in Proposition 3.4.28. By Proposition 3.4.28 the first

term equals ∫
II{|V|≤exp(δn)}(y)V(y)νP (dy) + κn(x) ,

where

|κn(x)| ≤ A exp(−(γ0 − δ)n) log(2 + W (x)) .

At the same time

∫
II{|V|≤exp(δn)}(y)V(y)νP (dy)=

∫
II{|V|>exp(δn)}(y)V(y)νP (dy) ≤

≤
∫

II{(1+W )p>exp(δn)}(y)(1 + W (y))pνP (dy)≤

≤
√
νP ((1+W )2p)νP{y : (1+W )p>exp(δn)}.

Recall that ∫
νP (dx) exp(b∗W (x)) < C∗ .

Thus ∫
νP (dx) (1 + W (x))2p < Const(p) .

Hence νP ((1 + W )2p)νP{y : (1 + W (y))
p
> exp(δn)} may be estimated

from above by

Const(℘, p)exp(−2δn) .

Thus the first term in (3.4.31) is estimated from above by

Const(℘, p)exp(−δn) .
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Estimating the second term in (3.4.31), note that

∣∣∣
∫

{|V|>exp(δn)}
P n(x, dy)V(y)

∣∣∣≤
∫

{(1+W )p>exp(δn)}
P n(x, dy)(1 + W (y))

p≤

≤
√

P n(x, {(1 + W )p > exp(δn)})
∫

P n(x, dy)(1 + W (y))
2p

.

By Lemma 3.4.15
∫

P n(x, dy)(1 + W (y))
2p≤Cψ

(L(n))
2p (W (x))≤Const(p)(1+log+ W (x))2p ,

for n ≥ m0. This implies

P n(x, {(1 + W )p > exp(δn)} ≤ exp(−2δn)Const(p)(1 + log+ W (x))2p .

Summarizing,

∣∣∣
∫

{|V|>exp(δn)}
P n(x, dy)V(y)

∣∣∣ ≤ Const(p)(1 + log+ W (x))2p exp(−δn) .

Setting γ1 = min(δ, γ0 − δ), we may finally write

∣∣∣
∫

P n(x, dy)V(y)
∣∣∣ ≤ Const||V||(p)∗ (1 + log+ W (x))2p exp(−γ1n); n ≥ m0

If n < m0, then, in view of Lemma 3.4.15 (4):

∣∣∣
∫

P n(x, dy)V(y)
∣∣∣ ≤ Const(℘)(1 + W (x))p .

We have proved the following

Lemma 3.4.32. There exist positive constants γ1(℘),D(℘, p) such

that

(3.4.33)
∣∣∣
∫
P n(x, dy)(V−ν(V))(y)

∣∣∣ ≤ D||V||(p)∗ (1+log+ W (x))2p exp(−γ1n),

provided n ≥ m0. If n < m0, then

∣∣∣
∫

P n(x, dy) (V − ν(V))(y)
∣∣∣ ≤ D||V||(p)∗ (1 + W (x))p
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We denote the r.h.s. of (3.4.33) by

D(x, p)||V||(p)∗ exp(−γ1n) .

Lemma 3.4.33 states nothing else but the exponential rate of mixing for

the process V(Xn). The important point is that the estimate is uniform

in P ∈ ℘ and V ∈ B
(p)
R .

Lemma 3.4.34.

(i) For a tempered function V and any initial distribution of X0

Sn =
1√
n

n−1∑

j=0

(V − ν(V))(Xj)

converges weakly to the centered Gaussian variable with the variance

σ2(P,V) =

∫
νP (dx)((V − ν(V))(x))2+

+ 2
∞∑

n=1

∫
νP (dx)(V − ν(V))(x)

∫
P n(x, dy)(V − ν(V))(y).

(ii) The sum

∞∑

n=1

∫
νP (dx)(V − ν(V))(x)

∫
P n(x, dy)(V − ν(V))(y)

converges absolutely and uniformly in

P ∈ ℘, V ∈ B
(p)
R .

(iii) The sum
∞∑

n=0

∫
P n(x, dy)(V − ν(V))(y)

converges absolutely and uniformly in P ∈ ℘, V ∈ B
(p)
R . The function

U(x) =
∞∑

n=0

∫
P n(x, dy)(V − ν(V))(y)



134 M. SOLOVEITCHIK [134]

is correctly defined and belongs to the class of tempered functions as

well:

|U(x)| ≤ C11 ||V||(p)∗ (1 + W (x))p .

(iv)
IEπ(((V − ν(V))(Xj))((V − ν(V))(Xk))) ≤

≤ (||V||(p)∗ )2Const(℘, p) exp(−γ1|k − j|)
for a suitable constant Const(℘, p).

Proof. (i) The assertion is standard, provided the mixing is suffi-

ciently fast. (See [16]) or any suitable textbook).

(ii) Consider ∫
P n(x, dy)(V − ν(V))(y) .

If n < m0, then
∣∣∣
∫

P n(x, dy)(V − ν(V))(y)
∣∣∣ ≤ Const||V||(p)∗ W p(x) .

According to 3.4.33, as n ≥ m0,
∣∣∣
∫

P n(x, dy)(V − ν(V))(y)
∣∣∣ ≤ ||V||(p)∗ D(x) exp(−γ1n) .

Thus each term of the sum labeled by n ≥ m0 is bounded in absolute

value by

Const(||V||(p)∗ )2 exp(−γ1n)

∫
νP (dx)W (x)D(x, p) .

As n < m0 the estimate becomes

Const(||V||(p)∗ )2
∫

νP (dx)(1 + W (x))p+1 .

Note that the inequality
∫

νP (dx) exp(b∗W (x)) ≤ C∗(℘) .

implies that each term of the sum in (ii) is estimated by

Const(℘, p)(||V||(p)∗ )2 exp(−γ1n) .

Hence the result. (iii), (iv) In view of the preceding the assertions are

straightforward.
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The function U(x) satisfies

(V − ν(V))(x) = U(x) −
∫

P (x, dy)U(y) .

Thus

n−1∑

j=0

(V − ν(V))(Xj) =
n−1∑

j=0

(U(Xj) − IEXj
(U)) =

= U(X0) − U(Xn) +
n∑

j=1

(U(Xj) − IEXj−1
(U)) .

Set

ηj(X) = η(Xj, Xj−1) = U(Xj) − IEXj−1
(U) j = 1, 2, . . .

and

ηj(X) = 0, for j ≤ 0 .

Rewrite the previous expression in the following form

(3.4.35)
n−1∑

j=0

(V − ν(V))(Xj) = U(X0) − U(Xn) +
n∑

j=1

ηj(X) .

The advantage this representation has is that

IEXj−1
(ηj(X)) = 0 .

Proposition 3.4.36. Consider the tempered functions V ∈ B
(1)
R .

There exist positive constants �o(℘,R), L(℘,R) such that

(3.4.37) IEπ exp(�Sn) ≤ L

for any n ≥ 0, P ∈ ℘, � : |�| ≤ �0 and V ∈ B
(1)
R . Here

Sn =
1√
n

n−1∑

j=0

(V − ν(V))(Xj) .
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Proof.

IEπ exp(�Sn) = Eπ exp
(
�
(
U(X0) − U(Xn) +

n∑

j=1

ηj(X)
))

≤

≤ 1

3

(
IEπ exp

( 3�√
n

n∑

j=1

ηj(X)
)

+ IEπ exp
( 3�√

n
U(X0)

)
+

+ IEπ exp
(
− 3�√

n
U(Xn)

))
.

The last two terms are easy to estimate, since according to (3.1.17)

|U(x)| ≤ Const(℘,R)(1 + W (x)) .

We have for instance,

IEπ exp
( 3�√

n
U(X0)

)
≤ Const(℘)π

(
exp

(c12(℘)|�|√
n

W
))

= L1(℘) < ∞,

as |�| is small enough.

IEπ exp
(
− 3�√

n
U(Xn)

)
≤ Const(℘)IEn

π

(
exp(

c12(℘)|�|√
n

W
)
≤

≤ IEn
π

(
exp

(c12(℘)�√
n

W
))

≤ L2(℘) < ∞ .

The main point is to estimate

IEπ

(
exp

( 3�√
n

n∑

j=1

ηj(X)
))

.

Set

J (k)(n) = {j : 1 ≤ j ≤ n, j = k mod 4m0}; k = 0, . . . 4m0 − 1 ,

and

Σk
n =

1√
n

∑

j∈J(k)(n)

ηj(X) .
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Obviously

IEπ

(
exp

( α√
n

n∑

j=1

ηj(X)
))

is estimated from above by

4m0−1∏

k=0

[IEπ(exp(4m0αΣk
n))]

1
4m0 .

It is sufficient to estimate

IEπ(exp(γΣk
n))

for each k. First consider the value e(x, α) defined by

e(X0, α) = IEX0
(exp(αη(X4m0

, X4m0−1)))

(|α| is supposed to be small). Since

IEX0
(η(X4m0

, X4m0−1)) = 0 ,

and in view of the elementary inequality et ≤ (1 + t + t2

2
e|t|) we may

conclude that

e(X0, α) ≤

≤ IEX0

[
1 +

α2η(X4m0
, X4m0−1)

2

2
exp(α| η(X4m0

, X4m0−1) |)
]
.

Making use of Lemma 3.4.15 and of the inequality |U(x)|≤RConst(℘)W(x)

we may choose positive constants κ∗(℘) and r∗(℘) < 1 such that the right

hand side of the above inequality is estimated from above by

(3.4.38) exp(α2κ∗) exp(r∗α
2W (X0))

for any α : |α| < αmax(℘). To see this note that

|η(X4m0
, X4m0−1)| ≤ Const(1 + W (X4m0

) + W (X4m0−1))
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and taking in account (3.4.15) it is easy to obtain that

IEX0

[
1 +

α2η(X4m0
, X4m0−1)

2

2
exp(α| η(X4m0

, X4m0−1) |)
]
≤

≤ 1 + α2C(1 +
√

W (X0)) ≤

≤ exp(α2C(1 +
√

W (X0))) ≤ exp(α2C(r−1
∗ + r∗W (X0))) ,

where r∗ ∈ (0, 1). The last estimate implies the required one. We have

(3.4.39) e(X0, α) ≤ exp(α2κ∗) exp(r∗α
2W (X0)) .

Denote by r the value max(r∗, r) < 1 and by κ - max(κ, κ∗), where r

and κ are introduced in Lemma 3.4.15. Consider then

Ψ(X0, γ, δ) = IEX0

[
exp

( γ√
n
η(X4m0

, X4m0−1) +
δγ2

n
W (X4m0

)
)]

.

Set sn = n
n−1

. Without loss of generality we may assume that sn ≤ 2.

Using then Hölder inequality we observe that:

Ψ(X0, γ, δ) ≤

≤
(
IEX0

(
exp

( snγ√
n
η(X4m0

, X4m0−1)
))) 1

sn
(IEX0

exp(γ2δW (X4m0
)))

1
n .

In view of (3.4.39) and Lemma 3.4.15 we have:

Ψ(X0, γ, δ) ≤ exp
(
γ2 rsn + δr4

n
W (X0)

)
exp

(
γ2κδ + κsn

n

)
.

This implies:

(3.4.40) Ψ(X0, γ, δ) ≤ exp
(γ2δ̂

n
W (X0)

)
exp

(κγ2(2 + δ)

n

)
,

where

δ̂ = h(δ) = 2r + δr4 .

Return to the proof of the proposition.

IEπ(exp(γΣk
n)) = IEπ

(
exp

( γ√
n
ηk(X)

)
IEXk

[
exp

( γ√
n

Lk(n)∑

j=1

ηk+4m0j

)])
.
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Consider

En,k(Xk) = IEXk

(
exp

( 1√
n

Lk(n)∑

j=1

ηk+4m0j

))

Applying the iterative conditioning and (3.4.39) we obtain:

En,k(Xk) ≤ EXk

(
exp

( γ√
n

Lk(n)−2∑

j=1

ηk+4m0j

)
Ψ(Xk+4m0(Lk(n)−2), γ, δ0)

)
×

× exp(κγ2/n) ,

where δ0 = r. Applying (3.4.40) and conditional expectation iteratively

we obtain:

En,k(Xk) ≤ exp
(γ2h(Lk(n)−2)(δ0)

n
W (Xk)

)
exp

(
γ2κ
(
2+

1

n

Lk(n)−2∑

j=1

h(j)(δ0)
))

.

Elementary properties of the function h(t) = 2r + tr4 imply:

En,k(Xk) ≤ exp(δ(℘)γ2W (Xk)) exp(γ2κ(℘)) ,

where
δ(℘)) = sup{h(n)(r), n = 0, 1, . . . } < ∞

κ(℘) = κ
(
1 + sup

n

{ 1

n

n∑

j=1

h(j)(r)
})

< ∞ .

Hence

IEπ(exp(γΣk
n)) = IEπ(En,k(Xk)) < Const(℘)

for any k ≤ 4m0 − 1, n ≥ 0. Hence the result.

For V ∈ B
(1)
R and P ∈ ℘ set

ΦP,V,n(w) = IEπ(exp(wSn)) ,

where w ∈ IC is a complex number satisfying |�(w)| < �0(℘). Proposi-

tion 3.4.36 implies

Corollary 3.4.41. Each function ΦP,V,n is analytic inside the strip

Γ = {|�(w)| < �(℘,R)} and satisfies

|ΦP,V,n(w)| < L(℘,R) .
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The family of analytic functions

A = {ΦP,V,n; P ∈ ℘,V ∈ B
(1)
R , n ≥ 0}

is tight in Γ. This means that each sequence Fj ∈ A; j = 1, 2, . . . con-

tains a subsequence Fjk which converges with all derivatives uniformly on

compact subsets of Γ to some analytic function F .

Proof. Straightforward in view of Proposition 3.1.21 and of the fact

that any bounded family of analytic functions is tight.

Introduce

ΦP,V,∞(w) = lim
n→∞

ΦP,V,n(w) = exp
(w2σ2(P,V)

2

)
.

Proposition 3.4.42. For any ε > 0 and α0 > 0 there exists an

integer number

N0(ε, ℘,R) > 0

such that for any n ≥ N0 and any P ∈ ℘, V ∈ B
(1)
R :

(3.4.43) |ΦP,V,n(ıα) − ΦP,V,∞(ıα)| ≤ ε ,

provided |α| < α0.

Proof. We have to study

IEπ(ıαSn) .

Recall that

Sn =
1√
n

(
U(X0) − U(Xn) +

n∑

j=1

ηj

)
,

where

ηj(X) = U(Xj) − IEXj−1
(U(Xj)) .

According to the preceding results

IEπ exp
(
ıα

1√
n

(U(X0) − U(Xn))
)
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converges to 1 uniformly in P ∈ ℘,V ∈ B
(1)
R and α. Consider the martin-

gale

Mn =
1√
n

( n∑

j=1

ηj

)
.

The quadratic characteristic of this martingale is given by

Dn =
1

n

( n∑

j=1

f(Xj−1)
)
,

where

f(x) = IEx(U2) − (IEx(U))2 .

Note that 0 ≤ f(x) ≤ Const(℘)W (x)2 and σ2(P,V) = ν(f). We shall

make use of the following general statement on the rate of convergence

in the the central limit theorem for martingales:

Statement [Lipzer, Shiraev, Mori]. Let

Mn =
n∑

j=1

ζj : IE(ζj|Fj−1) = 0

be an L2 summable martingale with quadratic characteristic Dn and σ2

be a positive number. Set dn = IE|Dn − σ2 |. There exists another L2

summable martingale M̂n defined on the same probability space and sat-

isfying:

IE|M̂n − Mn|2 ≤ dn ;

(3.4.44)
∣∣∣IE(exp(ıαM̂n)) − exp

(
− α2σ2

2

) ∣∣∣ ≤ c|α|3IE
( n∑

j=1

|ζj|3
)

+
α2

2
dn ,

where

c =
1

2
√

2
+

1

6
.

The proof is contained in [16] (Ch. 7 sec. 5), see also [17]. We shall

make use of the following obvious corollary of the above statement:
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Under the same assumptions

(3.4.45)
∣∣∣IE(exp(ıαMn))−exp

(
−α2σ2

2

)∣∣∣≤c|α|3IE
n∑

j=1

|ζj|3+
α2

2
dn+|α|

√
dn.

In our case ζj =
ηj(X)√

n
and

dn = IEπ

(∣∣∣ 1
n

n−1∑

j=0

(f(Xj) − νP (f))
∣∣∣
)
,

where,

f(x) =

∫
P (x, dy)U2(y) −

( ∫
P (x, dy)U(y)

)2

.

Take

σ2 = σ2(P,V) = νP (f) .

Consider

Hn =
1

n

n−1∑

j=0

(f(Xj) − νP (f)) .

Set F (x) = f(x) − νP (f). Clearly,

IEπ(H
2
n) =

1

n2

n−1∑

j=0

IEπ(F
2(Xj)) +

2

n2

∑

j<k≤n−1

IEπ(F (Xj)F (Xk)) .

The function F satisfies:

νP (F ) = 0 ;

F (x) ≤ Const(℘,R)(1 + W (x))2

In other words, it is a centered tempered function. Our previous results

on tempered functions guarantee that:

sup
n

IEπ(F
2(Xn)) ≤ C1(℘,R) ;

IEπ(F (Xj)F (Xk)) ≤ C2(℘,R) exp(−γ1|k − j|) .

Thus

IEπ(H
2
n) ≤ C3(℘,R)/n .
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This implies

dn = IEπ(|Hn|) ≤ Const(℘,R)√
n

.

It remains to estimate the value

IEπ

( 1

n
3
2

n∑

j=1

|ηj(X)|3
)
.

Since

|ηj(X)| ≤ Const(℘)(W (Xj) + W (Xj−1))

and in view of previous estimates

IEπ

( 1

n
3
2

n∑

j=1

|ηj(X)|3
)
≤ Const(℘)/

√
n .

The assertion of Proposition 3.4.42 is now straightforward.

Lemma 3.4.46. If the sequence ΦPn,Vn,n converges (in the sense of

analytic functions in Γ) to Φ then:

Φ = exp
(w2σ2

2

)
.

Moreover, the sequence σ2(Pn,Vn) converges, and

σ2 = lim
n→∞

σ2(Pn,Vn) .

Proof. Since Φ is an analytic function, it is uniquely determined by

the restriction to any segment |α| < α0 of the imaginary axis. At the

same time Proposition 3.4.42 implies that

|ΦPn,Vn,n(ıα) − ΦPn,Vn,∞(ıα)| < Const(℘, α0)εn ,

where εn → 0, as n → ∞ (in fact εn ≈ 1√
[4]n

). Thus

ΦPn,Vn,∞(ıα) = exp
(
− α2σ2(Pn,Vn)

2

)
→ Φ(α)
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uniformly on each segment |α| < α0. It is possible only if the sequence

σ2(Pn,Vn) converges to some σ2. Hence

Φ(ıα) = exp
(
− α2σ2

2

)
.

Since Φ is analytic in Γ, we obtain that

Φ(w) = exp
(σ2w2

2

)
.
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