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The inverse eighth degree anharmonic oscillator

H. EXTON

RiassuNTO: Si applica la trasformata di Laplace e la relativa inversa per un si-
stema risolvibile di equazioni differenziali lineari e il risultato & supportato dall’uso di
MAPLE V (computer algebra), per ottenere una quadrupla ipergeometrica rappresen-
tazione convergente di una soluzione dell’equazione di Schroedinger di un oscillatore
inverso monodimensionale di ottavo grado.

ABSTRACT: The Laplace transform and its inverse are applied to a soluble system of
linear differential equations and the result combined with the use of the computer algebra
package MAPLE V to obtain a quadruple convergent hypergeometric representation
of a solution of a Schroedinger equation of an inverse eighth degree one dimensional
oscillator.

1 — Introduction

The purpose of this study is to deduce a quadruple hypergeometric
series representation of an explicit solution of the Schroedinger equation
governing a one dimensional anharmonic with the inverse eighth degree
interaction. The method employed is an extension of that used in the
treatment of the doubly-confluent Heun equation by Exton [4].

The equation concerned is

U'+[-A%/4+ B/227 ' + C/dz™? — D/2x7° — E/dz™*+

1.1
(1) —F/227° —G/22 "+ H/22™" — K*/42 %|U = 0,
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where the quantities A to K depend upon the physical characteristics of
the system. Any equation of higher inverse degree does not lend itself
to solution by the technique employed here for algebraic reasons. The
equation has two singularities, both irregular. That at the origin is of the
sixth type and the other at infinity is of the second type.

A soluble system of two linear differential equations is considered
such that the inverse Laplace transform is of the second order which has
a normal form the same as (1.1). This gives rise to a non-linear system
of algebraic equations which is shown to be consistent by the computer
algebra package MAPLE V. The working out is completed by evaluating
the appropriate Laplace transform.

All the indices of summation are taken to run over all of the non-
negative integers and any values of parameters leading to results which do
not make sense are tacitly excluded as are any inconsequential constant
multipliers. The interchanging of the operations of integration and sum-
mation is justified in each case by the convergence of the series concerned
and the Pochhammer symbol (a,n) =T'(a 4+ n)/T'(a) is used below.

2 — A soluble differential system

Consider the differential system

(2.1) (kt +a)u' +bu=v
and
(2.2) (t/k+ )" + fo" +gv" + hv' +pv =0

which are equivalent to the fifth-order equation

[t* + (ck + a/k)t + aclu’ + [(fk + b/k + 4)t + 4ck + af + beJu"+
(2.3) + (gkt +ag + bf + 3fk)u" + (hkt + ah + bg + 2gk)u’+
+ (kpt + ap + bh + hk)u' + bpu = 0.

The inverse Laplace transform is written as

(2.4) u(t) = /exp(—axt)y(aﬁ)da:,
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where the contour of integration consists of a simple path closed on the
Riemann surface of the integrand such that this integrand remains un-
changed after the completion of one circuit.

It is found that the function y(z) is determined by the differential
equation

2oy +[(ck+a/k)x’ +(6 — fk—b/k)x*+gka® — hka® +pka]y+
(2.5) +lacx®+(ck—af —bc+5a/k)z* +(ag+bf +4—4b/k— fk)x*+
+(gk—ah — bg)z* + (ap + bh — hk)x — bp + pkly = 0.

the normal form of (2.5) is the same as (1.1), in which

A=alk—ck, B=4kc—4ka,

C = (2ck g +-0> + 6kb+ f2k* — 2k2ag — 6k f+ 8k — 2k2bf) /K2,
(2.6) D =2gk— fk*q — ck*h + ah + bg,

E = ¢k — 10hk + 2ck>p + 6bh + 2fk*h + 6ap ,

F =pb— fk*p—gk*h, G=h*k*+2gk’p, H=hk’p and K =pk .

Introduce a scaling parameter ¢, such that

(2.7) r=qX,

when A, B, D, E, F, G, H and K respectively by

(28) Aq, Bg, D/q, E/¢*, F/¢’, G/q¢*, H/q’ and K/q’.

The equations (2.6) and (2.8) can be shown to be consistent in the vari-
ables a, b, ¢, f, g, h, k, p and ¢ by means of MAPLE V and

U = X3 Tk201CR) oxpl(ck + a/k)gX /2 — gk /(2 X)+

(2.9)
+ hk /(44> X?) — pk/(64° X?)]y(X) .

The equations (2.1) and (2.2) must now be examined.
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3 — The solution of the equations (2.1) and (2.2)
In (2.2), put

(3.1) — T ck

and obtain

(3.2) Tv" + fkv" + gkv" + hkv' + pkv = 0.
Put

(3.3) o(T) = / exp(sT)n(s)ds

where the contour of integration is a simple loop beginning and ending at
—oo and encircling the origin once in the positive direction. The function
n(s) is given by

(34) n'/n=(Co—C1)/Ch,

where

(3.5) Co = fks® + gks® + hks + pk

and

(3.6) C, =s".

Hence,

(3.7) n=s*texp(—gks™ ' — hk/2s7% — pk/357%).
Thus,

(3.8) o(T) = /exp(sT — gks™' — hk /2572 — pk/3s~%)sF4ds |

which is proportional to

(3 9) Z (_gk)’m(_hk)n(pk)MT3ffk+m+2n+31\'{
' mIn!M!(4 — fk,m+ 2n+ 3M)
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From (2.1),
(3.10) ' =—b/k(t+a/k)" +v/k(t+a/k)"",
so that, apart from a constant multiple,
311 alt) = (¢ +a/k) —b/k/(t+a/k)b/k— To(t)dt
Recalling (3.1) and (3.9) we see that

u(T) = (T = ck +a/k)™""* Y _[(—gk)™ (~hk)" (~pk)" x

x (ck —a/k)™™(1 —b/k,N)x

(3.12) X (4= fh,m +2n + 3M + N)[Sbrmeananien] /

[mIn!MIN(4 — fk,m + 2n + 3M)x
X (5 —fk,m+ 2n+ 3M + N)].

From (2.4), by inversion

(3.13) y(z) = / exp(at)u(t)de

and from (2.7) and (3.1),

(3.14) y(X) = exp(—ckqX) / exp(¢XT)u(T)dT .

Let the contour of integration be a Pochhammer double loop slung around
the origin and the point 1/(ck — a/k) in the T-plane and we see, after
some reduction, that y(X) is proportional to

exp(—ckqX) Y [(—gk)™ (—hk)" (—pk)" (¢X)" x

(3.15) x (ck—a/k)™2™3N (1 bk, N)x (4— fk,m+2n+3M +N)x

X (5= fh,m+2n+3M+N+P)] /[(4= fk,m+2n+3M+N)x
x (6 —b/k — fk,m +2n+3M + N + P)mln! MINIPI] |

This expression can be expanded as a convergent quadruple series of
confluent hypergeometric functions. After the application of Kummer’s
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first theorem ([5], 6) and re-arranging, the following quadruple series of
classical hypergeometric functions of unit argument is obtained:

y(X) = exp(—aqX/k) Y _[(—gk)™ (—hk)" (—pk)" x

X (ck — a/k)"™ 2 Hm R (—g X)P (1 b/k, P)] /

[mIn!MIPY(6 — b/k — fk,m + 2n+ 3M + P)|x

XoFy [A—fk-+m+2n+3M,1—b/k; 6—b/k—fk-+m~+2n+3M+P1]

(3.16)

Hence, by means of Gauss’s summation theorem ([1], 104), apart from a
constant multiple

y(X) = exp(—agX/k) Y [(—gk)" (=hk)" (~pk)™x
(3.17) x (ck — a/k)m M (X )P(] — b/k,P)]/
[(m!n!MIP\(2 — b/k, P)(5 — fk,m + 2n + 3M + P)].

A convergent series representation of (1.1) can be deduced from (2.9)
and (3.17) and the family of equations (2.6) and (2.7).

If the parameters are not too large, the series (3.17) can be imple-
mented numerically by direct summation if | X| is not greater than 200,
by means of MAPLE V.

The singularity of (1.1) at infinity is not considered in this paper and
it is recalled that convergent series representation of solutions of linear
differential equations relative to irregular singularities are rather unusual.
For other similar examples, the reader is referred to [2] and [3].
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