An extension of the Hausdorff-Young theorem to the Besicovitch-Orlicz space of almost periodic functions

M. MORSLI - D. DRIF

Abstract

Riassunto: In un recente lavoro [1] è stato esteso il teorema di Hausdorff-Young ad una classe di funzioni di Besicovitch quasi periodiche B^{p} a.p. Qui si considera tale estensione nel contesto degli spazi di Orlicz, ovvero allo spazio Besicovitch-Orlicz delle funzioni quasi periodiche.

Abstract: In a recent papers (cf. [1]), the Hausdorff-Young Theorem was extended to the class of Besicovitch almost periodic functions B^{p} a.p. We consider here such an extension in the context of Orlicz spaces, namely the Besicovitch-Orlicz space of almost periodic functions B^{ϕ} a.p.

1 - Introduction

The classical Hausdorff-Young theorem for L^{p} spaces has been subject to various generalizations. In [9], this result was extended to the context of Orlicz spaces and recently considered in the class of Besicovitch spaces of almost periodic functions $B^{p} a . p$. (cf. [1]). More precisely:

Let \mathcal{P} denotes the linear set of generalized trigonometric polynomials.

[^0]Define for $p \in[1,+\infty[$ the norm

$$
\|f\|_{B^{p}}=\lim _{T \rightarrow \infty}\left(\frac{1}{2 T} \int_{-T}^{+T}|f(t)|^{p} d t\right)^{\frac{1}{p}}, f \in \mathcal{P}
$$

The space $B^{p} a . p$. is the completion of \mathcal{P} with respect to the norm $\|.\|_{B p}$.
The Hausdorff-Young Theorem in the class B^{p} a.p. states that if $f \in$ $B^{p} a . p$. and $\hat{f}=\left(c_{k}\right)_{k \in \boldsymbol{Z}}$ is the corresponding sequence of it's Fourier coefficients, then
i) $\|\hat{f}\|_{l^{q}} \leq\|f\|_{B^{p}}$ if $\left.\left.p \in\right] 1,2\right]$.
ii) $\|f\|_{B^{p}} \leq\|\hat{f}\|_{l^{q}}$ if $p \in[2,+\infty[$.

Here we extend these properties to the context of Orlicz space.

2 - Preliminaries

In the sequel, the notation ϕ will stand for an Orlicz function, i.e. a function $\phi: \mathbb{R} \rightarrow \mathbb{R}^{+}$which satisfies the conditions: ϕ is even, convex, $\phi(0)=0, \phi(u)>0$ if $u \neq 0$ and $\lim _{u \rightarrow 0} \frac{\phi(u)}{u}=0, \lim _{u \rightarrow \infty} \frac{\phi(u)}{u}=\infty$.

This function is called of Δ_{2} type (δ_{2} type respectively) when there exist constants $K>2$ and $u_{0} \geq 0$ for which $\phi(2 u) \leq K \phi(u), \forall u \geq u_{0}$ (respectively for $0 \leq u \leq u_{0}$).

An Orlicz function admits a derivative ϕ^{\prime} unless on a denumerable set of points. It satisfies $\phi^{\prime}(0)=0, \phi^{\prime}(|u|)>0$ if $u \neq 0$ and $\lim _{|u| \rightarrow \infty} \phi^{\prime}(|u|)=$ $+\infty$ so that ϕ is strictly increasing to infinity.

The derivative ϕ^{\prime} satisfies the inequality (cf. [4], [7], [8])

$$
\begin{equation*}
u \phi^{\prime}(u) \leq \phi(2 u) \leq 2 u \phi^{\prime}(2 u) \quad \forall u \geq 0 \tag{2.1}
\end{equation*}
$$

From [8], we know that if ϕ is an Orlicz function then, for every $\varepsilon>0$ there exists an Orlicz function ϕ_{ε} with a continuous derivative and satisfying

$$
\phi_{\varepsilon}(x) \leq \phi(x) \leq(1+\varepsilon) \phi_{\varepsilon}(x) \quad \forall x \in \mathbb{R} .
$$

In view of this we may assume ϕ^{\prime} to be continuous in all what follows.
The function $\psi(y)=\sup \{x|y|-\phi(x), x \geq 0\}$ is called conjugate to ϕ. It is an Orlicz function when ϕ is.

The pair (ϕ, ψ) satisfies the Young's inequality:

$$
x y \leq \phi(x)+\psi(y) \quad x \in \mathbb{R}, y \in \mathbb{R}
$$

Let us note that equality holds in the Young's inequality iff $x=\psi^{\prime}(y)$ or $y=\phi^{\prime}(x)$.

In the following we shall consider normalized pairs of conjugate functions, i.e. such that $\phi(1)+\psi(1)=1$. There is no restriction since for every pair we may define an equivalent normalized one in the sense that they define the same respective spaces and equivalent norms (cf. [9]).

In the class of Orlicz functions a partial order may be defined by setting,

$$
\phi_{1} \leq \phi_{2}, \text { when } \begin{cases}\phi_{1}(a x) \leq b \phi_{2}(x) & \text { for }|x| \geq x_{0}>0 \tag{2.2}\\ \text { and } & \\ \phi_{2}(c x) \leq d \phi_{1}(x) & \text { for }|x| \leq x_{1}\end{cases}
$$

where a, b, c, d, x_{0} and x_{1} are constants depending on ϕ_{1} and ϕ_{2}.
This order is natural in the L^{p} spaces for power functions with $a=$ $b=c=d=x_{0}=x_{1}=1$.

Let ϕ be an Orlicz function. The Orlicz sequence space l^{ϕ} is the set of sequences of scalars,

$$
\begin{aligned}
l^{\phi} & =\left\{a=\left(a_{1}, a_{2}, \ldots\right), \sum_{n \geq 1} \phi\left(\frac{\left|a_{n}\right|}{k}\right)<+\infty, \text { for some } k>0\right\}= \\
& =\left\{a=\left(a_{1}, a_{2}, \ldots\right), \lim _{\lambda \rightarrow 0} \sum_{n \geq 1} \phi\left(\lambda\left|a_{n}\right|\right)=0\right\}
\end{aligned}
$$

We will use the notation $\rho_{l \phi}(a)=\sum_{n \geq 1} \phi\left(\left|a_{n}\right|\right)$.
The space l^{ϕ} equiped with the Luxemburg norm,

$$
\|x\|_{l^{\phi}}=\inf \left\{k>0, \rho_{l^{\phi}}\left(\frac{x}{k}\right) \leq \phi(1)\right\}
$$

is a Banach space (cf. [7], [8]).
A second norm (called Orlicz norm) is defined by means of the formula:

$$
\||a|\|_{l^{\phi}}=\sup \left\{\left|\sum_{n \geq 1} a_{n} b_{n}\right| ; \rho_{l \psi}(b) \leq 1\right\}
$$

(cf. [7], [8]), where $a=\left(a_{1}, a_{2}, \ldots\right)$.

These norms are equivalent and satisfy,

$$
\begin{equation*}
\phi(1) \cdot\|a\|_{l^{\phi}} \leq\|\mid a\|_{l^{\phi}} \leq \frac{1}{\psi(1)}\|a\|_{l^{\phi}} \quad a \in l^{\phi} \tag{2.3}
\end{equation*}
$$

3 - The Besicovitch-Orlicz space of almost periodic functions

Let $M(\mathbb{R})$ be the set of all real Lebesgue mesurable functions. The functional,

$$
\left.\rho_{B^{\phi}}: M(\mathbb{R}) \rightarrow[0, \infty], \quad \rho_{B^{\phi}}(f)=\varlimsup_{T \rightarrow+\infty} \frac{1}{2 T} \int_{-T}^{+T} \phi|f(t)|\right) d t
$$

is a pseudomodular (cf. [3], [5], [6]).
The associated modular space,

$$
\begin{aligned}
B^{\phi}(\mathbb{R}) & =\left\{f \in M(\mathbb{R}), \lim _{\alpha \rightarrow 0} \rho_{B^{\phi}}(\alpha f)=0\right\}= \\
& =\left\{f \in M(\mathbb{R}), \rho_{B^{\phi}}(\lambda f)<+\infty, \text { for some } \lambda>0\right\}
\end{aligned}
$$

is called the Besicovitch-Orlicz space.
This space is endowed with the pseudonorm (cf. [3], [5], [6])

$$
\|f\|_{B^{\phi}}=\inf \left\{k>0, \rho_{B^{\phi}}\left(\frac{f}{k}\right) \leq \phi(1)\right\}
$$

called the Luxemburg norm.
As usual, one may define an Orlicz pseudonorm in the $B^{\phi} a . p$. space by setting,

$$
\|\mid f\|_{B^{\phi}}=\sup \left\{M(|f g|), g \in B^{\psi} a . p \cdot, \rho_{B^{\psi}}(g) \leq 1\right\}
$$

Let now \mathcal{P} be the set of generalized trigonometric polynomials, i.e.;

$$
\mathcal{P}=\left\{P(t)=\sum_{j=1}^{n} a_{j} e^{i \lambda_{j} t}, \quad \lambda_{j} \in \mathbb{R}, a_{j} \in \mathbb{C}, n \in \mathbb{N} .\right\}
$$

The Besicovitch-Orlicz space of almost periodic functions, denoted by B^{ϕ} a.p. is the closure of the linear set \mathcal{P} in $B^{\phi}(\mathbb{R})$, with respect to the pseudonorm $\|.\|_{B^{\phi}}$:
B^{ϕ} a.p. $=\left\{f \in B^{\phi}(\mathbb{R}), \exists P_{n} \in \mathcal{P}, n=1,2, \ldots ;\right.$ s.t. $\left.\lim _{n \rightarrow \infty}\left\|f-P_{n}\right\|_{B^{\phi}}=0\right\}$

Some structural and topological properties of this space are considered in [3], [5], [6].

From [3], [5], we know that $\phi(|f|) \in B^{1} a . p$ if $f \in B^{\phi} a . p$, then by a classical result (cf. [2]) the limit exists in the expression of $\rho_{B^{\phi}}(f)$, i.e.:

$$
\rho_{B^{\phi}}(f)=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{+T} \phi(|f(t)| d t), \quad f \in B^{\phi} a . p .
$$

This fact will be very useful in our computations.
Let us denote by C° a.p.the classical algebra of Bohr's almost periodic functions, or what is the same the uniform closure of the linear set \mathcal{P}. It is known that

$$
\begin{equation*}
\phi(|f|) \in C^{o} a . p . \text { when } f \in C^{o} \text { a.p. (cf. [2]) } \tag{3.1}
\end{equation*}
$$

Also, from [2] we have,

$$
\begin{equation*}
\mathbf{M}(|f|)>0 \text { when } f \in C^{o} \text { a.p., } f \neq 0 \tag{3.2}
\end{equation*}
$$

where the notation $\mathbf{M}(f)$ is used for $\mathbf{M}(f)=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{+T} f(t) d t$.
To every $f \in B^{\phi}$ a.p., because of the inclusion $B^{\phi} a . p . ~ \hookrightarrow B^{1} a . p$. (see Proposition 3.1 below), we can associate a formal Fourier series, more precisely: define the Bohr transform of $f \in B^{\phi} a . p ., a(\lambda, f)=\mathbf{M}\left(f e^{-i \lambda t}\right)$, $\lambda \in \mathbb{R}$.

There is at most a denumerable set $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}, \ldots\right\}$ of scalars for which $a(\lambda, f) \neq 0$, (these are called the Fourier-Bohr's exponents). The associated coefficients $\left\{a\left(\lambda_{i}, f\right)\right\}_{i \geq 1}$ are the Fourier-Bohr's coefficients. The sequence of Fourier-Bohr's coefficients of the function f will be denoted by (\hat{f}).

Questions concerning the convergence of the formal Fourier series $S(f)(x)=\sum_{n \geq 1} a\left(\lambda_{n}, f\right) e^{-i \lambda_{n} x}$ are not trivial and only partial results are available.

The Bochner approximation result will be of importance here:
Let $f \in B^{\phi} a . p$. and $S_{n}(f)(x)=\sum_{K=1}^{n} a\left(\lambda_{K}, f\right) e^{i \lambda_{K} x}$, be the partial sums of it's formal Fourier series. There exists a sequence $\sigma_{m}(f), m \geq 1$ of trigonometric polynomials (the Bochner-Fejér's approximation polynomials) of the form,

$$
\sigma_{m}(f)(x)=\sum_{K=1}^{r_{m}} \mu_{m K} a\left(\lambda_{K}, f\right) e^{i \lambda_{K} x}
$$

where the convergence factors $\left\{\mu_{m_{K}}\right\}$ depend only on the sequence of characteristic exponents $\left\{\lambda_{K}\right\}$ of the function f and satisfy $0<\mu_{m K} \leq 1$.

The sequence $\left\{\sigma_{m}(f)\right\}$ has the following approximation properties (cf. [2], [3]):
i) $\left\|\sigma_{m}(f)\right\|_{B^{\phi}} \leq\|f\|_{B^{\phi}}, \quad m=1,2, \ldots$

$$
\begin{equation*}
\rho_{B^{\phi}}\left(\sigma_{m}(f)\right) \leq \rho_{B^{\phi}}(f), m=1,2, \ldots \tag{3.3}
\end{equation*}
$$

ii) $\left\|\sigma_{m}(f)-f\right\|_{B_{\phi}} \rightarrow 0$, when $m \rightarrow \infty$.

Notice that from (3.1), (3.2) and the properties i)-ii) of the BochnerFejér's approximation polynomials we deduce easily that $\|\cdot\|_{B^{\phi}}$ is in fact a norm on C^{o} a.p..

To end this section, we summarize in the following the inclusion relations in the class of Besicovitch-Orlicz spaces and between Orlicz sequence spaces (cf. [3], [9]).

Proposition 3.1. Let ϕ_{1} and ϕ_{2} be two Orlicz functions such that $\phi_{1} \leq \phi_{2}$ (see (2.2) for the definition) then, there hold:
i) $B^{\phi_{2}}(\mathbb{R}) \subseteq B^{\phi_{1}}(\mathbb{R}) ; B^{\phi_{2}} a . p . \subseteq B^{\phi_{1}}$ a.p.
ii) $\|\cdot\|_{B^{\phi_{1}}} \leq \alpha\|\cdot\|_{B^{\phi_{2}}}$ for some $\alpha>0$ depending on ϕ_{1} and ϕ_{2}.
iii) $l^{\phi_{1}} \subseteq l^{\phi_{2}}$.
iv) $\|\cdot\|_{l^{\phi_{2}}} \leq \beta\|\cdot\|_{l^{\phi_{1}}}$ for some $\beta>0$ depending on ϕ_{1} and ϕ_{2}.
v) if $\left(\phi_{i}, \psi_{i}\right), i=1,2$ are two pairs of complementary Orlicz functions, we have,

$$
\phi_{1} \leq \phi_{2} \Rightarrow \psi_{2} \leq \psi_{1}
$$

4 - Convergence results in $B^{\phi} a . p$.
A sequence $\left\{f_{k}\right\}_{k \geq 1}$ from $B^{\phi}(\mathbb{R})$ is called modular convergent to some $f \in B^{\phi}(\mathbb{R})$ when $\lim _{k \rightarrow \infty} \rho_{B^{\phi}}\left(f_{k}-f\right)=0$.

Let $P(\mathbb{R})$ be the family of subsets of \mathbb{R} and $\Sigma(\mathbb{R})$ the Σ - algebra of it's Lebesgue mesurable sets. For $A \in \Sigma$, we define the set function,

$$
\begin{aligned}
\bar{\mu}(A) & =\varlimsup_{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{+T} \chi_{A}(t) d \mu= \\
& =\varlimsup_{T \rightarrow \infty} \frac{1}{2 T} \mu(A \bigcap[-T, T])
\end{aligned}
$$

Clearly, $\bar{\mu}$ is null on sets with μ-finite measure. Moreover, $\bar{\mu}$ is not σ-additive.

As usual, a sequence $\left\{f_{k}\right\}_{k \geq 1}$ will be called $\bar{\mu}$-convergent to f when, for all $\varepsilon>0$,

$$
\lim _{k \rightarrow+\infty} \bar{\mu}\left\{x \in \mathbb{R},\left|f_{k}(x)-f(x)\right|>\varepsilon\right\}=0
$$

We now state some fundamental convergence results that will be used below (cf. [5], [6]):

Proposition 4.1. Let $\left\{f_{k}\right\}_{k \geq 1}$ be a sequence of functions from $B^{\phi}(\mathbb{R})$. We have the following:
i) suppose there exist $f \in B^{\phi}(\mathbb{R})$ such that $\lim _{k \rightarrow+\infty} \rho_{B^{\phi}}\left(f_{k}-f\right)=0$ and $g \in B^{\phi}$ a.p. such that $\max \left(\left|f_{k}(x)\right|,|f(x)|\right) \leq g$. Then, $\lim _{k \rightarrow+\infty} \rho_{B^{\phi}}\left(f_{k}\right)=$ $\rho_{B^{\phi}}(f)$.
ii) If $f \in B^{\phi}$ a.p. and $\left\{P_{n}\right\}$ is the associated sequence of Bochner-Fejér's polynomials, we have: $\lim _{n \rightarrow+\infty} \rho_{B^{\phi}}\left(P_{n}\right)=\rho_{B^{\phi}}(f)$ (and $\lim _{n \rightarrow+\infty}\left\|P_{n}\right\|_{B^{\phi}}=$ $\left.\|f\|_{B^{\phi}}\right)$.
iii) If $f \in B^{\phi}$ a.p. is such that $\lim _{n \rightarrow+\infty} \rho_{B^{\phi}}\left(f_{n}-f\right)=0$, then
a) $\lim _{n \rightarrow+\infty} \rho_{B^{\phi}}\left(f_{n}\right) \geq \rho_{B^{\phi}}(f)$.
b) $\left\{f_{n}\right\}_{n \geq 1}$ is $\bar{\mu}$-convergent to f.

5 - Auxiliary results

Lemma 5.1. Let $f \in B^{\phi}$ a.p., $f \neq 0$ and $\left\{f_{n}\right\}_{n \geq 1}$ be a sequence modular convergent to f, then:
there exist constants $\alpha_{1}, \beta_{1}, \theta_{1}$ with $\left.\theta_{1} \in\right] 0,1\left[, 0<\alpha_{1}<\beta_{1}, n_{0} \in \mathbb{N}\right.$, such that for the sets $G_{n}=\left\{t \in \mathbb{R}, \alpha_{1} \leq\left|f_{n}(t)\right| \leq \beta_{1}\right\}$ we have $\bar{\mu}\left(G_{n}\right) \geq \theta_{1}$ $\forall n \geq n_{0}$.

Proof. From [5], there exist α, β, θ with $\theta \in] 0,1[, 0<\alpha<\beta$ and $G=\{t \in \mathbb{R}, \alpha \leq|f(x)| \leq \beta\}$ such that $\bar{\mu}(G) \geq \theta$. Take $\alpha_{1}=\frac{\alpha}{2}$ and $\beta_{1}=\beta+\frac{\alpha}{2}, \theta_{1}=\frac{\theta}{2}$.

Since $\left\{f_{n}\right\}_{n \geq 1}$ is modular convergent to f, it is also $\bar{\mu}$-convergent to f (see iii)-b) of Proposition. 4.1) and then,

$$
\bar{\mu}\left\{t \in \mathbb{R},\left|f_{n}(t)-f(t)\right| \geq \frac{\alpha}{2}\right\}<\frac{\theta}{2} \quad \forall n \geq n_{0}
$$

Putting $G_{n}^{\prime}=\left\{t \in G,\left|f_{n}(t)-f(t)\right| \geq \frac{\alpha}{2}\right\}$, it is easily seen that $G-G_{n}^{\prime} \subset G_{n} \forall n \geq n_{0}$.

Finally

$$
\bar{\mu}\left(G_{n}\right) \geq \bar{\mu}\left(G-G_{n}^{\prime}\right) \geq \bar{\mu}(G)-\bar{\mu}\left(G_{n}^{\prime}\right) \geq \theta-\frac{\theta}{2}=\theta_{1}
$$

Lemma 5.2. Let (ϕ, ψ) be a normalized pair of Orlicz functions.
i) if $f \in B^{\phi}$ a.p. then $\rho_{B^{\phi}}\left(\frac{f}{\|f\|_{B^{\phi}}}\right)=\phi(1)\left(\|f\|_{B^{\phi}} \neq 0\right)$.

Moreover if $f \in C^{o}$ a.p we have $\rho_{B^{\phi}}(f)=\phi(1)$ iff $\|f\|_{\phi}=1$.
ii) $\mathbf{M}(|f g|) \leq\|f\|_{B^{\phi}} \cdot\|g\|_{B^{\psi}} ; f \in B^{\phi}$ a.p, $g \in B^{\psi}$.a.p (Hölder's inequality). iii) if $f \in B^{\phi} a . p, g \in B^{\psi}$ a.p then $f g \in B^{1} a . p$.

Proof. i) Let $\varepsilon_{n}>0$ be such that $\lim _{n \rightarrow \infty} \varepsilon_{n}=0$ and $f_{n}=\frac{f}{\|f\|_{B}+\varepsilon_{n}}$. We have $\rho_{B^{\phi}}\left(f_{n}\right) \leq \phi(1)$ and the sequence $\left(f_{n}\right)$ is modular convergent to $\frac{f}{\|f\|_{B}{ }^{\phi}}$.

Using Proposition 4.1 we deduce,

$$
\lim _{n \rightarrow \infty} \rho_{B^{\phi}}\left(\frac{f}{\|f\|_{B^{\phi}}+\varepsilon_{n}}\right)=\rho_{B^{\phi}}\left(\frac{f}{\|f\|_{B^{\phi}}}\right) \leq \phi(1) .
$$

On the other hand, by similar arguments for the sequence $g_{n}=\frac{f}{\|f\|_{B^{\phi}-\varepsilon_{n}}}$, we get $\rho_{B^{\phi}}\left(\frac{f}{\|f\|_{B^{\phi}}}\right) \geq \phi(1)$.

Finally we have $\rho_{B^{\phi}}\left(\frac{f}{\|f\|_{B^{\phi}}}\right)=\phi(1)$.
Suppose now that $f \in C^{o} a . p$. and $\rho_{B^{\phi}}\left(\frac{f}{a}\right)=\phi(1)$ for some $a>0$.
The function $\phi\left(\frac{|f|}{a}\right)$ is also in $C^{o} a . p$. From (3.2) we have $\phi\left(\frac{|f|}{a}\right)=$ $\phi\left(\frac{|f|}{\|f\|_{B \phi} \phi}\right)$.

Now, since ϕ is stricty increasing we get $\|f\|_{B^{\phi}}=a$
ii) Let $\|f\|_{B^{\phi}} \neq 0,\|g\|_{B^{\psi}} \neq 0$, then, from Young's inequality we have:

$$
\begin{aligned}
\mathbf{M}\left(\frac{|f|}{\|f\|_{B^{\phi}}} \frac{|g|}{\|g\|_{B^{\psi}}}\right) & \leq \rho_{B^{\phi}}\left(\frac{f}{\|f\|_{B^{\phi}}}\right)+\rho_{B^{\psi}}\left(\frac{g}{\|g\|_{B^{\psi}}}\right) \leq \\
& \leq \phi(1)+\psi(1)=1
\end{aligned}
$$

and then

$$
\mathbf{M}(|f g|) \leq\|f\|_{B^{\phi}}\|g\|_{B^{\psi}} .
$$

iii) Let $\left(P_{n}\right)$ and $\left(Q_{n}\right)$ be the sequences of Bochner-Fejér's polynomials that converge to f and g in the respective norms. Using ii) of this lemma and i) of (3.3), we get,

$$
\mathbf{M}\left(\left|f g-P_{n} Q_{n}\right|\right) \leq\|f\|_{B^{\phi}}\left\|g-Q_{n}\right\|_{B^{\psi}}+\|g\|_{B^{\psi}}\left\|f-P_{n}\right\|_{B^{\phi}}
$$

and the desired result follows immediately.

Lemma 5.3. Let $P \in \mathcal{P}$. The function $F:[0,+\infty[\rightarrow[0,+\infty[$, $F(k)=\rho_{B^{\psi}}\left(\phi^{\prime}(k|P|)\right.$ is continuous on $[0,+\infty[$. Moreover it satisfies $F(0)=0$ and $\lim _{k \rightarrow \infty} F(k)=+\infty$, so that $F\left(k_{0}\right)=1$ for some $k_{0} \in$]0, $+\infty$ [.

Proof. Since the functions ψ and ϕ^{\prime} are continuous, we have $\psi\left(\phi^{\prime}(k|P|)\right) \in C^{o} a . p$. and then if $k>0$ and $P \neq 0$, we get from (3.2), $\rho_{B^{\psi}}\left(\phi^{\prime}(k|P|)\right)>0$.

Let now x_{0} be such that $P\left(x_{0}\right) \neq 0$ and let $\alpha>0$ satisfies $\left|P\left(x_{0}\right)\right|>\alpha$. There exists $\delta>0$ for which $|P(x)|>\frac{2}{3} \alpha, \forall x \in\left(x_{0}-\delta, x_{0}+\delta\right)$.

Let $l_{\frac{\alpha}{3}}>2 \delta$ be an inclusion length of P corresponding to $\varepsilon=\frac{\alpha}{3}$. Then, each intervall of length $l_{\frac{\alpha}{3}}$ contains at least one number of the form $x_{0}+\tau$, with $\tau \in \mathcal{E}\left(\frac{\alpha}{3}, P\right)$, where $\mathcal{E}\left(\frac{\alpha}{3}, P\right)$ is the set of translation numbers of P corresponding to $\varepsilon=\frac{\alpha}{3}$. Such an intervall (of length $l_{\frac{\alpha}{3}}$) contains at least one of the intervalls $\left(x_{0}+\tau-\delta, x_{0}+\tau\right)$ or $\left(x_{0}+\tau, x_{0}+\tau+\delta\right)$.

Consequently, in each intervall of length $l_{\frac{\alpha}{3}}$, there exists a subintervall of length $\delta>0$ where $|P(x)|>\frac{\alpha}{3}$.

It follows,

$$
\begin{aligned}
\int_{a}^{a+l_{\frac{\alpha}{3}}^{3}} \psi\left[\phi^{\prime}(k|P(t)|)\right] d \mu & >\psi\left[\phi^{\prime}\left(k \frac{\alpha}{3}\right)\right] \delta \text { and then, } \\
\rho_{B^{\psi}}\left[\phi^{\prime}(k|P|)\right] & =\lim _{n \rightarrow \infty} \frac{1}{n l_{\frac{\alpha}{3}}} \int_{0}^{n l_{\frac{\alpha}{3}}} \psi\left[\phi^{\prime}(k|P(t)|)\right] d t \geq \\
& \geq \frac{\psi\left[\phi^{\prime}\left(k \frac{\alpha}{3}\right)\right]}{l_{\frac{\alpha}{3}}} \delta
\end{aligned}
$$

Now, since an Orlicz function increases to infinity with it's derivative (cf. [4]. [8]) we get $\lim _{k \rightarrow \infty} F(k)=+\infty$.

We now show that F is continuous.
For, let $\left.k_{0} \in\right] 0, \infty\left[\right.$ and $\left\{k_{n}\right\}$ be a sequence of scalars converging to k_{0}.
A trigonometric polynomials being uniformly bounded, we put $\|P\|_{\infty}=M$.

Using the uniform continuity of ϕ^{\prime} on the intervall $\left[\frac{k_{0}}{2}, \frac{3 k_{0}}{2}\right]$, we get,
$\forall \varepsilon>0, \exists n_{0}$ such that $n \geq n_{0} \Rightarrow\left|\phi^{\prime}\left(k_{n}|P|\right)-\phi^{\prime}\left(k_{0}|P|\right)\right| \leq \psi^{-1}(\varepsilon)$ and then,

$$
\begin{equation*}
\rho_{B^{\psi}}\left[\phi^{\prime}\left(k_{n}|P|\right)-\phi^{\prime}\left(k_{0}|P|\right)\right] \leq \varepsilon \tag{}
\end{equation*}
$$

Let us put $f_{n}=\phi^{\prime}\left(k_{n}|P|\right)$ and $f=\phi^{\prime}\left(k_{0}|P|\right)$, then clearly $f_{n} \in C^{o}$ a.p. and $f \in C^{o}$ a.p. Since ϕ^{\prime} is increasing we have $f_{n} \leqslant \phi^{\prime}\left(2 k_{0}|P|\right)$ and from $(*)$ it follows $\lim _{n \rightarrow \infty} \rho_{B^{\psi}}\left(f_{n}-f\right)=0$. Finally in view of Proposition 4.1i) we get $\lim _{n \rightarrow \infty} \rho_{B^{\psi}}\left(f_{n}\right)=\rho_{B^{\psi}}(f)$, which means that F is continuous at k_{0}.

Now, since $F(0)=0$ and $\lim _{k \rightarrow \infty} F(k)=+\infty$, there exists $\left.k_{0} \in\right] 0, \infty[$ for which $F\left(k_{0}\right)=\rho_{B^{\psi}}\left[\phi^{\prime}\left(k_{0}|P|\right)\right]=1$.

Lemma 5.4. Let $f \in B^{\phi}$ a.p., then,
i) $\||f|\|_{B^{\phi}}=\inf \left\{\frac{1}{k}\left(1+\rho_{B^{\phi}}(k f)\right) ; k>0\right\}$.
ii) $\rho_{B \phi}\left(\frac{f}{\|f f\|_{B \phi}}\right) \leq 1$.
iii) $\phi(1) \cdot\|f\|_{B^{\phi}} \leq\|| | f\|_{B^{\phi}} \leq \frac{1}{\psi(1)}\|f\|_{B^{\phi}}$.

Proof. i) The proof will be down in several steps.
a) From iii) of Lemma 5.2 we have,

$$
\begin{aligned}
\||f|\|_{B^{\phi}} & =\sup \left\{\mathbf{M}(|f g|), \rho_{B^{\psi}}(g) \leq 1, g \in B^{\psi} \cdot a \cdot p\right\} \leq \\
& \leq \frac{1}{\psi(1)} \sup \left\{\mathbf{M}(|f h|), \rho_{B^{\psi}}(h) \leq \psi(1), h \in B^{\psi} \cdot a \cdot p\right\}
\end{aligned}
$$

Now, since $\rho_{B^{\psi}}(h) \leq \psi(1)$ implies $\|h\|_{B^{\psi}} \leq 1$, using Young's inequality we get

$$
\begin{equation*}
\||f|\|_{B^{\phi}} \leq \frac{1}{\psi(1)}\|f\|_{\phi} \tag{5.1}
\end{equation*}
$$

b) Let $\mathrm{P} \in \mathcal{P}$ then, there exists $\left.k_{0} \in\right] 0, \infty[$ such that,

$$
\||P|\|_{B^{\phi}}=\frac{1}{k_{0}}\left(1+\rho_{B^{\phi}}\left(k_{0} P\right)\right) .
$$

Indeed, from Young's inequality we have:

$$
\mathbf{M}(|P g|)=\frac{1}{k} \mathbf{M}(|k P g|) \leq \frac{1}{k}\left[\rho_{B^{\phi}}(k P)+\rho_{B^{\psi}}(g)\right] \quad \forall k>0
$$

and then, $\left\|\|P \mid\|_{B^{\phi}} \leq \inf _{k>0} \frac{1}{k}\left[\rho_{B^{\phi}}(k P)+1\right]\right.$.
Now, considering the case of equality in the Young's inequality and using Lemma 5.3, we get,

$$
\begin{aligned}
\||P|\|_{B^{\phi}} & \geq \frac{1}{k_{0}} \mathbf{M}\left(\left|k_{0} P\right| \phi^{\prime}\left(k_{0}|P|\right)\right)=\frac{1}{k_{0}}\left[\rho_{B^{\phi}}\left(k_{0} P\right)+\rho_{B^{\psi}}\left(\phi^{\prime}\left(k_{0}|P|\right)\right)\right]= \\
& =\frac{1}{k_{0}}\left[\rho_{B^{\phi}}\left(k_{0} P\right)+1\right]
\end{aligned}
$$

finally,

$$
\||P|\|_{B^{\phi}}=\inf _{k>0} \frac{1}{k}\left[\rho_{B^{\phi}}(k P)+1\right]=\frac{1}{k_{0}}\left[\rho_{B^{\phi}}\left(k_{0} P\right)+1\right] .
$$

c) We now show that the result of b) remains true for $f \in B^{\phi} a . p$.

For, let $\left\{P_{n}\right\}$ be the sequence of Bochner-Fejér polynomials of the approximation of f. From b) we know that,
(5.2) $\left.\quad \forall n \geq 1, \exists k_{n} \in\right] 0, \infty\left[\right.$ such that $\left\|\left|P_{n}\right|\right\|_{B^{\phi}}=\frac{1}{k_{n}}\left[\rho_{B^{\phi}}\left(k_{n} P_{n}\right)+1\right]$
from (5.1) and the properties of the Bochner-Fejér's polynomials (see i) of (3.3)), we get:

$$
\frac{1}{k_{n}} \leq\left\|\left|P_{n}\right|\right\|_{B^{\phi}} \leq \frac{1}{\psi(1)}\left\|P_{n}\right\|_{B^{\phi}} \leq \frac{1}{\psi(1)}\|f\|_{B^{\phi}}
$$

and thus $k_{n} \geq \frac{\psi(1)}{\|f\|_{B^{\phi}}}=C_{1}>0$.
We now show that $k_{n} \leq C_{2}, \forall n \geq 0$ for some constant C_{2}.
Indeed, if this is not the case, there will exists a subsequence denoted by $\left\{k_{n}\right\}$ increasing to infinity and then:

$$
\begin{aligned}
1 & =\rho_{B^{\psi}}\left(\phi^{\prime}\left(k_{n}\left|P_{n}\right|\right)\right)=\varlimsup_{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} \psi\left[\phi^{\prime}\left(k_{n}\left|P_{n}\right|\right)\right] d t \geq \\
& \geq \varlimsup_{T \rightarrow \infty} \frac{1}{2 T} \int_{G_{n}} \psi\left[\phi^{\prime}\left(k_{n}\left|P_{n}\right|\right)\right] d t \geq \\
& \geq \varlimsup_{T \rightarrow \infty} \frac{1}{2 T} \int_{G_{n}} \psi\left[\phi^{\prime}\left(k_{n} \alpha_{1}\right)\right] d t \geq \theta_{1} \cdot \psi\left[\phi^{\prime}\left(k_{n} \alpha_{1}\right)\right] \rightarrow \infty \text { as } n \rightarrow \infty
\end{aligned}
$$

where $G_{n}, \theta_{1}, \alpha_{1}$ are defined in Lemma 5.1. A contradiction.
Now, $\left\{k_{n}\right\}$ being bounded, there exists a subsequence denoted by $\left\{k_{n}\right\}$ converging to $k_{0}, 0<k_{0}<+\infty$.

Let us show that $\lim _{n \rightarrow \infty} \rho_{B^{\phi}}\left(k_{n} P_{n}\right)=\rho_{B^{\phi}}\left(k_{0} f\right)$. Indeed, we have by i) of (3.3),

$$
\begin{aligned}
\rho_{B^{\phi}}\left(k_{n} P_{n}-k_{0} f\right) & \leq \frac{1}{2} \rho_{B^{\phi}}\left[2\left(k_{n}-k_{0}\right) P_{n}\right]+\frac{1}{2} \rho_{B^{\phi}}\left[2 k_{0}\left(P_{n}-f\right)\right] \leq \\
& \leq\left|k_{n}-k_{0}\right| \rho_{B^{\phi}}(f)+\frac{1}{2} \rho_{B^{\phi}}\left[2 k_{0}\left(P_{n}-f\right)\right]
\end{aligned}
$$

and then $\lim _{n \rightarrow \infty} \rho_{B^{\phi}}\left(k_{n} P_{n}-k_{0} f\right)=0$. Now, in view of Proposition 4.1iii) it follows that

$$
\lim _{n \rightarrow+\infty} \rho_{B^{\phi}}\left(k_{n} P_{n}\right) \geq \rho_{B^{\phi}}\left(k_{0} f\right) .
$$

In the other hand, from the inequality $\rho_{B^{\phi}}\left(k_{n} P_{n}\right) \leq \rho_{B^{\phi}}\left(k_{n} f\right)$ (see-i) of (3.3)) we have also,

$$
\varlimsup_{n \rightarrow+\infty} \rho_{B^{\phi}}\left(k_{n} P_{n}\right) \leq \varlimsup_{n \rightarrow+\infty} \rho_{B^{\phi}}\left(k_{n} f\right)=\lim _{n \rightarrow \infty} \rho_{B^{\phi}}\left(k_{n} f\right)=\rho_{B^{\phi}}\left(k_{0} f\right)
$$

and then,

$$
\overline{\lim }_{n \rightarrow+\infty} \rho_{B^{\phi}}\left(k_{n} P_{n}\right) \leq \rho_{B^{\phi}}\left(k_{0} f\right) \leq \underline{\lim }_{n \rightarrow+\infty} \rho_{B^{\phi}}\left(k_{n} P_{n}\right)
$$

this proves the desired result.
Finally, letting $n \rightarrow \infty$ in (5.2) we get $\||f|\|_{B^{\phi}}=\frac{1}{k_{0}}\left[\rho_{B^{\phi}}\left(k_{0} f\right)+1\right]$.
ii) Suppose first that $f \in C^{o} a . p ., f \neq 0$. Let $g \in B^{\psi}$ a.p. then,
a) if $\rho_{B^{\psi}}(g) \leq 1$, we have $\mathbf{M}(|f g|) \leq\| \| f \mid \|_{B^{\phi}}$.
b) if $\rho_{B^{\psi}}(g)>1, \rho_{B^{\psi}}\left(\frac{g}{\rho_{B^{\psi}}(g)}\right) \leq \frac{1}{\rho_{B^{\psi}}(g)} \rho_{B^{\psi}}(g)=1$ and then $\mathbf{M}\left(\left|f \frac{g}{\rho_{B^{\psi}}(g)}\right|\right) \leq$ $\||f|\|_{B^{\phi}}$.

It follows that in all cases we have, $\mathbf{M}(|f g|) \leq \max \left(1, \rho_{B^{\psi}}(g)\right)\||f|\|_{B^{\phi}}$. Suppose now that $g=\phi^{\prime}\left(\frac{f}{\|f\|_{B^{\phi}}}\right)$, then $g \in C^{o} a . p$..
Using the case of equality in the Young's inequality and the fact that in this case the limits exist, we will have:

$$
\mathbf{M}\left(\left|\frac{f}{\||f|\|_{B^{\phi}}} \cdot g\right|\right)=\rho_{B^{\phi}}\left(\frac{f}{\||f|\|_{B^{\phi}}}\right)+\rho_{B^{\psi}}(g) \leq \max \left(1, \rho_{B^{\psi}}(g)\right) .
$$

So that we get, $\rho_{B^{\phi}}\left(\frac{f}{\|I f\|_{B^{\phi}}}\right) \leq 1$.
Consider now the case of $f \in B^{\phi}$ a.p.
Let P_{n} be the sequence of Bochner-Fejér's polynomials of the approximation of f, we have:

$$
\rho_{B^{\phi}}\left(\frac{P_{n}}{\left\|\left|P_{n}\right|\right\|_{B^{\phi}}}\right) \leq 1, \quad \forall n \geq 1 .
$$

But, in view of Lemma 5.4-i) and i) of (3.3), we can write:

$$
\left\|\left|P_{n}\right|\right\|_{B^{\phi}}=\inf _{k>0} \frac{1}{k}\left(1+\rho_{B^{\phi}}\left(k P_{n}\right)\right) \leq \inf _{k>0} \frac{1}{k}\left(1+\rho_{B^{\phi}}(k f)\right)=\||f|\|_{B^{\phi}} .
$$

So that, $\rho_{B^{\phi}}\left(\frac{P_{n}}{\|f f\|_{B^{\phi}}}\right) \leq \rho_{B^{\phi}}\left(\frac{P_{n}}{\left\|\mid P_{n}\right\|_{B^{\phi}}}\right) \leq 1$ and then by -ii) of Proposition 4.1, $\rho_{B^{\phi}}\left(\frac{|f|}{\|f f\|_{B^{\phi}}}\right) \leq 1$.
iii) We have, $\rho_{B^{\phi}}\left(\frac{\phi(1) f}{\|f f\|_{B^{\phi}}}\right) \leq \phi(1) \rho_{B^{\phi}}\left(\frac{f}{\|f f\|_{B^{\phi}}}\right) \leq \phi(1)$ and then

$$
\|f\|_{B^{\phi}} \leq \frac{1}{\phi(1)}\||f|\|_{B^{\phi}}
$$

Now, in view of (5.1), we get:

$$
\phi(1) \cdot\|f\|_{B^{\phi}} \leq\||f|\|_{B^{\phi}} \leq \frac{1}{\psi(1)}\|f\|_{B^{\phi}} .
$$

Lemma 5.5. Let $f \in B^{\psi}$ a.p. Then:

$$
\||f|\|_{B^{\psi}}=\sup \left\{|\mathbf{M}(\mathbf{f Q})|, \mathbf{Q} \in \mathcal{P}, \rho_{\mathbf{B}^{\phi}}(\mathbf{Q}) \leq \mathbf{1}\right\}
$$

Proof. We consider first the case when $f=P \in \mathcal{P}$.
Recall that from Lemma 5.3, there exists $0<k_{0}<+\infty$ such that $\rho_{B^{\phi}}\left(\psi^{\prime}\left(k_{0}|P|\right)\right)=1$ and,

$$
\begin{aligned}
\||P|\|_{B^{\psi}} & =\mathbf{M}\left(|P| \psi^{\prime}\left(k_{0}|P|\right)\right)= \\
& =\mathbf{M}\left(P(x) \cdot \operatorname{sign} P(x) \cdot \psi^{\prime}\left(k_{0}|P(x)|\right)\right)
\end{aligned}
$$

Now, since sign $P(x) \cdot \psi^{\prime}\left(k_{0}|P(x)|\right) \in C^{o} a$.p., it follows from the definition of the Orlicz norm that,

$$
\||P|\|_{B^{\psi}}=\sup \left\{|\mathbf{M}(P Q)|, Q \in C^{o} \text { a.p., } \rho_{B^{\phi}}(Q) \leq 1\right\}
$$

(To see that $\operatorname{sign} P(x) . \psi^{\prime}\left(k_{0}|P(x)|\right) \in C^{o} a . p$., remark that the function $F(u)=u \frac{\psi^{\prime}\left(k_{0}|u|\right.}{|u|}$ if $u \neq 0$ and $F(0)=0$ is continuous so that $F(P)$ $\in C^{o} a . p$. if $P \in C^{o}$ a.p.).

In fact, using the properties (3.3) of the Bochner-Fejer's approximation polynomials, we can easily show the following,

$$
\||P|\|_{B^{\psi}}=\sup \left\{|\mathbf{M}(P Q)|, Q \in \mathcal{P}, \rho_{B^{\phi}}(Q) \leq 1\right\}
$$

Consider now the general case of $f \in B^{\psi}$ a.p.
Let $\left\{P_{n}\right\}$ be the sequence of Bochner-Fejèr's polynomials that converge to f in B^{ψ} a.p.

Put $I(f)=\sup \left\{|\mathbf{M}(f Q)|, Q \in \mathcal{P}, \rho_{B^{\phi}}(Q) \leq 1\right\}$ then, clearly $I(f) \leq$ $\||f|\|_{B^{\psi}}$.

Moreover, given $\varepsilon>0$, there is $n_{0} \geq 0$ such that for $n \geq n_{0}$ we have, $\left\|\left|f-P_{n}\right|\right\|_{B^{\psi}} \leq \varepsilon$ and $\||f|\|_{B^{\psi}} \leq\left\|\left|P_{n}\right|\right\|_{B^{\psi}}+\varepsilon$.

Then, using the particular case and Hölder's inequality it follows,

$$
\begin{aligned}
\||f|\|_{B^{\psi}}-\varepsilon \leq & \left\|\left|P_{n}\right|\right\|_{B^{\psi}}=\sup \left\{\left|\mathbf{M}\left(P_{n} Q\right)\right|, Q \in \mathcal{P}, \rho_{B^{\phi}}(Q) \leq 1\right\} \leq \\
\leq & \sup \left\{\left\|f-P_{n}\right\|_{B^{\psi}} \cdot\|Q\|_{B^{\phi}}, Q \in \mathcal{P}, \rho_{B^{\phi}}(Q) \leq 1\right\}+ \\
& +\sup \left\{|\mathbf{M}(f Q)|, Q \in \mathcal{P}, \rho_{B^{\phi}}(Q) \leq 1\right\} \leq \\
\leq & I(f)+\varepsilon
\end{aligned}
$$

Finally, $I(f) \leq\||f|\|_{B \psi} \leq I(f)+2 \varepsilon$.
Now, since $\varepsilon>0$ is arbitrary, we get $I(f)=\||f|\|_{B^{\psi}}$. This is the desired result.

6 - Main results

We can now state and prove the main result.
Theorem 6.1 (Hausdorff-Young). Let (ϕ, ψ) be a complementary pair of normalized Young's functions. Suppose:
i) $\phi \leq \phi_{0}$ where $\phi_{0}(x)=\frac{1}{2} x^{2}$.
ii) $\psi^{\prime}(x) \leq a_{0} x^{r} 0 \leq x<+\infty$ for some $a_{0}>0$ and $r \geq 1$.

Then:

$$
\begin{aligned}
\|\hat{f}\|_{l^{\psi}} & \leq K_{0}\|f\|_{B^{\phi}} & & f \in B^{\phi} p . p . \\
\|f\|_{B^{\psi}} & \leq K_{1}\|\hat{f}\|_{l^{\phi}} & & f \in B^{\psi} p . p .
\end{aligned}
$$

where K_{0} and K_{1} are constants that depend on ϕ and ψ but not on f.
Proof. We first prove the theorem in the class \mathcal{P} of generalised trigonometric polynomials.

For, let $G=G(t)=\sum_{j=1}^{n} d_{j} e^{i \lambda_{j} t}, d_{j} \in \mathbb{C}, \lambda_{j} \in \mathbb{R}$.

We will show that there exists a constant $\gamma \geq 1$ depending only on ϕ and ψ, such that

$$
\|G\|_{B^{\psi}} \leq \gamma\|\widehat{G}\|_{l^{\phi}}
$$

Put $\gamma=\sup \left\{\frac{\|G\|_{B \psi}}{\|\widehat{G}\|_{l^{\phi}}}\right.$, for $\left.d_{j} \in \mathbb{C}, j=1,2, \ldots, n\right\}$.
It is easily seen that $\gamma=\sup \left\{\|G\|_{B^{\psi}},\|\widehat{G}\|_{l^{\phi}}=1 ; d_{j} \in \mathbb{C}, j=\right.$ $1,2, \ldots, n\}$.

The sup being taken over all polynomials G such that $\|\widehat{G}\|_{l^{\phi}}=1$, i.e.over all coefficients $\left(d_{j}\right)_{j \leq n}$ for which $\|\widehat{G}\|_{l^{\phi}}=1$, the λ_{i} 's being fixed.

Since the set $A=\left\{\left(d_{j}\right)_{j \leq n},\|\widehat{G}\|_{l^{\phi}}=1\right\}$ is compact and by the continuity of the mapping $T: G \rightarrow\|G\|_{B \psi}$, it follows that $\gamma=\sup T\left(d_{j}\right)_{j \leq n}$ exists and is finite, more precisely, there exists a polynomial G such that,

$$
\begin{equation*}
\gamma=\frac{\|G\|_{B^{\psi}}}{\|\widehat{G}\|_{l^{\phi}}} \tag{6.1}
\end{equation*}
$$

We now show that γ depends only on ϕ and ψ (and not onn $\in \mathbb{N}$ or $\left.\lambda_{j} \in \mathbb{R}\right)$.

Define the function $g(x)=\psi^{\prime}\left(\frac{|G(x)|}{\|G\|_{B^{\psi}}}\right) \cdot \operatorname{sign}(G(x))$.
Using -i) of Lemma 5.2 and (2.1), we can write,

$$
\begin{aligned}
\psi(1) & =\rho_{B^{\psi}}\left(\frac{|G|}{\|G\|_{B^{\psi}}}\right) \leq \mathbf{M}\left[\frac{|G|}{\|G\|_{B^{\psi}}} \cdot \psi^{\prime}\left(\frac{|G|}{\|G\|_{B^{\psi}}}\right)\right]= \\
& =\mathbf{M}\left(g(x) \cdot \frac{G}{\|G\|_{B^{\psi}}}\right)
\end{aligned}
$$

hence, $\mathbf{M}(g G) \geq \psi(1) \cdot\|G\|_{B^{\psi}}$ and then,

$$
\begin{aligned}
\psi(1) \cdot\|G\|_{B^{\psi}} & \leq \mathbf{M}(g G)=\sum_{j=1}^{n} d_{j} \mathbf{M}\left(g(x) e^{i \lambda_{j} x}\right)=\sum_{j=1}^{n} a\left(G, \lambda_{j}\right) a\left(g, \lambda_{j}\right) \leq \\
& \leq\|\widehat{G}\|_{l^{\phi} \cdot}\|\widehat{g}\|_{L^{\psi}}
\end{aligned}
$$

Consequently, in view of (6.1), we get:

$$
\begin{equation*}
\|\widehat{g}\|_{l^{\psi}} \geq \psi(1) \frac{\|G\|_{B^{\psi}}}{\|\widehat{G}\|_{l^{\phi}}} \geq \gamma \cdot \psi(1) \tag{6.2}
\end{equation*}
$$

Recall that since G is a trigonometric polynomials and ψ^{\prime} continuous, $|g|$ is a Bohr's almost periodic function and then, Bessel 's inequality holds for g (cf. [2]):

$$
\begin{equation*}
\left(\|\widehat{g}\|_{l^{2}}\right)^{2} \leq \mathbf{M}\left(g^{2}\right) \leq\left\|g^{2}\right\|_{B^{\psi}} \cdot\|1\|_{B^{\phi}}=\left\|g^{2}\right\|_{B^{\psi}} \tag{6.3}
\end{equation*}
$$

Take $\psi_{1}(x)=\psi\left(x^{2}\right)$, it is easily seen that ψ_{1} is an Orlicz function such that $\psi \leq \psi_{1}$.

Let us put $a^{2}=\left\|g^{2}\right\|_{B^{\psi}}$ then, since $\psi\left(g^{2}\right)$ is a Bohr's almost periodic function, we have $0<a<\infty$ and then using -i) of Lemma 5.2,

$$
\psi_{1}(1)=\psi(1)=\rho_{B^{\psi}}\left(\frac{g^{2}}{a^{2}}\right)=\rho_{B^{\psi_{1}}}\left(\frac{g}{a}\right)
$$

and thus

$$
\begin{equation*}
a=\|g\|_{B^{\psi_{1}}} \tag{6.4}
\end{equation*}
$$

From (6.3) and (6.4) it follows immediately:

$$
\begin{equation*}
\|\widehat{g}\|_{l^{2}} \leq\|g\|_{B^{\psi_{1}}} \tag{6.5}
\end{equation*}
$$

Let now $\psi_{2}(x)=\psi_{1}\left(x^{r}\right)$. From (6.1), (6.4) and the hypothesis ii) of the theorem, we can write,

$$
\begin{align*}
\psi_{2}(1) & =\psi_{1}(1)=\psi(1)=\rho_{B^{\psi_{1}}}\left(\frac{g}{a}\right)=\rho_{B^{\psi_{1}}}\left(\frac{1}{a} \psi^{\prime}\left(\frac{|G(t)|}{\|G\|_{B^{\psi}}}\right)\right) \leq \tag{6.6}\\
& \leq \rho_{B^{\psi_{1}}}\left[\frac{a_{0}}{a}\left(\frac{|G(t)|}{\|G\|_{B^{\psi}}}\right)^{r}\right] \leq \rho_{B^{\psi_{2}}}\left(\beta_{1} \frac{|G(t)|}{\|G\|_{B^{\psi}}}\right)
\end{align*}
$$

where

$$
\begin{equation*}
\left(\beta_{1}\right)^{r}=\frac{a_{0}}{a} \tag{6.7}
\end{equation*}
$$

Consequently, we have $\left\|\beta_{1} \frac{|G(t)|}{\|G\|_{B} \psi}\right\|_{B^{\psi_{2}}} \geq 1$ since in the opposite case we will have $\rho_{B^{\psi}}\left(\frac{\beta_{1}|G(t)|}{\alpha}\right) \leq \psi_{2}(1)$ for some $0<\alpha<1$ and then G being
a trigonometric polynomials, from (3.2) we will deduce $\rho_{B^{\psi_{2}}}\left(\beta_{1} \frac{|G(t)|}{\|G\|_{B} \psi}\right)<$ $\psi_{2}(1)$, a contradiction.

Hence

$$
\begin{equation*}
\left\|\beta_{1} \frac{|G(t)|}{\|G\|_{B^{\psi}}}\right\|_{B^{\psi_{2}}} \geq 1 \tag{6.8}
\end{equation*}
$$

From (6.7) and (6.8) it follows,

$$
\begin{equation*}
\left[\frac{\|G\|_{B^{\psi_{2}}}}{\|G\|_{B^{\psi}}}\right]^{r} \geq \frac{a}{a_{0}}=\frac{1}{a_{0}}\|g\|_{B^{\psi_{1}}} \tag{6.9}
\end{equation*}
$$

Considering now the hypothesis i) of the theorem, Proposition 3.1 implies the following inequalities and relations inclusion, $\psi_{0} \leq \psi \leq \psi_{1} \leq \psi_{2}$ and then $\phi_{0} \geq \phi \geq \phi_{1} \geq \phi_{2}$. From this it follows, $l^{\phi_{2}} \subseteq l^{\phi_{1}} \subseteq l^{\phi} \subseteq l^{2} \subseteq l^{\psi} \subseteq$ $l^{\psi_{1}} \subseteq l^{\psi_{2}}$.

On the other hand, from the hypothesis ii) of the theorem, we have,

$$
\psi_{2}(x)=\psi_{1}\left(x^{r}\right)=\psi\left(x^{2 r}\right) \leq x^{2 r} \psi^{\prime}\left(x^{2 r}\right) \leq a_{0} x^{2 r} .\left(x^{2 r}\right)^{r}=a_{0} x^{2 r(r+1)}
$$

let us put $\psi_{3}(x)=\frac{a_{0}}{r+1}|x|^{2 r(r+1)}$, then $\psi_{3}(x) \geq \psi_{2}(x) \forall x \geq 0$.
From this and (6.1), (6.2), (6.5), (6.9) it follows,

$$
\begin{align*}
\psi(1) & \leq \gamma \cdot \psi(1) \leq\|\widehat{g}\|_{l^{\psi}} \leq K_{2}\|\widehat{g}\|_{l^{2}} \leq \\
& \leq K_{2}\|g\|_{B^{\psi_{1}}} \leq K_{2} \cdot a_{0}\left[\frac{\|G\|_{B^{\psi_{3}}}}{\|G\|_{B^{\psi}}}\right]^{r} \leq \tag{6.10}\\
& \leq K_{2} \cdot a_{0}\left[\frac{M_{\phi_{3}}}{\gamma} \frac{\|\widehat{G}\|_{l^{\phi} 3}}{\|\widehat{G}\|_{l^{\phi}}}\right]^{r} \leq K_{2} \cdot a_{0}\left[\beta_{4} \frac{M_{\phi_{3}}}{\gamma}\right]^{r}
\end{align*}
$$

where K_{2} is the constant of the inequality $\psi(x) \geq \psi_{0}(x)=\frac{1}{2} x^{2}$ (i.e. $\left.\|\cdot\|_{l^{\psi}} \leq K_{2}\|\cdot\|_{l^{2}}\right)$.
$M_{\phi_{3}}$ is the constant of the Hausdorff-Young inequality in B^{q} with $q=2 r(r+1)$.

The constant β_{4} is from the inequality $\|\widehat{G}\|_{l^{\phi_{3}}} \leq \beta_{4}\|\widehat{G}\|_{l \phi}$ which is a consequence of an inequality $\phi_{3}(x) \leq \phi(x) \forall x, 0 \leq x \leq x_{0}$. This later may be obtained by a suitable restriction on ϕ near the origine.

Now, inequality (6.10) may be written in the form,

$$
\psi(1) \leq \psi(1) \cdot \gamma^{r+1} \leq K_{2} a_{0} \cdot \beta_{4} M_{\phi_{3}}^{r}
$$

and then, $1 \leq \gamma \leq K_{5}$ where K_{5} is a constant depending only on ϕ.
Finally,

$$
\begin{equation*}
\|P\|_{B^{\psi}} \leq \gamma\|\hat{P}\|_{l^{\phi}}, \quad \forall P \in \mathcal{P} \tag{6.11}
\end{equation*}
$$

where γ is a constant depending only on ϕ.
To show the converse inequality, let $P(t)=\sum_{j=1}^{n} c_{j} e^{i \lambda_{j} t}$ be a trigonometric polynomial. Putting $G(t)=\sum_{j=1}^{n} d_{j} e^{-i \lambda_{j} t}$, we will have, $|\mathbf{M}(P G)|=$ $\left|\sum_{j=1}^{n} c_{j} d_{j}\right|$ and $|\mathbf{M}(P G)| \leq\|P\|_{B^{\phi} \cdot} \cdot\|G\|_{B^{\psi}}$, thus, by (6.11): $|\mathbf{M}(P G)| \leq$ $\|P\|_{B^{\phi}} .\|G\|_{B^{\psi}} \leq \gamma\|P\|_{B^{\phi}} \cdot\|\widehat{G}\|_{l^{\phi}}$ so that,

$$
\left\{\begin{array}{l}
\||\hat{P}|\|_{I^{\psi}}=\sup \left\{\left|\sum_{j=1}^{n} c_{j} d_{j}\right|,\left(d_{j}\right)_{j \geq 1} ; \sum_{j=1}^{\infty} \phi\left(\left|d_{j}\right|\right) \leq 1\right\} \leq \tag{6.12}\\
\leq \sup \left\{\left|\sum_{j=1}^{n} c_{j} d_{j}\right|,\left(d_{j}\right)_{j \geq 1} ; \sum_{j=1}^{n} \phi\left(\left|d_{j}\right|\right) \leq 1\right\} \leq \\
\leq \sup \left\{\left|\sum_{j=1}^{n} c_{j} d_{j}\right|,\left(d_{j}\right)_{j \geq 1} ; \sum_{j=1}^{n} \phi\left(\phi(1)\left|d_{j}\right|\right) \leq \phi(1)\right\} \leq \\
\leq \frac{1}{\phi(1)} \sup \left\{\left|\sum_{j=1}^{n} c_{j} h_{j}\right|,\left(h_{j}\right)_{j \geq 1} ; \sum_{j=1}^{n} \phi\left(\left|h_{j}\right|\right) \leq \phi(1)\right\} \leq \\
\leq \frac{1}{\phi(1)} \sup \left\{\left|\sum_{j=1}^{n} c_{j} h_{j}\right|,\|\widehat{G}\|_{l^{\phi}} \leq 1\right\} \leq \frac{\gamma}{\phi(1)}\|P\|_{\phi}
\end{array}\right.
$$

Now, using (2.3), we get finally,

$$
\begin{equation*}
\|\hat{P}\|_{z^{\psi}} \leq \frac{\gamma}{\phi(1) \cdot \psi(1)}\|P\|_{B^{\phi}} \tag{6.13}
\end{equation*}
$$

The theorem is then proved in the class \mathcal{P} of trigonometric polynomials. To consider the general case, let $f \in B^{\phi} a . p$. and $\left\{P_{n}\right\}$ be the associated sequence of Bochner-Fejér polynomials that converge to f in the norms $\|\cdot\|_{B^{\phi}}$ and $\||\cdot|\|_{B^{\phi}}$ since the laters are equivalent.

Let $\Lambda(f)=\left\{\lambda_{1}, \lambda_{2}, \ldots\right\}$ be the set of Fourier-Bohr's exponents of f. It is known that $\Lambda\left(P_{n}\right) \subseteq \Lambda(f), \forall n \geq 1$. Put $c_{j}=a\left(\lambda_{j}, f\right), j \geq 1$ and denote by $\left(c_{j}^{m}\right)_{j}$ the finite sequence of Fourier-Bohr coefficients of P_{m}, $c_{j}^{m}=\mathbf{M}\left(P_{m} e^{-i \lambda_{j} t}\right)$. (note that $c_{j}^{m}=0$ if $\left.\lambda_{j} \notin \Lambda\left(P_{m}\right)\right)$.

Remark first that we have $\left|c_{j}-c_{j}^{(m)}\right| \leq \mathbf{M}\left(\left|P_{m}-f\right|\right) \leq\left\|P_{m}-f\right\|_{B^{\phi}} \rightarrow 0$ as $m \rightarrow+\infty$.

It follows then

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \sup _{j}\left|c_{j}-c_{j}^{(m)}\right|=0 \tag{6.14}
\end{equation*}
$$

Let $\varepsilon>0$ and $n \in \mathbb{N}$. Put $\alpha_{0}=\phi^{-1}(1)$
From (6.14) there exists $m_{0}=m_{0}(\varepsilon, n)>n$ such that $\forall m \geq m_{0},\left|c_{j}\right| \leq$ $\left|c_{j}^{(m)}\right|+\frac{\varepsilon}{n}$ and then, for $m \geq m_{0}$; using (6.13) and - i) of (3.3),

$$
\begin{aligned}
& \sup \left\{\left|\sum_{j=1}^{n} c_{j} d_{j}\right|,\left(d_{j}\right)_{j \geq 1} ; \sum_{j=1}^{\infty} \phi\left(\left|d_{j}\right|\right) \leq 1\right\}= \\
= & \sup \left\{\sum_{j=1}^{n}\left|c_{j} d_{j}\right|,\left(d_{j}\right)_{j \geq 1} ; \sum_{j=1}^{\infty} \phi\left(\left|d_{j}\right|\right) \leq 1\right\} \leq \\
\leq & \sup \left\{\sum_{j=1}^{n}\left|c_{j}^{m} d_{j}\right|,\left(d_{j}\right)_{j \geq 1} ; \sum_{j=1}^{\infty} \phi\left(\left|d_{j}\right|\right) \leq 1\right\}+\varepsilon \alpha_{0} \leq \\
\leq & \left\|\left|\hat{P}_{m}\right|\right\|_{l \psi}+\varepsilon \alpha_{0} \leq \frac{1}{\phi(1)}\left\|\hat{P}_{m}\right\|_{l \psi}+\varepsilon \alpha_{0} \leq \\
\leq & \frac{\gamma}{[\phi(1)]^{2} \cdot \psi(1)}\left\|P_{m}\right\|_{B^{\phi}}+\varepsilon \alpha_{0} \leq \frac{\gamma}{[\phi(1)]^{2} \cdot \psi(1)}\|f\|_{B^{\phi}}+\varepsilon \alpha_{0} .
\end{aligned}
$$

Since ε and n are arbitrary, we get finally,

$$
\psi(1)\|\hat{f}\|_{l^{\psi}} \leq\||\hat{f}|\|_{l^{\psi}} \leq \frac{\gamma}{[\phi(1)]^{2} \cdot \psi(1)}\|f\|_{B^{\phi}}, \text { i.e. }\|\hat{f}\|_{l^{\psi}} \leq \frac{\gamma}{[\phi(1) \cdot \psi(1)]^{2}}\|f\|_{B^{\phi}}
$$

This proves the first inequality.
To prove the second inequality, let $f \in B^{\psi} a . p$., then the hypothesis i) of the theorem implies $f \in B^{2} a . p$. and then, if we consider $P_{n}(x)=$ $\sum_{j=1}^{n} a\left(\lambda_{j}, f\right) e^{i \lambda_{j} x}$, (the partial sums of the Fourier-Bohr's series of f), we have $\left\|f-P_{n}\right\|_{B^{2}} \rightarrow 0$ as $n \rightarrow \infty$ (cf. [1], [2]).

Moreover if $Q \in \mathcal{P}$ with $\Lambda(Q) \cap \Lambda(f) \neq \emptyset$, one has,

$$
\left|\mathbf{M}\left(P_{n} Q\right)\right|=\left|\sum_{j=1}^{n} a\left(\lambda_{j}, f\right) a\left(\lambda_{j}, Q\right)\right| \leq\|\hat{f}\|_{l^{\psi}} \cdot\|\hat{Q}\|_{l^{\psi}}
$$

Now, using (6.13), we get,

$$
\left|\mathbf{M}\left(P_{n} Q\right)\right| \leq\|\hat{f}\|_{l^{\psi} \cdot} \cdot\|\hat{Q}\|_{l^{\psi}} \leq \frac{\gamma}{\phi(1) \cdot \psi(1)} \cdot\|\hat{f}\|_{l^{\psi} \cdot} \cdot\|Q\|_{B \phi}
$$

and, since $\left\|f-P_{n}\right\|_{B^{2}} \rightarrow 0$ as $n \rightarrow \infty$, we have also,

$$
|\mathbf{M}(P Q)| \leq \frac{\gamma}{\phi(1) \cdot \psi(1)} \cdot\|\hat{f}\|_{L^{\psi}} \cdot\|Q\|_{B^{\phi}} .
$$

Finally, in view of Lemma 5.5 and -iii) of Lemma 5.4, we get,

$$
\begin{aligned}
\||f|\|_{B^{\psi}} & =\sup \left\{|\mathbf{M}(f Q)|, Q \in \mathcal{P} ; \rho_{B^{\phi}}(Q) \leq 1\right\} \leq \\
& \leq \sup \left\{\|Q\|_{B^{\phi}}, \rho_{B^{\phi}}(Q) \leq 1\right\} \cdot \frac{\gamma}{\phi(1) \cdot \psi(1)} \cdot\|\hat{f}\|_{l^{\phi}} \leq \\
& \leq \frac{\gamma}{[\phi(1)]^{2} \cdot \psi(1)} \cdot\|\hat{f}\|_{l^{\phi}} .
\end{aligned}
$$

Thus,

$$
\psi(1)\|f\|_{B^{\psi}} \leq \left\lvert\,\|f\|_{B^{\psi}} \leq \frac{\gamma}{[\phi(1)]^{2} \cdot \psi(1)}\|\hat{f}\|_{l^{\phi}}\right.
$$

i.e.

$$
\|f\|_{B^{\psi}} \leq \frac{\gamma}{[\phi(1) \cdot \psi(1)]^{2}} \cdot\|\hat{f}\|_{l^{\phi}}
$$

This proves the theorem.

REFERENCES

[1] A. Avantaggiati - G. Bruno - R. Iannaci: The Hausdorff- Young theorem for almost periodic functions and some applications, Nonlinear Analysis, 25, N. 1, (1995), 61-87.
[2] A. S. Besicovitch: Almost periodic functions, Cambridge Univ. Press, 1932.
[3] T. R. Hillmann: Besicovitch-Orlicz spaces of almost periodic functions, Real and Stochastic Analysis. 164, Wiley Ser-in Probab. and Math. Stat., Wiley, New-York, 1986.
[4] M. A. Krasnoselskii - Ya. B. Rutickii: Convex functions and Orlicz Spaces, Nordhoff, Groningen, 1961.
[5] M. MorsLi: On some convexity properties in the Besicovitch-Orlicz space of almost periodic functions, Comment. Math., 34 (1994), 137-152.
[6] M. Morsli: On modular approximation property in the Besicovitch-Orlicz space of almost periodic functions, Comment. Math. Univ. Corolinae 38, 3 (1997), 485-496.
[7] J. Musielak: Modular spaces and Orlicz spaces, Lecture Notes in Math., 1034 Springer, Berlin, 1983.
[8] M. M. Rao - Z. D. Ren: Theory of Orlicz spaces, Marcel Dekker Inc., New York, 1991.
[9] M. M. Rao: Extensions of the Hausdorff-Young theorem, Israel Journal Math., 6 (1968), 133-149.
[10] A. Zygmund: Trigonometric series, Cambridge Univ. Press, 1968.

Lavoro pervenuto alla redazione il 14 febbraio 2001 ed accettato per la pubblicazione il 16 luglio 2002.

Bozze licenziate il 15 gennaio 2003

[^0]: Key Words and Phrases: Hausdorff-Young theorem - Almost periodic function -Besicovitch-Orlicz space.
 A.M.S. Classification: 46B20 - 42A75

