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An extension of the Hausdorff-Young theorem to
the Besicovitch-Orlicz space of almost periodic

functions

M. MORSLI - D. DRIF

RIASSUNTO: In un recente lavoro [1] é stato esteso il teorema di Hausdorff-Young
ad una classe di funzioni di Besicovitch quasi periodiche BPa.p. Qui si considera tale
estensione nel contesto degli spazi di Orlicz, ovvero allo spazio Besicovitch-Orlicz delle
funzioni quasi periodiche.

ABSTRACT: In a recent papers (cf. [1]), the Hausdorff-Young Theorem was ex-
tended to the class of Besicovitch almost periodic functions BYa.p. We consider here
such an extension in the context of Orlicz spaces, namely the Besicovitch-Orlicz space
of almost periodic functions B®a.p.

1 — Introduction

The classical Hausdorff-Young theorem for LP spaces has been subject
to various generalizations. In [9], this result was extended to the context
of Orlicz spaces and recently considered in the class of Besicovitch spaces
of almost periodic functions B?a.p. (cf. [1]). More precisely:

Let P denotes the linear set of generalized trigonometric polynomials.
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Define for p € [1, +o00[ the norm

lim (%/+T|f(t)|pdt)%, fep.

171 = Jim (57 [
The space Ba.p. is the completion of P with respect to the norm ||| z,.

The Hausdorff-Young Theorem in the class BPa.p. states that if f €
BPa.p. and f = (cp)rer is the corresponding sequence of it’s Fourier
coefficients, then

DSl <1 lse if p €]1,2].
i) ([ fllse <[ fll,g if p € [2, 400
Here we extend these properties to the context of Orlicz space.

2 — Preliminaries

In the sequel, the notation ¢ will stand for an Orlicz function, i.e. a
function ¢ : IR — IR*™ which satisfies the conditions: ¢ is even, convex,
$(0) =0, ¢p(u) > 0 if u # 0 and lim, o 2 =0, lim, . 2% = co.

This function is called of A, type (d> type respectively) when there
exist constants K > 2 and uy > 0 for which ¢(2u) < K ¢(u), Yu > uy
(respectively for 0 < u < ug).

An Orlicz function admits a derivative ¢’ unless on a denumerable set
of points. It satisfies ¢/(0) = 0, ¢'(|u|) > 0if u # 0 and lim|,| ¢'(Jul) =
400 so that ¢ is strictly increasing to infinity.

The derivative ¢’ satisfies the inequality (cf. [4], [7], [8])

(2.1) ud'(u) < ¢(2u) < 2u ¢'(2u) Yu > 0.

From [8], we know that if ¢ is an Orlicz function then, for every
€ > 0 there exists an Orlicz function ¢. with a continuous derivative and
satisfying

¢(x) < ¢(z) < (1 +¢)ge(z)  VreRR.

In view of this we may assume ¢’ to be continuous in all what follows.
The function ¢(y) = sup{z |y|—¢(z), x > 0} is called conjugate to ¢.
It is an Orlicz function when ¢ is.
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The pair (¢, 1) satisfies the Young’s inequality:
vy < ¢(x)+(y) relR yelR.

Let us note that equality holds in the Young’s inequality iff z = v’ (y)
ory = ¢'(z).

In the following we shall consider normalized pairs of conjugate func-
tions, i.e. such that ¢(1) + (1) = 1. There is no restriction since for
every pair we may define an equivalent normalized one in the sense that
they define the same respective spaces and equivalent norms (cf. [9]).

In the class of Orlicz functions a partial order may be defined by
setting,

¢1(az) < bgy(x) for |z| > x5 >0
(22) ¢1 S (bg, When a.nd

¢o(cx) < dgi(x) for |z| <2y
where a, b, c,d, xq and z; are constants depending on ¢; and ¢s.

This order is natural in the L? spaces for power functions with a =
b=c=d=xy =2, = 1.

Let ¢ be an Orlicz function. The Orlicz sequence space 1% is the set
of sequences of scalars,

1% = {a = (al,ag,...),Zqﬁ(%) < 400, for some k > 0} =
n>1

— {a - (al,ag,...),@;ww) - o}

We will use the notation ps(a) = 32,5, (] an|).
The space [ equiped with the Luxemburg norm,

& llo = nt {k > 0,p10 (7) < 0(1)}

is a Banach space (cf. [7], [8]).
A second norm (called Orlicz norm) is defined by means of the for-

llallle = sup {| > anb,

n>1

mula:

s pre (D) < 1}

(cf. [7], [8]), where a = (ay,as,...).
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These norms are equivalent and satisfy,

b
¥(1)

(2.3) P(1)-flallis < lllallle < lalls — aecl®.

3 — The Besicovitch-Orlicz space of almost periodic functions

Let M(IR) be the set of all real Lebesgue mesurable functions. The
functional,

o MUR) = 0,00], pse() = T o [ ol
is a pseudomodular (cf. [3], [5], [6]).
The associated modular space,
BY(R) = {f € M(R), lim ppe(a f) = 0} =
={fe M(R), pgs(Af) < +oo, for some A > 0}
is called the Besicovitch-Orlicz space.

This space is endowed with the pseudonorm (cf. [3], [5], [6])

7llse = it {k > 0.pe (1) < 61}

called the Luxemburg norm.
As usual, one may define an Orlicz pseudonorm in the B%a.p. space
by setting,

£l pe = sup{M(|fgl),g € B’a.p., ppe(g) <1}

Let now P be the set of generalized trigonometric polynomials, i.e.;
P :{P(t) = Zaj etit, \jER,a; €C,n€E ]N.}
j=1

The Besicovitch-Orlicz space of almost periodic functions, denoted
byB?a.p. is the closure of the linear set P in B?(IR), with respect to the
pseudonorm ||. || gs:

B?a.p.={f € B°(R),3P, € P, n=1,2,...; s.t. lim |f = Pal|lge = 0}
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Some structural and topological properties of this space are consid-
ered in [3], [5], [6].

From [3], [5], we know that ¢(|f|) € B'a.p if f € B%a.p, then by a
classical result (cf. [2]) the limit exists in the expression of pge( f), i.e.:

+T
poelf) = Jim o [ ol 0lan. 1 € Brap.

This fact will be very useful in our computations.

Let us denote by C°a.p.the classical algebra of Bohr’s almost periodic
functions, or what is the same the uniform closure of the linear set P. It
is known that

(3.1) o(1f]) € C°a.p. when f € C°a.p. (cf. [2])
Also, from [2] we have,
(3.2) M(| f]) > 0 when f € C°a.p., f#0

where the notation M(f) is used for M(f) = limr_, 77 ffTT f(¢)dt.

To every f € B?a.p., because of the inclusion B®a.p. < B'a.p. (see
Proposition 3.1 below), we can associate a formal Fourier series, more
precisely: define the Bohr transform of f € B%a.p.,a(\, f) = M(fe™*?),
AelR.

There is at most a denumerable set {A;, Ao, ... , \,, ...} of scalars for
which a(), f) # 0, (these are called the Fourier-Bohr’s exponents). The
associated coefficients {a(\;, f)};>1 are the Fourier-Bohr’s coefficients.
The sequence of Fourier-Bohr’s coefficients of the function f will be de-
noted by (f).

Questions concerning the convergence of the formal Fourier series
S(f)(x) = X, > a(A, f) e ™% are not trivial and only partial results
are available.

The Bochner approximation result will be of importance here:

Let f € B%a.p. and S,,(f)(z) = X k_, a(Ak, f) e?* K be the partial
sums of it’s formal Fourier series. There exists a sequence o,,(f), m > 1
of trigonometric polynomials (the Bochner-Fejér’s approximation poly-
nomials) of the form,

()@ = 3 fimx A, Fles

K=1



176 M. MORSLI — D. DRIF 6]

where the convergence factors {i,, x} depend only on the sequence of
characteristic exponents { Ak } of the function f and satisfy 0 < p, x < 1.
The sequence {0,,(f)} has the following approximation properties

(ct. 2], [3]):
D Nom(NDllse < 1fllge, m=1,2,...

(33) pB¢(07n(f)) < PBd)(f), m=1,2,...
i) low(f) — fllz, — 0, when m — oco.

Notice that from (3.1), (3.2) and the properties i)-ii) of the Bochner-
Fejér’s approximation polynomials we deduce easily that ||.|| e is in fact
a norm on Ca.p..

To end this section, we summarize in the following the inclusion rela-
tions in the class of Besicovitch-Orlicz spaces and between Orlicz sequence

spaces (cf. [3], [9]).

PROPOSITION 3.1. Let ¢y and ¢y be two Orlicz functions such that

D1 < ¢ (see (2.2) for the definition) then, there hold:

i) B*2(R) C B*(R); B?a.p. C B*a.p.

i) [|.llger < @ ||.]|gos for some a > 0 depending on ¢, and ¢ps.

iii) 191 C [92.

iv) |||l < Bl|-|l;61 for some B> 0 depending on ¢ and ¢s.

v) if (¢i,1:),1 = 1,2 are two pairs of complementary Orlicz functions,
we have,

O1 < Py = 1hy <y

4 — Convergence results in B%a.p.

A sequence {fi}r>1 from B?(IR) is called modular convergent to
some f € B?(IR) when limy, ., pge(fr — f) = 0.

Let P(IR) be the family of subsets of IR andX(IR) the X- algebra of
it’s Lebesgue mesurable sets. For A € ¥, we define the set function,

+T
fi(A) TIEEOQT/ Xa(t)dp =

= lim 2—u<Aﬂ TT)

T—o00
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Clearly, @ is null on sets with p-finite measure. Moreover, [ is not
o-additive.

As usual, a sequence { fi},>1 will be called fi-convergent to f when,
for all e > 0,

Jim 7i{e € R[i(e) ~ (@) > ¢} = 0.

We now state some fundamental convergence results that will be used
below (cf. [5], [6]):

PROPOSITION 4.1.  Let {fi}i>1 be a sequence of functions from
B?(IR). We have the following:

i) suppose there exist f € B*(IR) such that khrf ppe(fe — f) =0 and
g € B%a.p. such that max(|fi.(z)|,|f(x)]) < g. Then, klir+n pro(fr) =
c—+00

ppe(f)-
ii) If f € B%a.p. and {P,} is the associated sequence of Bochner-Fejér’s

polynomials, we have: lmn_ppo(Po)=po(f) (and lim_|| P[50 =
1£1l54)-
iii) If f € B%a.p. is such that lim,_, o ppe(fn — f) =0, then

a) liimn—)+oopB¢(fn) > PB¢(f)-
b) {f.}n>1 is fi-convergent to f.

5 — Auxiliary results

LEMMA 5.1.  Let f € B%a.p., f # 0 and {f.}n>1 be a sequence
modular convergent to f, then:

there exist constants ay, 8,60, with 6, €]0,1[,0 < «; < 31, ng € IN , such
that for the sets G, = {t € R,y < | f,.(t)] < B1} we have i(G,,) > 6,
Vn > ng.

ProoOF. From
G={teRac<
pr=B+735 ,0i=

5], there exist a, 8,0 with 6 €]0,1[, 0 < o < § and
f(z)] < B} such that (G) > 6. Take oy = ¢ and

[
| >
9
2
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Since { f,, }n>11s modular convergent to f, it is also fi-convergent to f
(see iii)-b) of Proposition. 4.1) and then,

At R )~ SO 2 2} < T vnz .

Putting GI, = {t € G, |fu(t) — f(t)] > §}, it is easily seen that
G -G, C G, Yn > ne.
Finally

A(Gn) =2 (G = G,) 2 (@) —(G) 20— 5 =01 0

| D

LEMMA 5.2. Let (¢,1) be a normalized pair of Orlicz functions.
i) if f € BPap. then ppo(grf—) = ¢(1) (| f 5o #0).

Moreover if f € C°a.p we have pps(f) = o(1) iff || f|ls = 1.

i) M(fgD)<|fllge-lgllge; f€B?a.p, g€ B.a.p (Hélder’s inequality).
iii) if f € B%a.p,g € B¥a.p then fg € Bla.p.

PROOF. i) Let ¢, > 0 be such that lim,, ., €, =0and f, = m.
B n
We have pge(f,) < ¢(1) and the sequence (f,,) is modular convergent to
f

TFilpe "
Using Proposition 4.1 we deduce,

. / f
1im ppe (m) = Ppo (m) <o(1).

On the other hand, by similar arguments for the sequence g,, =

we get de’(m) > ¢(1).
Finally we have qua(m) = ¢(1).

S S
HfHqu_En ’

Suppose now that f € C°a.p. and pB¢(£) = ¢(1) for some a > 0.
The function <b(%|) is also in C°a.p. From (3.2) we have ¢(|7f‘) =

¢( |f] )

11l 5o
Now, since ¢ is stricty increasing we get || f||ge = a
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ii) Let || fllgs # 0, ||lgll gw # 0, then, from Young’s inequality we have:

M Toter) <o (1) + o () <

£l gl 5o 1f1l 5o 9/l e
<o) +v(1) =1

and then
M(|fgl) <l fllzellglpe -

iii) Let (P,) and (Q,) be the sequences of Bochner-Fejér’s polynomials
that converge to f and g in the respective norms. Using ii) of this lemma
and 1) of (3.3), we get,

M(|f g = Pu@ul) < [ fllpellg = @nllpe + lgllpellf — Pallpe

and the desired result follows immediately. 0

LEMMA 5.3. Let P € P. The function F : [0,+oc0[— [0,40c0],
F(k) = pgu(¢'(k|P|) is continuous on [0,4+00[. Moreover it satisfies
F(0) = 0 and limy,_,o F(k) = 400, so that F(ky) = 1 for some kg €
10, +o0l.

PrOOF. Since the functions ¢ and ¢’ are continuous, we have
(@' (k|P])) € C°a.p. and then if & > 0 and P # 0, we get from (3.2),
ppv(¢'(K|[P[)) > 0.

Let now x¢ be such that P(xg) # 0 and let o > 0 satisfies |P(x)| > a.
There exists § > 0 for which |P(z)| > 2a, Va € (xo — 6,29 + 0).

Let la > 26 be an inclusion length of P corresponding to ¢ = 3.
Then, each intervall of length o contains at least one number of the form
xo+7, with 7 € £(5, P), where £(%, P) is the set of translation numbers
of P corresponding to € = §. Such an intervall (of length la ) contains at
least one of the intervalls (zg + 7 — d, 20 + 7) or (zg + 7,20 + 7 + 0).

Consequently, in each intervall of length [ o, there exists a subintervall
of length ¢ > 0 where |P(x)| > §.
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It follows,

[l PO > [6(52)] 5 and then,

ool P = fim 1 [ P>
)}

[

k

wlgum

A

——2=)

Now, since an Orlicz function increases to infinity with it’s derivative
(cf. [4]. [8]) we get limy_,o F'(k) = +o00.

We now show that F' is continuous.

For, let kg €]0, 0o[ and {k, } be a sequence of scalars converging to k.

A trigonometric polynomials being uniformly bounded, we put
| P| o= M

Using the uniform continuity of ¢’ on the intervall [70, %], we get,

Ve > 0, Ing such that n > nyg = [¢'(k,|P|) — &' (ko|P|)] < ¥ (e)
and then,

(*) Pl (ka|Pl) — ¢'(ko| P])] < &

Let us put f, = ¢'(k,|P|) and f = ¢'(ko|P|), then clearly f, € C°a.p.
and f € C°a.p. Since ¢’ is increasing we have f,, < ¢'(2ko|P|) and from
(x) it follows lim,, o pgv (fn — f) = 0. Finally in view of Proposition 4.1-
i) we get lim,, o pge(fn) = ppe(f), which means that F' is continuous
at ko.

Now, since F'(0) = 0 and limy_,, F'(k) = 400, there exists ko €]0, 00]
for whichF' (ko) = pgu[¢'(ko|P]|)] = 1. 0

LEMMA 5.4. Let f € B%a.p., then,

i) [1fll e = inf{3(1 + ppe(k f)); k > 0}.
ii) pm(m) <1
iii) ¢(1).1fllps < flllss < 5l llse-
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PROOF. i) The proof will be down in several steps.

a) From iii) of Lemma 5.2 we have,

1/l 26 = sup{M(|f g]), ppv(9) < 1,9 € B".a.p} <
sup{M(|f h|), ppe(h) < (1), h € BY.a.p}

_ !
— (1)

Now, since pge(h) < (1) implies ||h] ge < 1, using Young’s inequality
we get

(5.1) £z < o )||f||¢

b) Let P€ P then, there exists ky €]0, co[ such that,

1

Indeed, from Young’s inequality we have:
1 1
M(|Pgl) = - M(lk Pgl) < Zlp,, (K P) + ppu(g)] Yk >0

and then, [||P|||gs < infyso £[pps(k P) +1].
Now, considering the case of equality in the Young’s inequality and
using Lemma 5.3, we get,

IPllpe = klOMﬂkoP\(f)/(deD) = kio[pm(koP) + ppo (@ (ko P))] =

1

= kf()[ﬁm(kop) +1]

finally,

L o (hoP) +1].

't
I1Pllse = inf 7 loms(k P)+1] = 1

c) We now show that the result of b) remains true for f € B%a.p.
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For, let {P,} be the sequence of Bochner-Fejér polynomials of the
approximation of f. From b) we know that,

1
(5.2)  Vn >1,3k, €]0,00] such that ||| P,|||gs = k—[de)(knPn) +1]

from (5.1) and the properties of the Bochner-Fejér’s polynomials (see i)
of (3.3)), we get:

1 1 1
. = MPalllse < mlanllm < WHJC”Bdw

and thus k,, > H}D‘(‘l) =C,>0.

‘We now show that k, < Cs, ¥Yn > 0 for some constant Cs.
Indeed, if this is not the case, there will exists a subsequence denoted
by{k,} increasing to infinity and then:

1= i (0l B2 = T o [ 0l P 2

>
> Tm T/ B[S (k| P dE >

T~>002

Zﬁﬁ/ Y[ (knon)|dt > 0,.9[¢ (knaq)] — 0o as n — oo

where G,,,0;, a; are defined in Lemma 5.1. A contradiction.

Now, {k,} being bounded, there exists a subsequence denoted by
{k,} converging to kg, 0 < ko < +o0.

Let us show that lim,, . pge (k. Pn) = ppe(kof). Indeed, we have by
i) of (3.3),

SPel2(bn = Ro)Pa] + Sppe2Ko(Pa = )] <

o = Kol pio () + 590 2K0( P = f)]

pB¢(knP7L - kOf)

IN

IN

and then lim,, ., pgs(k, P, — ko f) = 0. Now, in view of Proposition 4.1-
iii) it follows that

lim ppo(knPn) = ppo(kof) -

n—-+4oo
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In the other hand, from the inequality pge(kn,Pn) < ppe(k, f) (see-i)
of (3.3)) we have also,

lim ppo(knPn) < UM ppo(kn f) = T ppo(kn f) = ppo(kof)

n—-+oo

and then,

i ppo(knPy) < ppo(ko f) < Lim ppo(k,P)

n—-+oo

this proves the desired result.
Finally, letting n — oo in (5.2) we get|||f||lze = %[quz,(k‘o f)+1].

ii) Suppose first that f € C°a.p., f # 0. Let g € BYa.p. then,
a) if ppu(g) < 1, we have M(|f g) < ||| /][ po-
b)if e (9) > 1, ppv (5 -45) < 5 pev(9) =1 and then M(|f —45]) <
1171l go-

It follows that in all cases we have, M(|f g|) <max(1, pge (9) || f]ll 5o -

Suppose now that g = qﬁ’(m), then g € C%a.p..

Using the case of equality in the Young’s inequality and the fact that
in this case the limits exist, we will have:

f
111l e

M( .gD = pm(ﬁ) + ppe(9) < max(1, pgu(g)) -

So that we get, PB‘b(m) <1

Consider now the case of f € B%a.p.
Let P, be the sequence of Bochner-Fejér’s polynomials of the approx-
imation of f, we have:

P,
ppo(——n—) <1, VYn>1.
o <|||PH|HB¢)

But, in view of Lemma 5.4-i) and i) of (3.3), we can write:

| !
1P e = inf (1 + pgo(k o)) < inf +(1+ pgo (k1) = 1l s -
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So that, pge(rir—) < pge (e

MPall 5o
sition 4.1, qub(%) < 1.

) <1 and then by -ii) of Propo-

iii) We have, pB¢(%) < ¢(1)pB¢(m) < ¢(1) and then

1

1fllpe < ﬁlllflllm.

Now, in view of (5.1), we get:

1

(L) flle < N flllpe < m\lﬂlm. 0

LEMMA 5.5. Let f € B¥a.p. Then:

I1f[lle = sup{IM(fQ)], Q € P, pp+(Q) < 1}

ProOOF. We consider first the case when f = P € P.
Recall that from Lemma 5.3, there exists 0 < ky < +oo such that
pps (V' (Kol P|)) =1 and,

1Pl e = M(|P¢' (kol PI)) =
= M(P(z). sign P(x).4)' (ko| P()]))

Now, since sign P(z).¢)'(ko|P(z)|) € C°a.p., it follows from the definition
of the Orlicz norm that,

[1Pll[ge = sup{|M(P Q)|, @ € C°a.p., pps(Q) < 1}

(To see that sign P(z). ¢’ (ko| P(z)|) € C°a.p., remark that the function
F(u) = UW if w # 0 and F(0) = 0 is continuous so that F(P)
€ C°.p. if P € C%.p.).

In fact, using the properties (3.3) of the Bochner-Fejer’s approxima-
tion polynomials, we can easily show the following,

[1P[lpe = sup{|M(P Q)|,Q € P, ppe(Q) < 1}.
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Consider now the general case of f € B%a.p.

Let {P,}be the sequence of Bochner-Fejer’s polynomials that con-
verge to f in B¥a.p.

Put I(f) = sup{|M(f Q)|.Q € P, pps(Q) < 1} then, clearly I(f) <
A1l -

Moreover, given € > 0, there is ng > 0 such that for n > ny we have,
I1f = Pualllpe <€ and [[|fll[ge < [[|Palllpe + ¢
Then, using the particular case and Hélder’s inequality it follows,

1,0 =& < MPalll,, = sup{IM(P. Q)],Q € P,p,_,(Q) <1} <
S Sup{”f - PTLHB'(/)'”QHB(p’Q S P7p3¢(Q) S 1}+
+sup{M(fQ), Q€ P, p,(Q) <1} <

<I(f)+e
Finally, I(f) < Ilf[ll,, <I(f)+ 2.
Now, since ¢ > 0 is arbitrary, we get I(f) = ||[f[l| - This is the
desired result. O

6 — Main results
We can now state and prove the main result.
THEOREM 6.1 (Hausdorff-Young). Let (¢,v) be a complementary

pair of normalized Young’s functions. Suppose:

1) ¢ < ¢o where ¢o(x) = 5 2.
i) ¥'(x) < agz” 0 <x < 400 for some ag >0 and r > 1.

Then:

Ifll, < Kolflze  fe€B’pp.
Il = Klfl,  feBpp

where Ky and K, are constants that depend on ¢ and 1 but not on f.

ProOF. We first prove the theorem in the class P of generalised
trigonometric polynomials.

For, let G = G(t) =Y, d; ', d; € C, \; € R.
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We will show that there exists a constant v > 1 depending only on ¢

and 1), such that
1Gllge < YNGllie -

Put v = sup {”” “”B“’ ford; e C, j=1,2,... ,n}.

It is easily seen that v = sup{||G|zv, |Gl = 1;d; € C,j =
1,2,...,n}.

The sup being taken over all polynomials G such that ||G|[;s = 1,
i.e.over all coefficients (d;); <, for which ||G||;s = 1, the A;’s being fixed.

Since the set A = {(d;);<n, |G|l;s = 1} is compact and by the conti-
nuity of the mapping 7' : G — ||G|| g, it follows that v = supT'(d;);<n
exists and is finite, more precisely, there exists a polynomial G such that,

G
(6.1) _ 1G5
1Gls
We now show that v depends only on ¢ and ¥ (and not onn € IN or
A € R).
Define the function g(z) = z//(”‘gl(l 2Ly sign(G(z)).

Using -i) of Lemma 5.2 and (2.1), we can write,

G| Gl |G
(1) = ppo () <M W -
1) = o () <Ml ()
G
— M(g(x).inGHBw) .
hence, M(gG) > ¢(1).[|G|[gv and then,
Y(1).|G | e < M(gG) = Zd M(g(z) ™) =Y a(G, \;)a(g, A;) <
j=1
< ||GH1¢-||9||W-
Consequently, in view of (6.1), we get:
N G
(6.2 Il 2wl 5o )

el
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Recall that since G is a trigonometric polynomials and ¢’ continuous, |g|
is a Bohr’s almost periodic function and then, Bessel ’s inequality holds

for g (cf. [2]):

(6.3) (Iglli2)* < M(g?) < lg*ll -1l s = llg*[| 50

Take 1, (z) = (2?), it is easily seen that ¢, is an Orlicz function such
that ¢ < 1,

Let us put a? = ||¢g?|| g then, since 1(g?) is a Bohr’s almost periodic
function, we have 0 < a < oo and then using -i) of Lemma 5.2,

2

g g
U1(1) =¥(1) = pp (5) = Pp¥1 (5)
and thus
(6.4) a = gl g
From (6.3) and (6.4) it follows immediately:

(6.5) 19112 < Nl e

Let now ty(x) = ¢ (2"). From (6.1), (6.4) and the hypothesis ii) of the
theorem, we can write,

0 = ) =60 = s (8) = o (7 (112)) <

(6.6)
<o [ 3 o) < oo (i)
where
(6.7) (B ==
Consequently, we have ||5; ngu(ZL || gwo > 1 since in the opposite case

81 \G(t)\
we will have p o, (—) < 4hy(1) for some 0 < a < 1 and then G being

«
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a trigonometric polynomials, from (3.2) we will deduce p v, (ﬁlﬁ) <
B
1¥5(1), a contradiction.
Hence
G(®)]

6.8
( ) Hﬁl ||G||Bw B2 —
From (6.7) and (6.8) it follows,

1Gllguayr o @ 1
6.9 > 2 -
(6.9) ler] 2 o = oo lsllav

Considering now the hypothesis i) of the theorem, Proposition 3.1 implies
the following inequalities and relations inclusion, ¥y < ¥ <1, < 1hy and
then ¢y > ¢ > ¢1 > ¢». From this it follows, [#2 C [?1 C [? C 2 C ¥ C
[¥1 C (V2.

On the other hand, from the hypothesis ii) of the theorem, we have,

7/)2(37) _ wl(xr) — w(IQT) < erw/(x2r) < (1/0£U2T.(.732T)T _ anQT(T-‘rl)
let us put ¥3(z) = %|$|2Mr+1)7 then ¥3(z) > 1y (z) Vo > 0.
From this and (6.1), (6.2), (6.5), (6.9) it follows,

$(1) <v9(1) < gl < Kallglle <

Gl gesr
< Ksllgllger < Ks.a <
(6.10) 2lolans < Koo ]
My, |Gl05 17 My, e
S Kg.a0|: @3 || A||l‘b3:| S K2.a,0 |:,84 ¢3:|
7 Gl gl
where K, is the constant of the inequality ¥ (z) > to(x) = La® (ie.

-l < Ka[[li2)-

My, is the constant of the Hausdorff-Young inequality in B with
q=2r(r+1).

The constant £, is from the inequality ||G||ss < B4l|Gll;6 which is a
consequence of an inequality ¢s(z) < ¢(x) Va,0 < x < xy. This later
may be obtained by a suitable restriction on ¢ near the origine.

Now, inequality (6.10) may be written in the form,

P(1) < (1) < Kaag.fa M,
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and then, 1 <~ < K5 where Kj is a constant depending only on ¢.
Finally,

(6.11) 1Pllge < AP,  VPEP.

where 7 is a constant depending only on ¢.

To show the converse inequality, let P(t)=>_7_, ¢; ¢'** be a trigono-
metric polynomial. Putting G(t)=>_7_, d;e~*"", we will have, [M(PG)|=
[ 2521 ¢ dj| and [M(P G)| < [P pe-[|Gl|gw, thus, by (6.11): |[M(PG)| <
1Pl .- Gl <AIPIl,, Gl so that,

1P = s {| e ()01 3 001y < 1) <
< SUP{‘ icjdj 7(dj)j215z¢(|dj|) < 1} <

(612 sSup{\icjdj J>1,2¢ i) < 6(1)) <
0 {!ch i ¢ )f>“jzl¢('hj'><¢“>}<

1

<™ {’Z%

\ /\

.,
s <1p <P,

¢(1)

Now, using (2.3), we get finally,

5
1P|

| s

The theorem is then proved in the class P of trigonometric polynomials.
To consider the general case, let f € B®a.p. and {P,} be the associated
sequence of Bochner-Fejér polynomials that converge to f in the norms
[l ., and [|[.][[ ,, since the laters are equivalent.

Let A(f) = {A1, A2,... } be the set of Fourier-Bohr’s exponents of f.
It is known that A(P,) C A(f), ¥n > 1. Put ¢; = a();, f), j > 1 and
denote by (c;"')j the finite sequence of Fourier-Bohr coefficients of P,,,
' = M(P,,e~"N"). (note that ¢I" = 0 if \; ¢ A(P,)).
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Remark first that we have |¢;—c{™| < M(|P,,—f]) < 1 Pn=fll ., — 0
as m — +00.

It follows then
(6.14) lim sup le; — ™ =0.

m—r00

Let £ > 0 and n € IN. Put ap = ¢~ (1)
From (6.14) there exists my = mg(e,n) > n such that Vm > my, |¢;| <
|c§-m)| + £ and then, for m > my; using (6.13) and - i) of (3.3),

sup {| Sy ()23 01 )) < 1}
j=1

= sup{z l¢jd1, (dj) 21 vi‘md )= } s

.
Il
—

<sup {3 |e5'dy) <dj>j21,_2¢<|d <1} +ea <
<1 Bllliw + e < o )||P mll,, +eao <
T _qp < — T ..
= P |l e = e e
Since € and n are arbitrary, we get finally,
: ; Y N v
PO Fllew <N lw < WHJC”BW Lef[fllw < WH-}C”B¢ :

This proves the first inequality.

To prove the second inequality, let f € B¥a.p., then the hypothesis
i) of the theorem implies f € BZa.p. and then, if we consider P,(z) =
Yooy a(Xj, fet®, (the partial sums of the Fourier-Bohr’s series of f), we
have ||f — P,||gz — 0 as n — oo (cf. [1], [2]).

Moreover if Q € P with A(Q) NA(f) # 0, one has,

IMP.Q)I = | 3 alhs, ar, Q) < 1 llw- Qe -
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Now, using (6.13), we get,

IM(P, Q)| < [ flliw-1Qlle < NF e Qe -

¢() P(1)

and, since || f — P,||zz — 0 as n — oo, we have also,

IM(PQ)| < Nl 1@ s -

_r
¢(1)-4(1)

Finally, in view of Lemma 5.5 and -iii) of Lemma 5.4, we get,

11/ 5o = sup{IM(f Q)|,Q € P; pps(Q ) <)<

< sup{[|Q| 5o, s (Q) < 11 W 1F]le <
o
< o Ml
Thus, y
YOI s < s < s ke
i.e.
I, < e [ Flle
5 = [p(1) (1)
This proves the theorem. 0
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