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An extension of the Hausdorff-Young theorem to

the Besicovitch-Orlicz space of almost periodic

functions

M. MORSLI – D. DRIF

Riassunto: In un recente lavoro [1] è stato esteso il teorema di Hausdorff-Young
ad una classe di funzioni di Besicovitch quasi periodiche Bpa.p. Qui si considera tale
estensione nel contesto degli spazi di Orlicz, ovvero allo spazio Besicovitch-Orlicz delle
funzioni quasi periodiche.

Abstract: In a recent papers (cf. [1]), the Hausdorff-Young Theorem was ex-
tended to the class of Besicovitch almost periodic functions Bpa.p. We consider here
such an extension in the context of Orlicz spaces, namely the Besicovitch-Orlicz space
of almost periodic functions Bφa.p.

1 – Introduction

The classical Hausdorff-Young theorem for Lp spaces has been subject

to various generalizations. In [9], this result was extended to the context

of Orlicz spaces and recently considered in the class of Besicovitch spaces

of almost periodic functions Bpa.p. (cf. [1]). More precisely:

Let P denotes the linear set of generalized trigonometric polynomials.

Key Words and Phrases: Hausdorff-Young theorem – Almost periodic function –
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Define for p ∈ [1,+∞[ the norm

‖f‖Bp = lim
T→∞

( 1

2T

∫ +T

−T

|f(t)|pdt
) 1

p
, f ∈ P .

The space Bpa.p. is the completion of P with respect to the norm ‖.‖Bp.

The Hausdorff-Young Theorem in the class Bpa.p. states that if f ∈
Bpa.p. and f̂ = (ck)k∈IZ is the corresponding sequence of it’s Fourier

coefficients, then

i) ‖f̂ ‖
lq

≤ ‖f‖Bp if p ∈]1, 2].

ii) ‖f‖Bp ≤ ‖f̂‖
lq

if p ∈ [2,+∞[.

Here we extend these properties to the context of Orlicz space.

2 – Preliminaries

In the sequel, the notation φ will stand for an Orlicz function, i.e. a

function φ : IR → IR+ which satisfies the conditions: φ is even, convex,

φ(0) = 0, φ(u) > 0 if u 	= 0 and limu→0
φ(u)

u
= 0, limu→∞

φ(u)

u
= ∞.

This function is called of ∆2 type (δ2 type respectively) when there

exist constants K > 2 and u0 ≥ 0 for which φ(2u) ≤ K φ(u), ∀u ≥ u0

(respectively for 0 ≤ u ≤ u0).

An Orlicz function admits a derivative φ′ unless on a denumerable set

of points. It satisfies φ′(0) = 0, φ′(|u|) > 0 if u 	= 0 and lim|u|→∞ φ′(|u|) =

+∞ so that φ is strictly increasing to infinity.

The derivative φ′ satisfies the inequality (cf. [4], [7], [8])

(2.1) uφ′(u) ≤ φ(2u) ≤ 2u φ′(2u) ∀u ≥ 0 .

From [8], we know that if φ is an Orlicz function then, for every

ε > 0 there exists an Orlicz function φε with a continuous derivative and

satisfying

φε(x) ≤ φ(x) ≤ (1 + ε)φε(x) ∀x ∈ IR .

In view of this we may assume φ′ to be continuous in all what follows.

The function ψ(y) = sup{x |y|−φ(x), x ≥ 0} is called conjugate to φ.

It is an Orlicz function when φ is.
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The pair (φ, ψ) satisfies the Young’s inequality:

x y ≤ φ(x) + ψ(y) x ∈ IR, y ∈ IR .

Let us note that equality holds in the Young’s inequality iff x = ψ
′
(y)

or y = φ′(x).

In the following we shall consider normalized pairs of conjugate func-

tions, i.e. such that φ(1) + ψ(1) = 1. There is no restriction since for

every pair we may define an equivalent normalized one in the sense that

they define the same respective spaces and equivalent norms (cf. [9]).

In the class of Orlicz functions a partial order may be defined by

setting,

(2.2) φ1 ≤ φ2, when





φ1(ax) ≤ b φ2(x) for |x| ≥ x0 > 0

and

φ2(cx) ≤ dφ1(x) for |x| ≤ x1

where a, b, c, d, x0 and x1 are constants depending on φ1 and φ2.

This order is natural in the Lp spaces for power functions with a =

b = c = d = x0 = x1 = 1.

Let φ be an Orlicz function. The Orlicz sequence space lφ is the set

of sequences of scalars,

lφ =
{
a = (a1, a2, . . . ),

∑

n≥1

φ
( |an|

k

)
< +∞, for some k > 0

}
=

=
{
a = (a1, a2, . . . ), lim

λ→0

∑

n≥1

φ(λ| an|) = 0
}

We will use the notation ρlφ(a) =
∑

n≥1 φ(| an|).
The space lφ equiped with the Luxemburg norm,

‖x ‖lφ = inf
{
k > 0, ρlφ

(x
k

)
≤ φ(1)

}

is a Banach space (cf. [7], [8]).

A second norm (called Orlicz norm) is defined by means of the for-

mula:

‖|a|‖lφ = sup
{∣∣∣
∑

n≥1

an bn
∣∣∣; ρlψ(b) ≤ 1

}

(cf. [7], [8]), where a = (a1, a2, . . . ).
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These norms are equivalent and satisfy,

(2.3) φ(1).‖a ‖lφ ≤ ‖|a|‖lφ ≤ 1

ψ(1)
‖a ‖lφ a ∈ lφ .

3 – The Besicovitch-Orlicz space of almost periodic functions

Let M(IR) be the set of all real Lebesgue mesurable functions. The

functional,

ρBφ : M(IR) → [0,∞] , ρBφ(f) = lim
T→+∞

1

2T

∫ +T

−T

φ|f(t)|)dt

is a pseudomodular (cf. [3], [5], [6]).

The associated modular space,

Bφ(IR) = {f ∈ M(IR), lim
α→0

ρBφ(α f) = 0} =

= {f ∈ M(IR), ρBφ(λ f) < +∞, for some λ > 0}

is called the Besicovitch-Orlicz space.

This space is endowed with the pseudonorm (cf. [3], [5], [6])

‖f‖Bφ = inf
{
k > 0, ρBφ

(f
k

)
≤ φ(1)

}

called the Luxemburg norm.

As usual, one may define an Orlicz pseudonorm in the Bφa.p. space

by setting,

‖|f‖|Bφ = sup{M(|fg|), g ∈ Bψa.p., ρBψ(g) ≤ 1}

Let now P be the set of generalized trigonometric polynomials, i.e.;

P =
{
P (t) =

n∑

j=1

aj e
i λj t, λj ∈ IR, aj ∈ C, n ∈ IN.

}

The Besicovitch-Orlicz space of almost periodic functions, denoted

byBφa.p. is the closure of the linear set P in Bφ(IR), with respect to the

pseudonorm ‖.‖Bφ :

Bφa.p. = {f ∈ Bφ(IR),∃Pn ∈ P, n = 1, 2, . . . ; s.t. lim
n→∞

‖f −Pn‖Bφ = 0}
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Some structural and topological properties of this space are consid-

ered in [3], [5], [6].

From [3], [5], we know that φ(|f |) ∈ B1a.p if f ∈ Bφa.p, then by a

classical result (cf. [2]) the limit exists in the expression of ρBφ( f), i.e.:

ρBφ(f) = lim
T→∞

1

2T

∫ +T

−T

φ(|f(t)|dt), f ∈ Bφa.p.

This fact will be very useful in our computations.

Let us denote by Coa.p.the classical algebra of Bohr’s almost periodic

functions, or what is the same the uniform closure of the linear set P. It

is known that

(3.1) φ(|f |) ∈ Coa.p. when f ∈ Coa.p. (cf. [2])

Also, from [2] we have,

(3.2) M(| f |) > 0 when f ∈ Coa.p., f 	= 0

where the notation M(f) is used for M(f) = limT→∞
1

2T

∫ +T

−T f(t) dt.

To every f ∈ Bφa.p., because of the inclusion Bφa.p. ↪→ B1a.p. (see

Proposition 3.1 below), we can associate a formal Fourier series, more

precisely: define the Bohr transform of f ∈ Bφa.p., a(λ, f) = M(f e− i λ t),

λ ∈ IR.

There is at most a denumerable set {λ1, λ2, . . . , λn, . . . } of scalars for

which a(λ, f) 	= 0, (these are called the Fourier-Bohr’s exponents). The

associated coefficients {a(λi , f)}i≥1 are the Fourier-Bohr’s coefficients.

The sequence of Fourier-Bohr’s coefficients of the function f will be de-

noted by (f̂).

Questions concerning the convergence of the formal Fourier series

S(f)(x) =
∑

n≥1 a(λn, f) e−iλnx are not trivial and only partial results

are available.

The Bochner approximation result will be of importance here:

Let f ∈ Bφa.p. and Sn(f)(x) =
∑n

K=1 a(λK , f) e i λK x, be the partial

sums of it’s formal Fourier series. There exists a sequence σm(f), m ≥ 1

of trigonometric polynomials (the Bochner-Fejér’s approximation poly-

nomials) of the form,

σm(f)(x) =
rm∑

K=1

µmK a(λK , f)eiλKx
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where the convergence factors {µmK} depend only on the sequence of

characteristic exponents {λK} of the function f and satisfy 0 < µmK ≤ 1.

The sequence {σm(f)} has the following approximation properties

(cf. [2], [3]):

(3.3)

i) ‖σm(f)‖Bφ ≤ ‖f‖Bφ , m = 1, 2, . . .

ρBφ(σm(f)) ≤ ρBφ(f), m = 1, 2, . . .

ii) ‖σm(f) − f‖Bφ
→ 0, when m → ∞ .

Notice that from (3.1), (3.2) and the properties i)-ii) of the Bochner-

Fejér’s approximation polynomials we deduce easily that ‖.‖Bφ is in fact

a norm on Coa.p..

To end this section, we summarize in the following the inclusion rela-

tions in the class of Besicovitch-Orlicz spaces and between Orlicz sequence

spaces (cf. [3], [9]).

Proposition 3.1. Let φ1 and φ2 be two Orlicz functions such that

φ1 ≤ φ2 (see (2.2) for the definition) then, there hold:

i) Bφ2(IR) ⊆ Bφ1(IR); Bφ2a.p. ⊆ Bφ1a.p.

ii) ‖.‖Bφ1 ≤ α ‖.‖Bφ2 for some α > 0 depending on φ1 and φ2.

iii) lφ1 ⊆ lφ2.

iv) ‖.‖lφ2 ≤ β‖.‖lφ1 for some β > 0 depending on φ1 and φ2.

v) if (φi, ψi), i = 1, 2 are two pairs of complementary Orlicz functions,

we have,

φ1 ≤ φ2 ⇒ ψ2 ≤ ψ1 .

4 – Convergence results in Bφa.p.

A sequence {fk}k≥1 from Bφ(IR) is called modular convergent to

some f ∈ Bφ(IR) when limk→∞ ρBφ(fk − f) = 0.

Let P (IR) be the family of subsets of IR andΣ(IR) the Σ- algebra of

it’s Lebesgue mesurable sets. For A ∈ Σ, we define the set function,

µ(A) = lim
T→∞

1

2T

∫ +T

−T

χA(t)dµ =

= lim
T→∞

1

2T
µ
(
A
⋂

[−T, T ]
)
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Clearly, µ is null on sets with µ-finite measure. Moreover, µ is not

σ-additive.

As usual, a sequence {fk}k≥1 will be called µ-convergent to f when,

for all ε > 0,

lim
k→+∞

µ{x ∈ IR, |fk(x) − f(x)| > ε} = 0 .

We now state some fundamental convergence results that will be used

below (cf. [5], [6]):

Proposition 4.1. Let {fk}k≥1 be a sequence of functions from

Bφ(IR). We have the following:

i) suppose there exist f ∈ Bφ(IR) such that lim
k→+∞

ρBφ(fk − f) = 0 and

g ∈ Bφa.p. such that max(|fk(x)|, |f(x)|) ≤ g. Then, lim
k→+∞

ρBφ(fk) =

ρBφ(f).

ii) If f ∈ Bφa.p. and {Pn} is the associated sequence of Bochner-Fejér’s

polynomials, we have: lim
n→+∞

ρBφ(Pn)=ρBφ(f) (and lim
n→+∞

‖Pn‖Bφ =

‖f‖Bφ).

iii) If f ∈ Bφa.p. is such that limn→+∞ ρBφ(fn − f) = 0, then

a) limn→+∞ρBφ(fn) ≥ ρBφ(f).

b) {fn}n≥1 is µ-convergent to f .

5 – Auxiliary results

Lemma 5.1. Let f ∈ Bφa.p., f 	= 0 and {fn}n≥1 be a sequence

modular convergent to f , then:

there exist constants α1, β1, θ1 with θ1 ∈]0, 1[, 0 < α1 < β1, n0 ∈ IN , such

that for the sets Gn = {t ∈ IR, α1 ≤ | fn(t)| ≤ β1 } we have µ(Gn) ≥ θ1

∀n ≥ n0.

Proof. From [5], there exist α, β, θ with θ ∈]0, 1[ , 0 < α < β and

G = {t ∈ IR, α ≤ |f(x)| ≤ β } such that µ(G) ≥ θ. Take α1 = α
2

and

β1 = β + α
2

, θ1 = θ
2
.
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Since {fn}n≥1is modular convergent to f , it is also µ-convergent to f

(see iii)-b) of Proposition. 4.1) and then,

µ
{
t ∈ IR, | fn(t) − f(t)| ≥ α

2

}
<

θ

2
∀n ≥ n0 .

Putting G′
n = {t ∈ G, |fn(t) − f(t)| ≥ α

2
}, it is easily seen that

G − G′
n ⊂ Gn ∀n ≥ n0.

Finally

µ(Gn) ≥ µ(G − G′
n) ≥ µ(G) − µ(G′

n) ≥ θ − θ

2
= θ1 .

Lemma 5.2. Let (φ, ψ) be a normalized pair of Orlicz functions.

i) if f ∈ Bφa.p. then ρBφ( f
‖ f ‖

Bφ
) = φ(1) (‖ f ‖Bφ 	= 0).

Moreover if f ∈ Coa.p we have ρBφ(f) = φ(1) iff ‖ f ‖φ = 1.

ii) M(|f g|)≤‖f‖Bφ .‖g‖Bψ ; f ∈Bφa.p, g∈Bψ.a.p (Hölder’s inequality).

iii) if f ∈ Bφa.p, g ∈ Bψa.p then fg ∈ B1a.p.

Proof. i) Let εn > 0 be such that limn→∞ εn = 0 and fn = f
‖f‖

Bφ+εn
.

We have ρBφ(fn) ≤ φ(1) and the sequence (fn) is modular convergent to
f

‖f‖
Bφ

.

Using Proposition 4.1 we deduce,

lim
n→∞

ρBφ

( f

‖f‖Bφ + εn

)
= ρBφ

( f

‖f‖Bφ

)
≤ φ(1) .

On the other hand, by similar arguments for the sequence gn = f
‖f‖

Bφ−εn
,

we get ρBφ( f
‖f‖

Bφ
) ≥ φ(1) .

Finally we have ρBφ( f
‖f‖

Bφ
) = φ(1).

Suppose now that f ∈ Coa.p. and ρBφ( f
a
) = φ(1) for some a > 0.

The function φ( |f |
a

) is also in Coa.p. From (3.2) we have φ( |f |
a

) =

φ( |f |
‖f‖

Bφ
).

Now, since φ is stricty increasing we get ‖f‖Bφ = a
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ii) Let ‖f‖Bφ 	= 0, ‖g‖Bψ 	= 0, then, from Young’s inequality we have:

M
( |f |
‖f‖Bφ

|g|
‖g‖Bψ

)
≤ ρBφ

( f

‖f‖Bφ

)
+ ρBψ

( g

‖ g‖Bψ

)
≤

≤ φ(1) + ψ(1) = 1

and then

M(|f g|) ≤ ‖f‖Bφ‖g‖Bψ .

iii) Let (Pn) and (Qn) be the sequences of Bochner-Fejér’s polynomials

that converge to f and g in the respective norms. Using ii) of this lemma

and i) of (3.3), we get,

M(|f g − PnQn|) ≤ ‖f‖Bφ‖g − Qn‖Bψ + ‖g‖Bψ‖f − Pn‖Bφ

and the desired result follows immediately.

Lemma 5.3. Let P ∈ P. The function F : [0,+∞[→ [0,+∞[,

F (k) = ρBψ(φ′(k|P |) is continuous on [0,+∞[. Moreover it satisfies

F (0) = 0 and limk→∞ F (k) = +∞, so that F (k0) = 1 for some k0 ∈
]0,+∞[.

Proof. Since the functions ψ and φ′ are continuous, we have

ψ(φ′(k|P |)) ∈ Coa.p. and then if k > 0 and P 	= 0, we get from (3.2),

ρBψ(φ′(k|P |)) > 0.

Let now x0 be such that P (x0) 	= 0 and let α > 0 satisfies |P (x0)| > α.

There exists δ > 0 for which |P (x)| > 2
3
α, ∀x ∈ (x0 − δ, x0 + δ).

Let lα
3

> 2δ be an inclusion length of P corresponding to ε = α
3
.

Then, each intervall of length lα
3

contains at least one number of the form

x0 +τ , with τ ∈ E (α
3
, P ), where E(α

3
, P ) is the set of translation numbers

of P corresponding to ε = α
3
. Such an intervall (of length lα

3
) contains at

least one of the intervalls (x0 + τ − δ, x0 + τ) or (x0 + τ, x0 + τ + δ).

Consequently, in each intervall of length lα
3
, there exists a subintervall

of length δ > 0 where |P (x)| > α
3
.
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It follows,

∫ a+lα
3

a

ψ[φ′(k|P (t)|)] dµ > ψ
[
φ′
(
k
α

3

)]
δ and then,

ρBψ [φ′(k|P |)] = lim
n→∞

1

n lα
3

∫ n lα
3

0

ψ[φ′(k|P (t)|)] dt ≥

≥
ψ
[
φ′
(
k
α

3

)]

lα
3

δ

Now, since an Orlicz function increases to infinity with it’s derivative

(cf. [4]. [8]) we get limk→∞ F (k) = +∞.

We now show that F is continuous.

For, let k0 ∈]0,∞[ and {kn} be a sequence of scalars converging to k0.

A trigonometric polynomials being uniformly bounded, we put

‖P‖∞=M .

Using the uniform continuity of φ′ on the intervall [k0
2
, 3 k0

2
], we get,

∀ε > 0, ∃n0 such that n ≥ n0 ⇒ |φ′(kn|P |) − φ′(k 0|P |)| ≤ ψ−1(ε)

and then,

(*) ρBψ [φ′(kn |P |) − φ′(k 0|P |)] ≤ ε

Let us put fn = φ′(kn |P |) and f = φ′(k 0|P |), then clearly fn ∈ Coa.p.

and f ∈ Coa.p. Since φ′ is increasing we have fn � φ′(2k 0|P |) and from

(∗) it follows limn→∞ ρBψ(fn−f) = 0. Finally in view of Proposition 4.1-

i) we get limn→∞ ρBψ(fn) = ρBψ(f), which means that F is continuous

at k0.

Now, since F (0) = 0 and limk→∞ F (k) = +∞, there exists k0 ∈]0,∞[

for whichF (k0) = ρBψ [φ′(k0|P |)] = 1.

Lemma 5.4. Let f ∈ Bφa.p., then,

i) ‖|f |‖Bφ = inf{ 1
k
(1 + ρBφ(k f)); k > 0}.

ii) ρBφ( f
‖|f |‖

Bφ
) ≤ 1.

iii) φ(1).‖f‖Bφ ≤ ‖|f |‖Bφ ≤ 1
ψ(1)

‖f‖Bφ.
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Proof. i) The proof will be down in several steps.

a) From iii) of Lemma 5.2 we have,

‖|f |‖Bφ = sup{M(|f g|), ρBψ(g) ≤ 1, g ∈ Bψ.a.p} ≤

≤ 1

ψ(1)
sup{M(|f h|), ρBψ(h) ≤ ψ(1), h ∈ Bψ.a.p}

Now, since ρBψ(h) ≤ ψ(1) implies ‖h‖Bψ ≤ 1, using Young’s inequality

we get

(5.1) ‖|f |‖Bφ ≤ 1

ψ(1)
‖f‖φ

b) Let P∈ P then, there exists k0 ∈]0,∞[ such that,

‖|P |‖Bφ =
1

k0

(1 + ρBφ(k0P )) .

Indeed, from Young’s inequality we have:

M(|P g|) =
1

k
M( |k P g|) ≤ 1

k
[ρ

Bφ
(k P ) + ρBψ(g)] ∀k > 0

and then, ‖|P |‖Bφ ≤ infk>0
1
k
[ρBφ(k P ) + 1].

Now, considering the case of equality in the Young’s inequality and

using Lemma 5.3, we get,

‖|P |‖Bφ ≥ 1

k0

M(|k0P |φ′(k0|P |)) =
1

k0

[ρBφ(k0P ) + ρBψ(φ′(k0|P |))] =

=
1

k0

[ρBφ(k0P ) + 1]

finally,

‖|P |‖Bφ = inf
k>0

1

k
[ρBφ(k P ) + 1] =

1

k0

[ρBφ(k0P ) + 1] .

c) We now show that the result of b) remains true for f ∈ Bφa.p.
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For, let {Pn} be the sequence of Bochner-Fejér polynomials of the

approximation of f . From b) we know that,

(5.2) ∀n ≥ 1,∃kn ∈]0,∞[ such that ‖|Pn|‖Bφ =
1

kn

[ρBφ(knPn) + 1]

from (5.1) and the properties of the Bochner-Fejér’s polynomials (see i)

of (3.3)), we get:

1

kn

≤ ‖|Pn|‖Bφ ≤ 1

ψ(1)
‖Pn‖Bφ ≤ 1

ψ(1)
‖f‖Bφ .

and thus kn ≥ ψ(1)

‖f‖
Bφ

= C1 > 0.

We now show that kn ≤ C2, ∀n ≥ 0 for some constant C2.

Indeed, if this is not the case, there will exists a subsequence denoted

by{kn} increasing to infinity and then:

1 = ρBψ(φ′(kn|Pn|)) = lim
T→∞

1

2T

∫ T

−T

ψ[φ′(kn|Pn|)]dt ≥

≥ lim
T→∞

1

2T

∫

Gn

ψ[φ′(kn|Pn|)]dt ≥

≥ lim
T→∞

1

2T

∫

Gn

ψ[φ′(knα1)]dt ≥ θ1.ψ[φ′(knα1)] → ∞ as n → ∞

where Gn, θ1, α1 are defined in Lemma 5.1. A contradiction.

Now, {kn} being bounded, there exists a subsequence denoted by

{kn} converging to k0, 0 < k0 < +∞.

Let us show that limn→∞ ρBφ(knPn) = ρBφ(k0f). Indeed, we have by

i) of (3.3),

ρBφ(knPn − k0f) ≤ 1

2
ρBφ [2(kn − k0)Pn] +

1

2
ρBφ [2k0(Pn − f)] ≤

≤ |kn − k0| ρBφ(f) +
1

2
ρBφ [2k0(Pn − f)]

and then limn→∞ ρBφ(knPn − k0 f) = 0. Now, in view of Proposition 4.1-

iii) it follows that

lim
n→+∞

ρBφ(knPn) ≥ ρBφ(k0f) .
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In the other hand, from the inequality ρBφ(knPn) ≤ ρBφ(kn f) (see-i)

of (3.3)) we have also,

lim
n→+∞

ρBφ(knPn) ≤ lim
n→+∞

ρBφ(kn f) = lim
n→∞

ρBφ(kn f) = ρBφ(k0f)

and then,

lim
n→+∞

ρBφ(knPn) ≤ ρBφ(k0 f) ≤ lim
n→+∞

ρBφ(knPn)

this proves the desired result.

Finally, letting n → ∞ in (5.2) we get‖|f |‖Bφ = 1
k0

[ρBφ(k0 f) + 1].

ii) Suppose first that f ∈ Coa.p., f 	= 0. Let g ∈ Bψa.p. then,

a) if ρBψ(g) ≤ 1, we have M(|f g|) ≤ ‖|f |‖Bφ .

b) if ρBψ(g)>1, ρBψ( g
ρ
Bψ (g)

)≤ 1
ρ
Bψ (g)

ρBψ(g)=1 and then M(|f g
ρ
Bψ (g)

|)≤
‖|f |‖Bφ .

It follows that in all cases we have, M(|f g|)≤max(1, ρBψ(g))‖|f |‖Bφ .

Suppose now that g = φ′( f
‖|f |‖

Bφ
), then g ∈ Coa.p..

Using the case of equality in the Young’s inequality and the fact that

in this case the limits exist, we will have:

M
(∣∣∣ f

‖|f |‖Bφ

.g
∣∣∣
)

= ρBφ

( f

‖|f |‖Bφ

)
+ ρBψ(g) ≤ max(1, ρBψ(g)) .

So that we get, ρBφ( f
‖| f |‖

Bφ
) ≤ 1.

Consider now the case of f ∈ Bφa.p.

Let Pn be the sequence of Bochner-Fejér’s polynomials of the approx-

imation of f , we have:

ρBφ

( Pn

‖|Pn|‖Bφ

)
≤ 1 , ∀n ≥ 1 .

But, in view of Lemma 5.4-i) and i) of (3.3), we can write:

‖|Pn|‖Bφ = inf
k>0

1

k
(1 + ρBφ(k Pn)) ≤ inf

k>0

1

k
(1 + ρBφ(kf)) = ‖|f |‖Bφ .
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So that, ρBφ( Pn
‖|f |‖

Bφ
) ≤ ρBφ( Pn

‖|Pn|‖Bφ
) ≤ 1 and then by -ii) of Propo-

sition 4.1, ρBφ( |f |
‖|f |‖

Bφ
) ≤ 1.

iii) We have, ρBφ( φ(1)f

‖|f |‖
Bφ

) ≤ φ(1)ρBφ( f
‖|f |‖

Bφ
) ≤ φ(1) and then

‖f‖Bφ ≤ 1

φ(1)
‖|f |‖Bφ .

Now, in view of (5.1), we get:

φ(1).‖f‖Bφ ≤ ‖| f |‖Bφ ≤ 1

ψ(1)
‖f‖Bφ .

Lemma 5.5. Let f ∈ Bψa.p. Then:

‖|f |‖Bψ = sup{|M(fQ)|,Q ∈ P, ρBφ(Q) ≤ 1}

Proof. We consider first the case when f = P ∈ P.

Recall that from Lemma 5.3, there exists 0 < k0 < +∞ such that

ρBφ(ψ′(k0|P |)) = 1 and,

‖|P |‖Bψ = M(|P |ψ′(k0|P |)) =

= M(P (x). signP (x).ψ′(k0|P (x)|))

Now, since signP (x).ψ′(k0|P (x)|) ∈ Coa.p., it follows from the definition

of the Orlicz norm that,

‖|P |‖Bψ = sup{|M(P Q)|, Q ∈ Coa.p., ρBφ(Q) ≤ 1}

(To see that signP (x). ψ′(k0|P (x)|) ∈ Coa.p., remark that the function

F (u) = uψ′(k0|u|
|u| if u 	= 0 and F (0) = 0 is continuous so that F (P )

∈ Coa.p. if P ∈ Coa.p.).

In fact, using the properties (3.3) of the Bochner-Fejer’s approxima-

tion polynomials, we can easily show the following,

‖|P |‖Bψ = sup{|M(P Q)|, Q ∈ P, ρBφ(Q) ≤ 1} .
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Consider now the general case of f ∈ Bψa.p.

Let {Pn}be the sequence of Bochner-Fejèr’s polynomials that con-

verge to f in Bψa.p.

Put I(f) = sup{|M(f Q)|, Q ∈ P, ρBφ(Q) ≤ 1} then, clearly I(f) ≤
‖|f |‖Bψ .

Moreover, given ε > 0, there is n0 ≥ 0 such that for n ≥ n0 we have,

‖|f − Pn|‖Bψ ≤ ε and ‖|f |‖Bψ ≤ ‖|Pn|‖Bψ + ε.

Then, using the particular case and Hölder’s inequality it follows,

‖|f |‖
Bψ

− ε ≤ ‖|Pn|‖
Bψ

= sup{|M(Pn Q)|, Q ∈ P, ρ
Bφ

(Q) ≤ 1} ≤
≤ sup{‖f − Pn‖

Bψ
.‖Q‖

Bφ
, Q ∈ P, ρ

Bφ
(Q) ≤ 1}+

+ sup{|M(f Q)|, Q ∈ P, ρ
Bφ

(Q) ≤ 1} ≤
≤ I(f) + ε

Finally, I(f) ≤ ‖|f |‖
Bψ

≤ I(f) + 2ε.

Now, since ε > 0 is arbitrary, we get I(f) = ‖|f |‖
Bψ

. This is the

desired result.

6 – Main results

We can now state and prove the main result.

Theorem 6.1 (Hausdorff-Young). Let (φ, ψ) be a complementary

pair of normalized Young’s functions. Suppose:

i) φ ≤ φ0 where φ0(x) = 1
2
x2.

ii) ψ′(x) ≤ a0x
r 0 ≤ x < +∞ for some a0 > 0 and r ≥ 1.

Then:

‖f̂‖
lψ

≤ K0‖f‖Bφ f ∈ Bφp.p.

‖f‖
Bψ

≤ K1‖f̂‖
lφ

f ∈ Bψp.p.

where K0 and K1 are constants that depend on φ and ψ but not on f .

Proof. We first prove the theorem in the class P of generalised

trigonometric polynomials.

For, let G = G(t) =
∑n

j=1 dj e
iλj t, dj ∈ C, λj ∈ IR.
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We will show that there exists a constant γ ≥ 1 depending only on φ

and ψ, such that

‖G‖Bψ ≤ γ‖Ĝ‖lφ .

Put γ = sup{‖G‖
Bψ

‖Ĝ‖
lφ

, for dj ∈ C, j = 1, 2, . . . , n}.
It is easily seen that γ = sup{‖G‖Bψ , ‖Ĝ‖lφ = 1; dj ∈ C, j =

1, 2, . . . , n}.
The sup being taken over all polynomials G such that ‖Ĝ‖lφ = 1,

i.e.over all coefficients (dj)j ≤n for which ‖Ĝ‖lφ = 1, the λi’s being fixed.

Since the set A = {(dj)j≤n, ‖Ĝ‖lφ = 1} is compact and by the conti-

nuity of the mapping T : G → ‖G‖Bψ , it follows that γ = supT (dj)j≤n

exists and is finite, more precisely, there exists a polynomial G such that,

(6.1) γ =
‖G‖Bψ

‖Ĝ‖lφ
.

We now show that γ depends only on φ and ψ (and not onn ∈ IN or

λj ∈ IR).

Define the function g(x) = ψ′( |G(x)|
‖G‖

Bψ
). sign(G(x)).

Using -i) of Lemma 5.2 and (2.1), we can write,

ψ(1) = ρBψ

( |G|
‖G‖Bψ

)
≤ M

[ |G|
‖G‖Bψ

.ψ′
( |G|
‖G‖Bψ

)]
=

= M
(
g(x).

G

‖G‖Bψ

)
.

hence, M(gG) ≥ ψ(1).‖G‖Bψ and then,

ψ(1).‖G‖Bψ ≤ M(gG) =
n∑

j=1

dj M(g(x) eiλj x) =
n∑

j=1

a(G,λj)a(g, λj) ≤

≤ ‖Ĝ‖lφ .‖ĝ‖lψ .

Consequently, in view of (6.1), we get:

(6.2) ‖ĝ‖lψ ≥ ψ(1)
‖G‖Bψ

‖Ĝ‖lφ
≥ γ.ψ(1)



[17] An extension of the Hausdorff-Young theorem to etc. 187

Recall that since G is a trigonometric polynomials and ψ′ continuous, |g|
is a Bohr’s almost periodic function and then, Bessel ’s inequality holds

for g (cf. [2]):

(6.3) (‖ĝ‖l2)2 ≤ M(g2) ≤ ‖g2‖Bψ .‖1‖Bφ = ‖g2‖Bψ

Take ψ1(x) = ψ(x2), it is easily seen that ψ1 is an Orlicz function such

that ψ ≤ ψ1.

Let us put a2 = ‖g2‖Bψ then, since ψ(g2) is a Bohr’s almost periodic

function, we have 0 < a < ∞ and then using -i) of Lemma 5.2,

ψ1(1) = ψ(1) = ρBψ

(g2

a2

)
= ρBψ1

(g
a

)

and thus

(6.4) a = ‖g‖Bψ1

From (6.3) and (6.4) it follows immediately:

(6.5) ‖ĝ‖l2 ≤ ‖g‖Bψ1

Let now ψ2(x) = ψ1(x
r). From (6.1), (6.4) and the hypothesis ii) of the

theorem, we can write,

(6.6)

ψ2(1) = ψ1(1) = ψ(1) = ρBψ1

(g
a

)
= ρBψ1

( 1

a
ψ′
( |G(t)|
‖G‖Bψ

))
≤

≤ ρBψ1

[a0

a

( |G(t)|
‖G‖Bψ

)r]
≤ ρBψ2

(
β1

|G(t)|
‖G‖Bψ

)

where

(6.7) (β1)
r =

a0

a

Consequently, we have ‖β1
|G(t)|
‖G‖

Bψ
‖Bψ2 ≥ 1 since in the opposite case

we will have ρBψ2 (
β1

|G(t)|
‖G‖Ψ
α

) ≤ ψ2(1) for some 0 < α < 1 and then G being
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a trigonometric polynomials, from (3.2) we will deduce ρBψ2 (β1
|G(t)|
‖G‖

Bψ
) <

ψ2(1), a contradiction.

Hence

(6.8)
∥∥∥β1

|G(t)|
‖G‖Bψ

∥∥∥
Bψ2

≥ 1

From (6.7) and (6.8) it follows,

(6.9)
[‖G‖Bψ2

‖G‖Bψ

]r
≥ a

a0

=
1

a0

‖g‖Bψ1

Considering now the hypothesis i) of the theorem, Proposition 3.1 implies

the following inequalities and relations inclusion, ψ0 ≤ ψ ≤ ψ1 ≤ ψ2 and

then φ0 ≥ φ ≥ φ1 ≥ φ2. From this it follows, lφ2 ⊆ lφ1 ⊆ lφ ⊆ l2 ⊆ lψ ⊆
lψ1 ⊆ lψ2 .

On the other hand, from the hypothesis ii) of the theorem, we have,

ψ2(x) = ψ1(x
r) = ψ(x2 r) ≤ x2 rψ

′
(x2 r) ≤ a0x

2 r.(x2 r)r = a0x
2 r ( r+1)

let us put ψ3(x) = a0
r+1

|x|2 r(r+1)
, then ψ3(x) ≥ ψ2 (x) ∀x ≥ 0.

From this and (6.1), (6.2), (6.5), (6.9) it follows,

(6.10)

ψ(1) ≤ γ.ψ(1) ≤ ‖ĝ‖lψ ≤ K2‖ĝ‖l2 ≤

≤ K2‖g‖Bψ1 ≤ K2.a0

[‖G‖Bψ3

‖G‖Bψ

]r
≤

≤ K2.a0

[Mφ3

γ

‖Ĝ‖lφ3

‖Ĝ‖lφ
]r

≤ K2.a0

[
β4

Mφ3

γ

]r

where K2 is the constant of the inequality ψ(x) ≥ ψ0(x) = 1
2
x2 (i.e.

‖.‖lψ ≤ K2‖.‖l2).
Mφ3

is the constant of the Hausdorff-Young inequality in Bq with

q = 2r(r + 1).

The constant β4 is from the inequality ‖Ĝ‖lφ3 ≤ β4‖Ĝ‖lφ which is a

consequence of an inequality φ3(x) ≤ φ(x) ∀x, 0 ≤ x ≤ x0. This later

may be obtained by a suitable restriction on φ near the origine.

Now, inequality (6.10) may be written in the form,

ψ(1) ≤ ψ(1).γr+1 ≤ K2a0.β4M
r
φ3
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and then, 1 ≤ γ ≤ K5 where K5 is a constant depending only on φ.

Finally,

(6.11) ‖P‖Bψ ≤ γ‖P̂ ‖lφ , ∀P ∈ P .

where γ is a constant depending only on φ.

To show the converse inequality, let P (t)=
∑n

j=1 cj e
i λj t be a trigono-

metric polynomial. Putting G(t)=
∑n

j=1 dje
−iλjt, we will have, |M(PG)|=

|∑n
j=1 cj dj| and |M(P G)| ≤ ‖P‖Bφ .‖G‖Bψ , thus, by (6.11): |M(PG)| ≤

‖P‖
Bφ

. ‖G‖
Bψ

≤ γ‖P‖
Bφ

.‖Ĝ‖lφ so that,

(6.12)





‖|P̂ |‖lψ = sup
{∣∣∣

n∑

j=1

cjdj

∣∣∣, (dj)j≥1;
∞∑

j=1

φ(|dj|) ≤ 1
}
≤

≤ sup
{∣∣∣

n∑

j=1

cjdj

∣∣∣, (dj)j≥1;
n∑

j=1

φ(|dj|) ≤ 1
}
≤

≤ sup
{∣∣∣

n∑

j=1

cjdj

∣∣∣, (dj)j≥1;
n∑

j=1

φ(φ(1)|dj|) ≤ φ(1)
}
≤

≤ 1

φ(1)
sup

{∣∣∣
n∑

j=1

cjhj

∣∣∣, (hj)j≥1;
n∑

j=1

φ(|hj|) ≤ φ(1)
}
≤

≤ 1

φ(1)
sup

{∣∣∣
n∑

j=1

cjhj

∣∣∣, ‖Ĝ‖lφ ≤ 1
}
≤ γ

φ(1)
‖P ‖φ

Now, using (2.3), we get finally,

(6.13) ‖P̂‖lψ ≤ γ

φ(1).ψ(1)
‖P‖

Bφ

The theorem is then proved in the class P of trigonometric polynomials.

To consider the general case, let f ∈ Bφa.p. and {Pn} be the associated

sequence of Bochner-Fejér polynomials that converge to f in the norms

‖.‖
Bφ

and ‖|.|‖
Bφ

since the laters are equivalent.

Let Λ(f) = {λ1, λ2, . . . } be the set of Fourier-Bohr’s exponents of f.

It is known that Λ(Pn) ⊆ Λ(f), ∀n ≥ 1. Put cj = a(λj, f), j ≥ 1 and

denote by (cmj )j the finite sequence of Fourier-Bohr coefficients of Pm,

cmj = M(Pme−iλjt). (note that cmj = 0 if λj /∈ Λ(Pm)).
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Remark first that we have |cj−c
(m)
j | ≤ M(|Pm−f |) ≤ ‖Pm−f‖

Bφ
→ 0

as m → +∞.

It follows then

(6.14) lim
m→∞

sup
j

|cj − c
(m)
j | = 0 .

Let ε > 0 and n ∈ IN. Put α0 = φ−1(1)

From (6.14) there exists m0 = m0(ε, n) > n such that ∀m ≥ m0, |cj|≤
|c(m)

j | + ε
n

and then, for m ≥ m0; using (6.13) and - i) of (3.3),

sup
{∣∣∣

n∑

j=1

cj dj

∣∣∣, (dj)j≥1;
∞∑

j=1

φ(|dj|) ≤ 1
}

=

= sup
{ n∑

j=1

|cjdj|, (dj)j≥1;
∞∑

j=1

φ(|dj|) ≤ 1
}
≤

≤ sup
{ n∑

j=1

|cmj dj|, (dj)j≥1;
∞∑

j=1

φ(|dj|) ≤ 1
}

+ εα0 ≤

≤ ‖|P̂m|‖lψ + εα0 ≤ 1

φ(1)
‖P̂m‖

lψ
+ εα0 ≤

≤ γ

[φ(1)]2.ψ(1)
‖Pm‖Bφ + εα0 ≤ γ

[φ(1)]2.ψ(1)
‖f‖Bφ + εα0 .

Since ε and n are arbitrary, we get finally,

ψ(1)‖f̂‖lψ ≤‖|f̂ |‖lψ ≤ γ

[φ(1)]2.ψ(1)
‖f‖Bφ , i.e.‖f̂‖lψ ≤ γ

[φ(1).ψ(1)]2
‖f‖Bφ .

This proves the first inequality.

To prove the second inequality, let f ∈ Bψa.p., then the hypothesis

i) of the theorem implies f ∈ B2a.p. and then, if we consider Pn(x) =∑n
j=1 a(λj, f)eiλjx, (the partial sums of the Fourier-Bohr’s series of f), we

have ‖f − Pn‖B2 → 0 as n → ∞ (cf. [1], [2]).

Moreover if Q ∈ P with Λ(Q)
⋂

Λ(f) 	= ∅, one has,

|M(PnQ)| =
∣∣∣

n∑

j=1

a(λj, f)a(λj, Q)
∣∣∣ ≤ ‖f̂‖lψ .‖Q̂‖lψ .
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Now, using (6.13), we get,

|M(PnQ)| ≤ ‖f̂‖lψ .‖Q̂‖lψ ≤ γ

φ(1).ψ(1)
.‖f̂‖lψ .‖Q‖Bφ .

and, since ‖f − Pn‖B2 → 0 as n → ∞, we have also,

|M(PQ)| ≤ γ

φ(1).ψ(1)
.‖f̂‖lψ .‖Q‖Bφ .

Finally, in view of Lemma 5.5 and -iii) of Lemma 5.4, we get,

‖|f |‖Bψ = sup{|M(f Q)|, Q ∈ P; ρBφ(Q) ≤ 1} ≤
≤ sup{‖Q‖Bφ , ρBφ(Q) ≤ 1}. γ

φ(1).ψ(1)
.‖f̂‖lφ ≤

≤ γ

[φ(1)]2.ψ(1)
.‖f̂‖lφ .

Thus,

ψ(1)‖f‖Bψ ≤ |‖f‖|Bψ ≤ γ

[φ(1)]2.ψ(1)
‖f̂‖lφ ,

i.e.

‖f‖
Bψ

≤ γ

[φ(1).ψ(1)]2
.‖f̂‖lφ .

This proves the theorem.
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