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Bernoulli numbers and polynomials from a more

general point of view

G. DATTOLI – C. CESARANO – S. LORENZUTTA

Riassunto: Si applica il metodo della funzione generatrice per introdurre nuove
forme di numeri e polinomi di Bernoulli che vengono utilizzati per sviluppare e calcolare
somme parziali che coinvolgono polimoni a più indici e a più variabili. Si sviluppano
considerazioni analoghe per i polinomi ed i numeri di Eulero.

Abstract: We apply the method of generating function, to introduce new forms
of Bernoulli numbers and polynomials, which are exploited to derive further classes of
partial sums involving generalized many index many variable polynomials. Analogous
considerations are developed for the Euler numbers and polynomials.

1 – Introduction

In a previous paper [1] we have derived partial sums involving Her-

mite, Laguerre and Appèll polynomials in terms of generalized Bernoulli

polynomials. The new and interesting possibilities offered by this class of

polynomials are better illustrated by an example relevant to the deriva-

tions of a partial sum involving two-index Hermite polynomials.

To this aim we remind that:
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where Bn(x) are Bernoulli polynomials defined by the generating func-

tion:

(2)
text

et − 1
=

∞∑

n=0

tn

n!
Bn(x)

or in terms of Bernoulli numbers Bn as:

(3) Bn(x) =
n∑

s=0

(
n

s

)
Bn−sx

s .

Hermite polynomials with two variables and one parameter can be defined

by means of the operational identity [2]:

(4) eτ
∂2

∂x∂y {xmyn} = hm,n(x, y | τ) ,

and the hm,n(x, y | τ) are defined by the double sum:

(5) hm,n(x, y | τ) = m!n!
min(m,n)∑

s=0

τ sxm−syn−s

s!(m − s)!(n − s)!
.

The identity (4) can be used to state that:

(6) eτ
∂2

∂x∂y
{
(ax + b)m(cy + d)n

}
= hm,n(ax + b, cy + d | acτ) ,

and to introduce the following two variable one parameter Bernoulli poly-

nomials:

(7) hBr,s(x, y | τ) =
r∑

q=0

s∑

k=0

(
r

q

)(
s

k

)
Br−qBs−khq,k(x, y | τ) .

It is easy to note that from equation (4) we get:

(8) eτ
∂2

∂x∂y {Br(x)Bs(y)} =hBr,s(x, y | τ) .
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This new class of Bernoulli polynomials can be used to derive the

following important result:

(9)
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which is a consequence of equations (1), (6), (7), (8). The generating

function of this last class of Bernoulli polynomials can be shown to be

provided by:

(10)
uveux+vy+τuv

(eu − 1)(ev − 1)
=
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m=0
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n=0

um

m!

vn

n!

(
h
Bm,n(x, y | τ)

)
.

This introductory examples shows that a wealth of implications is offered

by the use of generalized forms of Bernoulli polynomials. In the forth-

coming sections we will develop a more systematic analysis which yields

a deeper insight into the effectiveness of this type of generalizations.

2 – Finite sums and new classes of Bernoulli numbers

In ref. [1] we have touched on the following new class of numbers:

(11) HBn =
[n/2]∑

s=0

n!Bn−2sBs

s!(n − 2s)!

which are recognized as an Hermite convolution of Bernoulli numbers on

themselves. The generating functions of the HBn is provided by:

(12)
t3

(et − 1)(et2 − 1)
=

∞∑

n=0

tn

n!
(HBn)

which suggests the following generalization ((a, b) 	= 0):
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with:

(14) HB
∗
n(a, b) =

1

ab

[n/2]∑

s=0

n!an−2sbsBn−2sBs

s!(n − 2s)!
.

It is also evident that the generating function:

(15)
t3ext+yt2

(eat − 1)(ebt2 − 1)
=

∞∑

n=0

tn

n!

(
H
B∗

n(a, b | x, y)
)

can be exploited to define the polynomials:

(16) HB∗
n(a, b | x, y) =

n∑

s=0

(
n

s

)
(
H
B∗

n−s(a, b)Hs(x, y)
)

as results from equations (13) and (15) which are also expressed as:

(17) HB
∗
n(a, b | x, y) =

n!

ab

[n/2]∑

s=0

n!an−2sbs

s!(n − 2s)!
Bn−2s

(x
a

)
Bs

(y
b

)

yielding:

(18) HB
∗
n(a, b | 0, 0) =HB∗

n(a, b)

where Hn(x, y) = n!
∑[n/2]

s=0
ysxn−2s

s!(n−2s)!
are the Kampè de Fèriet polynomials.

The use of polynomials (16) is suggested by partial sums of the type:

(19)

M−1∑

m=0

N−1∑

n=0

Hr(x + my, z + nw) =
1

(r + 1)(r + 2)(r + 3)
×

×
{

HB
∗
r+3(y, w | x + My, z + Nw) −HB∗

r+3(y, w | x + My, z)+

−HB∗
r+3(y, w | x, z + Nw) +HB∗

r+3(y, w | x, z)
}

.

which provides one of the main results of the paper.
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A further application of polynomials HB∗
n(a, b | x, y) is relevant to

the multiplication theorems. We find indeed:

(20)

HBn(mx,m2y) =

=
mn−2

(n + 1)(n + 2)

m−1∑
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m2−1∑

h=0

(
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∗
n+2

(
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k

m
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h

m2
+

1
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−
(
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∗
n+2

(
1, 1 | x +

k

m
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h

m2
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and

(21) HB
∗
n(a, b | mx,m2y) = mn−3

m−1∑

k=1

m2−1∑

h=1

(
HB

∗
n

(
a, b | x+

ak

m
, y+

bh

m2

))

and:

(22) hBm,n(px, qy | τ) = pm−1qn−1
p−1∑

k=0

q−1∑

h=0

(
hBm,n

(
x +

k

p
, y +

h

q

∣∣∣ τ
pq

))

can be proved by exploiting the procedure outlined in appendix.

3 – Euler polynomials

The examples we have provided yields an idea of the implications

offered by this type of generalization.

It is also evident that the considerations we have developed for

Bernoulli polynomials can be extended to Euler polynomials [3]:

(23)
2ext

et + 1
=

∞∑

n=0

tn

n!
En(x) .

In analogy of ref.[1] and the results of previous sections, we introduce the

following classes of Euler polynomials:

(24)
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and:

(25)
22exu+yv+τuv

(eu + 1)(ev + 1)
=
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m=0
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n=0

um

m!

vn

n!

(
h
Em,n(x, y | τ)

)

It is easily realized that:

(26) HEn(x, y) =
[n/2]∑

s=0

ysEn−2s(x)

s!(n − 2s)!

and:

(27) hEm,n(x, y | τ) =
m∑

s=0

n∑

r=0

(
m

s

)(
n

r

)
Em−sEn−rhs,r(x, y | τ)

where En(x) are the ordinary Euler polynomials and that the following

theorems hold:

(28) HEn(x + z, y + w) =
n∑

s=0

(
n

s

)
(
H
En−s(x, y)

)
Hs(z, w)

and (see appendix):

(29) HEn(mx, py) = mn
m−1∑

k=0

(−1)k
(
H
En

(
x +

k

m
,
py

m2

))
.

As to the polynomials hEm,n(x, y | τ) wa can also state that:

(30)

hEm,n(x + z, y + w) | τ) =
m∑

s=0

n∑

r=0

(
m

s

)(
n

r

)
(
h
Em−s,n−r(x, y | τ)

)
zswr

and:

(31) hEm,n(px, qy | τ) = pmqn
p−1∑

k=0

q−1∑

h=0

(−1)k+h
hEm,n

(
x +

k

p
, y +

h

q

∣∣∣ τ
pq

)
.
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4 – Concluding remarks

The introduction of the Hermite-Euler polynomials given by equation

(24) offers the possibility of speculating about alternative definitions as

e.g. (t <
√

π):

(32)
4ext+yt2

(et + 1)(et2 + 1)
=

∞∑

n=0

tn

n!
E(2)

n (x, y) .

The polynomials E(2)
n (x, y) are defined as:

(33) E(2)
n (x, y) = n!

[n/2]∑

s=0

Es(y)En−2s(x)

s!(n − 2s)!

and are shown to satisfy the following differential equation:

(34)
∂

∂y
E(2)

n (x, y) =
∂2

∂x2
E(2)

n (x, y)

and the multiplication formula:

(35) E(2)
n (mx,m2y) = mn

m−1∑

k=0

m2−1∑

h=0

(−1)k+h
(
E(2)

n

(
x +

k

m
, y +

h

m2

))
.

The more general theorem relevant to E(2)
n (mx, py) requires the intro-

duction of a class of Euler polynomials analogous to those provided by

equation (13) for the Bernoulli case.

Before concluding this paper we want to emphasize that most of the

identities holding for the ordinary Bernoulli or Euler polynomials can be

extended to the generalized case. For example the identity [4]:

(36) Bn(x + 1) − Bn(x) = nxn−1

can be generalized as:

(37) HBn(x + 1, y) −HBn(x, y) = nHn−1(x, y)
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which is a consequence of:

(38) e
y ∂2

∂x2 Bn(x) =HBn(x, y) .

For analogous reasons, we find:

(39)
hBm,n(x + 1, y + 1 | τ) −hBm,n(x, y + 1 | τ) −hBm,n(x + 1, y | τ)+

+hBm,n(x, y | τ) = mnhm−1,n−1(x, y | τ)

and:

(40) HB∗
n(a, b | x + a, y + b) −HB∗

n(a, b | x, y) = n(n − 1)(n − 2)Hn−3(x, y)

and

(41) HE(2)
n (x + 1, y) +HE(2)

n (x, y) = 2Hn(x, y) .

We can also define the further generalized form:

(42)
N∏

i=1

ti+1exit
i

(eaiti − 1)
=

+∞∑

n=0

tn

n!

(
H
B∗

n

({ai}
∣∣{xi}

))

thus getting (n > N):

(43) HB∗
n

({ai}
∣∣{xi}

)−HB∗
n

({ai}
∣∣{xi}

)
=

n!

(n − N)!
Hn−N

({xi}
)

with:

(44)
+∞∑

n=0

tn

n!
Hn

({xi}
)

= e

∑n

i=1
xit

i

.

The results if this paper show that the combination of operational rules

and the properties of ordinary and generalized polynomials offer a wealth

of possibilities to introduce new familes of Euler and Bernoulli polyno-

mials which provides a powerful tool in applications.
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– Appendix

The multiplication formulae are easily stated by exploiting the

method of the generating functions and suitable manipulations. We note

indeed that:

(A.1)
∞∑

m=0

∞∑

n=0

um

m!

vn

n!

(
h
Bm,n(px, qy | τ)

)
=

uveupx+vqy+τuv

(eu − 1)(ev − 1)
.

The r.h.s. of the above relation can be more conveniently rewritten

as:

(A.2)
uveupx+vqy+τuv

(eu − 1)(ev − 1)
=

(up)(vq)

pq

uveupx+vqy+uvpq τ
pq

(eup − 1)(evq − 1)

(eup − 1)(evq − 1)

(eu − 1)(ev − 1)

by nothing that:

(A.3)
eup − 1

eu − 1
=

p−1∑

r=0

eru

we can rearrange (A.2) as:

(A.4)

uveupx+vqy+τuv

(eu − 1)(ev − 1)
=

p−1∑

k=0

q−1∑

h=0

1

pq

∞∑

m=0

∞∑

n=0

(up)m

m!

(vq)n

n!
×

×hBm,n

(
x +

k

p
, y +

h

q

∣∣∣ τ
pq

)

which once confronted with (A.1) yields equation (22). A symilar pro-

cedure can be exploited to prove the multiplication formulae relevant to

the Euler’s generalized forms.

We note indeed:

(A.5)
∞∑

n=0

tn

n!

(
H
En(mx, py)

)
=

2emxt+pyt2

et + 1

and handling the r.h.s. of the above equations, we find:

(A.6)
∞∑

n=0

tn

n!

(
H
En(mx, py)

)
=

2emxt

emt + 1

emt + 1

et + 1
epyt

2

.
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By noting that:

(A.7)
2emxt

emt + 1

emt + 1

et + 1
epyt

2

=
m−1∑

k=0

(−1)k
∞∑

q=0

tqmq

q!
Eq

(
x +

k

m

) ∞∑

r=0

t2rpr

r!
yr

we obtain:

(A.8)
∞∑

n=0

tn

n!

(
H
En(mx, py)

)
=

∞∑

n=0

trmn
m−1∑

k=0

(−1)k
[n/2]∑

r=0

En−2r(x + k
m

)

(n − 2r)!r!

( py

m2

)r

and using the (26) we finally state the relation (29).
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