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Homogenization of the Stokes flow

with small viscosity in a non-periodic porous medium

VIÊT HÀ HOÀNG

Riassunto: Si considerano le equazioni stazionarie di Stokes con un piccolo coeffi-
ciente di viscosità in un dominio perforato in cui i buchi non sono della stessa grandezza
e non sono distributiti in modo periodico. Ogni buco è perforato al centro di un cubo la
cui grandezza è legata alla dimensione del cubo da una data condizione. Domini perfo-
rati in modo periodico sono un caso particolare dei domini di questo tipo. Si utilizza
il lavoro Cioranescu-Murat e le funzioni test di Allaire. Si mostra che molti risultati
esistenti in letteratura per domini perforati in modo periodico sono anche verificati nel
constesto di questo lavoro.

Abstract: Stationary Stokes equations with a small viscosity coefficient are con-
sidered in a perforated domain in which holes are not of the same size and are not
distributed periodically. Each hole is perforated at the centre of a cube whose size re-
lates to the size of the hole by a given condition. Periodically perforated domains are a
particular case of domains of this type. The framework of D. Cioranescu and F. Murat
is employed together with the test functions by G. Allaire. It is shown that many exist-
ing results in the literature for periodically perforated domains relating this framework
hold in this setting.

1 – Introduction

Homogenization of the Stokes equations plays an important role in

understanding the macroscopic laws which govern fluid flow in porous

media. Most of the works in the literature consider either a periodic dis-
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tribution of holes or a complete random medium. The two scale asymp-

totic expansion, the energy method and oscillating test functions (see

Besoussans et al. [6]) were used to treat the periodic case where the

holes’ size and the period are of the same order. The homogenized equa-

tion is the Darcy’s law (Tartar [20], Allaire [2], Lions [16], Zhikov

[22]) or some of its time dependent versions (Lions [15], Allaire [4],

Sandrakov [19]). The case where the holes’ size is of a smaller or-

der than the period is amenable to the general framework developed by

Cioranescu and Murat [8] which is essentially a generalization of the

energy method. In the case where holes are of a critical order of the pe-

riod, the effective equation is the Brinkman law, first introduced in 1947

in [7]. When holes are smaller, they have no effect and the asymptotic

limit equation is the Stokes equations. The homogenized equation is in

the form of the Darcy’s law when the holes’ size is bigger. This is demon-

strated in the two part paper by Allaire [3]. Random domains are

studied in Rubinstein [17], Beliaev and Kozlov [5] and Wright [21].

In this paper, we consider the Stokes equations with a small viscos-

ity coefficient in a porous domain where holes are not necessarily dis-

tributed periodically and may not be of the same size. We employed

the Cioranescu-Murat framework and the test functions introduced in

Allaire [3].

Let Ωε be the perforated domain in IRN (N ≥ 2). We consider the

problem

(1)

{
−ε∆uε + λuε + ∇pε = f

∇ · uε = 0, uε ∈ (H1
0 (Ωε))N ,

which is the Laplace transform of the time dependent Stokes equations,

where ∇.uε denotes the divergence of the vector uε i.e ∇.uε=
∑N

i=1∂uε
i/∂xi.

We will only consider the case λ > 0 as the case λ = 0 can be treated by

making the transformation vε = εuε and using the results by Allaire [3].

Let Ω be a bounded convex domain (the assumption that Ω is convex is

needed for proving the inequality (8)). The boundary of a convex domain

is Lipschitz. For each ε > 0, Ω is a subset of the union of M ε closed cubes

P ε
i (i = 1, . . . ,M ε) of size 2εri,ε (ri,ε > 0) whose interiors are pairwise

disjoint. The cubes P ε
i can intersect the boundary of Ω but none of these

cubes do not intersect Ω.
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Let T be a closed bounded set in IRN with a Lipschitz boundary

locally located on one side of its boundary, which is contained entirely in

the inside of the unit ball B1 and contains a ball of radius ρ < 1 centred

at the origin in its interior. Let xε
i be the centre of the cube P ε

i . For each

cube P ε
i we consider the set T ε

i inside P ε
i : T ε

i = {x : x−xε
i ∈ aε

iT} where

aε
i is the holes’ size which is defined as

(2) aε
i = εsi,ε (N ≥ 3), and aε

i = εri,ε exp(−aε−si,ε) (N = 2),

where ri,ε, si,ε and a are positive constants; a does not depend on i and ε.

We assume further that there exist constants α and r with r > 0 such that

ri,ε ≥ r for all i and ε and Nri,ε−(N−2)si,ε = α (N ≥ 3) and 2ri,ε−si,ε =

α (N = 2) for all i and ε; and moreover 2r > α. Since si,ε − ri,ε ≥
(2r −α)/(N − 2) > 0 when N ≥ 3 and si,ε ≥ 2r −α > 0 when N = 2, all

the sets T ε
i are strictly contained in the interior of the cube P ε

i . Removing

from Ω all the sets T ε
i that do not intersect ∂Ω, the remainder we get is

the perforated domain Ωε which has a Lipschitz boundary and is locally

located on one side of its boundary. The condition that the perforated

domain is locally located on one side of its boundary guarantees that all

the well known results about the existence and uniqueness of the solution

of the Stokes equations holds; it plays no role in our results.

Periodically perforated domains are a particular case of domains con-

structed above. The framework by Cioranescu and Murat [8] and

Kacimi and Murat [12] employed by Allaire [3] for the Stokes equa-

tions works in this more general class of perforated domains. If we drop

the viscosity coefficient ε, the limits obtained in Allaire [3] hold in this

situation, except that in [3] λ = 0 but the results for λ > 0 are essentially

similar. The estimates in L2(Ω) and H1(Ω) of the test functions can be

easily seen to be true in our setting. However, the estimates in H−1(Ω)

is more complicated. Kacimi and Murat [12] and Allaire [3] use an

estimate in H−1(Ω) for periodic distributions of zero average in the pe-

riod cube, which is originally due to Kohn and Vogelius [13]. We show

here that a new approach not using this estimate can be used to obtain

an estimate in H−1(Ω) for the test functions; and all the results in the

above papers hold in this more general setting. For the Laplace equation,

as we do not require that the boundary of Ωε is Lipschitz, we can also

allow holes to intersect the boundary of Ω. The Poincare inequality (8)
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always holds; and we can consider any domain Ω, not just convex as in

this paper. For the Stokes equations, as the boundary of Ωε needs to

be Lipschitz, holes should not intersect the boundary ∂Ω. For a general

domain, the inequality (8) does not hold.

Understanding that uε is zero in the holes, our purpose is to study

the behaviour of uε when ε → 0. The test functions and their properties

are introduced in Section 2. In Section 3, we prove that uε (or uεε1−α

when α > 1) converges strongly in (L2(Ω))N to the velocity field of a

Darcy law in Ω. The pressure function pε can be extended over the

holes by an extending operator P ε : L2(Ωε) → L2(Ω) such that P εpε

converges strongly in L2(Ω)/IR to the pressure function of this Darcy’s

law (recall that two functions p1 and p2 are identified as the same element

in L2(Ω)/IR if p1 − p2 is a constant; the L2(Ω)/IR norm of this element

is ‖p1 − ∫Ω p1/|Ω|‖1/2

L2(Ω)
). Let M be the N × N symmetric matrix whose

kth column is the vector Fk/2
N when N ≥ 3 (Fk is the drag force defined

after equation (4) or πek/a when N = 2 (ek is the kth unit vector). Let

L = M if α > 1, L = M + λI if α = 1 and L = λI if α < 1 (I is the

identity matrix). Let (u, p) ∈ (L2(Ω))N × H1(Ω) be the unique solution

of the Darcy law

u = L−1(f − ∇p), ∇ · u = 0, u · n = 0 on ∂Ω.

The behaviour of pε and uε are as follows.

Theorem 1. The pressure function pε converges strongly to p in

L2(Ω)/IR. When α > 1, uεε1−α → u in (L2(Ω))N . Otherwise uε → u in

(L2(Ω))N .

The error estimates are established when the limit function is in

(W 1,∞(Ω))N
⋂

(H1
0 (Ω))N . This regularity assumption is weaker than that

required in Allaire [3] which, following an idea of Kacimi and Murat

[12], requires the limit to be in (W 2,∞(Ω))N . Let W ε be the N × N

matrix of test functions defined in Section 2; ‖W ε − I‖L2(Ω) is less than a

positive order of ε (Lemma 1). We have the following results, which will

be proved in Section 3.

Theorem 2. Assume that the limit u in Theorem 1 belongs to

(H1
0 (Ω))N

⋂
(W 1,∞(Ω))N . The error estimates when N ≥ 3 are as follows.
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When α > 1,

‖p − pε‖L2(Ωε)/IR + ‖uεε1−α − W εu‖L2(Ωε) <

< c(εα−1 + εα/2 + εr−α/2 + ε(2r−α)/(N−2)).
When α = 1,

‖p − pε‖L2(Ωε)/IR + ‖uε − W εu‖L2(Ωε) < c(ε1/2 + εr−1/2 + ε(2r−1)/(N−2)).

When 0 < α < 1

‖p − pε‖L2(Ωε)/IR + ‖uε − W εu‖L2(Ωε) <

< c(εα/2 + ε1−α + εr−α/2 + ‖W ε − I‖1/2ε1/2−α/4).

When α ≤ 0,

‖p − pε‖L2(Ωε)/IR + ‖uε − W εu‖L2(Ωε) < c(‖W ε − I‖ + ε1/2).

When N = 2, similar results hold except that the term ε(2r−α)/(N−2) does

not appear in the right hand side of the above inequalities.

The behaviour of uε in (H1
0 (Ω))N for a few cases where the holes

T ε
i are significantly small in comparison with the corresponding cube is

touched upon in Section 4. We will prove the followings:

Theorem 3. Assume that u ∈ (H1
0 (Ω))N

⋂
(W 1,∞(Ω))N . When

α ≤ 0 and either 2r > α+ 1/2 (N = 2 or N = 3) or 2r > α+(N − 2)/N

(N ≥ 4), then uε − W εu → 0 in (H1
0 (Ω))N .

Theorem 4. Let r be such that 0 < α < r and

r > max{α/4 + 1/2, 3α/4} when N = 2,

r > max{α/4 + 1/2, Nα/4} when N = 3,

r > max{α/N + (N − 2)/N,Nα/4} when N ≥ 4.

Let Kε = (ε1−αM + λI)−1L. If u ∈ (H1
0 (Ω))N

⋂
(W 1,∞(Ω))N then

uε − KεW εu ⇀ 0 in (H1
0 (Ω))N . If in addition, u ∈ (W 2,∞(Ω))N the

convergence is strong.

As expected, when the holes are much smaller than the cubes, they

have no effect; the behaviour of uε is similar to that in the case of a non
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perforated domain considered in Lions [14], except that further regu-

larity assumptions are necessary in compensation for the appearance of

the holes.

The problem (1) in periodically perforated domains in which the

holes and the period are of the same size is considered in [19], in which

the limits of uε when ε → 0 are presented; error estimates are not touched

upon. The approach presented in this paper to find error estimates fails

in this case due to the weak convergence of the test functions. We do not

know if a similar generalization exists for perforated domains of this type.

Related singularly perturbed Dirichlet problems for the Laplacian in

perforated domains have recently been considered in [9] for the periodic

case and in [10] and [11] for random domains.

Throughout the paper, we denote by c various constants which do not

depend on i and ε and whose values may vary form one line to the next.

The duality between H−1(Ω) and H1
0 (Ω) is denoted by 〈 , 〉; ‖.‖ denotes

the norm in (L2(Ω))N or in (L2(Ω))N×N according to the context unless

the space is explicitly specified. By ∇ ·φ we denote the divergence of the

vector φ = (φ1, . . . , φN) i.e. ∇ · φ =
∑N

i=1 ∂φi/∂xi. By ∇φ we mean the

gradient of φ which is the N dimensional vector (∂φ/∂x1, . . . , ∂φ/∂xN) if

φ is a scalar function or is the N×N matrix with entries ∂φi/∂xj if φ is an

N dimensional vector (φ1, . . . , φN). Given two N ×N matrices A and B

with entries aij and bij, we denote the inner product
∑N

i,j=1 aijbij between

A and B by A : B. As usual, repeated indices indicate summation.

2 – Test functions

We now construct the test functions and we establish their properties.

These functions are exactly the same as those introduced in Allaire [3]

for the periodic case; they are constructed differently for the case N = 2

and the case N ≥ 3. Let Bε
i be the ball of radius εri,ε inside P ε

i . Let

Cε
i = Bε

i \ T ε
i and Kε

i = P ε
i \Bε

i . When N = 2, for each k = 1, . . . , N we

let (wε
ki, q

ε
ki) be such that





wε
ki = ek, qεki = 0 in Kε

i

∇qεki − ∆wε
ki = 0,∇ · wε

ki = 0 in Cε
i

wε
ki = 0, qεki = 0, in T ε

i ,

where ek denotes the kth unit vector.
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When N = 3 we first consider the Stokes problem in IRN \ T :

(3)





∇qk − ∆wk = 0 in IRN \ T

∇ · wk = 0 in IRN \ T

wk = 0 on ∂T

wk = ek at ∞
qk ∈ L2(IRN \ T ), and ∇wk ∈ (L2(IRN \ T ))N .

This problem has a unique solution whose asymptotic behaviour at infin-

ity is as follows (the proof can be found in the appendix of Allaire [3]).

(4)





wk = ek − 1

2SNrN−2

(
Fk

N − 2
+ (Fk · er)er

)
+ O

(
1

rN−1

)

qk = − 1

SNrN−1
(Fk · er) + O

(
1

rN

)

∇wk = O

(
1

rN−1

)

∂wk

∂r
− qker =

1

2SNrN−1

(
Fk + N(Fk · er)er

)
+ O

(
1

rN

)
,

where Fk is the drag force exerted on T by the flow defined as Fk =∫
∂T (∂wk/∂n − qkn)ds, er is the radial vector.

Let B′ε
i be the ball centred at the centre of P ε

i with radius εri,ε/2. Let

C ′ε
i = B′ε

i \T ε
i , Dε

i = Bε
i \B′ε

i and as before Kε
i = P ε

i \Bε
i . The functions

(wε
ki, q

ε
ki) ∈ (H1(P ε

i ))N × L2(P ε
i ) with

∫
Dε

i
qεki = 0 is defined such that





wε
ki = ek, qεki = 0, in Kε

i

∇qεki − ∆wε
ki = 0, ∇ · wε

ki = 0 in Dε
i

wε
ki = wk(x/a

ε
i ), qεki = qk(x/a

ε
i )/a

ε
i , in C ′ε

i

wε
ki = 0, qεki = 0 in T ε

i .

The test functions (wε
k, q

ε
k) ∈ (H1(Ω))N × (L2(Ω))N are defined as wε

k =

wε
ki, and qεk = qεki in P ε

i ; wε
k are bounded pointwise. When N = 2, we

define in each cube P ε
i the functions (wε

0ki, q
ε
0ki) ∈ (H1(P ε

i ))N × L2(P ε
i )

whose definitions are similar to that of wε
ki and qεki except that the holes T ε

i

is replaced by the ball B
aεi
i with radius aε

i and centred at the centre of P ε
i ;

B
aεi
i contains T ε

i in its interior. We define (wε
0k, q

ε
0k) ∈ (H1(Ω))N × L2(Ω)

such that wε
0k = wε

0ki and qε0k = qε0ki in P ε
i .
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The behaviours of wε
k and qεk are as follows.

Lemma 1. In (L2(Ω))N , when ε is sufficiently small

(5) ‖wε
k − ek‖ ≤ c





ε2r−α if N = 2

ε2r−α if N = 3

ε2r−α| log ε|1/2 if N = 4

ε(2r−α)N/(2(N−2)) if N > 4.

Furthermore ‖qεk‖ ≤ cε−α/2 and ‖∇wε
k‖ ≤ cε−α/2.

Proof. From the results of Allaire [3] we have that

1

(2εri,ε)N
‖wε

k − ek‖2
L2(P ε

i
) ≤ c





ε2si,ε if N = 2

ε2(2ri,ε−α) if N = 3

ε2(2ri,ε−α)| log εri,ε−si,ε | if N = 4

ε(2ri,ε−α)N/(N−2) if N > 4.

In addition, using ri,ε ≥ r and si,ε − ri,ε ≥ (2r − α)/(N − 2) when N ≥ 3

and si,ε ≥ 2r−α when N = 2 we get the conclusion. Other results of the

theorem can be obtained in a similar manner.

Let

mε
ki =





(2εri,ε)−N

∫

∂B′ε
i

(
∂wε

k

∂n
− qεkn

)
ds when N ≥ 3

(2εri,ε)−N

∫

∂Bε
i

(
∂wε

0k

∂n
− qε0kn

)
ds when N = 2.

The behaviour of mε
ki is as follows.

Lemma 2. When N ≥ 3, |mε
ki −Fk/(2

Nεα)| ≤ cε(2r−α)/(N−2)−α; and

when N = 2, |mε
ki − πek/(aε

α)| ≤ cε2r−2α| log ε|.
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Proof. When N ≥ 3 from the last equality of (4) we have that on

∂B′ε
i

(6)
∂wε

ki

∂n
− qεkini =

2N−2(aε
i )

N−2

ε(N−1)ri,εSN

[Fk + N(Fk · eir)eir] + O

(
(aε

i )
N−1

εNri,ε

)
,

where eir is the radial unit vector in P ε
i . Integrating over ∂B′ε

i we readily

have

|mε
ki − Fk/(2

Nεα)| ≤ cεsi,ε−α−ri,ε ≤ cε(2r−α)/(N−2)−α.

When N = 2, the functions wε
0ki and qε0ki can be written as

wε
0ki = r2f(r)(er · ek)er + g(r)ek, qε0ki = rh(r)(er · ek),

where f(r) = Ar−2 + Br−4 + C, g(r) = −A log r −Br−2/2− 3Cr2/2 + D

and h(r) = 2Ar−2 − 4C. Therefore

∂wε
0ki

∂n
− qε0kin = (−2Ar−1 − 2Br−3 + 6Cr)(er · ek)er+

+ (−Ar−1 + Br−3 − 3Cr)ek.

Since the constants A, B and C satisfy

A = −1

a
εsi,ε(1 + εsi,ε log εri,ε + o(εsi,ε log εri,ε))

B =
1

a
(aε

i )
2εsi,ε(1 + εsi,ε log εri,ε + o(εsi,ε log εri,ε))

C =
1

a
εsi,ε−2ri,ε(1 + εsi,ε log εri,ε + o(εsi,ε log εri,ε)),

∂wε
0ki

∂n
− qε0kin =

2

a
εsi,ε−ri,ε(−ek + 4(er · ek)er)×

× (1 + εsi,ε log εri,ε + o(εsi,ε log εri,ε)).

On integrating we have

|mε
ki − πek/(aε

α)| ≤ cεsi,ε−α| log ε|(α + si,ε).

Since si,ε ≥ 2r − α > 0 we have that si,εε
si,ε ≤ (2r − α)ε2q−α, so |mε

ki −
πek/(aε

α)| ≤ cε2q−2α| log ε|.
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For detailed calculation of wε
0ki, qε0ki, A, B, C and D we refer to the

thesis of Allaire [1].

Next we establish the behaviour of ∇qεk −∆wε
k in H−1(Ω). It can be

easily seen that ∇qεk − ∆wε
k = µε

k − γε
k where

µε
k =

Mε∑

i=1

(
∂wε

ki

∂n
− qεkin

)
δB′ε

i
+ ∇ · (χDε

i
(qεkiI − ∇wε

ki))

when N ≥ 3 (χDε
i

is the characteristic function of Dε
i ) and

µε
k =

Mε∑

i=1

(
∂wε

ki

∂n
− qεkin

)
δBε

i

when N = 2, and

γε
k =

Mε∑

i=1

(
∂wε

ki

∂n
− qεkin

)
δT ε

i
,

which has no effect as all the functions considered below are zero in T ε
i

for all i. The behaviour of µε
k is as follows.

Lemma 3. For all φ ∈ H1
0 (Ωε), |〈µε

k−
∑Mε

i=1 mε
kiχP ε

i
, φ〉|≤ cεr−α‖∇φ‖

where the constant c does not depend on ε.

In fact when N ≥ 3 we can prove a stronger results that ‖µε
k −∑

mε
kiχP ε

i
‖H−1(Ω) ≤ cεr−α.

Proof. We consider the case N ≥ 3 first. We note that

‖
Mε∑

i=1

∇ · (χDε
i
(qεkiI − ∇wε

ki))‖H−1(Ω) ≤ ‖
Mε∑

i=1

χDε
i
(qεkiI − ∇wε

ki)‖L2(Ω).

From (4), we have that |wε
ki − ek| ≤ cε2ri,ε−α and |∂wε

ki/∂n| ≤ cεri,ε−α

on ∂B′ε
i , so

∫
Dε

i
|∇wε

ki|2dx ≤ ∫
∂B′ε

i
|wε

ki − ek||∂wε
ki/∂n|ds ≤ cε2r−2α+Nri,ε .

In Dε
i , ‖qεki‖L2(Dε

i
)/IR ≤ c‖∇qεki‖H−1(Dε

i
) where the constant c can be the

constant appears in the same inequality for the domain between the two

balls of radii 1 and 1/2. This can be shown by a simple scaling argument.

From the definition of wε
ki and qεki, ‖∇qεki‖H−1(Dε

i
) = ‖∇wε

ki‖L2(Dε
i
) ≤
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cεr−α+Nri,ε/2. Thus ‖qεkiI −∇wε
ki‖L2(Dε

i
) ≤ cεr−α+Nri,ε/2 and so ‖∑Mε

i=1 ∇·
(χDε

i
(qεkiI − ∇wε

ki))‖H−1(Ω) ≤ cεr−α.

Let φ ∈ H1
0 (Ω). Then

∣∣∣
〈 Mε∑

i=1

(
∂wε

ki

∂n
− qεkin

)
δB′εi − mε

kiχP ε
i
, φ
〉∣∣∣ =

=
∣∣∣
Mε∑

i=1

∫

∂B′ε
i

(
∂wε

ki

∂n
− qεkin

)
φds−

∫

∂B′ε
i

(
∂wε

ki

∂n
− qεkin

)
ds.(2εri,ε)−N

∫

P ε
i

φdx
∣∣∣≤

≤
Mε∑

i=1

∥∥∥∂wε
ki

∂n
− qεkin

∥∥∥
L∞(∂B′ε

i )

∫

∂B′ε
i

∣∣∣φ − (2εri,ε)−N

∫

P ε
i

φdx
∣∣∣ .

From (6) we have that ‖∂wε
ki/∂n − qεkin‖L∞(∂B′ε

i )
≤ cεri,ε−α. Making the

rescale x = xε
i + εri,εy (xε

i is the centre of P ε
i ), the function φ(y) is then

defined in the cube P = [−1, 1]N . Let Φ(y) = φ(y) − 2−N
∫
P φ(z)dz and

B be the ball centred at the origin and of radius 1/2. Using the trace

and the Poincaré inequalities, we have

∫

∂B

|Φ|ds ≤ c

(∫

P

|∇Φ|2dy
)1/2

.

Putting y = ε−ri,ε(x − xε
i ), we have

∫

∂B′ε
i

|φ − (2εri,ε)−N

∫

P ε
i

φdx|ds ≤ cεNri,ε/2

(∫

P ε
i

|∇φ|2dx
)1/2

.

Thus

∣∣∣
〈 Mε∑

i=1

(
∂wε

ki

∂n
− qεkin

)
δB′ε

ki
− mε

kiχP ε
i
, φ
〉∣∣∣ ≤

≤ εr−αεNri,ε/2‖∇φ‖L2(P ε
i
) ≤ cεr−α‖∇φ‖,

where we have used the Cauchy-Schwarz inequality.

The case N = 2 is more complicated. We can only prove the above

inequality for φ ∈ H1
0 (Ωε). The distribution µε

k is written as µε
k = µε

0k+µ′ε
k

where

µε
0k =

Mε∑

i=1

(
∂wε

0ki

∂n
− qε0kin

)
δBε

i
, µ′ε

k =
Mε∑

i=1

(
∂w′ε

ki

∂n
− q′

ε
kin

)
δBε

i
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where w′ε
k = wε

k − wε
0k and q′εk = qεk − qε0k. We remark that

Mε∑

i=1

(
∂w′ε

ki

∂n
− q′

ε
kin

)
δBε

i
= ∇q′

ε
k − ∆w′ε

k −
Mε∑

i=1

(
∂wε

0ki

∂n
− qε0kin

)
δ
B

aε
i

i

+ γε.

Let φ ∈ H1
0 (Ωε). Then 〈γε, φ〉 = 0. Following Allaire [3], we have that

‖q′εk‖L2(P ε
i
) ≤ cε2ri,ε−α and ‖∇w′ε

k‖L2(P ε
i
) ≤ cε2ri,ε−α. Therefore ‖q′εk‖ ≤

cεr−α and ‖∇w′ε
k‖ ≤ cεr−α which implies |〈∇q′εk−∆w′ε

k, φ〉| ≤ cεr−α‖∇φ‖.
Since ‖∂wε

0ki/∂n − qε0kin‖
L∞(B

aε
i

i
)
≤ cε2ri,ε−α/aε

i ,

∣∣∣
〈 Mε∑

i=1

(
∂wε

0ki

∂n
− qε0kin

)
δ
B

aε
i

i

, φ
〉∣∣∣ ≤ c

ε2ri,ε−α

aε
i

∫

∂B
aε
i

i

|φ|ds.

Using the trace inequality we have

∫

∂B
aε
i

i

|φ|ds ≤ c

(∫

B
aε
i

i

|φ|2dx
)1/2

+ caε
i

(∫

B
aε
i

i

|∇φ|2dx
)1/2

.

Furthermore, as φ = 0 in T ε
i and T ε

i contains a ball of radius raε
i , so

∫

B
aε
i

i

|φ|2dx ≤ c(aε
i )

2

∫

B
aε
i

i

|∇φ|2dx.

Therefore

∣∣∣
〈 Mε∑

i=1

(
∂wε

0ki

∂n
− qε0kin

)
δ
B

aε
i

i

, φ
〉∣∣∣ ≤ cεr−α‖∇φ‖.

By carrying out a similar procedure as in the case N ≥ 3, we have that

∣∣∣
〈
µε

0k −
Mε∑

i=1

mε
kiχP ε

i
, φ
〉∣∣∣ ≤ cεr−α‖∇φ‖.

The conclusion follows.
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3 – Behaviour of uε and pε in L2(Ω)

In variational formulation, equations (1) can be written as

ε

∫

Ω

∇uε : ∇ψdx + λ

∫

Ω

uεψdx −
∫

Ω

pε∇ · ψdx =

∫

Ω

fψdx, ∀ψ∈(H1
0 (Ωε))N

∫

Ω

q∇ · uεdx = 0, ∀q∈L2(Ωε)/IR.(7)

Since T contains a ball of radius ρ, in each cube P ε
i whose interior does not

intersect ∂Ω, ‖uε‖2
L2(P ε

i
) ≤ cεα‖∇uε‖2

L2(P ε
i
) (a proof of this can be found

in Allaire [3] part II). For those cubes P ε
i that are not perforated, the

boundary ∂Ω intersects the set T ε
i and so intersects the ball centred at

xε
i with radius εri,ε/2. Choosing a point on ∂Ω that is inside this ball, as

Ω is convex, there is a hyperplane passing this point that is completely

outside Ω. This hyperplane divides P ε
i into two parts, one of which has

an empty intersection with Ω. It is easy to see that as the hyperplane

passing through a point inside the ball centred at xε
i with radius εri,ε/2

the volume of this part is larger than c1|P ε
i | and is smaller than c2|P ε

i | for

some constants c1 and c2 which do not depend on ε and the hyperplane.

As uε can be extended to 0 outside Ω, uε = 0 on this part. Using a

simple recalling argument and the Poincare inequality (see Ziemer [23],

page 189), we see that

‖uε‖2
L2(P ε

i
) ≤ cε2ri,ε‖∇uε‖2

L2(P ε
i
) ≤ cεα‖∇uε‖2

L2(P ε
i
)

as 2ri,ε ≥ 2r ≥ α. Summing up over the M ε cubes, we have that

(8) ‖uε‖ ≤ cεα/2‖∇uε‖.

Letting ψ = uε in (7), we have ε‖∇uε‖2+λ‖uε‖2 ≤ ‖f‖.‖uε‖ which implies

‖uε‖ ≤ c and ε1/2‖∇uε‖ ≤ c. On using (8), we also have ‖∇uε‖ ≤ cεα/2−1

so ‖uε‖ ≤ cεα−1. Thus when α ≤ 1, from a sequence uε, we can extract

a subsequence which converges weakly to a limit u in (L2(Ω))N when

ε → 0. When α > 1, a subsequence can be extracted such that ε1−αuε

converges weakly to u in (L2(Ω))N .

Next we consider the pressure function pε. From Allaire [3], we

know that there is a map Rε from (H1
0 (Ω))N into (H1

0 (Ωε))N such that
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for all ψ ∈ H1
0 (Ω),

‖∇(Rεψ)‖ ≤ c(‖∇ψ‖ + ε−α/2‖ψ‖),

Rεψ = ψ in Kε
i and Rεψ = 0 in T ε

i , and if ∇ · ψ = 0 then ∇ · Rεψ = 0.

The pressure function pε can be extended over the holes T ε
i to a function

P εpε such that P εpε = pε in Ωε and P εpε =
∫
Cε
i
pε/|Cε

i | in each hole T ε
i .

It can be shown that

〈∇P εpε, ψ〉H−1(Ω),H1
0
(Ω) = 〈pε, Rεψ〉H−1(Ωε),H1

0
(Ωε)

for all ψ ∈ (H1
0 (Ω))N . From (7), for each ψ ∈ H1

0 (Ω),

|〈∇P εpε, ψ〉| ≤ ‖f‖.‖Rεψ‖ + λ‖uε‖.‖Rεψ‖ + ε‖∇uε‖.‖∇(Rεψ)‖.

If α ≥ 0, from (8) and the above estimate for ‖∇(Rεψ)‖, we have

|〈∇P εpε, ψ〉| ≤ c‖f‖(εα/2‖∇ψ‖ + ‖ψ‖) ≤ c‖f‖.‖∇ψ‖,

so ‖∇P εpε‖H−1(Ω) ≤ c‖f‖. If α < 0, using ‖Rεψ‖ ≤ ‖∇(Rεψ)‖ and the es-

timate for ‖∇(Rεψ)‖, we get the same inequality. Thus ‖P εpε‖L2(Ω)/IR ≤
c. We therefore can extract a subsequence such that P εpε converges

weakly to a function p in L2(Ω)/IR. Indeed we can show that the conver-

gence is strong. We now prove Theorem 1.

Proof of Theorem 1. When α > 1 we can extract a subsequence

such that ε1−αuε converges weakly to a function u in (L2(Ω))N . Let

φ ∈ D(Ω). Letting ψ = wε
kφ and q = qεkφ as test functions in (7), we have

ε

∫

Ω

∇uε : ∇wε
kφdx + ε

∫

Ω

∇uε : ∇φwε
kdx + λ

∫

Ω

uεwε
kφdx −

∫

Ω

pεwε
k · ∇φdx =

=

∫

Ω

fwε
kφdx,

i.e.

− ε〈∆wε
k − ∇qεk, u

εφ〉 + ε

∫

Ω

qεku
ε · ∇φdx − ε

∫

Ω

∇wε
k : uε∇φdx+

+ ε

∫

Ω

∇uε : ∇φwε
kdx + λ

∫

Ω

uεwε
kφdx −

∫

Ω

pεwε
k · ∇φdx =

=

∫

Ω

fwε
kφdx.
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As wε
k→ek in (L2(Ω))N , the right hand side converges to

∫
Ω fekφdx when

ε → 0. In the left hand side, since εα/2‖qεk‖, εα/2‖∇wε
k‖, ε1−α‖uε‖ are

bounded, the second, third, fourth and fifth terms converges to 0, the

final term converges to − ∫Ω pek · ∇φdx=〈∇p · ek, φ〉. The first term can

be written as

ε
〈
µε
k−

Mε∑

i=1

mε
kiχP ε

i
, uεφ

〉
+ε

Mε∑

i=1

(
mε

ki−
Fk

2Nεα

)∫

P ε
i

uεφdx+

∫
ε1−αuεφ·Fk/2

Ndx.

the last term converges to
∫
Ω uφ · Fk/2

Ndx. From Lemmas 2 and 3 the

other terms converges to 0. Therefore
∫

Ω

uφ · Fk/2
Ndx + 〈∇p · ek, φ〉 =

∫

Ω

f · ekφdx.

Since this is true for all φ ∈ D(Ω), we have Mu+∇p = f i.e. u = M−1(f−
∇p). As ∇ · uε = 0 so ∇ · u = 0. With the boundary condition u · n = 0

(see for example Sanchez-Palencia [18]), this problem for (u, p) has a

unique solution. Since the limit does not depend on the subsequence, the

sequence (uε, pε) converges weakly to (u, p) in (L2(Ω))N × L2(Ω)/IR.

Next we prove the strong convergence. The following proof for pε

follows from that of Tartar [20] and Allaire [3]. Let ψε be a se-

quence which converges weakly to 0 in (H1
0 (Ω))N . Since ‖∇(Rεψε)‖ ≤

c(‖∇ψε‖ + ε−α/2‖ψε‖) and ‖Rεψε‖ ≤ c(εα/2‖∇ψε‖ + ‖ψε‖) which con-

verges to 0, we have

〈∇P εpε, ψε〉 = 〈∇pε, Rεψε〉 =

∫

Ω

(f −λuε)Rεψεdx− ε

∫

Ω

∇uε ·∇(Rεuε)dx

which converges to 0. Since this is true for all sequence ψε ⇀ 0 in

(H1
0 (Ω))N , we have that ∇P εpε → ∇p in H−1(Ω) strongly and so P εpε →

p in L2(Ω)/IR.

Now we show the strong convergence for ε1−αuε. Let W ε be the

N × N matrix whose kth column is the vector wε
k. Let Φ ∈ (D(Ω))N .

After some manipulation using (7), we have

(9)

εα
∫

Ω

|∇(uεε1−α − W εΦ)|2dx + λεα−1

∫

Ω

|uεε1−α − W εΦ|2dx =

=

∫

Ω

fuεε1−αdx − 2

∫

Ω

fW ε · Φdx + 2

∫

Ω

∇pε · (W εΦ)dx+

+ εα
∫

Ω

|∇(W εΦ)|2dx + λεα−1

∫

Ω

|W εΦ|2dx.
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On the right hand side, the first, second, third and fifth terms converges

to
∫
Ω fudx, −2

∫
Ω fΦdx, −2

∫
Ω p∇ · Φdx and 0 respectively. The fourth

term can be written as

εα
∫

Ω

∇(φkw
ε
k) : ∇(φlw

ε
l )dx = εα

∫

Ω

wε
k∇φk : wε

l∇φldx+

+ εα
∫

Ω

φk∇wε
k : φl∇wε

l dx+

+ 2εα
∫

Ω

φk∇wε
k : ∇φlw

ε
l dx,

where φk denotes the kth component of the vector Φ. On the right hand

side of this equation, the first term and the third term converges to 0.

The second term can be written as

εα〈µε, φkφlw
ε
l 〉 + εα

∫

Ω

qεk∇ · (φkφl)w
ε
l dx − εα

∫

Ω

∇wε
k : ∇(φkφl)w

ε
l dx,

in which the last two terms tend to 0 as ε → 0. The first term is written as

εα
〈
µε
k −

Mε∑

i=1

mε
kiχP ε

i
, φkφlw

ε
l

〉
+ εα

Mε∑

i=1

∫

P ε
i

mε
kiφkφlw

ε
l dx

which converges to
∫

MΦ · Φ. Therefore the right hand side in (9) con-

verges to
∫
Ω fudx−2

∫
Ω fΦdx−2

∫
Ω p∇·Φdx+

∫
Ω MΦ·Φdx. Since ∇·u = 0

and u · n = 0 on ∂Ω, there exists a sequence {Φi} ⊂ (D(Ω))N such that

∇ · Φi = 0 and Φi → u in (L2(Ω))N . We have

∫

Ω

fudx−2

∫

Ω

f ·Φidx+

∫

Ω

MΦi·Φidx =

∫

Ω

f(u−Φi)dx+

∫

Ω

M(u−Φi)·Φidx,

converges to 0 as i → ∞. From (9), we have lim supε→0 ‖uεε1−α −
W εΦi‖ ≤ ∫Ω(f + MΦi)(u − Φi)dx so

lim sup
ε→0

‖uεε1−α − W εu‖ ≤
∫

Ω

(f + MΦi)(u − Φi)dx+

+ lim sup
ε→0

‖W ε‖L∞(Ω).‖u − Φi‖.

for all i. Since ‖W ε‖L∞(Ω) is bounded, letting i → ∞, we have that

limε→0 ‖uεε1−α − W εu‖ = 0. As W ε → I in (L2(Ω))N×N , so uεε1−α → u.
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The proof for α = 1 is similar except that since uε ⇀ u in (L2(Ω))N

so λ
∫
Ω uεwε

kφdx → λ
∫
Ω ukφdx.

Now we consider the case α ≤ 1. Letting wε
kφ be the test function in

(7), we have

ε

∫

Ω

∇uε : ∇wε
kφdx + ε

∫

Ω

∇uε : ∇φwε
kdx + λ

∫

Ω

uε · wε
kφdx −

∫

Ω

pεwε
k · ∇φdx =

=

∫

Ω

fwε
kφdx.

The first two terms on the left hand side converge to 0 due to the

boundedness of ε1/2‖∇uε‖ and εα/2‖∇wε
k‖. The other terms converge

to λ
∫

uekφ and − ∫ pek∇φ. The right hand side converges to
∫

fekφ.

Hence u = λ−1(f −∇p). As ∇ · uε = 0 so ∇ · u = 0 and u · n = 0 on ∂Ω.

From (7),

ε

∫

Ω

|∇uε|2dx + λ

∫

Ω

|uε − u|2dx = λ

∫

Ω

|u|2dx − λ

∫

Ω

u · uεdx.

Since the right hand side converges to 0, uε → u in (L2(Ω))N .

Next we show the strong convergence of P εpε in L2(Ω)/IR. The case

α > 0 is shown in the same manner as in the previous case. We consider

the case α ≤ 0. Let ψε be a sequence which converges weakly to 0 in

(H1
0 (Ω))N . Then

〈∇P εpε, ψε〉 = 〈∇p,Rεψε〉+λ

∫

Ω

(u−uε)Rεψεdx−ε

∫

Ω

∇uε : ∇(Rεψε)dx.

The last two terms on the right hand side converges to 0. From the

construction of Rεψε (see Allaire [3]), it can be shown that 〈∇p,Rεψε〉
also converges to 0. Therefore pε → p in L2(Ω)/IR.

Next we show the results on error estimate.

Proof of Theorem 2. We only prove the theorem for N ≥ 3. The

case N = 2 is similar. For simplicity we will denote by µk the kth column

of the matrix M . When α > 1, let vε = uεε1−α − W εu which belongs to
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(H1
0 (Ωε))N . Using (7), for all νε ∈ (H1

0 (Ωε))N , we have

(10)

ε

∫

Ω

∇vε : ∇νεdx +λ

∫

Ω

vε · νεdx = ε1−α〈∇(p − pε), νε〉+

−λ

∫

Ω

W εuνεdx − ε

∫

Ω

wε
k∇uk : ∇νεdx+

+ ε

∫

Ω

∇wε
k : ∇ukν

εdx + ε〈∇qεk, ν
εuk〉+

− ε〈µε
k −

Mε∑

i=1

mε
kiχP ε

i
, νεuk〉+

− ε
Mε∑

i=1

∫

P ε
i

(mε
ki − µk/ε

α)νεukdx,

where uk denotes the kth component of u. Putting νε = vε, we have that

|〈∇(p−pε)·vε〉| =
∣∣∣
∫

Ω

(p−pε)(wε
k−ek)∇ukdx

∣∣∣ ≤ c‖p−pε‖L2(Ωε)/IR‖W ε−I‖,

and that

∣∣∣
∫

Ω

∇qεk(v
εuk)dx

∣∣∣ ≤ cε−α/2‖vε‖ + cε−α/2‖W ε − I‖.

On using (8) we have

ε‖∇vε‖2 + λ‖vε‖2 ≤ c‖p − pε‖L2(Ωε)/IR‖W ε − I‖ε1−α+

+ c(εα/2 + ε + ε1+r−α+

+ ε1+(2r−α)/(N−2)−α/2)‖∇vε‖ + cε1−α/2‖W ε − I‖.

Therefore

‖∇vε‖ ≤ c‖p − pε‖1/2

L2(Ωε)/IR
‖W ε − I‖1/2ε−α/2+

+ c(εα/2−1 + 1 + εr−α + ε(2r−α)/(N−2)−α/2),

and so

‖vε‖ ≤ c‖p−pε‖1/2

L2(Ωε)/IR
‖W ε−I‖1/2+c(εα−1+εα/2+εr−α/2+ε(2r−α)/(N−2)).
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From (10) and the inequality ‖∇(Rεν)‖ ≤ cε−α/2‖∇ν‖, we have that if

ν ∈ (H1
0 (Ω))N is such that ∇ · ν = 0, then

|〈∇P ε(p−pε), ν〉|≤ c(εα/2‖∇vε‖+εα−1+εα/2+εr−α/2+ε(2r−α)/(N−2))‖∇ν‖.

From these inequalities and the fact that every function g ∈ L2
0(Ω) can

be represented in the form g = ∇ · ν for some function ν ∈ (H1
0 (Ω))N

such that ‖∇ν‖ ≤ c‖g‖ where c is independent of g, we deduce that

‖P ε(p − pε)‖L2(Ω)/IR ≤ c(εα−1 + εα/2 + εr−α/2 + ε(2r−α)/(N−2)).

The results then follow.

Next we consider the case α = 1. Let vε = uε − W εu. For all

νε ∈ (H1
0 (Ωε))N , we have

(11)

ε

∫

Ω

∇vε :∇νεdx+λ

∫

Ω

vε · νεdx =〈∇(p−pε), νε〉 − ε

∫

Ω

wε
k∇uk : ∇νεdx+

+ ε

∫

Ω

∇wε
k : ∇ukν

εdx − ε〈µε
k −

Mε∑

i=1

mε
kiχP ε

i
, νεuk〉+

− ε
Mε∑

i=1

∫

P ε
i

(mε
ki−µk/ε)ν

εukdx + ε〈∇qεk, ν
εuk〉+λ

∫

Ω

(I−W ε)u · νεdx.

Letting νε = vε, we have

ε‖∇vε‖2 + ‖vε‖2 ≤ c‖p − pε‖L2(Ωε)/IR‖W ε − I‖+
+ c(ε + εr + ε(2r−1)/(N−2)+1/2 + ‖W ε− I‖ε1/2)‖∇vε‖ + cε1/2‖W ε − I‖.

Thus

‖∇vε‖ ≤ c‖p−pε‖1/2

L2(Ωε)/IR
‖W ε−I‖1/2ε−1/2+c(1+εr−1+ε(2r−1)/(N−2)−1/2),

and

‖vε‖ ≤ c‖p − pε‖1/2

L2(Ωε)/IR
‖W ε − I‖1/2 + c(ε1/2 + εr−1/2 + ε(2r−1)/(N−2)).

From (11), we have that for all ν ∈ (H1
0 (Ω))N such that ∇.ν = 0,

|〈∇P ε(p − pε), ν〉| ≤ c(ε1/2‖∇vε‖ + ε1/2 + εr−1/2 + ε(2r−1)/(N−2))‖∇ν‖.
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Thus

‖P ε(p − pε)‖1/2

L2(Ω)/IR
≤ c(ε1/2 + εr−1/2 + ε(2r−1)/(N−2))

which implies the results.

When α < 1, we have

(12)

ε

∫

Ω

∇(uε − W εu) : ∇νεdx +

∫

Ω

vε · νεdx =

= 〈∇(p − pε), νε〉 − λ

∫

Ω

(W ε − I)u · νεdx − ε

∫

Ω

wε
k∇uk : ∇νεdx+

+ ε

∫

Ω

∇wε
k : ∇ukν

εdx − ε
〈
µε
k −

Mε∑

i=1

mε
kiχP ε

i
, νεuk

〉
+

+ ε

∫

Ω

〈qεk, νεuk〉 − ε
Mε∑

i=1

∫

P ε
i

(mε
ki − µk/ε

α)νεukdx+

− ε1−α

∫

Ω

Muνεdx.

From this we have

(13)

ε‖∇vε‖2 + ‖vε‖2 ≤ c‖p − pε‖L2(Ωε)/IR‖W ε − I‖+
+ c(‖W ε − I‖ + ε1−α)‖vε‖+
+ c(ε + ε1+r−α)‖∇vε‖ + cε1−α/2‖W ε − I‖.

We consider the case 0 < α < 1 first. If

‖vε‖2 ≤ c‖p − pε‖L2(Ωε)/IR‖W ε − I‖ + c(‖W ε − I‖ + ε1−α)‖vε‖+
+ cε1−α/2‖W ε − I‖,

then

‖vε‖ ≤ c‖p − pε‖1/2

L2(Ωε)/IR
‖W ε − I‖1/2 + cε1/2−α/4‖W ε − I‖1/2+

+ c‖W ε − I‖ + cε1−α.

Otherwise, ‖∇vε‖ ≤ c(1 + εr−α) so ‖vε‖ ≤ c(εα/2 + εr−α/2). Thus we

always have

‖vε‖ ≤ c(εα/2 + εr−α/2 + ε1−α + ‖W ε − I‖1/2ε1/2−α/4)+

+ c‖p − pε‖1/2

L2(Ωε)/IR
‖W ε − I‖1/2.
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Putting this into (13), we get

‖∇vε‖ ≤ cε−1/2‖p− pε‖1/2

L2(Ωε)/IR
‖W ε − I‖1/2 + c(εα/2−1‖W ε − I‖+ ε−α/2).

From (12), we have

|〈∇P ε(p − pε), ν〉| ≤ c(ε1−α/2‖∇vε‖ + ‖W ε − I‖ + ε1−α + ‖vε‖)‖∇ν‖,

for all ν ∈ (H1
0 (Ω))N . Therefore

‖P ε(p − pε)‖L2(Ω)/IR ≤ c(ε1−α + εα/2 + εr−α/2 + ε1/2−α/4‖W ε − I‖1/2).

The conclusion follows.

If α ≤ 0, from (13) we have

ε‖∇vε‖2 + ‖vε‖2 ≤ c‖p − pε‖L2(Ωε)/IR‖W ε − I‖+
+ c(‖W ε − I‖ + ε1−α)‖vε‖cε1−α/2‖W ε − I‖+
+ cε‖∇vε‖.

From this we deduce ‖vε‖ ≤ c‖p−pε‖1/2

L2(Ωε)/IR
‖W ε−I‖1/2 +c(‖W ε−I‖+

ε1/2). Therefore

(14) ‖∇vε‖ ≤ c‖p − pε‖1/2

L2(Ωε)/IR
‖W ε − I‖1/2ε−1/2 + c + c‖W ε − I‖ε−1/2.

From (12), for all ν ∈ (H1
0 (Ω))N) we have

(15)
|〈∇P ε(p − pε), ν〉| ≤ ε‖∇vε‖‖∇ν‖+

+ ‖vε‖‖∇ν‖ + c(‖W ε − I‖ + ε)‖∇ν‖.

This equation together with the above estimates for ‖vε‖ and ‖∇vε‖ show

that ‖p − pε‖L2(Ωε)/IR and ‖vε‖ are smaller than c(‖W ε − I‖ + ε1/2).

If 2r > α + 1/2 (N = 2 or N = 3), 2r > α + (N − 2)/N (N ≥ 4) we

have ‖W ε − I‖ < cε1/2. Therefore ‖uε −u‖ < cε1/2. This is similar to the

result found in Lions [14] for singularly perturbed Dirichlet problems.

The holes are now too small in comparison with the cubes to have effect.
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4 – Behaviour of uε in H1
0 (Ω)

In this section, we prove Theorems 3 and 4 on the behaviour of uε in

H1
0 (Ω) when the holes are sufficiently small.

Proof of Theorem 3. We prove the theorem for the case N ≥ 3;

the proof for N = 2 is similar. Let vε = uε − W εu. From (14), we have

‖∇vε‖ ≤ c(‖W ε − I‖ε−1/2 + ‖W ε − I‖1/2ε−1/4 + 1).

From (5) and the hypothesis of the theorem, we have ‖∇vε‖ < c so we

can extract a subsequence vε which converges weakly in (H1
0 (Ω))N . Since

vε → 0 in (L2(Ω))N , the weak limit is 0. From (12) we have

ε‖∇vε‖2+ ‖vε‖2≤c‖p − pε‖L2(Ωε)/IR‖W ε−I‖ + c(‖W ε−I‖+ ε1−α/2)‖vε‖+

+cε1−α‖∇vε‖+ cε1−α/2‖W ε−I‖+ ε

∫

Ω

∇wε
k :∇ukv

εdx+

− ε

∫

Ω

wε
k∇uk :∇vεdx.

Thus

‖∇vε‖2 ≤ c‖p − pε‖L2(Ωε)/IR‖W ε − I‖ε−1 + c‖W ε − I‖2ε−1+

+ c‖W ε − I‖ε−1/2 + cε−α/2+

+

∫

Ω

∇wε
k : ∇ukv

εdx −
∫

Ω

wε
k∇uk : ∇vεdx.

It is simple to see that the first four terms converge to 0 as ε → 0. We

also have

∣∣∣
∫

Ω

∇wε
k : ∇ukv

εdx
∣∣∣ ≤ c‖∇wε

k‖‖vε‖ ≤ cε−α/2‖vε‖ → 0,

and
∫

Ω

wε
k∇uk : ∇vεdx =

∫

Ω

(wε
k − 1)∇uk : ∇vεdx +

∫

Ω

∇uk : ∇vεdx → 0,

as wε
k − 1 → 0, ‖∇vε‖ < c and vε ⇀ 0 in (H1

0 (Ω))N . Therefore vε → 0 in

(H1
0 (Ω))N .
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Proof of Theorem 4. We show this theorem for N ≥ 3; the case

N = 2 is similar. Let vε = uε − KεW εu. On using (7) when ψ = vε we

have

(16)

ε‖∇vε‖2+λ‖vε‖2 =

∫

Ω

(f − ∇pε)vεdx − ε

∫

Ω

Kεwε
k∇uk : ∇vεdx+

+ ε

∫

Ω

Kε∇wε
k : ∇ukv

εdx+

− ε〈Kε(µε
k −

Mε∑

i=1

mε
kiχP ε

i
), vεuk〉+

− ε
Mε∑

i=1

∫

P ε
i

Kε(mε
ki − µk/ε

α)vεukdx+

− ε1−α

∫

Ω

Kεµk · vεukdx − λ

∫

Ω

Kεwε
k · ukv

εdx ≤

≤
∫

Ω

(L−ε1−αKεM−λKεW ε)uvεdx+〈∇(p−pε),vε〉+

+ cε‖∇vε‖ + cε1+(2r−α)/(N−2)−α‖vε‖.
Since L − ε1−αKεM − λKεW ε = λKε(I − W ε) we have

ε‖∇vε‖2 + λ‖vε‖2 ≤ c‖W ε − I‖‖vε‖+
+ c‖p − pε‖L2(Ωε)/IR‖W ε − I‖+
+ cε‖∇vε‖ + cε1+(2r−α)/(N−2)−α‖vε‖,

so

‖∇vε‖ ≤ c‖W ε − I‖εα/2−1 + c‖p − pε‖1/2

L2(Ωε)/IR
‖W ε − I‖1/2ε−1/2+

+ (̧1 + ε(2r−α)/(N−2)−α/2).

With the conditions of the theorem, and the estimate for ‖p−pε‖L2(Ωε)/IR

in the previous section, we have that ‖∇vε‖ < c so vε converges weakly

in (H1
0 (Ω))N . Furthermore, since ‖vε‖ ≤ cεα/2, the weak limit is 0.

To show the strong convergence, we have again from (16) that

‖∇vε‖2 ≤ c‖p − pε‖L2(Ωε)/IR‖W ε − I‖ε−1 + cεr−α‖∇vε‖+

+ cε(2r−α)/(N−2)−α/2‖∇vε‖−
∫

Ω

Kεwε
k∇uk : ∇vεdx+

+

∫

Ω

Kε∇wε
k : ∇ukv

εdx.
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The first three terms on the right hand side converge to 0. We also have
∫

Ω

Kεwε
k∇uk : ∇vεdx =

∫

Ω

Kε(wε
k−ek)∇uk : ∇vεdx+

∫

Ω

Kek∇uk : ∇vεdx

converges to 0 since wε
k → ek in (L2(Ω))N and vε ⇀ 0 in (H1

0 (Ω))N .

Furthermore
∫

Ω

Kε∇wε
k : ∇ukv

εdx = −
∫

Ω

Kεwε
k · ∆ukv

εdx −
∫

Ω

Kεwε
k · ∇vε∇ukdx

which converges to 0 since wε
k → ek in (L2(Ω))N , |∇uk| and |∆uk| are

bounded and vε ⇀ 0 in (H1
0 (Ω))N . Therefore vε → 0 in (H1

0 (Ω))N .
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