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Homogenization of the Stokes flow

with small viscosity in a non-periodic porous medium

VIET HA HOANG

RIASSUNTO: Si considerano le equazioni stazionarie di Stokes con un piccolo coeffi-
ciente di viscosita in un dominio perforato in cui i buchi non sono della stessa grandezza
e non sono distributiti in modo periodico. Ogni buco é perforato al centro di un cubo la
cui grandezza € legata alla dimensione del cubo da una data condizione. Domini perfo-
rati in modo periodico somo un caso particolare dei domini di questo tipo. Si utilizza
il lavoro Cioranescu-Murat e le funzioni test di Allaire. Si mostra che molti risultati
esistenti in letteratura per domini perforati in modo periodico sono anche verificati nel
constesto di questo lavoro.

ABSTRACT: Stationary Stokes equations with a small viscosity coefficient are con-
sidered in a perforated domain in which holes are not of the same size and are not
distributed periodically. Each hole is perforated at the centre of a cube whose size re-
lates to the size of the hole by a given condition. Periodically perforated domains are a
particular case of domains of this type. The framework of D. Cioranescu and F. Murat
is employed together with the test functions by G. Allaire. It is shown that many exist-
ing results in the literature for periodically perforated domains relating this framework
hold in this setting.

1 — Introduction

Homogenization of the Stokes equations plays an important role in
understanding the macroscopic laws which govern fluid flow in porous
media. Most of the works in the literature consider either a periodic dis-
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tribution of holes or a complete random medium. The two scale asymp-
totic expansion, the energy method and oscillating test functions (see
BESOUSSANS et al. [6]) were used to treat the periodic case where the
holes’ size and the period are of the same order. The homogenized equa-
tion is the Darcy’s law (TARTAR [20], ALLAIRE [2], LIONS [16], ZHIKOV
[22]) or some of its time dependent versions (LIONS [15], ALLAIRE [4],
SANDRAKOV [19]). The case where the holes’ size is of a smaller or-
der than the period is amenable to the general framework developed by
C10RANESCU and MURAT [8] which is essentially a generalization of the
energy method. In the case where holes are of a critical order of the pe-
riod, the effective equation is the Brinkman law, first introduced in 1947
in [7]. When holes are smaller, they have no effect and the asymptotic
limit equation is the Stokes equations. The homogenized equation is in
the form of the Darcy’s law when the holes’ size is bigger. This is demon-
strated in the two part paper by ALLAIRE [3]. Random domains are
studied in RUBINSTEIN [17], BELIAEV and KozLoV [5] and WRIGHT [21].

In this paper, we consider the Stokes equations with a small viscos-
ity coefficient in a porous domain where holes are not necessarily dis-
tributed periodically and may not be of the same size. We employed
the Cioranescu-Murat framework and the test functions introduced in
ALLAIRE [3].

Let Q¢ be the perforated domain in R™ (N > 2). We consider the
problem
) —eAuf + M +Vp = f
W { Vowr =0, e (HY(Q)Y,

which is the Laplace transform of the time dependent Stokes equations,
where V.u° denotes the divergence of the vector u i.e V.ur= YN  dus /0x;.
We will only consider the case A > 0 as the case A = 0 can be treated by
making the transformation v* = eu® and using the results by ALLAIRE [3].
Let 2 be a bounded convex domain (the assumption that € is convex is
needed for proving the inequality (8)). The boundary of a convex domain
is Lipschitz. For each € > 0, Q is a subset of the union of M€ closed cubes
Ps (i =1,...,M¢°) of size 2¢"i= (r;. > 0) whose interiors are pairwise

disjoint. The cubes P can intersect the boundary of €2 but none of these
cubes do not intersect 2.
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Let T be a closed bounded set in IR" with a Lipschitz boundary
locally located on one side of its boundary, which is contained entirely in
the inside of the unit ball B; and contains a ball of radius p < 1 centred
at the origin in its interior. Let x be the centre of the cube P7. For each
cube Pf we consider the set T¢ inside Pf: Tf = {x : @ — 25 € aT} where
a$ is the holes’ size which is defined as

(2) a; = e%= (N > 3), and a; = "= exp(—ae™ =) (N = 2),

where 7; ., s; . and a are positive constants; a does not depend on ¢ and €.
We assume further that there exist constants o and r with » > 0 such that
r;e > rforalliand e and Nr;.—(N—2)s,. = a (N > 3)and 2r, . —s; . =
a (N = 2) for all i and e; and moreover 2r > «a. Since $;. — 7. >
(2r—a)/(N —2) >0 when N >3 and s;. > 2r —a > 0 when N =2, all
the sets T are strictly contained in the interior of the cube P;. Removing
from € all the sets T that do not intersect 02, the remainder we get is
the perforated domain Q2 which has a Lipschitz boundary and is locally
located on one side of its boundary. The condition that the perforated
domain is locally located on one side of its boundary guarantees that all
the well known results about the existence and uniqueness of the solution
of the Stokes equations holds; it plays no role in our results.
Periodically perforated domains are a particular case of domains con-
structed above. The framework by CIORANESCU and MURAT (8] and
Kacmmr and MURAT [12] employed by ALLAIRE [3] for the Stokes equa-
tions works in this more general class of perforated domains. If we drop
the viscosity coefficient ¢, the limits obtained in ALLAIRE [3] hold in this
situation, except that in [3] A = 0 but the results for A > 0 are essentially
similar. The estimates in L?(Q) and H'(2) of the test functions can be
easily seen to be true in our setting. However, the estimates in H ()
is more complicated. Kacimr and MURAT [12] and ALLAIRE [3] use an
estimate in H'(Q) for periodic distributions of zero average in the pe-
riod cube, which is originally due to KOHN and VOGELIUS [13]. We show
here that a new approach not using this estimate can be used to obtain
an estimate in H~'(Q) for the test functions; and all the results in the
above papers hold in this more general setting. For the Laplace equation,
as we do not require that the boundary of ¢ is Lipschitz, we can also
allow holes to intersect the boundary of 2. The Poincare inequality (8)
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always holds; and we can consider any domain 2, not just convex as in
this paper. For the Stokes equations, as the boundary of ° needs to
be Lipschitz, holes should not intersect the boundary 9€). For a general
domain, the inequality (8) does not hold.

Understanding that u® is zero in the holes, our purpose is to study
the behaviour of u® when € — 0. The test functions and their properties
are introduced in Section 2. In Section 3, we prove that v (or ufe'=®
when « > 1) converges strongly in (L*(Q))" to the velocity field of a
Darcy law in €. The pressure function p® can be extended over the
holes by an extending operator P : L?(Q°) — L*(Q2) such that Pep°
converges strongly in L?(2)/IR to the pressure function of this Darcy’s
law (recall that two functions p; and p, are identified as the same element
in L*(Q)/R if p; — py is a constant; the L?*(©2)/IR norm of this element
is [[p1 — [y p1/|QH|2/22(Q)) Let M be the N x N symmetric matrix whose
k'™ column is the vector F},/2Y when N > 3 (F}, is the drag force defined
after equation (4) or me;,/a when N = 2 (e, is the kth unit vector). Let
L=Mifa>1,L=M+MNifa=1and L =X\ if o <1 (I is the
identity matrix). Let (u,p) € (L*(Q))" x H'(Q) be the unique solution
of the Darcy law

u=L""f-Vp), V-u=0, u-n=0on .
The behaviour of p and u® are as follows.

THEOREM 1. The pressure function p° converges strongly to p in
L*(Q)/R. When a > 1, u¥e'™* = w in (L*(Q))V. Otherwise u® — u in
(L*(Q2)".

The error estimates are established when the limit function is in
(WLe2(Q)N N(H(Q))N. This regularity assumption is weaker than that
required in ALLAIRE [3] which, following an idea of KACIMI and MURAT
[12], requires the limit to be in (W2>(Q))V. Let W¢ be the N x N
matrix of test functions defined in Section 2; [|[W*® — I|12(q) is less than a
positive order of ¢ (Lemma 1). We have the following results, which will
be proved in Section 3.

THEOREM 2. Assume that the limit u in Theorem 1 belongs to
(Hy ()N N(Whe(Q))N. The error estimates when N > 3 are as follows.
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When a > 1,
P — 1%l L2000y /m + |ue'~* — Weul[12(0s) <
< C(8a71 +€a/2 _’_87‘7&/2 +€(2r7a)/(N72)).
When a =1,

lp = Pl 2200w + 1u* = Woul[p2(qey < e(e!/? 47712 4 BrmD/IN=2)),
When 0 < a < 1
P — %l L2000y /m + Ju” — Woul|L2(qe) <
< C(EQ/Q _'_817(1 _'_81“704/2 4 ||W5 _I||1/2€1/27a/4).
When o <0,

Ip —pEHL?(QE)/R + [Ju — WEUHL?(QE) <c(||[We =1 + 51/2)~

When N = 2, similar results hold except that the term €7~/ (N=2) does
not appear in the right hand side of the above inequalities.

The behaviour of v in (H}(Q))V for a few cases where the holes
T¢ are significantly small in comparison with the corresponding cube is
touched upon in Section 4. We will prove the followings:

THEOREM 3.  Assume that u € (H}(Q))N N(Wh(Q))N. When
a <0 and either 2r > a+1/2 (N =2 or N =3) or2r > a+ (N —2)/N
(N >4), then u® — Weu — 0 in (H3 ().

THEOREM 4. Letr be such that 0 < o < r and

r > max{a/4 +1/2,3a/4} when N =2,
r > max{a/4+1/2, Na/4} when N =3,
r > max{a/N + (N —2)/N,Na/4} when N > 4.

Let K5 = (=M + AD)'L. If u € (HX(Q)N N(WE=(Q)N then
ut — KeWeu — 0 in (HF(Q)N. If in addition, v € (W>*(Q))N the
convergence is strong.

As expected, when the holes are much smaller than the cubes, they
have no effect; the behaviour of u° is similar to that in the case of a non
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perforated domain considered in LIONS [14], except that further regu-
larity assumptions are necessary in compensation for the appearance of
the holes.

The problem (1) in periodically perforated domains in which the
holes and the period are of the same size is considered in [19], in which
the limits of u® when & — 0 are presented; error estimates are not touched
upon. The approach presented in this paper to find error estimates fails
in this case due to the weak convergence of the test functions. We do not
know if a similar generalization exists for perforated domains of this type.

Related singularly perturbed Dirichlet problems for the Laplacian in
perforated domains have recently been considered in [9] for the periodic
case and in [10] and [11] for random domains.

Throughout the paper, we denote by ¢ various constants which do not
depend on i and € and whose values may vary form one line to the next.
The duality between H~'(Q2) and H}(Q) is denoted by (, ); ||.|| denotes
the norm in (L%(Q2))Y or in (L*(Q))V*" according to the context unless
the space is explicitly specified. By V - ¢ we denote the divergence of the
vector ¢ = (¢1,... ,¢n) ie. V-¢ =N, 0¢;/0x;. By Ve we mean the
gradient of ¢ which is the N dimensional vector (0¢/0z1, ... ,0¢/0zy) if
¢ is a scalar function or is the N x N matrix with entries 0¢;/0z; if ¢ is an
N dimensional vector (¢1,...,¢x). Given two N x N matrices A and B
with entries a;; and b,;, we denote the inner product Zﬁ;:l a;;b;; between
A and B by A : B. As usual, repeated indices indicate summation.

2 — Test functions

We now construct the test functions and we establish their properties.
These functions are exactly the same as those introduced in ALLAIRE [3]
for the periodic case; they are constructed differently for the case N = 2
and the case N > 3. Let B be the ball of radius "= inside P;. Let
Cs = B;\ 17 and K; = Pf\ B;. When N =2, foreach k =1,... ,N we
let (wg,,qs,) be such that

15 p— € H €
Wi; = €y Gy =0 in K7
£ £ £ M €
V¢, —Aws, =0,V-w;, =0 in C;
15 J— £ __ M €
wi; =0, g, =0, in 77,

where e;, denotes the kth unit vector.
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When N = 3 we first consider the Stokes problem in RY \ T":

Vg — Awp, =0  in RV\T
V- w,=0 in RV\ T

(3) wy =0 on 0T
Wy, = ey, at oo

g € PR\ T), and Vuy € (L*(RV\T)).

This problem has a unique solution whose asymptotic behaviour at infin-
ity is as follows (the proof can be found in the appendix of ALLAIRE [3]).

1 F, 1
252 (N 5 + (Fy - e,.)eT,> + O(rN_l)
1 1
= g (P +0( )

1
Vwk = O(TNfl)

W — qr€yr = 7251\]7”1\,71 (Fk + N(Fk . 6,«)67-) + O(T7N>7

where F}, is the drag force exerted on T by the flow defined as Fj, =
Jor (Owy,/On — qxn)ds, e, is the radial vector.

Let B’S be the ball centred at the centre of PF with radius "/, Let
C'; = B';\Tf, D = BS \ B’; and as before Ki = P7\ B;. The functions
(Wi, q5;) € (H(P))N x L*(Pf) with [} ¢f; = 0 is defined such that

Wy = € —

wy, = e, qr; =0, in K7
Vg, — Aw;, =0, V-w;, =0in D
wi; = wi(x/af), qi; = qr(x/af)/as, in C77

g __ g 1 €
wi,;, =0, g, =0in T7.

The test functions (w§,q7) € (H'(Q))N x (L*())Y are defined as w§ =
wi,, and ¢; = q;; in P7; w; are bounded pointwise. When N = 2, we
define in each cube Pf the functions (wg,;, ¢5,.;) € (H'(PF))N x L*(Pf)
whose definitions are similar to that of wj, and ¢f; except that the holes 777
is replaced by the ball B;' d with radius a; and centred at the centre of P;;

B contains T¢ in its interior. We define (w§,, ¢,.) € (H'(Q2))N x L*(Q)

(2
€ — € € — € 1 15
such that w§, = wg,; and ¢, = qg; in Pr.
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The behaviours of w; and ¢; are as follows.

LEMMA 1. In (L*(Q))Y, when € is sufficiently small

c2r—a if N =2
c2r—a if N =3
e ollogel /2 if N =14
g@r-e)N/(2(N=2)) it N > 4.

(5) lwi —exll < ¢

Furthermore ||g;|| < ce™/% and ||Vwi|| < ce=/2.

PROOF. From the results of ALLAIRE [3] we have that

6231',6 lf N B 2
82(27”7;75*0‘) if N = 3
#“wi — ek“?’ﬁ(PE) <c 1
2eme ) i e?Prie=)|logerie~sie| if N =4
£(2rie—a)N/(N-2) if N > 4.

In addition, using ;. > r and s;. — 7. > (2r —a)/(N —2) when N > 3
and s; . > 2r —a when N = 2 we get the conclusion. Other results of the
theorem can be obtained in a similar manner. ]

Let

(267175)7N/ (% — an) ds when N > 3
oB's

My

(25”75)*]\[/ (6;;2'“ - qgkn> ds when N = 2.
oBg

The behaviour of mj, is as follows.

LEMMA 2. When N > 3, |mg, — Fy./(2Ve®)| < ce@r=a)/(N=2)=a gng
when N =2, |m§, — wep/(ae®)| < ce?" 2| loge|.
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PrROOF. When N > 3 from the last equality of (4) we have that on
OB'S

Owj; e 22 (a5)N? iy i (a5)¥!
6) =5, g = M[Fk + N(F-e)ei] +0 [ ),

where e’ is the radial unit vector in Pf. Integrating over dB’; we readily
have
|miz o Fk/(2N€a)| < CeSihe O e < C€(2r7a)/(N72)7o¢.

When N = 2, the functions wg,; and ¢f,; can be written as
W = 1 f (1) (er - ex)er +g(r)e, g5 = rh(r) (e, - ex),

where f(r) = Ar—2+ Br*+C, g(r) = —Alogr — Br=2/2-3Cr*/2+ D
and h(r) = 2Ar=2 — 4C. Therefore

£
OWGyi

on

— g5 = (=2Ar~" = 2Br=? + 6Cr)(e, - ex)e,+
+ (—Ar~' 4+ Br=® — 3Cr)e;..

Since the constants A, B and C satisfy

1
A= ——¢%e(1+4e=loge™s 4 o(e®= loge"))
a
1
B = —(a5)%c*=(1 + e*< log e"i= + o(e%i< log "))
a
1 . , . . .
C = —gtie"ie(1 4 g% loge"ie + o(e®< loge"i=)),
a

Ows, . 2

X (1 +¢e%=loge™s + o(e®c loge"<)).
On integrating we have
Imy,; — me/(ae®)| < ce®="loge|(a + s;c)-

Since s, > 2r — a > 0 we have that s; g% < (2r — a)e?9?, so |m§, —
mey/(ae®)| < ce?17%*|loge|. 0
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For detailed calculation of wg,;, ¢5.;; 4, B, C and D we refer to the
thesis of ALLAIRE [1].

Next we establish the behaviour of V¢ — Awg in H~*(Q2). It can be
easily seen that Vg — Aw;, = pj, — v, where

when N > 3 (xps is the characteristic function of Df) and

E ows,
i =3 (G i) o
=1 8n
when N = 2, and
M¢E a B

€ Wi €
Ve = Z( 87”15 _qki”>5Tf>

i=1
which has no effect as all the functions considered below are zero in 77
for all . The behaviour of y;, is as follows.

LEMMA 3. For all ¢ € HY (), [(u— 1%, mi,xps, 6)| < ce” 2| V|
where the constant ¢ does not depend on €.

In fact when N > 3 we can prove a stronger results that ||u§ —
SomiXee 1) < cg” %

PRrROOF. We consider the case N > 3 first. We note that

M*® M*®

[ ZV : (XDf (@hid — Vwp))lla-1@) < || Z XDf(qliiI = Vi) 2 )

i=1 i=1

From (4), we have that |wf, — €| < ce?"e™* and |Qw,/On| < cetie™®
on OB';, so [pe |[Vwi,|?de < [ |wi, — ex]|Ows,;/On|ds < ce? 2t NTie,
In Ds, ||q,§i||L2(lD1;)/]R < cHtii||Hl_1(Df) where the constant ¢ can be the
constant appears in the same inequality for the domain between the two
balls of radii 1 and 1/2. This can be shown by a simple scaling argument.
From the definition of wi; and q¢f;, [[Vaillm-1(ps) = [[Vwiillrzips) <
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Cé.rfoHan;,s/Q_ Thus ||qir[_ lescz”lg(Df) < c€r7a+Nri,s/2 and so || Zi\isl AV

(xps (@id — Vi) u-1(e) < e
Let ¢ € HL(2). Then

Mo,
’< Z(a—rlzl - qim) Opre; — M XPs s ¢>‘ =

i=1

_‘%/ <8wii - qs-n>¢d8 / <8w;1 —qs-n)ds (25”75)77 ¢dx‘<
— BB’f an ki B’E 6” ki . Pf >
< & awZz €

> T’ = o /aB’f -

From (6) we have that |[Qwg;/On — qi;nl|Le@pe) < ce™=~*. Making the
rescale © = zf + €"i=y (xf is the centre of Pf), the function ng( ) is then
defined in the cube P = [—1,1]". Let ®(y) = ¢(y) — 2" [, #(z)dz and
B be the ball centred at the origin and of radius 1/2. Using the trace
and the Poincaré inequalities, we have

1/2
/ |<I>|dsgc</ \vq>|2dy> .
OB P

Putting y = e " (z — %), we have

1/2
/ |p — (2e72) N | @pda|ds < ceNTie/? </ V¢|2dm) .
oB'e Pz Pe

Thus

(25""vf)_N/ d)dx‘.
Py

i(@wm -~ )53,5 _ mklxpgv¢>’

< e N”E/QHVQS”LZ(PE) < e aHV¢||

where we have used the Cauchy-Schwarz inequality.

The case N = 2 is more complicated. We can only prove the above
inequality for ¢ € Hy(Q2°). The distribution p5 is written as pg = ug,+u';,
where

& oWy e o o'y, e
7 / 7 !
Moy = Z( o= qgkin)(SBf7 Wy = Z( o kin)&sg

i=1 i=1
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where w'y, = wi — w§, and ¢, = ¢ — ¢5,. We remark that

ME ME

8w’5i c - - Ows ; i _
Z( ank - qlkm) 532_5 =V¢ — Aw', — Z(a—;’“ _ quin) 5375 T

i=1 i=1 g

Let ¢ € Hj(Q). Then (7%, ¢) = 0. Following ALLAIRE [3], we have that
a5l L2pey < ceie® and ||[Vw'y||2(pey < ce®o=7*. Therefore [|g'; || <
ce""* and |[Vw'y || < ce" which implies |(V¢';, —Aw', )| < ce" ||V ||
Since [|[Owgy;/On — g5l as < e ag,

L>=(B,?)
M*® o
8w8k € 52”78 °
L — G |0 as, >‘<c / - |plds.
@( s — gfn )3, 0)] < e 19

Using the trace inequality we have

1/2
/ L |olds <ec (/ e |¢|2dx> + ca; (/ e V¢|2dx)
031.2' Bz.i Bii

Furthermore, as ¢ = 0 in 77 and 77 contains a ball of radius ra$, so

1/2

[ otz < ety [ - IVoPds,
BZ.Z Biz
Therefore
M*® awgk
(3 (% — )5 . 6)] < =199

By carrying out a similar procedure as in the case N > 3, we have that

(a5, — 3 e 8)] < e V.

i=1

The conclusion follows. O
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3 — Behaviour of v and p° in L?*(Q)

In variational formulation, equations (1) can be written as

8/9Vu5  Vida + A/Quwdx —/prv bz :/wadm, Vab e (HL(Q))N

(7) qV -u'dx =0, VgeL*(°)/R.
0

Since 7' contains a ball of radius p, in each cube P whose interior does not
intersect 052, ||u€|\%2<P§) < cea||Vu5H2LQ(Pis) (a proof of this can be found
in ALLAIRE [3] part IT). For those cubes PF that are not perforated, the
boundary 0f) intersects the set T7 and so intersects the ball centred at
xf with radius e”i /2. Choosing a point on 92 that is inside this ball, as
Q is convex, there is a hyperplane passing this point that is completely
outside 2. This hyperplane divides P; into two parts, one of which has
an empty intersection with . It is easy to see that as the hyperplane
passing through a point inside the ball centred at 5 with radius i< /2
the volume of this part is larger than ¢;|Pf| and is smaller than ¢, | Pf| for
some constants ¢; and ¢, which do not depend on € and the hyperplane.
As u® can be extended to 0 outside §2, u* = 0 on this part. Using a
simple recalling argument and the Poincare inequality (see ZIEMER [23],

page 189), we see that

||UE||22(P§) < Cagri’SHVUEHi%Pp < CfaHVUEHi?(PIE)
as 2r; . > 2r > «. Summing up over the M¢ cubes, we have that
(8) lu| < ce®”?||Vus]].

Letting ¢ = u® in (7), we have || Vue |2+ A||u®||> < || f]|.]|u®|| which implies
|luf|| < c and £'/?||Vus|| < c. On using (8), we also have ||[Vu?|| < ce®/?~!
so [Juf]] < eg*~!. Thus when o < 1, from a sequence u®, we can extract
a subsequence which converges weakly to a limit u in (L?*(92))"
¢ — 0. When a > 1, a subsequence can be extracted such that e!=%u®
converges weakly to u in (L*(Q2))".

Next we consider the pressure function p. From ALLAIRE [3], we
know that there is a map R® from (HJ(2))Y into (H} ()Y such that

when
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for all ¢ € Hj(2),

IV (R < eIVl + e l9])),
Ry =4 in K7 and R°Y =01in T7, and if V- ¢ = 0 then V - R* = 0.
The pressure function p® can be extended over the holes 7} to a function
Pep® such that P°p® = p° in Q° and P°p° = [.. p°/|C;| in each hole T7.
It can be shown that '

<Vpgp67¢>H*1(Q),Hé(Q) = <p67R5’¢}>H*1(95),Hé(QE)
for all ¢ € (H3(2))Y. From (7), for each v € Hg (L),
(VPp", D) < (IFIIRZDI 4 M ||| == + el Ve [ IV (B ).
If @ > 0, from (8) and the above estimate for | V(Ry)||, we have

(VP )] < cll FlE2 Vel + []) < el IV,

s0 [|[VP*p®| g-10) < c| fl. If o < 0, using || R*4|| < ||V(R*¢) and the es-
timate for ||V(R*¢)|, we get the same inequality. Thus || P*p[|,20)r <
c. We therefore can extract a subsequence such that P°p® converges
weakly to a function p in L?(2)/IR. Indeed we can show that the conver-
gence is strong. We now prove Theorem 1.

PROOF OF THEOREM 1. When o > 1 we can extract a subsequence
such that e'=®u® converges weakly to a function u in (L?(Q))N. Let
¢ € D(Q). Letting ¢ = wi¢ and ¢ = ¢ ¢ as test functions in (7), we have
E/VUE s Vwiodr + E/V’LLE s Vowidz + X [ v wi¢dx —/pawi -Vodr =

Q Q Q Q
— [ fuigds,
Q
ie.
—e(Awg, — Vg, u* ) + 6/ giu® - Vodr — 5/ Vuwy : u"Vodr+
Q Q
te / Vo : Vowidr + A / W g — / P - Vode =
Q Q Q

- /Q fusdde.
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As wi —ey, in (L*(Q2))", the right hand side converges to [, fep¢dz when
e — 0. In the left hand side, since £*/2||qz||, £*/2||Vwi||,e'~|u| are
bounded, the second, third, fourth and fifth terms converges to 0, the
final term converges to — [, pey, - Vodr=(Vp - ey, ). The first term can
be written as

Me M¢®
F,
5<Ni*2 My X P U€¢>+€ > (miﬁﬁ)/}x“%dwr/ e U - Fy /2N d.
i=1 i=1 :

the last term converges to [, u¢ - Fy/2"dz. From Lemmas 2 and 3 the
other terms converges to 0. Therefore

/u¢-Fk/2Ndm+<Vp~ek,¢>:/f~ek,¢da§.
Q Q

Since this is true for all ¢ € D(2), we have Mu+Vp = fie. u=M'(f—
Vp). As V-u® =0so V-u=0. With the boundary condition u-n = 0
(see for example SANCHEZ-PALENCIA [18]), this problem for (u,p) has a
unique solution. Since the limit does not depend on the subsequence, the
sequence (uf, p?) converges weakly to (u,p) in (L2(Q2))Y x L*(Q2)/IR.

Next we prove the strong convergence. The following proof for p*
follows from that of TARTAR [20] and ALLAIRE [3]. Let 1. be a se-
quence which converges weakly to 0 in (Hj(Q))"N. Since |[|[V(Ry?)| <
c([[Vee|| + e 2|lye|]) and [Ry#|| < e(e*/2(|Vy©|| + [[¢°]]) which con-
verges to 0, we have

(VPp*, %) = (Vp*, R7Yr) = /Q(f — )Ry dx —e/QVuf -V(Ru®)dx

which converges to 0. Since this is true for all sequence ¥ — 0 in
(HX(2))N, we have that VPp® — Vp in H~1(Q) strongly and so P*p* —
pin L?(Q)/IR.

Now we show the strong convergence for e'=“u®. Let W* be the
N x N matrix whose k"™ column is the vector wi. Let ® € (D(Q))".
After some manipulation using (7), we have

5“/ |V(ue' ™™ — We®) > dx + N ! / lue' ™ — Wed|*dx =
Q Jo
(9) = / fuse'"%dx — 2/ fWe . ode + 2/ Vp© - (Wed)dz+

0 0 0

+ea/ |V(WE¢>)|2dx+/\5“‘1/ Wed2da.
Q Q
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On the right hand side, the first, second, third and fifth terms converges
to [, fudz, =2 [, f®dz, —2 [, pV - Pdz and 0 respectively. The fourth
term can be written as

/vmwk V(G )dz = & /kagbk WV rdzt
4 e / SV : Vs dat
Q

P / SVt : Vutds,
Q

where ¢, denotes the k™" component of the vector ®. On the right hand
side of this equation, the first term and the third term converges to 0.
The second term can be written as

s ononef) + 2 [ GV (uuide = [ Vg Viowouids,

in which the last two terms tend to 0 as ¢ — 0. The first term is written as

M*E

5< meXPE>¢k¢lwl + e /mm%@wldl’

which converges to [ M® - &. Therefore the right hand side in (9) con-
verges to [, fudz—2 [, f®dx—2 [, pV-Pdx+ [, MP-Pdx. Since V-u =0
and u-n = 0 on 01, there exists a sequence {®;} C (D(Q2))" such that
V-®,=0and ® — uin (L*(Q))". We have

/fuda?—Q/ f~®idl‘+/ M(I),»&Didm:/ f(u—q)i)dx—l—/ M (u—®;)-®;dx,
Q Q Q Q Q

e~l—a

converges to 0 as ¢ — oo. From (9), we have limsup,_,, |[ue!™ —
Wed,|| < [(f + M®;)(u— ®;)dx so

hmsupHuE e — We| S/(f‘f‘M‘I)i)(U_‘I)i)dx"‘
c0 Q

+ limsup [[W*||zee (@) [Ju — 4|
e—0

for all 4. Since |[W¢||L (o) is bounded, letting i — oo, we have that
lim, g |ufe’™ — Weul| = 0. As W& — I in (L*(Q))V*V so ufe'~® — u.
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The proof for o = 1 is similar except that since u® — u in (L?(2))V
S0 A [ utwiopdr — A [, updda.

Now we consider the case a < 1. Letting w;¢ be the test function in
(7), we have

e/w  Vuidde +¢ | Vo : Vowids + )\/ug W ddz —/pgwi Vodr —
Q Q Q Q

= /wai<z>dx.

The first two terms on the left hand side converge to 0 due to the
boundedness of £/2||Vu®| and */2||Vwi||. The other terms converge
to A [uer¢p and — [perVé. The right hand side converges to [ fe¢.
Hence u = A"'(f —Vp). AsV-u*=0s0V-u=0and u-n=0 on 9.
From (7),

5/ |V1f|2dx+/\/ |uf — u|*dz =/\/ |u|2da?—/\/ u - udr.
Q Q Q Q

Since the right hand side converges to 0, u® — u in (L*(Q2))V.
Next we show the strong convergence of Pp® in L*(2)/IR. The case
a > 0 is shown in the same manner as in the previous case. We consider

the case a < 0. Let ¢° be a sequence which converges weakly to 0 in
(Hy(Q))N. Then

(VP p",¢%) = (Vp, R€w€>+)\/ﬂ(u—uE)R51/)Ed$—€/QVug : V(R ¢))dx.

The last two terms on the right hand side converges to 0. From the
construction of Ry (see ALLAIRE [3]), it can be shown that (Vp, R*y°)
also converges to 0. Therefore p° — p in L?(Q2)/IR. 0

Next we show the results on error estimate.

PRrROOF OF THEOREM 2. We only prove the theorem for N > 3. The
case N = 2 is similar. For simplicity we will denote by p. the £ column
of the matrix M. When a > 1, let v° = ue'~® — W*eu which belongs to



240 VIET HA HOANG (18]

(Hy(QF))N. Using (7), for all v* € (H}(QF))Y, we have

E/ Vo® : Vifde —l-/\/UE vide ="V (p—p°), 1)+
Q Q
—)\/ Weurvtdr — E/ wi, Vuy, : Vvedz+
Q Q
+ €/ Vwg : Vugrde + e(Vag, viug)+
Q
ME
—elpg = Y mixee, Viug)+

i=1

ME
=3 [ (i = e,
i=1 7P

(10)

where u;, denotes the k" component of u. Putting v° = v, we have that
[(V(p—p%)-v%)| = ‘/Q(p—pe)(wi—ek)Vukdx‘ < cllp=p [ r20e)m W=,
and that

’/QVqZ(vsuk)dm‘ < e 2| of || 4 e |WE = I,
On using (8) we have

e Vo[ + AMvflI* < ellp — p*ll 2 ey mll W = Ile+
+ C<Eu/2 +E+El+7'7a+
4 €1+(2r7a)/(N72)7a/2)||V’U€|| + C617a/2||W€ - I”

Therefore
1/2 —a
IVo|| < ellp = p°[I ot ey s IWE = T2+
4 C(Ea/Qfl Ll 6(27'*(1)/(1\[*2)7&/2)7
and so

||’U€|| < CHp_ps||1L/22(Qs)/RHWs_I”1/2_,’_0(8(1—1+€a/2+€r—a/2+€(2r7a)/(N72)).
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From (10) and the inequality ||V(R°v)|| < ce=*/2||Vv||, we have that if
v € (H3(Q))" is such that V- v =0, then

(VP2 (p=pF), )| < (™2 Ve[| e e/ 2 g™/ 2Bl N =20) |9 .

From these inequalities and the fact that every function g € LZ(Q) can
be represented in the form g = V - v for some function v € (H}(Q))V
such that |[Vv|| < ¢|lg|| where ¢ is independent of g, we deduce that

||P6(p _pE)HLZ(Q)/]R < C(Ea—l + /2 + /2 + E(Zr—oz)/(N—2)).

The results then follow.
Next we consider the case @ = 1. Let v°* = u® — W¢eu. For all
ve € (HJ ()N, we have

/Vv szdx—k)\/ vide =(V(p—p°),v°) — /wZVuk s Vfda+
Q

(11) +6/ Vwg, : Vuvide — e(p kazxps vouy)+
i=1
Me

752/ my,; — pr /) urde + (N gy, viuy, +)\/ (I-W¢)u - vidx.

Letting v* = v®, we have

e[ Vo || + [1o7]1* < ellp = p¥ll 200y m [WE — I+
+C(6+6T +6(27‘71)/(N72)+1/2 + ||WE*I||EI/2)HV’U€” +C€1/2||WE o I”

Thus
I90° )| < ellp=p | 5t mlI W =TI /267 2 o147 D/ -2)-172)
and

0% < ellp = 7N}y lITVE = T2 4 (/2 4 7112 o cr0/N-2))

From (11), we have that for all v € (H}(€2))" such that V.v =0,

(VP (p = p*), )] < el 2([Vof|| + V2 4 &7 12 4 B/ IV2) [Ty,
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Thus

[P0 = 2| oy < (' €772 4 lorm/ (V)

which implies the results.
When o < 1, we have

E/ V(u® — Weu) : Viide +/ v vidr =
Q

=(V(p-— )\/ DNu- UEd(L‘—E/ wiVuy, : Vifde+
(12) + E/QVwZ : Vurfder — s<uz - Zmzixpia,usuk>+
i=1

MS
ve [ aivw) —e X [ (mi = /ey udat
i=1 i

—5176“/ Muvedx
Q

From this we have

el Vof |2 4+ lv°)1* < ellp — p°ll 200y mIWF — I+
(13) +e(We = I + &) |lv*|+
+ cle + )| Vol || 4 ce T2 ||WE — .
We consider the case 0 < o < 1 first. If

[0°11* < ellp — Pl 20e)m[WE = || +c(|[We = I|[ 4+ ') [|o"||+
+ C€17Q/2||W€ o IH7
then
H,UsH < CHp_pEHi/Qz(QE)/RHWE - I||1/2 +c€1/2—a/4”W5 o I||1/2—‘,—
+c|We = I|| + ce' .

Otherwise, [|[Vo|| < ¢(1 + &™) so [[vf]| < e(e¥/? + &"~%/2). Thus we
always have

||1)E|| < C(Ea/Q _|_Er7a/2 —0—617& + ”Ws _ IH1/2€1/2—Q/4)+

1/2
+ C”p - p€||L/2(Q€)/]R||W€ - IH1/2'
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Putting this into (13), we get

190 < ee™ 2 lp = g7 112 e, IWF = T2 4+ (™2 [ W5 — I 4 £772).

From (12), we have

[(VP(p —p°), v)] < e[Vl + [|W* — ]| + e + o D] V],
for all v € (Hy(Q2))V. Therefore

1P*(p — p) | r2@ym < c(e' ™ +e7/2 &7/ 4 2o/t jwe — 1 ||1/2).

The conclusion follows.
If & <0, from (13) we have

el|[ Vo |2 + [[o°I” < ellp — p° |l 2oy m W = 111+
+ (W = 1| + &' 7)o" [lee" 2| We — I+
+ 2|Vl

From this we deduce [[v°]] < c||p—p5||2/22(95)/R||W5 —I||Y2 4 c(|We —1I|| +
g/2). Therefore

(14) 1V0°]| < ellp = 571120, I WVF = T2672 4 ¢ cl|WF = T2,

From (12), for all v € (H}(Q2))") we have

(15) (VP (p —p7), v)| < el Vor[[IVw]l+
NI+ eI — 1+ ).
This equation together with the above estimates for ||v°|| and || Vv®|| show
that ||[p — p°[|r2(0s),r and |[v?|| are smaller than c(||[W® — I|| +&'/2).
If2r>a+1/2(N=20or N=3),2r>a+ (N —-2)/N (N >4) we
have ||W¢ —I|| < ce'/2. Therefore ||u® —u|| < ce/2. This is similar to the
result found in LioNs [14] for singularly perturbed Dirichlet problems.
The holes are now too small in comparison with the cubes to have effect.
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4 — Behaviour of u° in Hj(Q)

In this section, we prove Theorems 3 and 4 on the behaviour of u° in
H} () when the holes are sufficiently small.

PrROOF OF THEOREM 3. We prove the theorem for the case N > 3;
the proof for N = 2 is similar. Let v* = u® — W*¢u. From (14), we have

Vol < e(IWe = I]le™/2 + [We — I||'/27/* 4 1).
From (5) and the hypothesis of the theorem, we have |[Vve|| < ¢ so we
can extract a subsequence v which converges weakly in (Hy(2))V. Since
v® — 0 in (L?(Q2))", the weak limit is 0. From (12) we have

£l [P+ 1012 < cllp — bl 2qaeymll W= + e[ W= I] 4 1=/2) Jo* |+
e Y|V ||+ ce T2 WE—T|| 4 e | Vg : VugvSda +
Q
— /w,iVuk:VvEdw.
Q
Thus

IVo|1? < ellp = p*llceoeymlIWE = Ille™ + ¢l WF — I|]Pe ™'+

+c||We —I|e™ '/ 4 ce7/+
+/ Vwy, : Vugvtdr — / wVuy : Voode.
Q Q

It is simple to see that the first four terms converge to 0 as ¢ — 0. We
also have

’/ Vuwy, Vukvedx) < | Vuwi||[|vf]| € ece=*?|v%|| — 0,
Q
and
/ wiVuy : Vo'de = /(wi — 1)Vuy, : Vofde +/ Vuy, : Vodz — 0,
Q Q Q

as wi — 1 — 0, [|[Vo°|| < cand v — 0 in (H}(Q2))". Therefore v* — 0 in
(Ho ()" 0
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PROOF OF THEOREM 4. We show this theorem for IV > 3; the case
N = 2 is similar. Let v* =« — K*W¢u. On using (7) when ¢ = v° we
have

elVoe [P+ A||v°||? = /(f — Vp*)wide —e | K wiVuy, : Voidz+
Q Q

+ 8/ K*Vwj, : Vuvodz+
Q
ME

— (K" (g — Y mixps), v ug)+

i=1
M€
— EZ/ K*(mg,; — px/e®)v upda+
i=1 7}
- 51"’/ K*py - v°upde — )\/ Kew;, - uvtdr <
Q Q

S/Q(L—el_aKEM—)\KEWE)qudx—I—<V(p—p6),v5)+
+ ce| | Vo°|| 4 cet T Crmo)/(N=2)=a| 14|
Since L — "KM — AK°W¢ = AK*(I — W¢) we have
el Vol + Allof||* < e W = I[flv*|+

+ cllp — Pl L2eoeymIIWE — 1|+
+C€HVU€H 4 cglJr(zr—a)/(N—Q)—azHUEH7

SO
V0 < W — 2 ellp — e IWF — T[22
4 (1 4 8(2T—o¢)/(N—2)—o¢/2)'

With the conditions of the theorem, and the estimate for ||p —p®|[ 120y /R
in the previous section, we have that ||Vv®|| < ¢ so v® converges weakly
in (H3(Q))Y. Furthermore, since ||v°| < c£%/2, the weak limit is 0.

To show the strong convergence, we have again from (16) that

Vo ||? < ellp = p* [l 200 mlWE — Tlle™ + ce" || Vo®| |+
+ ce@rma)/(N=2)=a/2|/ 72| —/ Kfw;Vuy : Voidz+
Q

+ /KEVwZ s Vugotde.
Q
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The first three terms on the right hand side converge to 0. We also have

KewiVuy, : Vode = | K (wi—ey)Vuy, : Voida+ | KepVuy, : Votdx
Q Q Q
converges to 0 since wi — e; in (L*())Y and v — 0 in (H}(Q))N.
Furthermore

/ K*Vuw;, : Vupvidr = —/ Kew;, - Augv®de — / Kewy, - Vo*Vudz
Q Q Q

which converges to 0 since wi — e, in (L*(Q))V, |Vuy,| and |Auy| are
bounded and v® — 0 in (Hj(2))". Therefore v — 0 in (Hy(2))V. 0
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