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On a class of variational integrals with linear

growth satisfying the condition of µ-ellipticity

MICHAEL BILDHAUER – MARTIN FUCHS

Riassunto: Si considerano gli integrali variazionali J(u) =
∫
Ω
f(∇u) dx con in-

tegrando f convesso con crescita lineare e soddisfacente alla condizione di ellitticità

D2f(X)(Y, Y ) ≥ λ
(
1 + |X|2

)−µ
2 |Y |2

con esponente 1 < µ < 1 + 2/n, n = dim Ω, dove nel caso vettoriale è assunta l’ipotesi
f(∇u) = g(|∇u|2). Si dimostra la continuità di Hölder della soluzione duale del pro-

blema J → min in u0 +
◦

W1
1(Ω, IRM ) e si stabilisce, usando degli argomenti alla De

Giorgi, la C1,α-regolarità dei limiti deboli delle successioni J-minimizzanti. Inoltre si
dimostra che i punti di accumulazione deboli delle successioni minimizzanti sono unici
a meno di una costante. Per domini Ω bi-dimensionali questi risultati sono estesi
parzialmente al caso limite µ = 2.

Abstract: We consider variational integrals J(u) =
∫
Ω
f(∇u) dx with convex

integrand f of linear growth satisfying an ellipticity condition of the form

D2f(X)(Y, Y ) ≥ λ
(
1 + |X|2

)−µ
2 |Y |2

with exponent 1<µ<1 + 2/n, n=dimΩ, where in the vectorvalued case the structure
condition f(∇u)=g(|∇u|2) is assumed. We prove Hölder continuity of the dual solution

of the problem J → min in u0 +
◦

W1
1(Ω, IRM ) and establish, using De Giorgi type

arguments, C1,α-regularity of weak limits of J-minimizing sequences. Moreover, it is
shown that weak cluster points of minimizing sequences are unique up to a constant. For
two-dimensional domains Ω these results are partially extended to the limit case µ= 2.

Key Words and Phrases: Linear growth – Minimizers – Regularity – Duality – BV-
functions.
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1 – Introduction and statement of the main results

Consider a bounded Lipschitz domain Ω ⊂ IRn and let

(1.1) J(u) =

∫

Ω

f(∇u) dx ,

where ∇u = (∂αu
i) denotes the Jacobi matrix of the vectorial function u:

Ω → IRM . We assume that f ≥ 0 is of class C2(IRnM) (of course f ≥ c for

some c > −∞ is also sufficient) satisfying the following set of hypotheses:

a|X| − b ≤ f(X) ;(1.2)

|∇f(X)| ≤ A ;(1.3)

|D2f(X)| ≤ Λ
(
1 + |X|2)−

1
2 ;(1.4)

D2f(X)(Y, Y ) ≥ λ
(
1 + |X|2)−

µ
2 |Y |2 .(1.5)

Here a, b, A, λ, Λ denote positive constants, µ > 1 is some fixed exponent,

and (1.2)-(1.5) are valid for any choice of X, Y ∈ IRnM . Note that (1.3)

immediately implies the linear growth condition

(1.6) a|X| − b ≤ f(X) ≤ ã|X| + b̃

with suitable constants ã, b̃ > 0. Combining (1.4) and (1.6) we see that f

is “balanced” in the sense that

(1.7) |D2f(X)||X|2 ≤ const(f(X) + 1)

holds. Finally, the µ-ellipticity condition (1.5) gives strict convexity of

our integrand f .

It is easily seen that

f(X) =

∫ |X|

0

∫ s

0

(1 + t2)−
µ
2 dt ds , X ∈ IRnM ,

satisfies (1.3)-(1.5) (compare [7] for details). For (1.2) let us write f(X) =

ϕ(|X|) with convex function ϕ. Then, if t = |X| ≥ 1, we get

f(X) = ϕ(t) ≥ ϕ(1) + ϕ′(1)(|X| − 1)
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with

ϕ′(1) =

∫ 1

0

(
1 + |t|2)−

µ
2 dt > 0 .

In the vectorial case M > 1 we suppose in addition to (1.2)-(1.5)

that f is of “special structure” in the sense that

(1.8) f(X) = g(|X|2) , X ∈ IRnM ,

holds with g: [0,∞) → [0,∞) of class C2(IR). Note that this implies

∂2f

∂X i
α∂Xj

β

(X) = 4g′′(|X|2)X i
αX

j
β + 2g′(|X|2)δijδαβ .

We also assume in case M > 1 that there are real numbers α ∈ (0, 1],

K > 0 satisfying(1)

(1.9) |D2f(X) − D2f(X̃)| ≤ K|X − X̃|α .

The above example is easily adjusted to (1.9) (and in fact to much

stronger conditions) by letting

f̃(X) =

∫ √
ε+|X|2

0

∫ s

0

(
1 + |t|2)−

µ
2 dt ds , ε > 0 .

Next consider a given function u0 ∈ W 1
p (Ω, IRM) for some p > 1.

(By considering a suitable approximation it is also possible to include the

limit case p = 1, we refer to [4].) As a role the variational problem

(V) to minimize J(u) =

∫

Ω

f(∇u) dx in u0 +
◦

W1
1(Ω, IRM)

in general may fail to have solutions in the non-reflexive space W 1
1 (Ω, IRM).

For this reason one either studies suitable relaxations or passes to the dual

variational problem. In our note we try to handle both aspects: first of all,

due to (1.6), any minimizing sequence um ∈ u0 +
◦

W1
1(Ω, IRM) is bounded

(1)Although not explicitely mentioned, some Hölder condition of this type is also as-
sumed in [11] if M > 1.
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in the space BV (Ω, IRM), hence there is a subsequence and a function u

in BV (Ω, IRM) such that umk
→ u in L1(Ω, IRM), and we define the set

of all generalized minimizers of problem (V) as

M = {u ∈ BV (Ω, IRM) : u is the L1-limit of a J-minimizing sequence

from u0 +
◦

W1
1(Ω, IRM)} .

Now let us write (see [10])

(1.10) J(u) = sup
τ∈L∞(Ω,IRnM )

{∫

Ω

τ : ∇u dx −
∫

Ω

f∗(τ) dx
}

,

u ∈ u0 +
◦

W1
1(Ω, IRM), where f∗ is the conjugate function of f . We define

the Lagrangian l(u, τ) for (u, τ) = (u0 + ϕ, τ) ∈ (u0 +
◦

W1
1(Ω, IRM)) ×

L∞(Ω, IRnM) through the formula

l(u, τ) :=

∫

Ω

τ : ∇u dx −
∫

Ω

f∗(τ) dx = l(u0, τ) +

∫

Ω

τ : ∇ϕdx .

Then the dual functional is by definition

R : L∞(Ω, IRnM) → IR ,

R(τ) := inf
u∈u0+

◦
W

1
1(Ω,IRM )

l(u, τ) =

{
−∞ , if div τ 	= 0

l(u0, τ) , if div τ = 0 ,

and the dual problem reads

(V*) to maximize R among all functions in L∞(Ω, IRnM) .

It is well known (see, again [10]) that

inf
u∈u0+

◦
W

1
1(Ω,IRM )

J(u) = sup
τ∈L∞(Ω,IRnM )

R(τ) ,

moreover, (V∗) admits a unique maximizer σ (compare [3] for a unique-

ness theorem valid under much more general conditions and not formu-

lated in terms of the conjugate function). Let us first assume that

(1.11) µ < 1 +
2

n
.
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Then our main results are summarized in

Theorem 1.1. Let (1.2)-(1.5), (1.11) hold and assume in addition

that in case M > 1 (1.8) and (1.9) are valid.

a) The dual solution σ is of class C0,α(Ω, IRnM) for any 0 < α < 1.

Moreover, σ has weak derivatives in the space L2
loc(Ω, IRnM).

b) Any generalized minimizer u ∈ M is in the space C1,α(Ω, IRM), 0 <

α < 1.

c) For u, v ∈ M we have ∇u = ∇v, i.e. up to a constant uniqueness of

generalized minimizers holds true.

We like to remark that for functionals with linear growth arising in

the theory of perfect plasticity partial regularity of σ was established in

the papers [23], [25] (see also [12] for an exhaustive list of references),

whereas the general vectorial setting of Theorem 1.1 with only partial

regularity results was studied in [4]. (Note that in [4] µ-ellipticity is

replaced by a much weaker condition.) The case of functionals with

linear growth satisfying an ellipticity condition of minimal-surface type

was investigated in [16], see also [5].

Let us now look at the limit case µ = 1 + 2/n which unfortunately we

could include only for n = 2. An example satisfying (1.2)-(1.5) with

µ = 2 is given by

f(X) =

∫ |X|

0

arctan s ds = |X| arctan |X| − 1

2
ln(1 + |X|2) ,

and we have

Theorem 1.2. Let n = 2, let (1.2)-(1.5) hold with µ = 2. In case

M > 1 we also assume that (1.8) and (1.9) are valid. Then there exists

an at most countable subset Σ of Ω with no interior accumulation points

such that the following is true:

a) The dual solution σ is of class C0,α(Ω − Σ, IR2M) for any 0 < α < 1

(still having weak derivatives in the space L2
loc(Ω, IR2M)).

b) Any u ∈ M is of class C1,α(Ω − Σ, IRM), 0 < α < 1.

c) For u, v ∈ M we have u = v + const a.e. on Ω.
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Corollary 1.3. Under the assumptions of Theorem 1.2 we have

u ∈ W 1
t,loc(Ω, IRM) for u ∈ M and any t < ∞. In particular, u is locally

Hölder continuous with any exponent α < 1.

Our paper is organized as follows: in Section 2 we first replace (V)

by a sequence (Vδ) of approximate problems with regular solutions uδ

being convergent to some u∗ ∈ M. In Section 3 we apply De Giorgi type

arguments to show that this particular generalized minimizer is smooth

provided the assumptions of Theorem 1.1 hold. The regularity of σ then

follows from the duality relation σ = ∇f(∇u∗). Section 5 contains the

proof of the remaining results from Theorem 1.1, in Section 6 we discuss

the case n = 2 together with µ = 2.

2 – Regularization of the original problem and weak differentia-

bility of the dual solution

Let the assumptions of Theorem 1.1 or 1.2 hold. We fix some real

number 1 < q < 2 satisfying q < p and in addition for n ≥ 3 (recall (1.11))

(2.1) q < (2 − µ)
n

n − 2
.

For any 0 < δ ≤ 1 we define

Jδ(w) := δ

∫

Ω

(
1 + |∇w|2)

q
2 dx + J(w) , w ∈ u0 +

◦
Wq

1(Ω, IRM) ,

and denote by uδ the unique solution of

(Vδ) to minimize Jδ(w) in the class u0 +
◦

Wq
1(Ω, IRM) .

Thus, letting fδ(·) = δ
(
1 + | · |2)

q
2 + f(·), we obtain

(2.2)

∫

Ω

∇fδ(∇uδ) : ∇ϕdx = 0 for all ϕ ∈
◦

Wq
1(Ω, IRM) .

Moreover, the following lemma is seen to be true:
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Lemma 2.1. There is a real number c1 > 0 such that for any

η ∈ C∞
0 (Ω)

(2.3)

∫

Ω

η2D2fδ(∇uδ)(∂s∇uδ, ∂s∇uδ) dx ≤

≤ c1‖∇η‖2
∞

∫

Ω

|D2fδ(∇uδ)||∇uδ|2 dx ,

where we always take the sum w.r.t. s = 1, . . . , n.

Proof. The idea is to choose the test function ϕ = ∂s(η
2∂suδ) in

equation (2.2). However, in the vectorial case M > 1 it is not immedi-

ately obvious if ϕ is admissible in (2.2). In the paper [6], Lemma 3.1,

we overcame this difficulty by some technical approximation argument

leading to inequality (2.3). We like to remark that now we do not need

the full strength of the arguments used in [6], Lemma 3.1, since the struc-

tural condition (1.8) together with [1], proposition 2.7, already implies

uδ ∈ W 2
2,loc(Ω, IRM) (compare (3.4)).

Let us look at the scalar case. Then, from standard arguments (see,

e.g. [20], Chapter 4, Theorem 5.2) we get uδ ∈ W 2
2,loc(Ω) ∩ W 1

∞,loc(Ω)

using also the fact that uδ is locally bounded which is proved under very

weak assumptions in [14]. Alternatively we may quote [8] or [9] to get

uδ ∈ C1,ᾱ(Ω) for some ᾱ > 0. Let us fix a subdomain Ω′ � Ω and let

K = 2‖∇uδ‖L∞(Ω′). Following [19], p. 97, we replace ∇fδ by a coercive

vectorfield A of class C1 in such a way that A(X) = ∇fδ(X) for |X| ≤ 2K.

From (2.2) we get

∫

Ω′
A(∇uδ) · ∇ϕdx = 0 for all ϕ ∈ C1

0 (Ω′) ,

and the well known difference quotient technique implies uδ ∈ W 2
2,loc(Ω).

Let us fix a coordinate direction γ ∈ {1, . . . , n}. Then

∫

Ω′
aαβ(x)∂α(∂γuδ)∂βϕdx = 0 for all ϕ ∈ C1

0 (Ω′)

with elliptic coefficients aαβ = ∂Aβ

∂Qα
(∇uδ) of class C0(Ω′). Quoting “Lp-

theory” for equations with continuous coefficients (see [22], Theorem 5.5.3,

or [13], Chapter 4.3, pp. 71) we get ∂γuδ ∈ W 1
t,loc(Ω

′) for any finite t. Thus
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we have uδ ∈ W 2
t,loc(Ω) and ∂s(η

2∂suδ) is admissible in (2.2), the claim

follows after partial integration and using the Cauchy-Schwarz inequality

for the bilinear form D2fδ(∇uδ) (compare [7], Lemma 2.3, and [11] for

similar calculations).

Remark 2.2. In the papers [7] and [6] the bound (1.11) was im-

posed but obviously the statement of Lemma 2.3 can be obtained for any

positive µ.

For the study of the dual variational problem we let

τδ := ∇f(∇uδ) , σδ := δXδ + τδ = ∇fδ(∇uδ) ,

Xδ := q
(
1 + |∇uδ|2

) q−2
2 ∇uδ .

Note that σδ ∈ W 1
2,loc(Ω, IRnM) which for M > 1 follows from [1], propo-

sition 2.7. Next we argue as in [4], where the case q = 2 was considered:

since Jδ(uδ) ≤ Jδ(u0) ≤ J1(u0), the existence of a real number c2 > 0 is

ensured such that

(2.4) δ

∫

Ω

(
1 + |∇uδ|2

) q
2 dx ≤ c2 ,

∫

Ω

f(∇uδ) dx ≤ c2 , ‖τδ‖∞ ≤ c2 .

The first inequality implies

(2.5) ‖δ q−1
q Xδ‖

L
q

q−1 (Ω,IRnM )
≤ c3 , hence δXδ ⇁ 0 in L

q
q−1 (Ω, IRnM)

as δ → 0. Here and in the following we always pass to subsequences if

necessary. By (2.4) and (2.5) it is possible to define σ ∈ L
q

q−1 (Ω, IRnM)

via

(2.6) τδ , σδ ⇁: σ in L
q

q−1 (Ω, IRnM) as δ → 0 .

In addition, divσ = 0 (in the sense of distributions) is a consequence of

divσδ = 0. We now claim that the weak limit σ is the unique maximizer

of the dual problem (V∗). To prove this, we recall the duality relation

(compare [10])

τδ : ∇uδ − f∗(τδ) = f(∇uδ) ,
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which together with the definition of σδ and with divσδ = 0 gives

Jδ(uδ) = δ

∫

Ω

(
1 + |∇uδ|2

) q
2 dx +

∫

Ω

(σδ : ∇u0 − f∗(τδ)) dx−

− δq

∫

Ω

(
1 + |∇uδ|2

) q−2
2 |∇uδ|2 dx .

This yields for any κ ∈ L∞(Ω, IRnM)

(2.7)

R(κ) ≤ inf
u∈u0+

◦
W

1
1(Ω,IRM )

J(u)≤J(uδ)≤Jδ(uδ)=

=

∫

Ω

(τδ : ∇u0 − f∗(τδ)) dx+δ

∫

Ω

Xδ : ∇u0 dx+

+(1−q)δ

∫

Ω

(
1 + |∇uδ|2

) q
2 dx+δq

∫

Ω

(
1 + |∇uδ|2

) q−2
2 dx ,

and, passing to the limit δ → 0, the second and the last integral on the

right-hand side vanish according to (2.5) and since q < 2. Finally, lower

semicontinuity of
∫
Ω f∗(·) dx w.r.t. weak-∗ convergence proves the claim

R(κ) ≤ R(σ) as well as

(2.8) δ

∫

Ω

(
1 + |∇uδ|2

) q
2 dx → 0 as δ → 0 .

To proceed further, we observe that the left-hand side of (2.3) is estimated

via Young’s inequality

|∇σδ|2 ≤ c4D
2fδ(∇uδ)(∂s∇uδ, ∂s∇uδ) ,

whereas (1.7), (2.4) and (2.8) prove the right-hand side to be bounded

by:

c5

(
δ

∫

Ω

(
1 + |∇uδ|2

) q
2 dx +

∫

Ω

(f(∇uδ) + 1) dx
)
≤ c6 .

Summarizing the results have established:

Lemma 2.3. Let σ be the weak limit defined in (2.6). Then divσ=0,

σ is the unique maximizer of the dual variational problem (V∗) and we

have σ ∈ W 1
2,loc(Ω, IRnM).
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3 – Construction of a smooth generalized minimizer

In this section we again concentrate on the original problem (V):

(2.7) proves {uδ} to be a J-minimizing sequence, and, by definition, each

L1-cluster point of {uδ} is seen to be a generalized minimizer.

Lemma 3.1. Let the assumptions of Theorem 1.1 hold.

a) There is a real number c7 > 0, independent of δ, such that

‖∇uδ‖L∞
loc

(Ω,IRnM ) ≤ c7 .

b) Let u∗ denote a L1-cluster point of the sequence {uδ}. Then u∗ is of

class C1,α(Ω, IRM) for any 0 < α < 1.

Remark 3.2. With Lemma 3.1 the results of [7] formulated for the

unconstrained case are also seen to be true in the vectorial setting M > 1

assuming the hypotheses (1.8) and (1.9).

Proof. As in [7], Lemma 2.4, we first use Lemma 2.1 to prove that

we have local higher integrability of ∇uδ which holds uniformly w.r.t. δ.

For simplicity let us first assume that n ≥ 3 and let χ = n/(n − 2).

Moreover, fix a ball Br satisfying B2r � Ω and choose η ∈ C∞
0 (B2r),

0 ≤ η ≤ 1, η ≡ 1 on Br. Then, by Sobolev’s inequality,
∫

Br

(1 + |∇uδ|2)
(2−µ)χ

2 dx ≤
∫

B2r

(η(1 + |∇uδ|2)
(2−µ)

4 )2χ dx ≤

≤ c8

( ∫

B2r

|∇η|2(1 + |∇uδ|2)
(2−µ)

2 dx+

+

∫

B2r

η2
(
1 + |∇uδ|2

)−µ
2 |∇2uδ|2 dx

)χ
.

Hence, Lemma 2.1 and (1.7) imply the bound (observe (2 − µ)χ > q

by (2.1))

(3.1)

∫

Br

(1 + |∇uδ|2)
(2−µ)χ

2 dx ≤ c9(r) ,

which corresponds to Lemma 2.4 of [7]. If n = 2, we let χ denote some

number > 1 such that (2 − µ)χ > q. Writing as before

( ∫

Br

(1 + |∇uδ|2)
(2−µ)χ

2 dx
) 1

2χ ≤
( ∫

B2r

(η(1 + |∇uδ|2)
(2−µ)

4 )2χ dx
) 1

2χ
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we may estimate the right-hand side by Sobolev’s inequality

( ∫

B2r

(η(1 + |∇uδ|2)
(2−µ)

4 )2χ dx
) 1

2χ ≤

≤ c10

( ∫

B2r

|∇(η(1 + |∇uδ|2)
(2−µ)

4 )|s dx
) 1

s
,

s being defined through 2χ = 2s/(2 − s). Applying Hölder’s inequality

we get as before

∫

Br

(1 + |∇uδ|2)
(2−µ)χ

2 dx ≤ c11(r)
( ∫

B2r

|∇(η(1 + |∇uδ|2)
(2−µ)

4 )|2 dx
)χ

and (3.1) follows also in case n = 2 with a different constant c12 depending

also on the chosen value for χ.

In the scalar case we may now exactly follow the lines of [7], Lem-

ma 2.5, Lemma 2.6 and step 5 (conclusion) to get a) of Lemma 3.1. We

have to show that Lemma 2.5 of [7] remains also valid in the vectorial

case with the additional assumption (1.8), i.e. we claim that there is a

real number c13 < ∞, depending only on the data and not on δ such that

for any k ≥ 0

(3.2)

∫

A(k,R)

(
1 + |∇uδ|2

)1−µ
2 |∇ωδ|2η2 dx+

+

∫

A(k,R)

(
1 + |∇uδ|2

)−µ
2 (ωδ − k)2η2|∇2uδ|2 dx ≤

≤ c13

∫

A(k,R)

(
1 + |∇uδ|2

) q
2 |∇η|2(ωδ − k)2 dx .

Here we have set

ωδ = ln(1 + |∇uδ|2) , A(h, r) = {x ∈ Br : ωδ ≥ h} , h ≥ 0 , r ≤ R ,

the ball BR is chosen such that B2R � Ω and η ∈ C∞
0 (BR), 0 ≤ η ≤

1. Assuming (3.2) for the moment, we see as in the scalar case that

De Giorgi’s technique works exactly as outlined in [7], i.e. the uniform

bound (3.1) gives a) of Lemma 3.1 and proves any L1-cluster point u∗ to

be locally Lipschitz.
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To verify part b), we quote the well known explicit formula for the

relaxation of J (see, for instance, [18])

Ĵ(u,Br) :=

∫

Br

f(∇au) dx +

∫

Br

f∞
( ∇su

|∇su|
)
d|∇su| , u ∈ BV (Br, IR

M) .

Here, f∞ is the recession function of f ,

f∞(X) = lim sup
t→+∞

f(tX)

t
,

the absolutely continuous part of ∇u with respect to the Lebesgue mea-

sure is denoted by ∇au, the singular part by ∇su and ∇su/|∇su| is the

Radon-Nikodym derivative.

Then, according to [4] (see the proof of Theorem 5.1), each general-

ized minimizer of problem (V) is seen to minimize Ĵ on a.a. balls Br � Ω.

In particular, this result can be applied to the sequence {uδ}, whose L1-

cluster points are already known to be locally Lipschitz. Thus, if we

fix one of these cluster-points u∗, then the singular part of ∇u∗ can be

neglected and we obtain the Euler-equation

(3.3)

∫

Ω

∇f(∇u∗) : ∇ϕdx = 0 for any ϕ ∈ C1
0 (Ω, IRM) .

In the scalar case, again by strict ellipticity of D2f (see (1.5)) together

with local boundedness of ∇u∗, the assertion of part b) immediately fol-

lows from known regularity results for weak solutions of (3.3) (compare

the references quoted in the proof of Lemma 2.1). In the vectorial setting

we follow the lines of [21] where an auxiliary integrand f̃ is constructed

satisfying f̃(Z) = f(Z) whenever |Z| ≤ 2K, K := ‖∇u∗‖L∞(Ω′,IRnM )

for some subdomain Ω′ � Ω. Then Theorem 3.1 of [15] can be applied

(choosing m = 6 and recalling the Hölder condition (1.9)) to prove C1,α-

regularity of u∗ for any 0 < α < 1.

It remains to verify (3.2) for M > 1: the structure condition (1.8)

allows us to cite [1], proposition 2.7. We obtain, as already remarked in

the proof of Lemma 2.1

(3.4) ∇uδ ∈ W 1
2,loc ∩ L∞

loc(Ω, IRnM)
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and, as a consequence, for any s = 1, . . . n, and for any ψ ∈ C1
0 (Ω, IRM)

(3.5)

∫

Ω

D2fδ(∇uδ)(∂s∇uδ,∇ψ) dx = 0 .

In addition to (3.4) we have D2fδ ∈ L∞, hence ψ ∈
◦

W2
1(Ω, IRM) is

admissible in (3.5) (by approximation arguments), in particular we may

choose ψ = η2∂suδ max{ωδ − k, 0} with the result

(3.6)

∫

A(k,R)

D2fδ(∇uδ)(∂s∇uδ, ∂s∇uδ)η
2(ωδ − k) dx+

+

∫

A(k,R)

D2fδ(∇uδ)(∂s∇uδ, ∂suδ ⊗ ∇ωδ)η
2 dx =

= −2

∫

A(k,R)

D2fδ(∇uδ)(∂s∇uδ,∇η ⊗ ∂suδ)η(ωδ − k) dx .

The first integral I on the left-hand side is non-negative, the second one II

is handled as follows (letting fδ(Z) = gδ(|Z|2) = δ(1 + |Z|2)q/2 + g(|Z|2))

(3.7)

II=

∫

A(k,R)

(4g′′
δ ∂αu

i
δ∂s∂αu

i
δ∂βu

j
δ∂su

j
δ∂βωδ+2g′

δ∂s∂αu
i
δ∂su

i
δ∂αωδ)η

2dx=

=

∫

A(k,R)

(2g′′
δ ∂s|∇uδ|2∂βωδ∂βu

j
δ∂su

j
δ+g′

δ∂α|∇uδ|2∂αωδ)η
2 dx=

=

∫

A(k,R)

(2g′′
δ ∂sωδ∂βωδ∂su

j
δ∂βu

j
δ+g′

δ∂αωδ∂αωδ)(1 + |∇uδ|2)η2 dx =

=
1

2

∫

A(k,R)

∂2fδ

∂Xj
β∂Xj

s

(∇uδ)∂βωδ∂sωδ(1 + |∇uδ|2)η2 dx .

If ej denotes the jth coordinate vector, then we have

(3.8)

II =
1

2

∫

A(k,R)

D2fδ(∇uδ)(∇ωδ ⊗ ej,∇ωδ ⊗ ej)(1 + |∇u2
δ|)η2 dx ≥

≥ c14

∫

A(k,R)

(
1 + |∇uδ|2

)1−µ
2 |∇ωδ|2η2 dx .

Similar calculations show the right-hand side of (3.6) to be bounded from

above by

(3.9) c15

∣∣∣
∫

A(k,R)

∂2fδ

∂Xj
β∂Xj

s

(∇uδ)∂sωδ∂βηη(1 + |∇uδ|2)(ωδ − k) dx
∣∣∣ .
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Finally, for each fixed j ∈ {1, . . .M}, the Cauchy-Schwarz inequality can

be applied to the bilinear form

IRn $ ξ → ∂2fδ

∂Xj
β∂Xj

s

(∇uδ)ξβξs

and, together with Young’s inequality, (3.6)-(3.9) prove that the first term

of the left-hand side of (3.2) is bounded in the desired way. (Note that

from the growth assumptions imposed on f it follows that |D2fδ(X)||X|2≤
c16(fδ(X) + 1) ≤ c17(1 + |X|2)q/2 with suitable constants c16 and c17.)

The second integral on the left-hand side of (3.2) is studied by inserting

ψ = η2∂suδ max{ωδ − k, 0}2 in (3.5). This gives

(3.10)

∫

A(k,R)

D2fδ(∇uδ)(∂s∇uδ, ∂s∇uδ)η
2(ωδ − k)2 dx + II =

= −2

∫

A(k,R)

D2fδ(∇uδ)(∂s∇uδ, ∂suδ ⊗ ∇η)η(ωδ − k)2 dx ,

where we have abbreviated

(3.11)

II = 2

∫

A(k,r)

D2fδ(∇uδ)(∂s∇uδ, ∂suδ ⊗ ∇ωδ)(ωδ − k)η2 dx =

=

∫

A(k,R)

∂2fδ

∂Xj
β∂Xj

s

(∇uδ)∂βωδ∂sωδ(ωδ − k)(1 + |∇uδ|2)η2 dx ≥

≥ 0 .

Here the second equation in(3.11) again uses the special structure fδ(X)=

gδ(|X|2). Given (3.10) and (3.11) the proof of (3.2) (and of Lemma 3.1)

is completed by applying Young’s inequality once more.

4 – Hölder continuity of the dual solution

We apply the results of the previous section to get regularity of the

maximizer σ, more precisely

Lemma 4.1. Let the assumptions of Theorem 1.1 hold.

a) If u∗ denotes a L1-cluster point of {uδ}, then we have

σ = ∇f(∇u∗) .
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b) σ is of class C0,α(Ω, IRnM) for any 0 < α < 1.

Proof. Recalling (3.3), we choose ϕ = η2(uδ − u∗), η ∈ C1
0 (Ω),

0 ≤ η ≤ 1. Then, together with (2.2), the counterpart of (6.4), [4], is

established:
∫

Ω

η2(∇f(∇uδ) − ∇f(∇u∗)) : (∇uδ − ∇u∗) dx+

+ δ

∫

Ω

η2Xδ : (∇uδ − ∇u∗) dx =

= −2

∫

Ω

σδ : (∇η ⊗ (uδ − u∗))η dx+

+ 2

∫

Ω

∇f(∇u∗) : (∇η ⊗ (uδ − u∗))η dx .

Clearly the second integral on the right-hand side vanishes as δ → 0 and

by (2.5), (2.8) this is also true for the second one on the left-hand side.

Since the definition of σδ gives the same result for the first integral on

the right-hand side, it is proved that

lim
δ↓0

∫

Ω

η2(∇f(∇uδ) − ∇f(∇u∗)) : (∇uδ − ∇u∗) dx = 0 .

On the other hand we have by (1.5)
∫

Ω

η2(∇f(∇uδ) − ∇f(∇u∗)) : (∇uδ − ∇u∗) dx ≥

≥ c18

∫

Ω

∫ 1

0

(
1 + |∇u∗ + t(∇uδ − ∇u∗)|2)−

µ
2 |∇uδ − ∇u∗|2η2 dt dx ,

hence as δ → 0

(1 + |∇u∗|2 + |∇uδ − ∇u∗|2)−µ
2 |∇uδ − ∇u∗|2 → 0 in L1

loc(Ω) and a.e.

Thus, on account of µ ≤ 2, it immediately follows that a.e.

lim sup
δ↓0

|∇uδ(x)| < ∞ , which implies ∇uδ(x)
δ↓0→ ∇u∗(x) .

Hence ∇f(∇uδ(x))
δ↓0→ ∇f(∇u∗(x)) which together with the weak con-

vergence (2.6) completes the proof of the first assertion. The second one

follows from Lemma 3.1.
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5 – Local C1,α-regularity and uniqueness of generalized

minimizers

So far we have proved Theorem 1.1 a). Now we fix any u ∈ M
and use ideas of [26] to show that the pair (u, σ) satisfies an appropriate

minimax inequality. A variation of the tensorial argument will finally

give

Lemma 5.1. Under the assumptions of Theorem 1.1 any generalized

minimizer u ∈ M satisfies

∇u = ∇f∗(σ) ,

where the right-hand side is of class C0,α(Ω, IRnM).

Corollary 5.2. Of course Lemma 5.1 implies uniqueness of gen-

eralized minimizers up to a constant.

Proof. Consider a J-minimizing sequence {um} in u0+
◦

W1
1(Ω, IRM)

such that

um
Ln/(n−1)

⇁ u , um
L1

→ u .

Then let for any w ∈ BV(Ω, IRM) and κ ∈ U := {τ ∈ L∞(Ω, IRnM) :

div τ ∈ Ln(Ω, IRM)}

l̃(w,κ) =

∫

Ω

divκ(u0 − w) dx −
∫

Ω

f∗(κ) dx +

∫

Ω

κ : ∇u0 dx .

The representation formula (1.10) implies

J(um) = sup
λ∈L∞(Ω,IRnM )

l(um, λ) ≥ l(um,κ) = l̃(um,κ)

for any κ ∈ U . Passing to the limit m → ∞ we obtain

inf
w∈u0+

◦
W

1
1(Ω,IRM )

J(w) ≥ sup
κ∈U

l̃(u,κ) .
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On the other hand, given κ ∈ U , v ∈ u0 +
◦

W1
1(Ω, IRM), we observe

(recalling that divσ = 0)

l̃(u,κ) ≤ inf
w∈u0+

◦
W

1
1(Ω,IRM )

J(w) = R(σ) = inf
w∈u0+

◦
W

1
1(Ω,IRM )

l(w, σ) ≤

≤ l(v, σ) = l̃(v, σ) =

∫

Ω

σ : ∇u0 dx −
∫

Ω

f∗(σ) dx =: l̃(σ) .

Thus, for any u ∈ M and κ ∈ U it is proved that

(5.1) l̃(u,κ) ≤ l̃(σ) .

To proceed further, fix λ ∈ C∞
0 (Ω, IRnM); by Lemma 4.1, σ is a continuous

function taking values in Im ∇f and hence there is a real number γ > 0

such that dist(σ(x), ∂ Im∇f) > γ for any x ∈ sptλ. If |t| is suffienciently

small, then the same is true if we replace σ by σt := σ + tλ and γ by

γ/2. (5.1) implies

∫

sptλ

divσt · (u0 − u) dx +

∫

sptλ

σt : ∇u0 dx ≤

≤
∫

sptλ

(f∗(σt) − f∗(σ)) dx +

∫

sptλ

σ : ∇u0 dx .

If we observe that

∫

sptλ

divσt · u0 dx +

∫

sptλ

σt : ∇u0 dx −
∫

sptλ

σ : ∇u0 dx =

=

∫

sptλ

tdivλ · u0 dx +

∫

sptλ

tλ : ∇u0 dx = 0 ,

then we obtain

−
∫

sptλ

tdivλ · u dx ≤
∫

sptλ

(f∗(σt) − f∗(σ)) dx .

Dividing through t > 0 and passing to the limit t → 0 we get

−
∫

sptλ

divλ · u dx ≤
∫

sptλ

∇f∗(σ) : λ dx ,
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i.e., by definition, the first weak derivative of u is given by ∇f∗(σ) which

is a function of class C0,α(Ω̃, IRnM) on account of Lemma 4.1 and the fact

that dist(σ(x), ∂ Im∇f) ≥ c(Ω̃) > 0 on Ω̃ � Ω.

6 – The limit case n = 2, µ = 2

Let the assumptions of Theorem 1.2 hold. For simplicity we just

consider the scalar case M = 1. With notation from Section 2 and

Section 3 it is easy to check that (3.2) extends to the case µ = 2, i.e. we

have for any k ≥ 0

(6.1)

∫

A(k,R)

|∇ωδ|2η2 dx+

∫

A(k,R)

(
1 + |∇uδ|2

)−1
(ωδ − k)2η2|∇2uδ|2 dx≤

≤ c19

∫

A(k,R)

(
1 + |∇uδ|2

) q
2 |∇η|2(ωδ − k)2 dx

being valid for all discs B2R � Ω and any η ∈ C1
0 (BR), 0 ≤ η ≤ 1. Note

that estimate (6.1) is true in any dimension n ≥ 2. In order to get a

variant of Lemma 2.6 in [7] we let

a(k, r) :=

∫

A(k,r)

(
1 + |∇uδ|2

) q
2 dx ,

τ(k, r) :=

∫

A(k,r)

(
1 + |∇uδ|2

) q
2 (ωδ − k)2 dx .

Lemma 6.1. There is a constant c20 independent of δ such that

a(h, r) ≤ (h − k)−2τ(k, r) ,(6.2)

τ(k, r) ≤ c20(R − r)−2τ(k,R)a(k,R)(6.3)

valid for h > k and r < R ≤ R0, B2R0
� Ω.

Proof. (6.2) is immediate. Let Γ := 1 + |∇uδ|2 and choose η ∈
C1

0 (BR), 0 ≤ η ≤ 1, η ≡ 1 on Br. Then, by Sobolev’s inequality,

τ(k, r) ≤
∫

A(k,R)

{ηΓ
q
4 (ωδ − k)}2 dx ≤

≤ c21

( ∫

A(k,R)

|∇{ηΓ
q
4 (ωδ − k)}| dx

)2

.
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On the right-hand side three different terms arise which may be estimated

as follows:

( ∫

A(k,R)

|∇ηΓ
q
4 (ωδ − k)| dx

)2

≤ |A(k,R)|
∫

A(k,R)

|∇η|2Γ q
2 (ωδ − k)2 dx ≤

≤ c22a(k,R)(R − r)−2τ(k,R) ,
( ∫

A(k,R)

|η∇ωδΓ
q
4 | dx

)2

≤
( ∫

A(k,R)

η2|∇ωδ|2 dx
)( ∫

A(k,R)

Γ
q
2 dx

)
≤

(6.1)

≤ c23(R − r)−2τ(k,R)a(k,R) ,
( ∫

A(k,R)

ηΓ
q
4−1|∇Γ|(ωδ − k) dx

)2

≤

≤ c24

( ∫

A(k,R)

ηΓ
q
4− 1

2 |∇2uδ|(ωδ − k) dx
)2

≤

≤ c24

( ∫

A(k,R)

|∇2uδ|2η2Γ−1(ωδ − k)2 dx
)
·
( ∫

A(k,R)

Γ
q
2 dx

)
≤

(6.1)

≤ c25(R − r)−2τ(k,R)a(k,R) .

Let h > k and R > r. Then we get from Lemma 6.1 (α > 1 being

specified later)

τ(h, r)αa(h, r)
(6.2)

≤ τ(h, r)α(h − k)−2τ(k, r) ≤
≤ τ(k, r)α(h − k)−2τ(k,R) ≤

(6.3)

≤ c26(R − r)−2ατ(k,R)αa(k,R)α(h − k)−2τ(k,R) =

= c26(R − r)−2α(h − k)−2[a(k,R)τ(k,R)
1+α
α ]α .

For α = (
√

5 + 1)/2 we see that (1 + α)/α = α, hence

ψ(h, r) := τ(h, r)αa(h, r)

satisfies the growth estimate

ψ(h, r) ≤ c26(R − r)−2α(h − k)−2ψ(k,R)α , h > k ≥ 0 , r < R ≤ R0 ,

and from [27], Lemma 5.1, we deduce

ψ(d,R0/2) = 0 ,



268 MICHAEL BILDHAUER – MARTIN FUCHS [20]

where the number d is determined by R0 and the quantity ψ(0, R0). Here

R0 is any radius such that B2R0
� Ω. Clearly this implies

(6.4) |∇uδ|2 ≤ ed on BR0/2 ,

and as usual (6.4) turns into a locally uniform gradient bound as soon as

we can estimate the quantity d. In order to get such a bound, we observe

first that the functions ωδ = ln(1 + |∇uδ|2) satisfy

(6.5) ‖∇ωδ‖L2(Ω′) ≤ c27(Ω
′)

for any subdomain Ω′ � Ω. In fact, (1.5) implies in the case µ = 2

|∇ωδ|2 ≤ c28D
2fδ(∂s∇uδ, ∂s∇uδ) ,

thus we may quote Lemma 2.1 by observing that the right–hand side

of (2.3) is bounded independent of δ.

According to (6.5) there is a Radon measure ν on Ω such that

(6.6) νδ := |∇ωδ|2 δ↓0
⇁ ν

in the sense of measures (at least for a subsequence). For ε > 0 being

determined later let

Σε := {x ∈ Ω : lim
r↓0

ν(Br(x)) = ν({x}) ≥ ε} .

Being a subset of the atoms of ν the set Σε is at most countable with no

interior accumulation points.

Lemma 6.2 (compare [17], Theorem 7.21). Let G denote a disc

in IR2. Then there are constants c29, c30 > 0 as follows: if ω ∈ W 1
1 (G)

satisfies for some K > 0

(6.7)

∫

G∩BR(z)

|∇ω| dx ≤ KR for all BR(z) ⊂ IR2 ,

then we have

(6.8)

∫

G

exp
(c29

K
|ω − (ω)G|

)
dx ≤ c30(diamG)2 .
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Let us now choose x0 /∈ Σε. Then ν(Bt(x0)) < 2ε for t ≤ tε, thus

lim sup
δ↓0

νδ(Bt(x0)) ≤ ν(Bt(x0)) < 2ε ,

and in conclusion νδ(Bt(x0)) ≤ 3ε for all δ small enough. Let G := Bt(x0).

Then ∫

G∩BR(z)

|∇ωδ| dx ≤
√

3ε
√

πR ,

thus we have (6.7) with K =
√

π
√

3ε, and (6.8) implies

∫

Bt(x0)

exp
( c29√

π
√

3ε
|ωδ − (ωδ)Bt(x0)|

)
dx ≤ c31(t)

for δ small enough. We select ε according to c29/
√

3πε = 1, thus

∫

Bt(x0)

exp |ωδ − (ωδ)Bt(x0)| dx ≤ c31(t) .

Observing (ωδ)Bt(x0) =
∫
Bt(x0) ln(1 + |∇uδ|2) dx ≤ c32(t) we have shown

that

(6.9)

∫

Bt(x0)

|∇uδ|2 dx ≤ c33(t)

holds for all δ small enough.

Let us suppose that in the beginning a sequence δ ↓ 0 has been

chosen such that uδ → u∗ in L1(Ω). By the choice of q and the definition

of ψ(0, t) we see that (6.9) provides a uniform bound for d, and from (6.4)

we get ∇u∗ ∈ L∞(Bt/2(x0)). Altogether we have shown

Lemma 6.3. Let u∗ denote a L1-cluster point of the sequence {uδ}.
Then u∗ is locally Lipschitz (and hence of class C1,α) on the open set

Ω − Σε.
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Next we let Ω0 = Ω − Σε (which is an open set) and consider η ∈
C1

0 (Ω0). Then, as in Section 4, we get ∇uδ → ∇u∗ a.e. on Ω0, thus

σ = ∇f(∇u∗) on Ω0 which proves part a) of Theorem 1.2. Now let u

denote some generalized minimizer, i.e. u ∈ M, and repeat the proof of

Lemma 5.1 with λ ∈ C∞
0 (Ω0, IR

2). We get ∇u = ∇f∗(σ) now on Ω0, thus

∇u = ∇u∗ on Ω0. But since Σε has no interior accumulation points, we

see that Ω0 is connected, hence u = u∗ + const on Ω0 and therefore a.e.

on Ω.
Theorem1.2

�

So far we have shown that any generalized minimizer u is of class C1,α

except for a discrete set of possible singular points forming a subset of Σε.

Let us have a closer look at the behaviour near isolated singularities x0.

We fix a disc Bt(x0) such that no other singular point occurs in Bt(x0)

and decompose the vector-measure ∇u as

∇u = (∇u)a + (∇u)s

with absolutely continuous part (∇u)a in the space L1(Bt(x0), IR
2). Ob-

viously (∇u)s has the form ξδx0
for some ξ ∈ IR2 , and we claim ξ = 0. In

fact, this is a consequence of the fine properties for BV –functions stated

for example in [2], Lemma 3.76, saying that the measure |∇u| vanishes on

the set {x0} which is of H1 measure zero. Alternatively we may assume

that ξ 	= 0 and recall that u minimizes Ĵ(·, Bt(x0)) w.r.t. its boundary

values. Let v := ηru with ηr ∈ C1(Bt(x0)), 0 ≤ ηr ≤ 1, ηr ≡ 1 on

Bt(x0) − B2r(x0), ηr ≡ 0 on Br(x0), |∇ηr| ≤ c34r
−1, where r & t. Then

∫

Bt(x0)

f(ηr∇u + ∇ηru) dx = Ĵ(v,Bt(x0)) ≥ Ĵ(u,Bt(x0)) =

=

∫

Bt(x0)

f((∇u)a) dx + f∞
( ξ

|ξ|
)

with f∞(ξ/|ξ|) > 0 on account of (1.2). By convexity of f we have

f(ηr∇u) ≥ f(ηr∇u + u∇ηr) − u∇ηr · ∇f (ηr∇u + u∇ηr)︸ ︷︷ ︸
=:κ

,
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hence

Ĵ(v,Bt(x0)) ≤
∫

Bt(x0)

f(ηr∇u) dx +

∫

Bt(x0)

u∇ηr · ∇f(κ) dx =

=

∫

Bt(x0)−B2r(x0)

f((∇u)a) dx +

∫

B2r(x0)−Br(x0)

f(ηr(∇u)a) dx+

+

∫

Bt(x0)

u∇ηr · ∇f(κ) dx ≤

≤
∫

Bt(x0)

f((∇u)a) dx +

∫

B2r(x0)−Br(x0)

f(ηr(∇u)a) dx+

+ c35

1

r

∫

B2r(x0)

|u| dx ,

where we have used (1.3). Recalling n = 2 and u ∈ BV (Ω), we see

u ∈ L2(Ω), hence r−1
∫
B2r(x0) |u| dx → 0 as r ↓ 0. The linear growth of f

implies
∫

B2r(x0)−Br(x0)

f(ηr(∇u)a) dx ≤ c36

∫

B2r(x0)

(1 + |(∇u)a|) dx r↓0→ 0 ,

and we finally get
∫

Bt(x0)

f((∇u)a) dx + O(r) ≥ Ĵ(v,Bt(x0)) ≥

≥
∫

Bt(x0)

f((∇u)a) dx + f∞
( ξ

|ξ|
)
.

From (1.2) we deduce f∞(ξ/|ξ|) ≥ a which is a contradiction if r is small

enough. Consequentely ∇u = (∇u)a ∈ L1(Bt(x0), IR
2), and therefore

u ∈ W 1
1,loc(Ω). To prove the corollary we recall that according to (6.5)

we may assume ωδ ⇁: ω in W 1
2,loc(Ω). On the other hand, ∇uδ → ∇u∗

a.e. on Ω0, and since ∇u∗ ∈ L1
loc(Ω) we have pointwise convergence a.e.

on Ω, hence ω = ln(1 + |∇u∗|2) ∈ W 1
2,loc(Ω). Suppose that t > 1 is given,

and let x0 denote a point of Σε. Then we have
∫

Br(x0)∩BR(z)

|∇ω| dx ≤ ‖∇ω‖L2(Br(x0))

√
πR ,

and (6.8) implies
∫

Br(x0)

exp
( c29√

π‖∇ω‖L2(Br(x0))

|ω − (ω)Br(x0)|
)
dx ≤ c30(2r)

2 .
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Let us choose r small enough in such a way that

c29√
π‖∇ω‖L2(Br(x0))

≥ t

2
.

Then we get ∫

Br(x0)

|∇u∗|t dx < +∞

which proves the claim of the corollary for u∗ and hence for any u ∈ M.

Note that we can bound the mean value of ω on Br(x0) in terms of the

L1-norm of ∇u∗ due to the fact that we already know that u∗ is of class

W 1
1,loc(Ω).
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