Rendiconti di Matematica, Serie VII
Volume 22, Roma (2002), 275-341

Pseudohermitian geometry on contact

Riemannian manifolds

DAVID E. BLAIR - SORIN DRAGOMIR

RIASSUNTO: A partire dai lavori di S. Tanno, [39], e E. Barletta et al., [3], st
studia la geometria delle quasi CR strutture (possibilmente non integrabili) su varietd
riemanniane di contatto. Si caratterizzano le funzioni CR-pluriarmoniche in termini
di operatori differenziali naturali associati alla struttura riemanniana di contatto data.
Si mostra che la quasi CR struttura di una varieta riemanniana di contatto (M,n) il
cui fibratto canonico ammette sezioni globali, non nulle e chiuse, é integrabile e n é una
forma di contatto pseudo-Finstein. Si mostra che il gruppo di olonomia pseudohermi-
tiano di una varieta sasakiana ¢ contenuto in SU(n) x 1 se e solo se la connessione
di Tanaka-Webster é Ricci piatta. Inoltre, per ogni varietd sasakiana quaternionica
(M*™ Y (F,T,0,9)) o la connessione di Tanaka-Webster di (M*™ " ) ¢ Ricci piatta
oppure m = 1 e allora (M®,0) ¢ pseudo-Einstein se e solo se 4p+p*0 ¢ chiusa, dove p ¢
una 1-forma locale su M® tale che VG = p@H e VH = —p®G per qualche riferimento
{F,G,H}, e p* ¢ la curvatura scalare pseudohermitiana di (M®,0). Su ogni varietd
sasakiana M esiste un sistema di Pfaff integrabile, invariante per W(z) (il gruppo di
olonomia pseudohermitiana in x € M) e contenente il flow di contatto come una sot-
tofogliazione. Si costruiscono connessioni canoniche (che ramentano la connessione di
Tanaka, [38]) in fibrati vettoriali complessi su varieta riemanniane di contatto, dotati
di un un operatore pre-0 e di una metrica Hermitiana. Come un’applicazione, si calcola
la prima funzione di struttura della quasi CR struttura di una varieta riemanniana di
contatto. Si mostra che la classe conforme ristretta [G,] della metrica di Fefferman
(generalizzata) come pure certe connessioni canoniche D (con traccia AgRP = 0) sono
invariantt di gauge.

ABSTRACT: Starting from work by S. Tanno, [39], and E. Barletta et al., [3], we
study the geometry of (possibly non integrable) almost CR structures on contact Rie-
mannian manifolds. We characterize CR-pluriharmonic functions in terms of differen-
tial operators naturally attached to the given contact Riemannian structure. We show
that the almost CR structure of a contact Riemannian manifold (M, n) admitting global
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nonzero closed sections (with respect to which 1 is volume normalized) in the canonical
bundle is integrable and n is a pseudo-FEinstein contact form. The pseudohermitian
holonomy of a Sasakian manifold M is shown to be contained in SU(n) x 1 if and
only if the Tanaka- Webster connection is Ricci flat. Also, for any quaternionic Sasakian
manifold (M*™TY (F,T,0,9)) either the Tanaka-Webster connection of (M*™ 1 6) is
Ricci flat or m = 1 and then (M?®,0) is pseudo-Einstein if and only if 4p + p* 0 is
closed, where p is a local 1-form on M® such that VG = p® H and VH = —p® G
for some frame {F,G,H}, and p* is the pseudohermitian scalar curvature of (MS7 0).
On any Sasakian manifold M there is a smooth integrable Pfaffian system, invariant
by U (z) (the pseudohermitian holonomy group at = € M) containing the contact flow
as a subfoliation. We build canonical connections (reminiscent of the Tanaka connec-
tion, [38]) on complex vector bundles over contact Riemannian manifolds, carrying a
pre-0-operator and a Hermitian metric. As an application, we compute the first struc-
ture function of the underlying almost CR structure of a contact Riemannian manifold.
The restricted conformal class [Gy] of the (generalized) Fefferman metric and certain
canonical connections D (with trace AgR” = 0) are shown to be gauge invariants.
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1 — Introduction

Let M be a real (2n + 1)-dimensional C*° manifold. An almost CR
structure is a rank n complex subbundle T} (M) C T(M) ® C so that

(1) T1o(M)N T, (M) = (0),

KEY WORDS AND PHRASES: Riemannian manifold — Functions pluriharmonic — Pseu-
dohermitian holonomy — Sasakian manifold.
A.M.S. CLASSIFICATION: 32V20 — 32V40 — 53C25 — 53C29
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where Tp (M) = T ,0(M) (overbars denote complex conjugation) and a
pair (M, Ty(M)) is an almost CR manifold (of CR dimension n). If
{&a 1 1 < a < n} is a local frame of T (M), defined on some open
neighborhood U, then T 1 (M) corresponds to the system of PDEs

(2) au) =0, 1<a<mn,

(the tangential Cauchy-Riemann equations) and a solution u € C*°(U)
to (2) is a CR function. Almost CR structures appear for instance on
smooth real hypersurfaces M in a complex manifold V'

Tio(M) :=[T(M)® C]NSpan{d/dz7 : 1 < j <n+1},

where 27 are (local) complex coordinates on V' and, as such, possess the
following (formal) Frobenius integrability property

(3) [T (T1,0(M)), T (T1,0(M))] € T>(T1,0(M))
or, in terms of the local generators &,

(4) [€ar €8] = Ca &y »

for some smooth complex valued functions C7; on U. An almost CR
structure satisfying the integrability condition (3) is a CR structure and
the pair (M, Ty o(M)) is a CR manifold. On the other hand, a smooth
real hypersurface M in an almost Hermitian manifold (e.g. S® with the
canonical nearly Kéhler structure, [12]) inherits an almost contact metric
structure (p,&,n,g) (cf. [11]) and T} (M) = {X —ipX : X € Ker(n)} is
an almost CR structure, not integrable, in general. The 1-form 7 is a sec-
tion in the conormal bundle of H(M) := Ker(n) i.e. a pseudohermitian
structure (cf. [48]) on M. Even if M is nondegenerate, that is 7 is a con-
tact form, the tools of pseudohermitian geometry are unavailable, e.g. the
construction of the Tanaka- Webster connection, (cf. [38] and [48]) is tied
to the integrability property of the almost CR structure. Nevertheless,
due to the work of S. TANNO, [39], a sort of pseudohermitian geometry,
in many ways similar to that of S. Webster (cf. op. cit.), may be devel-
oped on a contact manifold (with a generally non integrable almost CR
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structure) in the presence of a fixed associated Riemannian metric (cf.
also [40]-[42]). Let (M,n) be a contact manifold, that is a real (2n + 1)-
dimensional C'* manifold carrying a 1-form 7 such that ¥ = n A (dn)™
is a volume form on M. There is a unique vector field { € X (M) such
that n(§) =1 and £ | dn = 0 (the characteristic direction of (M,n)). By
a well known result (cf. [11]), given a contact manifold (M, n) there are
a Riemannian metric g and a (1, 1)-tensor field ¢ on M such that

g(ng):n(X)? 902=—I+77®§,
9(X, oY) = (dn)(X,Y),

for any X,Y € X(M). Such a metric g is said to be associated to the con-
tact form 7. Let us denote by M (n) the set of all associated Riemannian
metrics. Of course, once g € M(n) is fixed, ¢ is uniquely determined.
Each g € M(n) has the same volume form W. S. Tanno considered (cf.
op. cit.) the (1,2)-tensor field

() QX,Y) = (Vyo)X +{(Vyn)pX} +n(X)e(Vye)

(the Tanno tensor field) and the linear connection V* (the (generalized)
Tanaka- Webster connection of (M,n)) given by

(6) VY = VxY +n(X)eY —n(Y)VxE+ [(Vxn)Y]E

where V is the Levi-Civita connection of (M, g). The connection V* may
be described axiomatically (cf. Proposition 3.1 in [39], p. 354) as the
unique linear connection obeying

(7) Vin=0, V¢=0,
(8) Vig=0,

T*(X,Y) = 2(dn)(X,Y)E, XY € H(M),
) { T 6.07) = —pT"(6,2), 7 €T(M),
(10) (Vio)V = QV,X), X,Y e T(M).

where T™ is the torsion of V*. As @ = 0 if and only if (3) holds ([39],
p. 353-354), the axioms (7)-(10) show that on any contact Riemannian
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manifold with integrable almost CR structure V* is the Tanaka-Webster
connection of (M, —n).

The present paper continues the work in [3] as an attempt to apply
the geometric methods devised by S. Tanno to the study of the egs. (2),
without the involutivity property (4). We consider the Webster torsion

(X)) =T(&,X), X € T(M).

Tt is both trace-less (and, as a geometric interpretation, for any asso-
ciated Riemannian metric g € M(n) the contact distribution H(M) is
minimal in (M, g)) and self-adjoint, a property playing a crucial role in
the derivation of the structure equations

Q" = R g A = WEn A+ W™ A+

(11) . _ = -
= 19" Qlae” A"+ 9,5Q05.an" AT

the CR counterpart of which allows one to relate the existence of (local
or global) pseudo-Einstein structures to CR-pluriharmonic functions and
the existence of closed sections in the canonical bundle (cf. [29]). In
particular (11) is shown to imply the symmetry property R z,; = R\g.5-
As a general strategy, we express the terms without a CR counterpart in
terms of the Tanno tensor @ and its first order covariant derivatives with
respect to V* [e.g. Rﬂﬁ —,» @ term which vanishes on a contact manifold
with (3) as (by (10)) the Tanaka-Webster connection parallelizes T o(M)].

Given a contact manifold (M, n), a C* function u : M — R is CR-
pluriharmonic if it is locally the real part of a CR function. We determine
natural differential operators characterizing CR~pluriharmonic functions.
Precisely, we show that a smooth real valued funcion w on M is CR-
pluriharmonic if and only if

U/QE = /’LgaE7 (QZB - an)uﬁ = 07

for some complex-valued function p, provided the CR dimension is n > 2.
The complex Hessian u,3 is computed with respect to V*. Note that the
first set of equations are second order and correspond to the equations
found by J. M. LEE, [29], while the second set are first order and have
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no (integrable) CR counterpart. Of course, the almost CR structure of
any 3-dimensional contact Riemannian manifold is integrable, hence a
characterization of CR-~pluriharmonic functions in the case n = 1 already
exists, cf. [29] (the relevant differential operators are third order).

In [3] one built a contact Riemannian analogue of the Fefferman met-
ric in CR geometry (cf. e.g. [28]) relying on the existence, for any nowhere
vanishing section Z in the canonical bundle, of a unique positive func-
tion A so that

20"l A (€] Z) AN (E]Z) = An A (dn)".

If A =1 then 7 is said to be volume normalized with respect to Z. We
show that, if there is a closed globally defined nowhere zero section in
the canonical bundle, with respect to which the contact form is volume
normalized, then the almost CR structure is integrable and M is a pseudo-
Einstein manifold.

The pseudohermitian holonomy groups of a nondegenerate CR man-
ifold are the holonomy groups of its Tanaka-Webster connection (for a
fixed choice of contact form). We show (cf. Section 5) that a strictly pseu-
doconvex CR manifold M?"*! with vanishing Webster torsion (7 = 0)
has pseudohermitian holonomy contained in SU(n) x 1 if and only if its
Tanaka-Webster connection is Ricci flat. In Section 5.1 we deal again
with the integrable case and start a study of quaternionic Sasakian man-
ifolds. These are pseudohermitian analogues of quaternion Kéhler mani-
folds (and one may bring to CR geometry a result by M. BERGER, [9], and
S. ISHIHARA, [24]). In Section 5.2 we show that, on any Sasakian mani-
fold, a ¥(x)-invariant subspace D, of the tangent space at x [where ¥(x)
is the pseudohermitian holonomy group with reference point x| gives rise
(by parallel translation with respect to the Tanaka-Webster connection)
to a smooth integrable Pfaffian system. The key ingredient is parallel
displacement along parabolic geodesics (cf. [26]).

Given a complex vector bundle F over a contact Riemannian man-
ifold, endowed with a pre-0-operator dz and a Hermitian metric H, we
build canonical connections in F extending 0, parallelizing H, and with
a prescribed trace P of their curvature tensor, thus generalizing the
Tanaka connection of a Hermitian CR-holomorphic vector bundle over
a strictly pseudoconvex CR manifold M ([39]), a CR invariant of M. As
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an application, we show that on any contact Riemannian manifold the
first structure function of the underlying almost CR structure [regarded
as a U(n) x 1-structure] is nonzero.

Let (M, (¢,&,m,9)) be a contact Riemannian manifold. An object
built in terms of (p,&,n,9) is a gauge invariant (cf. S. TANNO, [39],
p. 362-363, and [40], p. 537) if it is invariant under a transformation

(‘Pa§a7779) = (@aéaﬁv.@) where

1
w+éxn®{VA*£OML

1 .
TE+Q, A=A,
Ag—A(n@wt+wen) +AA-1+[¢C|*)nen

78
Il

g

with A € C°°(M) such that A(z) > 0 for any x € M. Here ( is given by
¢=(1/(2)\)) ¢V and w is the dual 1-form w(X) = ¢g(X,(), X € T(M).
For instance, the Bochner curvature tensor given by (8) in [40], p. 537,
is a gauge invariant [coinciding with the Chern-Moser tensor when (3)
holds]. If the almost CR structure of M is integrable then the gauge
invariants of M are precisely its CR invariants. Let G, be the (gener-
alized) Fefferman metric of the contact Riemannian manifold (M,n, g),
cf. [3], p. 27. The Fefferman metric is a Lorentz metric defined on the
total space of a certain principal circle bundle S* — F(M) — M
(cf. Section 4.2 for definitions). The restricted conformal class of G, is
[G,)] == {exp(2uom) G, : u € C*(M)}. In Section 7 we show that the re-
stricted conformal class of GG, is a gauge invariant. The proof relies on the
explicit calculation of the Fefferman metric &), in terms of pseudohermi-
tian invariants (cf. Section 4.2). Also, each canonical connection D whose
curvature has trace A;,R” = 0 (cf. Theorem 9) is shown to be a gauge
invariant.

2 — Contact Riemannian versus CR geometry

Let M*"*! be a real (2n + 1)-dimensional C* manifold. An almost
contact Riemannian structure (¢,&,n,9) on M*"*1 consists of a (1,1)-
tensor field ¢, a vector field &, a 1-form 7, and a Riemannian metric g
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such that

@ =—-IT4+n®E nop=0, ¢¢=0,
9(pX,0Y) =g(X,Y) —n(X)n(Y),

for any X, Y € T(M**1). It is a contact Riemannian structure if it
satisfies Q = dn (the contact condition) where Q(X,Y) = g(X,¢Y).
Set h := 3L¢p, where L is the Lie derivative. A contact metric struc-
ture is K-contact if the contact vector ¢ is Killing (equivalently h = 0).
The Riemannian metric g, underlying a contact Riemannian structure, is
Sasakian if
(Vxp)Y = g(X, V)€ = n(Y)X,

for any X,Y € T(M?***!), where V is the Levi-Civita connection of g.
Any Sasakian metric is K-contact (the converse is not true, in general,
cf. [11]). Another approach to Sasakian metrics is as Webster metrics on
strictly pseudoconvex CR manifolds whose Webster (or pseudohermitian)
torsion vanishes.

As we need to apply the result in [13] to CR submanifolds (in the
sense of [8]) of a Hermitian manifold (cf. Section 5.1) the notion of
CR manifold considered in the introduction is not sufficiently general.
We recall here the relevant notions, emphasizing on the relationship
between contact Riemannian and CR geometry. A CR structure of
type (n,k) on a (2n + k)-manifold M is a complex rank n subbundle
T, o(M) C T(M) ® C satistying (1) and (3), and a pair (M, T} o(M))
is a CR manifold of type (n,k). The integers n and k are respectively
the CR dimension and CR codimension of (M,T; o(M)). A posteriori, a
CR manifold of type (n,1) (cf. Section 1) is said to be of hypersurface
type. The real rank 2n distribution H(M) := Re{T; o(M) @ Tp (M)} is
the Levi (or mazimally complex) distribution of (M, T o(M)). The Levi
form is L(Z,W) = in[Z,W], Z,W € Ty o(M), where 7 : T(M) ® C —
[T(M) ® C]/[T1o(M) & Tp,(M)] is the natural bundle map. If L = 0
then (M,Tyo(M)) is Levi flat. For a Levi flat CR manifold H (M) is
integrable, hence M is foliated by complex n-dimensional manifolds.
(M, T, o(M)) is nondegenerate if the Levi form L is nondegenerate. Let
E C T*(M) be the conormal bundle of H(M). If M is an oriented CR
manifold of hypersurface type then E is a trivial line bundle, hence ad-
mits globally defined nowhere zero sections 6 (i.e. real 1-forms on M
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such that Ker(0) = H(M)), each of which is referred to as a pseudoher-
mitian structure on M. The Levi form may be recast as Lyg(Z, W) =
—i(d0)(Z, W), Z,W &€ Tyo(M), [L, Ly are easily seen to coincide up
to a bundle isomorphism [T'(M) ® C]/[T10(M) & To1(M)] = E]. M is
strictly pseudoconvex if Ly is positive-definite, for some 6. There is no
obvious way to define strict pseudoconvexity in higher CR codimension
(k > 2). If M is nondegenerate then each pseudohermitian structure is
actually a contact form (i.e. 6 A (d)" is a volume form on M). For
a fixed contact form € there is a unique vector field T" on M so that
O(T) =1and T | df = 0 (the characteristic direction of (M,§)). If this is
the case, i.e. M is nondegenerate, then the Levi form extends naturally
to a semi-Riemannian metric g on M (the Webster metric) given by

g(X,Y) = (dO)(ru X, orpY) + 0(X)0(Y), X,Y € T(M).

Here 7y : T(M) — H(M) is the projection associated with T'(M) =
H(M)®RT and o(Z + Z) = i(Z — Z), Z € Ty o(M), is the complex
structure in H(M). Then Q = —d#, i.e. if M is strictly pseudoconvex
and € has been chosen so that Ly is positive definite then (¢, —T,—6, g)
is a contact metric structure on M. Let V* be the Tanaka-Webster
connection of (M,0), i.e. the linear connection uniquely determined by
the axioms (7)-(10) with £ = =T and @ = 0. Let 7(X) = T*(T, X)) be
its Webster torsion. Then (¢, —T, —0, g) is normal (i.e. g is Sasakian) if
and only if 7 =0 (cf. [11], [18]).

2.1 — Basic formulae

Let (M,n) be a contact manifold and g € M(n) an associated Rie-
mannian metric. Let {£,} be a local frame of the almost CR structure
T o(M) and {n*} the corresponding admissible coframe, i.e.

n*(€s) = 95, n*(&5) =0, n*(§) =0,

where &5 = £3. Due to the contact condition the (local) components of
the Levi form are g,5 = g(€a,&5). Then (cf. (44) in [3])

(13) dn = —2ig,51" A1’ .
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We collect a few elementary properties of the Webster torsion in the
following

LEMMA 1. Let (M,n,g) be a contact Riemannian manifold and & the
characteristic direction of (M,n). Theni) 7(§) =0, ii) Top+poT =0,
i) T T(M) C H(M), iv) 7 Tyo(M) C Ty (M) and 7Ty, (M) C Tyo(M),
and v) trace(r) = 0.

PROOF. Property (ii) follows from axiom (9). Next (by (ii)) 7X =
wtpX € H(M), i.e. 7is H(M)-valued. Also (again by (ii)) ¢(72) =
—irZ for any Z € Ty o(M) hence (by (iii)) property (iv) is proved, and (v)
is a corollary of (iv) and of the fact that the traces of an endomorphism
and its complex linear extension coincide. 0

As a consequence of Lemma 1 7&, = AE&E, for some smooth complex

valued functions A? on U. The connection 1-forms of the (generalized)
Tanaka-Webster connection V* are given by V*¢, = wf ® £5. Our con-
vention as to the range of indices is A, B,C,--- € {0,1,--- ,n,1,--- 7}
with €% = £. Note that w? = 0 (by (7)). We shall need the following

LEMMA 2. Let {n“} be an admissible frame on a contact Rieman-
nian manifold. Then

(14) dn™ =0’ Nw§ + 107 AwS + AT
where 7% 1= A% n? and A% = A3.
The proof of Lemma 2 follows from the identity
2(dn®)(X,Y) = (Vxn")Y — (Vin") X +n*(T"(X,Y)).

Let Q4. be the components of the Tanno tensor (with respect to
{€4}). We introduce connection coefficients (of V*) by setting wy =
I'4;n¢. The Tanno tensor (5) may be written

QIX,)Y) =71 (Vyp)X —n(X)(Vyp)§.
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On the other hand (by Corollary 6.1 in [11])
29((Vx9)Y, Z) = g(N(Y, Z),0X) + 2(dn) (Y, X)n(Z)+
= 2(dn)(vZ, X)n(Y),
where N = [, ] + 2(dn) @ £. Consequently

QQ(Q(X’Y)aZ) = g(N(l)(Xv Z) _n(X)N(l)(fv Z)+

(1%) CWZNO(X,6), oY),

for any X,Y,Z € T(M). Using (10) and (15) one may derive (cf.
also (31)-(34) in [3])

_ -
(16) ’Bya - 0’ Fgﬁ = 7§Q’ﬁya7 FSAB - 0’
v - DA 0_ _
(17) =0, Q) =0, Q =0, I =0,
(18) Fgo =Y, I"oyzO =0, Fgﬂ =0, Fgﬂ =Vv.

LEMMA 3. Let (M,n,g) be a contact Riemannian manifold. The
Webster teorsion T is self-adjoint, i.e. g(tX,Y) = g(X,7Y) for any
X,Y € T(M). Locally, if Awp := A7 g then A,p = Ag,.

PROOF. As V*g =0 (cf. (8))
(19) 9,5 = Wy 945 T Gz Wi
Differentiating in (13)
0= —2idg,5 An" A n’ — 2ig,5(dn™ A n® —n* A dnE)

and substituting dg,z from (19), respectively dn®, dn? from (14) (and its
complex conjugate) we have

0= (W] 9,5 + gav ) An™ A+

+ga5{(n"/\w;’+nﬁ/\w§+n/\7‘*)/\7764—
—naA(nﬁ/\wg—FT}p/\wE—l—n/\Tﬁ)}
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or (by I'f; = 0)

0=nA{g.5A%0" A0’ + 9.5 A" A+
+ 9,500, 1" A AN+ 9,5 a0t AnS A

Therefore (by looking at types)
(20) gaEAEnAna/\n“*:O.

The identity (20) leads to g5 A% = g.5 AZ. 0

REMARK 1. Note that, for any contact Riemannian structure, 7 =
—p o h as a straightforward consequence of (6), thus providing an alter-
native proof of Lemmas 1 and 3 (cf. also Lemma 6.2 in [11]).

2.2 — Geometric interpretation of 7

Given a Riemannian manifold (M, g) and a smooth distribution D
on M, we say D is minimal in (M, g) if trace, B(D) = 0 with B(D) given
by

B(D)(X,Y)=7tVxY, X,Y €D,

where V is the Levi-Civita connection and 7+ the natural projection with
respect to T'(M) = D @ D+ (orthogonal decomposition). If M and N are
almost CR manifolds, a CR map is a smooth map f: M — N such that
(de f)T10(M), C Ty 0(N) (), for any x € M. A CR automorphism of M
is a C'* diffeomorphism (of M in itself) and a CR map. A vector field
X € X(M) is an infinitesimal CR automorphism if the local 1-parameter
group of X consists of (local) CR automorphisms. We shall prove the
following

THEOREM 1. Let (M,n) be a contact manifold. Then for any as-
sociated Riemannian metric g € M(n) the contact distribution H(M) =
Ker(n) is minimal in (M,g). Moreover, for any fized associated metric
g € M(n), the characteristic direction & of (M,n) is an infinitesimal CR
automorphism of the underlying almost CR manifold if and only if the
Webster torsion vanishes or, equivalently, g is a K-contact metric.
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PROOF. Let B := B(H(M)). Then B(X,Y) is the {-component of
VyY, for any X, Y € H(M). Now since V£ = 0 and ¢ has vanishing
divergence with respect to any associated metric, trace,(B) = 0. To
prove the second statement in Theorem 1 we recall

Ly=X|d+dX |
for any vector field X on M. By (14)

Len®™ =€ Jdn® +d(E ™) = €] (0 N +07 N+ AT?) =

= _§Wﬁ(f)77ﬁ_ 5“5(5)7754‘57'

so that (by wg(§) = I't; = 0) we get Len™ = 3

Len® = 0, modn?, if and only if 7¢, = AE&; =0 (ie. 7 =0). Also
Len =& ] dn+d€]n =0 hence the proof of Theorem 1 follows from

7%, mod n®. Therefore

LEMMA 4. A tangent vector field X on a contact manifold (M,n)
is an infinitesimal CR automorphism if and only if Lxn = 0, mod n
and Lxn® = 0, mod n, n°, for any admissible (local) frame {n*} of
Ty o(M)*.

The proof of Lemma 4 follows easily from Proposition 3.2 in [27],
vol. I, p. 29.
For further use, note that the formula (6) may be also written

(21) V=V"-(Q+A)0{+701n—-2n0¢
where A(X,Y) = ¢g(7X,Y) and ® is the symmetric tensor product.

2.3 — The tangent sphere bundle

As an example of contact Riemannian manifold with (generally) non-
integrable almost CR structure we recall the tangent sphere bundle of
a Riemannian manifold. Let (M™,G) be a Riemannian manifold and
UM™), = {v e T,(M") : G,(v,v) = 1}, x € M". The total space
U(M™) of the corresponding sphere bundle S"~!' — U(M™) — M™" is
a real hypersurface in the almost complex manifold (T'(M™),.J), where
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JBX = X, JyX = —pX, X € X(M"), is the standard almost
complex structure on T(M™). Here 8, : T,(M") — T,(T(M™)) and
Yo i To(M™) — T,(T(M")), v € T,(M), are respectively the horizontal
and vertical lifts with respect to the Levi-Civita connection of (M™,G).
Thus U(M™) carries the almost CR structure

H=[T(UM") e CINT(T(M")),

where TH0(T(M™)) ={Y —4iJY : Y € T(T(M™))}. Although J is rarely
integrable (in fact only when (M™,G) is locally Euclidean, cf. [16]) H
turns out to be a CR structure in a number of geometrically interesting
situations. If n > 3 then A is integrable if and only if (M",G) is a
real space form (cf. Proposition 4.1 in [40], p. 540). U(M™) carries
the contact form (locally) given by n = $g;;y'dz?. Here (') is a local
coordinate system on M™ and (z¢,y") are the induced local coordinates
on T(M"™). Let g be the Sasaki metric on T(M™), i.e.

0 0 0 0
9(@7@) = Gij» g(a_yl’a_yﬂ) = Gij >

where 0/0x" = 0/9x" — T'};(x)y’d/0y" is the horizontal lift of 9/dx" de-
termined by I, [and T, are the Christoffel symbols of (M™,G)]. The
metric g = 15%g [where j : U(M™) C T(M")] is an associated metric
[i.e. g € M(n)] and the corresponding field of (1,1)-endomorphisms ¢
is given by ¢ = tan o J, where tan, : T,(T(M™)) — T,(U(M")) is the
projection associated to T,(T'(M™)) = T,(U(M™)) & E(j).,, v € UM"),
and E(j) — U(M™) is the normal bundle of j. Set £ = 2y°§/dx". Then
(¢,&,m, g) is a contact Riemannian structure on U(M™) (cf. e.g. [11]). g
is a K-contact metric if and only if (M", ) has constant sectional curva-
ture 1 (cf. [43]) and, if this is the case then g is actually a Sasakian metric;
also (U(M™),n) is pseudo-Einstein (cf. our Section 5 for definitions) of
positive pseudohermitian scalar curvature (cf. [2]).

3 — CR-pluriharmonic functions

A complex-valued ¢-form w on a contact manifold (M,n) is of type
(0,q) (or a (0,q)-form) if T1 (M) Jw =0 and & |w = 0. Let A»(M) —



[15] Pseudohermitian geometry on contact etc. 289

M Dbe the bundle of all (0, ¢)-forms on M and Q%9(M) = I'>°(A”¢(M)).
Associated to the almost CR structure, there is a natural differential

operator
D - QMI(M) — QUL (M), ¢ >0,

(the tangential Cauchy-Riemann operator) so that the egs. (2) may be
written dgu = 0. If w is a (0, ¢)-form then dyw is the unique (0,q +
1)-form coinciding with dw on Tp (M) ® -+ ® To1 (M) (¢ + 1 terms).
Therefore, on functions (0 f)Z = Z(f), for any Z € Tyo(M). The
sequence of C'°(M)-modules and differential operators

(22) o QU () 28 Q0D 2 QO (L) -
is only a pseudocomplex (in the sense of [46]) and 52 = 0 precisely when

the almost CR structure of (M,n) is integrable (cf. [3]). Of course, one
may associate with (22) a twisted cohomology

var Ker(@y : QU9(M) — QUIHI(M))
1, (M) = (0120~ 1(M)] O [Ker(Dy : Q0a(M) — )]’

(cf. also Theorem 4 in [3]) yet its study presents a number of difficulties.
For instance the natural filtration of the de Rham complex

Fka(M) = {Cd S Qk(M) ZW(Wl,"' ,Wp,1,71,~~ ,Vk,p+1) = 0,
for any W, eT(M)®C and V; €T (M), 1<i<p—1,1<j<k—p+1}

is not stable under exterior differentiation, the problem of devising a
contact Riemannian analogue of the Frélicher spectral sequence (cf. [38])
being open. Also, given a Riemannian manifold (M™,G), the problem
of computing the twisted cohomology groups Hgﬁ(U (M™)) is currently
unsolved [even for the integrable case, e.g. compute Hgi(U (S?)), the
Kohn-Rossi cohomology of U(S?)].

A smooth real valued function w on (M,n) is CR-pluriharmonic if
for any x € M there is an open neighborhood U C M and a real-valued
function v € C*°(U) so that u + v is a CR function, i.e. 9y (u+iv) = 0.
Given a simply connected smooth domain Q@ C C"™! and a holomor-
phic function F' defined on an open neighborhood of the closure of €2,



290 DAVID E. BLAIR — SORIN DRAGOMIR (16]

the trace f of F on M = 0Q is a CR function (0 f = 0). As pluri-
harmonic functions on € are real parts of holomorphic functions, one
may think of CR-pluriharmonic functions as boundary values of pluri-
harmonic functions. One of the antique problems in analysis (going back
to H. Poincaré, T. LEVI-CIVITA, and E. E. LEVI, [34]) is to characterize
boundary values of pluriharmonic functions in terms of tangential differ-
ential operators. L. AMOROSO, [1], was the first to solve) the problem
for n = 1, followed by work for arbitrary n and investigating ramifications
of the phenomenon (cf. e.g. [5], [7]). Real parts of CR-functions on CR
submanifolds of C"*! were first studied in [6] and a characterization of
CR-pluriharmonic functions in the abstract CR setting (employing the
tools of pseudohermitian geometry) was obtained in [29]. Our purpose
in the present paper is to characterize CR-pluriharmonic functions on
contact Riemannian manifolds, very much in the spirit of [29].

Let (M,n) be a contact manifold. A complex-valued p-form w on
M is a (p,0)-form if Tp1(M)|w = 0. Unlike (0, ¢)-forms (which are
locally sums of monomials of the form f,, ..., qnal A---An%) the exterior
monomials entering the local manifestation of a (p, 0)-form may contain 7
[hence the top degree (p, 0)-forms are A" T10(M)]. We define a differential
operator

Oy : C=(M) — Q" (M),

by declaring dg f to be the unique (1, 0)-form on M such that & | 9y f = 0.
For further use, set d§; = (0 — dx). We shall need the following result
of [29]

LeEMMA 5. Let (M,n) be a contact manifold and v € C*(M) a
real-valued function. Then u is CR-pluriharmonic if and only if for any
x € M there is an open neighborhood U C M of x and a real-valued
function A € C>(U) so that dj;u + An is a closed 1-form. Moreover,
there is a (globally defined) real-valued function v € C*°(M) such that
O (u+iv) = 0 if and only if ds;u + M\ is exact, for some (real-valued)
A€ C>®(M).

(1 Although later F. Severi has shown (cf. [35]) that the conditions found by L. Amoroso
were overdetermined, the work of L. Amoroso (cf. op. cit.) remains of great importance
and, according to G. FICHERA, [21], insufficient credit is given to L. Amoroso in the
existing literature on functions of several complex variables.
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Let us check that the arguments in [29] carry over to the case of a
contact manifold with a possibly non integrable almost CR structure. For
the sake of simplicity, we denote by P and C' R* respectively the sheaves
of CR-pluriharmonic and CR functions on M. Assume that u € P(M),
i.e. in a neighborhood U of each point of M we may consider a function
v e C(U) so that u+ iv € CR*(U) i.e.

iugn® —vgn® =0
(throughout we set fa = £a(f), for any f € C*(U)), an identity which
summed up with its complex conjugate gives df,u + von = dv. Viceversa,
if d$;u + An is closed then (by the Poincaré lemma) d%u + An = dv, for
some v € C*(V) and some open set V' C U, hence (by looking at the
(0,1)-components) i ug = vg, i.e. u+iv € CR®(V). 0

LEMMA 6. Let (M,n) be a contact manifold of dimension > 5 (that
isn>2) and =€ (M) a closed 2-form (dZ =0). If E|gmyenmn =0
then = = 0.

The proof is similar to that of Lemma 3.2 in [29], p. 167. We shall
prove the following

THEOREM 2. Let (M,n) be a contact manifold of CR dimension
n > 2. Let w € C®°(M) be a real-valued function and g € M(n) an
associated Riemannian metric. Then u is CR-pluriharmonic if and only
if for any (local) frame {£.} of (the almost CR structure) Ty o(M) on
U C M there is a complez-valued function p € C=(U) such that

(23) U5 = K907
and
(24) (Qls — Qha)us =0.

If this is the case [i.e. uw € P(M)] then
5 1
— AB ., — ;
(25) U = Ay uz + (w 5 uo)a .

Here uap = (V?u)(€a,€p) and (V?u)(X,Y) = (Vidu)Y, for X,Y €
T(M).
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PROOF. Assume that v € P(M). By Lemma 5 we may consider, in
the neighborhood U of each point of M, a real valued function A € C>(U)
such that df,u + An is closed, i.e.

0 = d(iugn® — iua ™ + An) =
= idug AN + iug dn® — idug AN — iug dn® +dXAn+ Xdn.

Let us substitute from (13)-(14)
i &5(uz) 1 A + i &5 (uz) 0 AT + i €(uz)n AnT+
+z’ua(775/\wg+nﬁ Aw§ +n AT+
(26) —i&(ua) 0’ A — i &5(ua) 1’ A — i€ (ua)n A+
—iua(nﬁ/\wg+7)y/\wg+n/\7“)+
+/\a770‘/\7)+/\ana/\n—2i)\gagna/\n520.

The 1™ A nP-component in (26) is
(27) {€a(uz) —us FZE + &5ua) —uy g —2Xg,510% A n’ =0.
By (16)-(18) ug,, = & (ug) — FZB us hence (27) may be written
(28) uz, +u,5 —27g9,5=0.
At this point, using the identity

(Viduw)Y = (Viydu)X —T7(X,Y)(u), X, Y €e T(M),
one may derive the (second order) commutation formulae

Uao = Uga — AL ug
(29) Uap = Upa
Uz, = U,5+219,5Uo

where uy = &(u). Now substitution from (29) into (28) yields

uaﬁ + (ZUO - /\)gaE = 07
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which is (23) with p:= X — iuy. The % A n’-component in (26) is

i Y a
{€5(ua) —u, T = Sus QT pn A" = 0

and substitution from uas = &5(ua) — I}, u, + £ Q14 us leads to
QZﬁ usn* A’ =
which is (24). Finally, the n A n®-component in (26) is
{iusg T, —ius AT +i&(ug) —iuy Ty + A} An =0
and substitution from u,o = &(u,) — I'Y, u., gives
Uao = T Ay —l—AEuE
which is (25).

Conversely, let us assume that u satisfies (23)-(24) for some complex-
valued function p € C*(U).

CLAIM. The function A € C*(U) given by A := pu+i g is real-valued.

Summing (23) to its complex conjugate uz, = (X+iu0)g§a gives (by
the commutation formulae (29)) A = A. The claim is proved.

Let us differentiate u,n®, substitute from (13)-(14), and replace the
ordinary derivatives in terms of covariant derivatives (with respect to
V*). We obtain the identity

i - _ _
d(uan®) = =(QLsusn™ A0’ + Q2 u, n™ An’)+
(30) (uan®) = 5 (Qap us 25 Uy )

—u, 50" AN 40 A (o0 + Ue ag n’)
for any real-valued u € C*°(M). Next, for u satisfying (23)-(24) (by (30))

B d(uan®) =n A (uaon® +ua AG0) = (X —iug) g,50° A1
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Then
d(dSu+An) = d(iugn® —iuan® + An) = (by (31))
=i{n A (uzon™ + uz A‘Enﬁ) — (A +iug)gssn® An I+
— {0 A (a0 1™+ ua AS77) — (X = iu0) 951" A1)+
+dAAn—2iNg 51" Anﬁ
i.e.
d(dyu+An) =nA¢
where

- )\a’f]a .

¢ = iuaona—l—iuaAgnB — iU N — iuaA%nE— Ao
Applying Lemma 6 to the 2-form = = d(d$u+ A\n) gives = = 0 hence (by
Lemma 5) u € P(M). 0
For a given Riemannian manifold (M",G), no examples of functions
in CR®(U(M™)) or P(U(M™)) are known. Of course, for any (almost)
holomorphic function f € C*(T(M™)) i.e.
) .0
of o1

— = <5<
50 Z@yj 0, 1<53<n,

(32)
the trace of f on U(M™") is a CR function, yet the existing information
on the solutions to (32) is equally scarce. We recall the commutation
formula

(33) [% ;yj} — T (a) 9

If f = u+ iv are the real and imaginary parts of f then (32) may be
written

ou ov ou ov
. 0 o oy b

Therefore, the holomorphic functions on T'(R™) are precisely the ordi-
nary holomorphic functions on C" and each element of CR¥(U(R™)) is
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the trace of a holomorphic function. Indeed, when I}, = 0, (34) are the
ordinary Cauchy-Riemann equations in R?". Moreover U(R") is the real
analytic hypersurface >/, (y*)> = 1 hence, by a theorem of G. Tomassini
(cf. [44]), any real analytic CR function on U(R™) extends holomorphi-
cally to a neighborhood of U(R") in C". Applying §/dx" to the first
equation in (34), respectively /9y’ to the second, and adding the result-
ing equations gives (by (33))

5u 0*u k ou
— + ——— =T (z) —.
dxtdxd Oyl dy I Gk

(35)

We have

PROPOSITION 1.  Let F = u+iv € C*(M™). If the vertical lift
FY := F ol is (almost) holomorphic then w,v are harmonic functions.
In particular, if M™ is compact then C*(M™)* N O(T(M™)) = C.

PROOF. If f = F", i.e. fis a function of the positional arguments z°
alone, then (35) becomes

9%u v, Ou

owigni — L) gk

in a neighborhood of each point of M™. Now contraction with ¢g¥ gives
Au = 0, i.e. u is harmonic. The same arguments apply to v. 0

REMARK 2. 1) Set 2/ = 2/ +iy’ and §/6z" = 3(5/d27 +i0/dy’). Un-
der a coordinate transformation z'/ = 2" (2!, .-, 2"), det[0x"" /0x*] # 0
in UNU’, one has 3y’ = (82”7 /0z*)y* hence 2”7 = 27(z',---,2") are
(almost) holomorphic (i.e. §27/6z% = 0 in II-Y(U N U’)) if and only if
Az =0inUNU".

2) If f € O(T(M™)) then 8f/07 = T%,(x)y" df/0y" in II-1(U)
reminiscent of LN. Vekua’s generalized analytic functions (cf. [47], [23]).

4 — Curvature theory

Let (M,n,g) be a contact Riemannian manifold. Let R, R* be re-
spectively the curvature tensor fields of V, V*. We consider the tensor
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field S defined by
S(X,Y)=(Vyxn)Y — (Vin)X.
A straightforward calculation based on (21) leads to

R(X,Y)Z = R*(X,Y)Z + (LX ANLY)Z 4+ 20X, Y)pZ+
(36) —9(S(X,Y), 2)§ + n(2)S(X, Y )+
—29((n N O)X,Y),Z)§ +20(Z)(n A O)(X,Y)

for any XY, Z € T(M), where

L=p—7, O=71*-2p7—1,
and (X AY)Z =g(X,2)Y —g(Y, Z)X. In particular, if X,Y,Z € H(M)
R(X,Y)Z =R (X, Y)Z+(LXNLY)Z +2Q(X,Y)pZ — g(S(X,Y), Z)¢
Take the inner product with W € H(M) to obtain

R(W,Z,X,Y) = g(R*(X,Y)Z, W)+

(37) +g(LX ALY)Z, W) — 2Q(X, Y)QUZ, W)

for any X, Y, Z, W € H(M), where R(W,Z, X,Y) = g(R(X,Y)Z, W) is
the Riemann-Christoffel 4-tensor of (M, g). Exploiting the well known
Symmetry

RW,Z,X,Y)=R(X,Y,W, Z)

the identity (37) furnishes

9(R*(X,Y)Z,W) = g(R*(W, Z)Y, X)+

(38) +g(LW ANLZ)Y,X) —g(LX NLY)Z,W).

We adopt the following convention as to the curvature components

R*(€p,€c)éa = Ra" pcln .
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Then (by (7)) Ry” 5 = 0. Moreover

RY(X,Y)és = 2(dwf — w§ AwE) (X, )Ep
(39) 2(dwh — wg A wg) = 2RABW nt A+
+ RAB,\# At + RABXE +2n A (RABOﬁ 0" — RA" o).

We shall prove the following

THEOREM 3. Let (M,n,g) be a contact Riemannian manifold.
Consider the 2-forms

1‘[5:dwﬁ—oﬂ/\wﬁ—oﬂ/\wE

QO =108 4+ 2in, AT — 2Ty AP,
B _

Q7" = dw? — wa/\ww—wa/\wy,

where 1, = gagnﬁ and T, = gaETﬁ, 78 =7F. Then

Q.° Ra M A=W A+ W™ An+

(40) - 97 {gpr Qe 1 A 4 95 Qo A}
0" WA77 /\77+W5“77“/\17+
(41) +5 {wa A= Q2 A}
where
fo = 5259/\59%7 Wﬁ* = SpaQPEQBE
W2, = SLo0559" Wi ==520,79"

and comas denote covariant derivatives with respect to the generalized
Tanaka-Webster connection.
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We need the following

LEMMA 7. On any contact Riemannian manifold M the curvature
of V* is expressed as

. 1 i 3
(42) Rap)\u = 2Z(Aa)\ 65 - Aozu 6f\)) - 5 gp gE)\ Qia o
. Z (T
(43) Rapxﬁ = QZ(Aggaﬂ - Agga;) ) g° ngM a
(44) R’ on = 9" 9,50
(45) R. o= 9792552,

PRrROOF. For instance, to establish (42) we set X =¢&,,Y =¢,, Z =
&o and W = &5 in (38) and use

L& =ifa — Al &5
and Lemma 3 to obtain
(46) Raﬂ)\ygﬁﬁ = Ruﬁgagﬁ)\ + Qi(AaAguE - Aaugkﬁ) .

On the other hand a calculation based on (16)-(18) and the following
decomposition

(47) N([&56al) = =21 guz
(48) (&5 8ali0=1%,&,
(49) (&5, &alon = —T05 &5

(where Vi g is the T} o(M)-component of V' € T (M) ® C with respect to
T(M)® C =T oM)®Ty,(M)® CE and Vo, = Vi) of commutators,
leads to

Bo__t B
Rl‘ Ta _5 Q,uoz,?

and then (46) yields (42). A similar approach leads to (43). The proof
of (44) (respectively (45)) is a bit trickier. Let us take the inner product
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of (36) by W € T(M) and use the resulting identity and the symmetry
of the 4-tensor R to obtain an identity of the form g(R*(X,Y)Z, W) =
g(R*(W,2)Y, X) + other terms. Set X =& and Y, Z, W € H(M). This
leads to (as L = 0 and H(M) is V*-parallel)

(50) g(R*(§7Y)Z7 W) :g(Y,S(Z, W))

Now (50) for ¥V = &, Z = &, and W = & is (44) and (45) follows
similarly. O

The substitution from (42)-(45) into (39) and the identity
(Ao 55 —Aap P At =27, AP

lead now to (40) in Theorem 3. The proof of (41) is similar and thus
omitted.
The Ricci curvature of V* is

Ric*(X,Y) := trace{V — R*(V,Y)X}, X, Y eT(M),

and R,z = Ric"({,,&3) is the contact Riemannian analogue of the pseu-
dohermitian Ricci curvature of [48] and [29]. From the very definition
R.5=Ra"5+ Ra's5-

Next, a calculation based on

(51) [, €0 = (T, — Th0)&
(52) 6060 = 5 (@5~ QL)
leads to Rs” »u = 0 and hence

(53) R.5=Ra'\5-

As a consequence of Theorem 3 we shall prove

COROLLARY 1. Let (M,n,g) be a contact Riemannian manifold and
set

Rapep = g(R*(&c,€p)6a,€B)
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for any (local) frame {£,} in Ty o(M). Then

(54) R R

aBNL = ABof

and consequently the pseudohermitian Ricci tensor is given by

(55) R;=R,

Y ap”
PROOF. Let us contract with gs= in (40) (respectively in (41)). We
get
Qoﬁ = Raﬁ)\ﬁ ’f])\ A T]I_L + )\a7 A 7]+

(56) i 7 A A op P P
= 11990 Qo AN+ 93 Qpma” A"}

i

i _
(57) Qas = Aay AN+ 5 gsy Qg,—m " A+ — 5

_0OP XA B
5 957Q55 1 A"

where 5 \ 5 B
)\aﬁ - _Wa/\gﬁﬁn + Waﬁgﬁinu ’

Aoy = —WEgazn + Wiagssn” .
Differentiating in (14) we have
O:dnﬁAwg—n'B/\dwg—i-anAw%—nE/\dw%—i-dn/\T" —nAdr®
and substituting from (13)-(14)
0=n"A(=TI$ = 2in, AT*) + 07 A(=Q5") + 0 A (77 Awj +TE/\UJ% —dr®)
or, by observing that n” A7, =0
(58) NAQL +n AT +nAQ* =0

where 3
Q% =dr° —TB/\wg —T’B/\W%.
Let us contract with g,z in (58) and subsequently substitute from (56)-
(57). The n* A n? A n7-component of the resulting identity is
Ropan™ A A =0,

which yields the first statement in Corollary 1. The second part is a
consequence of the first and of (53). 0
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4.1 - Pseudo-Einstein contact forms

Let M be a nondegenerate CR manifold, of CR dimension n. A con-
tact form 1 on M is pseudo-FEinstein if the pseudohermitian Ricci tensor
(of the Tanaka-Webster connection) of (M, n) is proportional to the Levi
form. That is R, = (p*/n)g,5, where p* = g*’R 5 is the pseudoher-
mitian scalar curvature (cf. [29]). A CR manifold admitting a (glob-
ally defined) pseudo-Einstein contact form is a pseudo-Einstein manifold.
Odd-dimensional spheres (with the standard Sasakian structure) and unit
tangent bundles over real space forms (of sectional curvature 1, cf. [2]) are
pseudo-Einstein manifolds. Also, the quotient of the Heisenberg group by
the (discrete) group of dilations is a strictly pseudoconvex CR manifold
admitting a pseudo-Einstein contact form (cf. [19]) with nonvanishing
Webster torsion (7 = 0 in the previous examples). The local existence of
pseudo-Einstein contact forms on a nondegenerate CR manifold is related
to the existence of closed sections in K°(M) := K(M) \ {zero section},
where K(M) = A"*19(M) is the canonical bundle, and therefore to the
local embedding problem for CR structures (cf. [29]).

Let (M,n) be a contact manifold and Z € T°(K°(M)). We say n is
volume normalized with respect to Z if

(59) 2"l A (EJZ)N(E]Z) =T,

where ¥ = nA(dn)". In CR geometry, if such sections Z exist and dZ = 0
then 7 is pseudo-Einstein (cf. [29]). Opposite to the integrable case, on a
contact manifold with a non integrable almost CR structure there exist
none. Precisely, we shall prove

THEOREM 4.  Any contact manifold (M,n) admitting a smooth,
globally defined, nowhere vanishing, closed section in the canonical bundle
has an integrable almost CR structure (and 1 is pseudo-FEinstein).

PROOF. Let Z € I'™°(K°(M)). Locally, with respect to an orthonor-
mal frame {{,} in T} o(M) on U

Z=fnAn'A-- AN,

for some smooth function f: U — C\ {0}. As

£1 2= A AT
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substitution in (59) together with the identity (46) in [3] (with det(g,3) =
1)

U =2l At A A A A AT
lead to |f| =n+ 1. Set

é(x:Ug&B, [Ug]:dlag(f7177]-)>
and let {7*} be the corresponding admissible coframe. Then
Z=nAR' A AD"

and exterior differentiation gives

hence (by (16)-(18))
dZ = -5 N2+

60 02 i . no— o an
(60) Buﬁ Z D AR A AGTEARTEA AR

If dZ = 0, the (n,2) component in (60) is (note that the first term is of
type (n+1,1))

Q% AR Y g AR A AT AR A AR =0

[e3

d>

which yields Q% Qﬁ and together with

J.

[5X7 éﬁ]l,o =

completes the proof of Theorem 4. 0
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By a result of J.M. Lee (cf. [29]) on any nondegenerate CR manifold
a contact form 7 is pseudo-Einstein if and only if the 1-form wg — 3= p*n
is closed, for any (local) frame {{,} in T} o(M). We shall prove

PROPOSITION 2. Let (M, n) be a contact manifold, of CR dimension
n, and g € M(n) an associated Riemannian metric so that the 1-form

w® — £ p*n is closed, for some frame {&,} in Ty o(M). Then

« 2n

* 1 Y
(61) Ry = (p"/n) grn — 1 Q%p ZA'

PROOF. Let us contract  and § in (40) of Theorem 3. As

Na AT =0, wiAw] =0, w%/\wZ:—Z S Tt AnE

we obtain (by (55) in Corollary 1)

L ]
i = (Rz+ § QQ) w A = Wa Ay W™ A
L

2

(62) ;

979 Quaz N A1 = 5 9°79,5 Qg W AN

Assume wg — ip*n to be closed i.e.

1
dul = —(dp” A+ pd
wo = o (dp" A+ ptdn),
substitute into (62), and apply the resulting identity to the pair (&5, &z).
This procedure yields (61) in Proposition 2 . 0

REMARK 3. The converse of Proposition 2 is not true in general. For
if we assume (61) to hold for a pair (1, g) then (62) may be written

«@ v * Z Z N m
(63) d(wu—%p n):sﬁ/\n—gmunAAn*‘—g%ﬁnMn‘,

where _
¢ = —Wai* + Waan” + (i/2n) dp”
i =997 Qaz s Pxp = 9793 Qizia
hence Lemma 6 does not apply [due to the presence of terms of type
(2,0), respectively (0,2) in (63), originating in the non integrability of
Ty o(M)].



304 DAVID E. BLAIR — SORIN DRAGOMIR (30]

4.2 — The Fefferman metric

Let (M,n), g € M(n), be a contact Riemannian manifold. Con-
sider the principal S*-bundle F(M) := K°(M)/R; — M, where R, =
GL*(1,R). We shall need the tautologous form Z€ > (A" T*(K(M))®
C) given by

2.2y, Zo) = w((domo) Zy, -+ s (do™0) Znat) s
Zly"' 7Zn+1 € Tw(K(M))’ we K(M)’

where m : K(M) — M is the projection. By Lemma 3 in [3], p. 19, for
any (w| € F(M) with my(w) = =, there is a unique A € (0, +00) such that

2 "Dl A (& Jw) A (& |@) = AT,
Consequently, there is a natural embedding
by F(M) = K(M), 1,([w]) = 1/VN)w.

Next, we consider Z € T (A" T*(F(M)) ® C) given by

—

Given a (local) frame {{,} of T} o(M) and the corresponding admissible
coframe {7}, we build a local form =, € I'>*(U, K°(M)) by setting

Eo = det(g,5)" 2 n A0t A A

and consider Z, € (7~ *(U), A""'T*(F(M)) ® C) given by Z, = 7*=.
Let v : 7 *(U) — R be the natural fibre coordinate on F(M) and T' €
X(F(M)) the tangent to the S'-action. Then (by Lemma 4 in [3], p. 22)
Z = e Zy and (dy)I' = 1. By Proposition 3 in [3], p. 23, there is a unique
real 1-form o € I'>°(T*(F(M))) such that

(64) dZ =i(n+2)o A Z+ e m[det(g,5)"* W]

(65) o A (dr) AT = trace(do) io A (7" n) AT AT.
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Here r is the complex n-form on F(M) such that V |r = 0 and Z =
(m*n) A r, for any lift V of £ to F(M), i.e. m.V = ¢ (the existence and
uniqueness of r follow from Lemma 5 in [3], p. 22). Also W is the complex
(n + 2)-form on M given by

i S « « 3 y n
W= oA (=00 A A QT AT A A
a=1

The (generalized) Fefferman metric of the contact Riemannian manifold
(M,n, g) is the Lorentz metric G, on F(M) given by

G,=7n"L,+2(n"n) ©0o,

where L, is the (degenerate) bilinear form on T'(M) given by 1)L, (X,Y )=
—9(X,Y), XY € H(M), and 2) L,(¢,X) =0, X € T(M). Cf. [3],
p. 27. When the almost CR structure is integrable G, is the ordinary Fef-
ferman metric (of [20] and [28]). Also, if this is the case (i.e. @ = 0) then
o may be explicitely calculated in terms of pseudohermitian invariants.
In this section, we attack the similar problem for a contact Riemannian
manifold with a nonintegrable almost CR, structure. We shall show that

o=

C n+2

{ch + 7" [zwg - %g“ﬁdgag + (P* + %ngZ\Q%ﬁ) 77} } .

_
4(n+1)
First, note that

(66) r=e’rm (Gn' A AR,

where G = det(g,3)"/?. Indeed, if V' is a lift of £ to F(M) then

r=n+)V]|Z=0m+1)V]("Z)=Mn+1)e"V |5 =
= (n + 1)6“ 7T*(£J Eo) = €i77r*[det(ga3)1/2nl"'n] ,

where n'" is short for n' A--- An™. A calculation similar to that in the
previous section shows that

dipAnt ™) = —wi An AT+ W
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and then
dZy = (dlogG —w2) NEg+GW.

Consider the (1, 0)-form
w=(hy = Tz + 5 o,
where h =log G and hg = £g(h). Then
dZp = (h5 —T§ )" NEg+ GW = (@ —w) AZg + GW.

As W — w is pure imaginary, there is a real 1-form oy, on M such that
w —w = i(n + 2)o, hence

At this point, differentiating Z = €'7Z; and using (67) leads to (64) with

o given by

1 A+
o= —— 0oy .
n—|—27 0

We wish to compute o in terms of pseudohermitian invariants. To this
end, note that

1 _
T = 59°7€u(9.7) -
Indeed

1 0G?

1 1 3
§u(h) = &u(log G) = 2—G2£M(G2) = T@%fﬂ(gaﬁ) = §9aﬁ§#(ga3)~

On the other hand ¢°%dg,5 = w? + w hence h, = L(I'%, +I'%.) thus
leading to

(68) oy =

or
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For f € C°°(M) set
op=o+7(fn).

Note that, should one replace o by o, (64) still holds. We wish to
determine f such that (65) holds as well (with o replaced by o). Only
the existence of such f has been proved in [3], p. 26. To accomplish our
task we need to compute trace(dog). Recall that, for any complex 2-form
Qon M, if @ =iQzn* An®, modn* An?, n* An®, then trace(Q) =
—%g“EQaﬁ. Also trace(m*Q) := trace(Q2). Differentiating in (68) we get

i

m(d&}a — dwa) .

dO'O =

By (62)

@ L 5 a m T L by w
dog = (R + 5 Q0Q57) n* A, mod n An®, nAn™, A, o AP

hence ! )
trace(i dwy) = 75[)* — ég/\ﬁ QL Q2
I T -
trace(i dws) = 5P+ gg/\u Q% QL.

We conclude that

_ 1 R N I N
(69) trace(dao) - _m{p + Z g Qa)\ ﬁﬁ} .

Now we wish to solve for f in the equation
oy A (dr) AT = trace(doy)ios A (m"n) Ax AT.
By the very definition of o
doy = do + (df) A+ f dy = dog — 2i f g.50° Ay,

hence
trace(doy) = n f + trace(doy) .



308 DAVID E. BLAIR — SORIN DRAGOMIR

(34]

Therefore, we must solve for f in
(0 + fn) A(dr) AT = {nf + trace(dog)}io A (7"n) Ar AT.
Differentiating in (66)
dr =ie"dy A7 (Gn' ") + e 7 (dG At " + Gdnt ™)
we get

(70) (dr) AT = (idy + dlog G) Ax AT+ G*(dn™ ™) At ™

where n'™ = T and 7* is omitted for simplicity. Yet

(dnln) A nlﬁ - W

nl...n A nTn

hence (70) becomes
(de) N\T=iddyAr AT+ (dlogG —wi) Ar AT
and then [as n A (dlog G — w?) AT AT = (]

NA(dr) AT =inA(dy) AT AT =
in+2)nA(c—0g) A\t AT= (asnAog Ar AT =0)
=i(n+2)n Ao AT AT.

One is led to solve for f in
o A (dr) AT =i{trace(dog) +2(n+1) ffo AnpAT AT.
Yet, the left hand member vanishes:

oAN(de) AT=ioA(dyY) At AT+ 0 A (dlogG —wS) AT AT =
=iog AN(dY) AL AT+ 0 A (hg =T, )NATAT =
1

= —— (W= W) A(dY)AT AT+ (hg—T5 )0 ANATAT =

2(n+2)
1
= {h = 5T +T5)}o AnATAF=0
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because hy = %g“gf(gag) = 2(Ig, +T5z). Moreover 0 A AT AT is a

volume form on F'(M) and hence

1
f = —m trace(dao),
or (by (69))
B 1 . 1 7 AE o
f_4(n+1)(n+2){p A i) .

5 — Pseudohermitian holonomy

Let (M,T1o(M)) be a strictly pseudoconvex CR manifold, of CR
dimension n. Let 6 be a contact form on M such that the Levi form
Ly be positive definite. Let T' be the characteristic direction of (M, ).
Let GL(2n + 1,R) — L(M) — M be the principal bundle of all linear
frames tangent to M. For each x € M, let B(6), consist of all R-linear
isomorphisms u : R*"*! — T, (M) such that

u(eo) =T, u(ea) € H(M)zv u(ea+n) = Pz u(ea)u
9o (u(ea),ulep)) = dap, gu(u(ea), ulesin)) =0,

where g is the Webster metric of (M,6). Also {eg,€q,€arn} C R*™ !
is the canonical linear basis. Then B(#) — M is a U(n) x l-structure
on M [i.e. a principal U(n) x 1l-subbundle of £(M)]. On a strictly
pseudoconvex CR manifold, there are two natural families of holonomy
groups one may consider, the holonomy of the Levi-Civita connection
of (M,g) and the holonomy of the Tanaka-Webster connection. The
Tanaka-Webster connection V* of (M, #) gives rise to a connection I' in
B(6). Let ®°(u) be the restricted holonomy group of T, with reference
point u € B(f). We call ®°(u) the pseudohermitian holonomy group of
(M, 0) at u. A systematic study of the (pseudohermitian) holonomy of a
CR manifold is still missing in the present day mathematical literature.
In the present note we establish a pseudohermitian analogue of a result
by H. IwaMoOTO, [25] (cf. also [27], Vol. II, p. 151)
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THEOREM 5.  Let (M, (p,€,1,9)) be a real (2n + 1)-dimensional
Sasakian manifold. The pseudohermitian holonomy groups of (M,n) are
contained in SU(n) x 1 if and only if the Tanaka-Webster connection of
(M,n) is Ricci flat (Ric® = 0).

PROOF. As indicated in Section 2, M is thought of as a strictly pseu-
doconvex CR manifold carrying a contact form with vanishing Webster
torsion (7 = 0) and g is its Webster metric. For any v € B(), ®°(u) C
U(n) x 1. Let Q be the curvature 2-form of I'. By Lemma 1 in [27] ,
Vol. I1, p. 151, given an ideal h of L(U(n) x 1), L(®°(u)) C h if and only
if Q0 is h-valued. Throughout L(G) is the Lie algebra of the Lie group
G. Let Ej € gl(2n + 1,R) be the matrix with 1 in the j-th row and
i-th column and 0 at all other entries. Then Q@ = Q) ® E/. A basis of
L(U(n) x 1) is

B+1 a+1 B4+n+1 a+n+1 B+1 a+n+1 a+1 B4+n+1
{EOH—I_EﬁJrl +Ea+n+l_E5+n+l7 Ea+n+l_E,B+1 +Eﬁ+n+1_Ea+l } 9

hence

Qi =0, Q =0,

+1 _ atn+l _
Qgﬂ - Qg+Z+1 - (I)g - (I)g ’

1 1
QLT = Q5T = U5+ U,

for some scalar 2-forms ®§, ¥§ on B(#). As SU(n) = O(2n) N SL(n,C)
it follows that Q is L(SU(n) x 1)-valued if and only if ¥¢ = 0. On the
other hand, using the identity

(1) 2u(@X" YT, u"(Z,) = (R (X,Y)Z)., u€ B(0).,

we may compute the forms V¢ in terms of RA".p. Here X,Y,Z are
vector fields on M and X7 is the I'-horizontal lift of X. Let 2 € M and
{Xu,JXa, T} be a cross section in B(#), defined on some open neigh-
borhood U of z. Set &, = %(X(1 —iJX,) (hence g,5 = dap). Let
u = (v,{Xa,cs P2 Xaz T:}) and note that u='(&,.) = J5(ey — ieyin).
Then (71) leads to

(R*(X7Y)§’Y)x = 2{(1): - o)+ z(\I/: + ‘I’Z)}(er Yr)uga,m )



[37] Pseudohermitian geometry on contact etc. 311

because of Ejek = dje;. Take the inner product with & and contract «
and « in the resulting identity. We obtain

(72) 4Z \Ija )(F XF Z R* X Y gonga)z-

The curvature form  is horizontal, hence L(U(n) x 1)* | * = 0, where
A* is the fundamental vertical vector field associated to the left invariant
vector field A. Also (by (42) with @ = 0)

4i W (€N, €0) ZRa adow = Ra®y, = 0.
Similarly (by (45))
4 W(T, €)) = Ra 0/\*25&:0
Finally (again by (72))

(73) Ryz(w) = 405 (€3, &) -

As W2 is a real form, (73) shows that U& = 0 if and only if R,z = 0.
Yet when 7 = 0 the only nonzero components of Ric" are R,z (cf. also
Lemma 8 in Section 5.1). 0

Note that the hypothesis 7 = 0 was not fully used in the proof of
Theorem 5 (only S = 0 was actually needed). Therefore, we obtained the
following result

THEOREM 6. Let M be a strictly pseudoconvex CR manifold, of
CR dimension n, and 0 a contact form with parallel Webster torsion
(V*r =0). Then the Tanaka- Webster connection V* of (M,0) has pseu-
dohermitian holonomy contained in SU(n) x 1 if and only if the pseudo-
hermitian Ricci tensor of (M, 0) vanishes (R, = 0).
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5.1 — Quaternionic Sasakian manifolds

The closest odd dimensional analogue of Kahlerian manifolds seem to
be Sasakian manifolds (cf. [11]). On the other hand, real 4m-dimensional
Riemannian manifolds whose holonomy group is contained in Sp(m) (hy-
perkdhlerian manifolds) or in Sp(m)Sp(1) (quaternionic-Kdhler mani-
folds) are quaternion analogues and, by a well known result of M. BER-
GER, [9], any hyperkédhlerian manifold is Ricci flat, while any quaternion-
Kéhler manifold is Einstein (provided that m > 2). Cf. also S. IsHI-
HARA, [24]. Tt is a natural question whether a Sasakian counterpart of
quaternionic-Kéhler manifolds may be devised, with the expectation of
producing new examples of pseudo-Einstein contact forms (cf. [29]). Ev-
idence on the existence of such a notion may be obtained as follows.
Recall (cf. e.g. [10], p. 403) that a Riemannian manifold (M*™, g) is
quaternionic-Kahler if and only if there is a covering of M*™ by open
sets U; and, for each i, two almost complex structures ' and G on U;
so that a) ¢ is Hermitian with respect to F' and G on U;, b) FG =
—GF, ¢) the covariant derivatives (with respect to the Levi-Civita con-
nection of (M*™, g)) of F and G are linear combinations of F, G and
H := FG, and d) for any z € U; N U; the linear space of endomor-
phisms of T,(M*™) spanned by F,G and H is the same for both i
and j. In an attempt to unify the treatment of quaternionic subman-
ifolds, and of totally real submanifolds of a quaternionic-Kéhler manifold
(cf. S. FUuNBASHI, [22], S. MARCHIAFAVA, [30], A. MARTINEZ, [31], A.
MARTINEZ & J.D. PErREz & F.G. SaNTOS, [32], G. PrITIs, [33], Y.
SHIBUYA, [36]) M. Barros & B-Y. Chen & F. Urbano introduced (cf. [4])
the notion of quaternionic CR submanifold of a quaternionic-K&hler man-
ifold, as follows. Let N be a real submanifold of a quaternionic-Kéhler
manifold M*™. A C* distribution H(N) on N is a quaternionic dis-
tribution if for any x € N and any 4 such that 2 € U; € M*™ one
has F(H(N),) € H(N),, G(H(N),) € H(N), [and then, of course,
H,(H(N),) € H(N),]. A submanifold N of a quaternionic-Kéhler man-
ifold is a quaternionic CR submanifold if it is endowed with a quaternionic
distribution H(N) such that its orthogonal complement H(N)* in T'(N)
satisfies F(H(N):) C T(N):, G(H(N)r) C T(N)} and H(H(N):) C
T(N)E for any x € U; and any i. Here T(N)* — N is the normal bundle
(of the given immersion of N in M*™). Let us also recall (cf. e.g. [10],
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p. 398) that a Riemannian manifold (M*™, g) is hyperkéhlerian if and
only if there exist on M*™ two complex structures F and G compatible
with ¢ and such that a) F' and G are parallel, i.e. ¢ is a Kéhlerian
metric for both F' and G, and b) FG = —GF. Given a quaternionic CR
submanifold (N, H(N)) of a hyperkéhler manifold (M*™, g, F,G), by a
theorem of D.E. BLAIR & B-Y. CHEN, [13], the complex structures F' and
G induce two CR structures on N (provided N is proper, i.e. H(N) # 0
and H(N)* # 0) so that H(N) is the Levi distribution for both. Taking
this situation as a model one may produce the following notion of abstract
(i.e. not embedded) hyper CR manifold. Let (M,Tyo(M)) be a CR
manifold of type (n,k) where n = 2m (hence dimg M = 4m + k) and
k> 1. Let H(M) be its Levi distribution and

F:H(M)— H(M), F(Z+7Z)=i(Z—-72), Z¢eTio(M),

its complex structure. We say (M, T} o(M)) is a hyper CR manifold if it
pssesses two additional CR structures, say T1o(M)" and T o(M)”, with
the same Levi distribution H (M), such that the corresponding complex
structures G, H : H(M) — H(M) satisfy

F?=G?*=H?=-1
FG=-GF=H
GH=-HG=F
HF =—-FH=C(G.

(74)

More generally, a quaternionic CR manifold is a real (dm+k)-dimensional
manifold M, k > 1, endowed with a real rank 4m subbundle H (M) C
T(M) and a real rank 3 subbundle E — M of H(M)*®@ H(M) — M such
that for any x € M there is an open neighborhood U of z and a local
frame {F, G, H} of E on U satisfying the identities (74). A priori, the no-
tions of a hyper CR manifold, or a quaternionic CR manifold, seem not to
be direct analogues of the notions of hyperkahler and quaternionic-Kéhler
manifolds, as there is no counterpart of the metric structure there. How-
ever, in complex analysis one is interested in the metric structure arising
from the complex structure, e.g. the Levi form of a given CR mani-
fold, extending (for nondegenerate CR structures) to a semi-Riemannian
metric (the Webster metric).
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Let M*™*1 be a hyper CR manifold, such that (M4 T, o(M)) is
nondegenerate, and let 6 be a fixed contact form. We say 0 is a hyper
contact form if V*G = 0 and V*H = 0, where V* is the Tanaka-Webster
connection of (M*™*! §). More generally, let (M*™+1 H(M), E) be a
quaternionic CR manifold of the following sort: M?™*! carries a non-
degenerate CR structure Tj o(M) whose Levi distribution is H(M) and
for any € M*™*! there is an open neighborhood U and a local frame
of E on U of the form {F,G,H} where F is the (restriction to U of
the) complex structure in H (M) associated to T} (M) and satisfying the
identities (74). Such a local frame of E at z will be referred hereafter as
an F-frame. A contact form 6 on (M*™ 1, T} o(M)) is said to be a quater-
nionic contact form if for any x € M*™*! there is an open neighborhood
U and an F-frame {F,G,H} of E on U such that

(dO)(FX,FY) + (df)(X,Y) =0,
(75) (dO)(GX,GY) + (dO)(X,Y) =0,
(dO)Y(HX,HY )+ (d9)(X,Y) =0,

for any X,Y € H(M), and moreover

ViF =0,
(76) ViG =p(X)H,
ViH = —p(X)G,

for some 1-form p on U and any X € T(M), where V* is the Tanaka-
Webster connection of (M*™! F, ). Note that the first row identities
in (75)-(76) are written for uniformity sake (and are automatically satis-
fied, one as a consequence of the formal integrability property of T o(M),
and the other by the very construction of V*). A quaternionic CR man-
ifold carrying a quaternionic contact form 6 is said to be a quaternionic
Sasakian manifold. This is motivated by Theorem 7 below, according
to which the Webster torsion of § vanishes (7 = 0), i.e. the underlying
Riemannian metric is indeed Sasakian.

THEOREM 7. Let (M*™1 0) be a quaternionic Sasakian manifold.
Then T =0, i.e. the Webster metric g of (M*™*,0) is a Sasakian metric.
Moreover, either the Tanaka- Webster connection of (M*™*!,0) is Ricci
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flat, or m = 1. If this is the case (i.e. m = 1) then (M?®,0) is pseudo-
Einstein if and only if 4p+ p* 0 is a closed 1-form on U, for any F-frame
of E on U obeying (75)-(76).

REMARK 4.

1) By Theorem 5 any quaternionic Sasakian manifold M*™*! of dimen-
sion > 9 has pseudohermitian holonomy contained in SU(2m) x 1.

2) By aresult of J.M. LEE, [29], the first Chern class of the CR structure
of M*™*1 must vanish (¢, (T 0(M)) = 0).

3) Let M™(1) be a real space form of sectional curvature 1. By a re-
sult in [2] the pseudohermitian Ricci tensor of U(M™"(1)) is given by
R.5 = [5 +2(n + ||pl)]g,5, where p is the mean curvature vector
of U(M™(1)) in T(M™(1)). Therefore (by Theorem 7) U(M?>""1(1))
admits no quaternionic Sasakian structure for m > 2.

To prove Theorem 7, let (M*™*! 9) be a quaternionic Sasakian man-
ifold and {F, G, H} a (local) F-frame on U, satisfying (74)-(76). Let g
be the Webster metric of (M*™ ! 6). Then

(77) 9(GX,GY) =g(X,Y),
g(HX, HY) =g(X.Y),

for any X, Y € H(M). The first identity is obvious. The second, for
instance, follows from

g(GX,GY) = (d)(GX,FGY) = (d§)(GX, HY) =
= —(d0)(G*X,GHY) = (d6)(X,FY) = ¢(X,Y),

by the very definition of the Webster metric g. We shall need the following
curvature identities

(78) [R*(X,Y),F] =0
(79) [R*(X,Y),G] = a(X,Y)H

(80) [R*(X,Y),H] = —a(X,Y)G
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for any X, Y € T(M), where o := 2dp. The first identity is a consequence
of V*F = 0. The second, for instance, follows from

[R*(X,Y),G)Z = R*(X,Y)GZ — GR*(X,Y)Z =
=V (Vs G)Z Vi (VG Z~(Vix 3GV ZHV 5 GV Z (V3 G) Vi Z =
= 2(dp)(X,Y)HZ + p(Y) (V' H)Z — p(X) (Vi H)Z = (X, Y)HZ,

for any X, Y € T(M) and Z € H(M).
Let us take the inner product of (80)

[R*(X,Y),H|Z = —a(X,Y)GZ, Z e H(M),
with GZ to obtain
(81) a(XZIIP=9g(HZ,R*(X,Y)GZ) + g(R*(X,Y)Z,FZ).
Consider a local orthonormal frame of H(M) on U of the form
(X, :1<i<4m}={X, FX,,GX,,HX,:1<a<m}.

Set Z = X; in (81) and sum over 4

(82) dma(X,Y) = %{g(HXi, R*(X,Y)GX;)+g(R*(X,Y)X,, FX;)}.

i=1

Since

where ¢; € {+1}, the equation (82) becomes

(83) 2ma(X,Y) = % g(R*(X,Y)X,, FX,).

i=1

We shall need the first Bianchi identity

SHR(X,Y)Z+TH(T*(X,Y), Z) + (VXT*)(Y,. Z)} =0

XY Z
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for any X,Y,Z € T(M). Throughout Y v, denotes the cyclic sum over
X,Y,Z. Also, we recall (cf. [18])

T(X,Y) =2(d0)(X,Y)T,
for any X,Y € H(M). Therefore (by V*T' =0 and V*Q = 0)

(84) Y AR(X,Y)Z - 2Q(X,Y)7Z} =0.

XY Z

for any X,Y,Z € H(M). Set Z = FX, in (84), and take the inner
product with X; in the resulting identity. Next, sum over ¢ so that to
yield

—2ma(X, Y)"‘%{Q(Xn R(Y, FX;)X)+g(X;, R (FX;, X)Y)} =

=2Q(X,Y) trace(7F) + 2Q(Y, FrX) + 2Q(F1Y, X) .

(85)

Note that trace(rF) = 0, because 717 o(M) C Ty, (M), and
QY FrX) + QFrY,X) =0,

by the symmetry property of A(X,Y) = g(7X,Y), with the correspond-
ing simpler from of (85). Let us replace (X,Y,Z, W) by (FX,;,X,Y, X;)
in (38). We obtain

4m 4m
> g(R(FX;, X)Y, X;)=> g(R(X;,Y)X,FX;)+g(X, LY )trace(FL)+
i=1 i=1

—g(X,LFLY) + g(LX,Y )trace(LF) — g(LFLX,Y).

Substitution into (85) gives

+ g(X, LY ) trace(FL) — g(X, LFLY )+
+ g(LX,Y) trace(LF) — g(LFLX,Y)
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and, by observing that

Aiy i € {1}, Ay = -1,

we obtain

2ma(X,Y) =23 g(R"(X,,Y)X,FX,) + terms

or (replacing X by FX)

2Ric*(X,Y) = 2ma(FX,Y) + g(FX, LELY )+
(86) —g(FX,LY)trace(FL)+
+g(LFLFX,Y) — g(LFX,Y) trace(LF),

for any X,Y € H(M). Next, let us take the inner product of (78),
[R*(X,Y),F|Z=0, XY, Ze HM),
with GZ so that
g(R (X, Y)FZ,GZ)+ g(R"(X,Y)Z,HZ) = 0.

Set Z = X, and sum over i
4m
Z{Q(R*(X> Y)FX;,GX;) + g(R*(X,Y)X;, HX;)} = 0

i=1

and observe that

Therefore

(87) f: g(R*(X,Y)X;,HX,) =0.

i=1
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Set Z = HX; in (84) and take the inner product with X; in the resulting
identity. Then (by (87))

g{g(R*(K HX;)X, X;) +g(R"(HX;, X)Y, X;)} =

=20(X,Y) trace(tH) + 2Q(Y, HTX) + 2Q(H7Y, X) .

(88)

Now replace (X,Y, Z,W) by (HX;, X,Y, X;) in (38)

g(R*(HX;, X)Y, X;) = g(R*(X;,Y)X, HX,)+
+9((LX; ANLY)X, HX;) — g(LHX; A LX)Y, X;)

and substitute into (88). Also observe that

iy i € {£1}, 0 Ay = —1,

hence

4m
2) g(R* (X, V)X, HX;) — g(LHLY, X) + g(LY, X) trace(HL)+

89 =
(89) —g(LHLX,Y )+ g(LX,Y) trace(LH) =

=2Q(X,Y) trace(tH) +2Q(Y, HTX) + 2Q(H7Y, X) .
The inner product of (80),
R(X,Y)HZ = HR*(X,Y)Z — o(X,Y)GZ,
with X; gives
g(R*(X,Y)HZ,X,) = g(HR"(X,Y)Z, X,) — a(X,Y)g(GZ, X,)
or, replacing (X, Z) by (X;, X)

g(R*(X,, YV HX, X,) = g(H R*(X.,Y)X, X,) — a(X., Y )g(GX, X))
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and, taking the sum over ¢ we have

4m
S g(R(X,,Y)X, HX,) = —a(GX,Y) — Ric'(HX,Y)

i=1
i.e. (by (89) and replacing X by HX)

2 Ric*(X,Y) = 2a(FX,Y)+
+g(LHLY,HX) — g(LY, HX) trace(HL)+
(90) +g9(LHLHX,Y)—g(LHX,Y) trace(LH)+
4 20(HX,Y) trace(rH) + 20(Y, HrHX)+
L 2Q(HTY, HX),

for any X, Y € H(M). To compute the pseudohermitian Ricci curvature,
set first X = ¢, and Y = &; in (86). We obtain

Ry = imay; + %(A?Agﬁ — Ay AL,
The torsion terms vanish (by A,z = As,) hence
(91) Ryz=imay;.
Set also X = ¢, and Y = ¢, in (86) and note that

g(F&, LFLE,) = —2iAy, = g(LFLFE,, &),

g(Fé-)\)Lé-u) - iA)\u - g(LFé)\aéu) 5
trace(F'L) = —4m = trace(LF),

ie.
(92) R>\H zzma,\u+2z(2mf 1) A/\M'
Taking traces in (36) we obtain

LEMMA 8. Let M?"*! be a nondegenerate CR manifold, on which a
contact form 6 has been fived. Let g be the Webster metric of (M**1,0).
Then

Roﬁ = 2('9&5 — Riﬁ), Raﬁ = ’L(TL — 1) Aaﬁ y
RO/} = Sgﬁ, Roo=Rp =0,
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for any local frame {&,} in Ty o(M). Here Riﬁ = Ric(§a,&5) and Ric is
the Ricci tensor of (M1, g). Also Spo€a = S(€p,&c) with A, B,--- €
{0,1,--- ,n,1,--- ,m} and To =T.

Cf. also aresult in [17]. Combining (92) and Lemma 8 (with n = 2m)
gives mavy, + (2m—1) A, = 0. Yet « is skew, while the Webster torsion
is symmetric, hence c,, = 0 and A,, = 0. Thus g is a Sasakian metric.
As another consequence of 7 = 0, (90) becomes

2 Ric*(X,Y) = 2a(FX,Y) + g(FHFY,HX) + g(FHFHX,Y)
(as trace(HL) = trace(HF) = trace(G) = 0) and then (by (77))
Ric"(X,Y) = a(FX,Y),
forany X, Y € H(M). Consequently Rz = i a7 and by (91) we get (m—
1) Rz = 0, hence either m = 1 or the pseudohermitian Ricci curvature

vanishes. Therefore, if m > 2 then (by Lemma 8) Ric® = 0. Let us look
now at the case m = 1. As a consequence of (81) we may write

a(FX, X)|Z|* = g(R(FX,X)Z, FZ) + g(R"(FX,X)GZ, HZ)
a(HX,GX)||Z|)? = g(R*(HX,GX)Z,FZ) + g(R"(HX,GX)GZ, HZ)

Summing up the last two identities we get

a(FX, X)|Z|* + a(HX,GX)||Z|]* =
= g(R*(FX,X)Z,FZ) + g(R*(FX,X)GZ, HZ)+
+ (R (HX,GX)Z,FZ) + g(R*(HX,GX)GZ,HZ)

Note that the right hand member of this last identity is symmetric in
X, Z. Hence

{a(FX,X) +a(HX,GX)}|Z|? ={a(FZ,Z2) + «(HZ,GZ)}|| X||?

{Ric" (X, X)+Ric* (GX, GX)}||Z|? = {Ric’(Z, Z) + Ric" (GZ, GZ)}|| X ||?
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Set Z = X, and sum over i. We have

4
4{Ric" (X, X HRic’ (GX, GX)} =) {Ric" (X,, X, HRic" (GX;, GX,) || X|?

i=1

or, again due to the particular form of our frame

4
2{Ric*(X, X) + Ric’(GX, GX)} = 3 Ric" (X, X,)|| X2

i=1
Finally, by a result in [17], trace(Ric*) = 2p* hence (by T | Ric* = 0, cf.
Lemma 8 with 7 = 0)

(93) Ric*(X,Y) + Ric*(GX, GY) = p* g(X,Y)

for any X,Y € H(M). Note that use was made of the symmetry of Ric"
on H(M)® H(M), a consequence of lemma [8], as well. It remains to be
shown that 6 is pseudo-Einstein if and only if

(94) d(4p+p*0) =0

Due to FG = —GF, G* = —I, and ¢g(GX,GY) = ¢g(X,Y) for any
X,Y € H(M), one has

Géu =Gl GIGY=-0),  g.5=GhGhon,

for some smooth functions GE : U — U, where Gé = GE Set a g =
a(§a,&p) and note that ay, = 0, ag; = 0. The identity (93) may be
written
Rag +1 GZG%QW =p" 907 -
Consequently 6 is pseudo-Einstein, i.e. R 3= (p*/2)g,3, if and only if

(95) ioyg = (0"/2) 9oz -

As d(p*0) = (dp*) A0 + p*df and 6 vanishes on H(M), (95) may be
written

Adp)(£as &5) + d(p"0)(Ea, &5) = 0
ie. d(4p+ p*0) =0 on H(M) ® H(M). Finally, by Lemma 6 if a closed
2-form = vanishes on H (M) ® H(M) then = = 0, hence (94) holds. [
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5.2 — Reducible CR manifolds

Let M be a nondegenerate CR manifold of CR dimension n, 6 a
contact form on M, ¢ the Webster metric, and V* the Tanaka-Webster
connection of (M, 0). Let U(z) the holonomy group of V* with reference
point * € M. Let T be the characteristic direction of (M,#). Since
V*T =0, U(z) is reducible, as a linear group acting on T, (M). Let D,
be a subspace of T;,(M) which is invariant by ¥(z) and such that T, € D,.
Let D be the distribution on M obtained by parallel displacement of D,,,
with respect to V*, along curves issuing at . We shall prove the following

THEOREM 8. Let M be a strictly pseudoconvex CR manifold and 0 a
contact form on M with Ly positive definite. Then D is a smooth Pfaffian
system on M. Moreover, if g is a Sasakian metric (i.e. 7 =0) then D is
integrable.

Examples (of strictly pseudoconvex CR manifolds) with dimg D > 2
do exist. For instance let M = R?* with the contact form 6 = (y dz—dz).

The characteristic direction is T = —20/9z. An associated Riemannian
metric is
(T vy 0 —y
g : 1 ( 0 1 0 )
-y 0 1

[and the corresponding (1,1)-tensor field is p(9/9y) = 9/0x + yd/dz,
©(0/0x+yd/0z) = —0/dy (and ¢(0/0z) = 0)]. The Levi-Civita connec-
tion of (R3,g) is given by

<3+ é)_lﬁ v, ,2__10
or " Yaz) T 208z VETEGy T 20:
v, ? o, 90

8y8—y:0, 5tV EE O yaz 0,

B) o 1,9 9
V%g— %8_1; (8$+y82>

) 9 . 9y 10
Vit g = Valo tVe:) =20y

A calculation (based on (6)) shows that the distribution D spanned by
{0/0x +y0/0z, 0/0z} is V*-parallel (hence D is invariant by pseudo-
hermitian holonomy). The following simple philosophy underlies the pre-
ceeding example. Given a contact Riemannian manifold M?"*! let ¥ be
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an integral manifold of the contact distribution H (M), of real dimension
< n [although H (M) is nonintegrable, it possesses lower dimensional inte-
gral manifolds (of dimension not higher than n, cf. [11]. Then T'(X) & RE
may be expected to be ¥ (z)-invariant. Using this approach, we may build
a non-Sasakian example. Precisely, we shall prove

PROPOSITION 3. Let H*(—1) be the 2-dimensional hyperbolic spa-
ce of constant sectional curvature —1 and assume S' is embedded in
U(H?*(-1)) as a fibre over some z € H?*(—1). Then T(S') ® RE is
invariant by the pseudohermitian holonomy of U(H?*(—1)).

PROOF. Let M™ be a Riemannian manifold. Let (z*) be a local
coordinate system on M™ and (z%,y’) the induced local coordinates on
T(M™). The Levi-Civita connection of the Sasaki metric g [with the
notations and conventions in Section 2.3] is given by (cf. (13) in [40],
p. 539)

- 1 .
Vi85 = Tiy0, — 5 Rijos

_ . 1
(96) Vs,0; = T30k — §R§0i5k

j

5.0, = —%Rfojék, V0, =0.
Here R, = Rl,y" (throughout an index 0 denotes contraction with
the supporting element 3'). Also we set §; = §/6z' and 8; = 9/dy’ for
simplicity. Let V and h be the induced connection on U(M™) and the
second fundamental form of j : U(M™) C T'(M™), respectively. By (96)
and the Gauss formula

VxiY = .VxY +h(X,Y), X,Y € T(UM")),
we obtain

1, 1
Vi 8y =T — SREDw. ViY =Y7.0; = JYIR]

oY .
Tyaj +9(X,Y)v,

6}67

1., .
VX(S]‘ - *iXZRk 6k, VXY - )(Z

105
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for any XY € Ker(n,), where

g
oxt

lei = + ngyk

and v = ¢, is a unit normal section on U(M™). In particular
Vi = —Rlwd;, Vx&=-20X — X'Rjpd; .

We ought to recall that the {0;} span a (globally defined) distribution
N on T(M™) (the nonlinear connection associated with the Levi-Civita
connection of M™) orthogonal to Ker(II,) (with respect to the Sasaki met-
ric §). Here IT : T'(M™) — M™ is the projection (and 7 = IIjpm). While
N, C T,(UM™)), v e U(M™),i.e. any horizontal vector is tangential, for
the vertical vectors one has only Ker(d,r) = Ker(d,II)NT,(U(M")), v €
U(M™), and X € Ker(Il,) is tangential if and only if ¢g;; X‘y? = 0, where
X = X'9;. Tt should be noticed that in general the components X de-
pend on the directional arguments 3°, i.e. in general X is not the vertical
lift of some vector field on M™ [but rather of a section in the pullback
bundle II7'T'(M"™) — T(M™) of T(M™) via II, a point of view which
will not be needed in this paper]. As 0 decomposes [with respect to
T(T(M")) = 1,T(U(M")) & B(j)] as

9 = (6] — guy*y")0; + g9’V

it follows that
0(6:) = (8] — guy"y’)0; .
Then (by (6)) the (generalized) Tanaka-Webster connection of U(M™) is
y 1 ) . .
V5,05 = T30k + 5{93‘0Rfoo — R0+ 9io(6] — gj04") } Ok
1. . o
V5 Y = iyj{Rfmgeoyk — Ry — 91005 Y0, + Y730,
) 1 1 1
Vid; = XZ{ - §Rf0j + inoogjO + §Rfoj-gzoyk — gjo0; + gijyk}(Sk
k

VLY = Xi{‘?; + gijw‘yk}a',c .



326 DAVID E. BLAIR — SORIN DRAGOMIR (52]

Now assume that S"! is embedded in U(M™) as some fibre of 7. Then
VY € T(S"'), for any X,Y € T(S"'), and V; YV € T(S"') © RE if
and only if

(97) R,];m =+ 92'05;C = (Rﬁol-gzo + giogjo)yk .

As a byproduct, if M" = R", n > 2, then T(S" ') @ R¢ is not V*-
parallel. Indeed, if this is the case (97) yields y'6¥ = y'y7y* hence (by
contracting j and k) (n — 1)y* = 0, i.e. n = 1, a contradiction. Let us
contract j and k in (97). We obtain

¥ (Rji 4+ (n—1)g;;) =0,

which is clearly satisfied if M" is an Einstein manifold of scalar curvature
p = —(n—1)n. Finally, when n = 2, M? has constant curvature —1 and
then (97) holds. 0

To prove Theorem 8 we need some preparation. Recall (cf. [26] that
a smooth curve v(t) in M is a parabolic geodesic if it satisfies the ODE

d

(98) ( o d%)wm = 2Dy
for some ¢ € R and any value of the parameter t. Let x € M and
W € H(M),. By standard theorems on ODEs, there is § > 0 so that
whenever g, (W, W)Y/? < § the unique solution yiy..(t) to (98) of initial
data (x, W) may be uniquely continued to an interval containing ¢t = 1
and the map ¢, : B(0,9) C T,,(M) — M given by ¢, (W +¢cT,) = yw..(1)
(the parabolic exponential map) is a diffeomorphism of a sufficiently small
neighborhood of 0 € T, (M) onto a neighborhood of = € M. If () is
a parabolic geodesic, a C' diffeomorphism ¢ = ¢(s) such that §(s) =
~v(¢(s)) is a parabolic geodesic is called an Eulerian parameter for ~(t)
(the terminology is motivated by Lemma 9 below).

Now let {£.} be a local orthonormal frame of T} o(M), defined on
a neighborhood of a point x € M. It determines an isomorphism A :
T.(M) — H, given by A\, (v) = (n%(v)eq, 0. (v)), for any v € T,,(M). Here
H, = C" x R is the Heisenberg group and {n®} is the admissible coframe
corresponding to {£*,T}. The resulting local coordinates (z,z) := A, o
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!, defined in some neighborhood of z, are the pseudohermitian normal
coordinates at z determined by {£,}. See also Proposition 2.5 in [26],
p- 313. We shall need the following

LEMMA 9.  If 4(t) is a solution to (98) such that (dry/dt)i—g €
H(M)0), then Y(s) = v(¢(s)) with

(99) #(s) =Vasi+as+b, a>0, a,be R, a®—4ab>0,

satisfies (Vi 4,d7/ds)s(s) = 2¢T5s) with ¢ = ac. Viceversa, any Eulerian
parameter t = ¢(s) for v(t) is of the form (99). In particular, for any
point x on vy and any W € H(M),, there is a unique Eulerian parameter
t = ¢(s) for v such that ¥(0) = = and (dy/ds)s—o = W. Moreover,
the parabolic geodesic v = yw,. 1s locally expressed, with respect to a
pseudohermitian normal coordinate system, as

{ZQ:W"t, 1<a<n,
o

x = ct?

where W = W€, + W5, W& = We. Conversely, any local coordinate
system (z,t) with this property is the pseudohermitian normal coordinate
system determined by {&.}.

PROOF. A local coordinate calculation shows that 4(s) = vy(¢(s)) is
a parabolic geodesic, with the constant ¢ € R, if and only if

(100) 20é — 0! (5)] Ty = 6'(5) 1 0).

On the other hand, applying 6 to both members of (98) gives (by (7)-(8)
in Section 1)

. d . d dr, cd
2= 0(Vs ) o = 9(0 Vi) = ()]

d
G(d—Z)V(t) = 2ct

hence
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Therefore, by applying 6 to (100) we obtain the ODE
2[¢ — c¢'(s)*] = 2ctd"(s),

with the obvious solution ¢(s)? = (¢/c)s? + as + b, with a,b € R such
that a? — 4(¢/c)b < 0 (and ¢/c > 0).

Lemma 9 we reparametrize y(t) as Y(s) = v(ts) (i.e. weset a =b =0 and
a=1t*t>0,in (99)). Then ¥ ' (v(t)) = ¥ (F(1)) = tW + ct*T,. 0

To check the second statement in

At this point we may prove Theorem 8. Let yo € M and (z',--- , 2", x)
a pseudohermitian normal coordinate system at 1y, defined on an open
set U. Let {Xy,---, X} be a linear basis of D,,. Let y € U and consider
the parabolic geodesic expressed locally (with respect to (z,z)) by

Set X7, = T,(X;) € T,,(D,,) = D,, where T, is the parallel displacement
operator (associated with V* and ). Clearly {X}, } is a basis of D,
and the vector fields X} are smooth [because the parallel displacement
depends differentiably on (z(y),z(y))]. To see that D is involutive, note
first that for any X,Y € D (by a standard argument, cf. [27], Vol. I,
p. 181) V%Y € D. On the other hand, as 7 = 0, the torsion T* has

nozero components only along £. Therefore [X,Y] € D. 0

It is an open problem to study the geometry of the leaves of D. Note
that each leaf of D is foliated by real curves (the integral lines of the
contact vector &), i.e. the contact flow of M is a subfoliation ([15]) of D.

6 — Canonical connections

Let ¢; be the first Chern class of T o(M). By a result of J. M.
LEE, [29], a strictly pseudoconvex CR manifold admitting a globally de-
fined pseudo-Einstein contact form satisfies ¢; = 0. For any connection
D in Ty o(M), ¢, is represented by the 2-form —(1/2mi) R " 4zn* AnP.
If D is the Tanaka-Webster connection, the components R”,” 15 may be
computed in terms of p* and its first order derivatives, a procedure which
leads to ¢; = 0. On a contact Riemannian manifold, Tanno’s connection
V* does not descend to a connection in 7; (M ). However, canonical
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connections in T} o(M) may be built, by taking into account its almost
CR holomorphic structure (arising from the presence of a natural pre-0-
operator induced by V*) and its Hermitian structure (induced by a fixed
associated Riemannian metric g).

Let E be a complex vector bundle over an almost CR manifold
(M, Ty o(M)). A pre-0-operator is a differential operator

Op :I™(E) = I'™*(Ty,(M)* @ E)
such that
Ip(fu) = f Opu+ (Onf) @ u
for any f € C*(M) and u € I'°(E).
ExXAMPLES. 1) Let (M,n) be a contact manifold and £ the charac-
teristic direction of (M,n). Then
T(M) =Ty o(M) ® C¢ = (T(M) © C) /Ty 1 (M)

is a complex vector bundle over M (the holomorphic tangent bundle) and

ET(M) :T°(T(M)) — T(Ty (M) @ T(M)),
OroanyW)Z = [Z,Wspy, Z € Tio(M), WeT(M),

is a pre-d-operator on T'(M). Here Xy denotes the T(M) component
of X e T(M)® C =T(M)&Ty,(M).

2) Let g € M(n) be an associated Riemannian metric and V* the
Tanno connection of (M, 7, g). Then

Or, gy T(T1o(M)) = T(To 1 (M) @ Ty 0(M)),
01,000 V)Z :=m10 V5V, Z,V € Tio(M),

is a pre-d-operator on T o(M). Here 7, : T(M) @ C — Ty o(M) is the
natural projection associated with T'(M)® C =Ty o(M) & Ty 1 (M) & CE.

Let (M, T, o(M)) be a CR manifold. A pre-d-operator g satisfying
the integrability condition

ZW-u—-W-Z -u=I[Z,W]- u,
Z-ui= (Osw)Z, Z,W €Tio(M), uel*(E),
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is a 0-operator and (E,EE) is a CR-holomorphic vector bundle. When
the almost CR structure of (M,n) is integrable (T(M),ET(M)) is CR-~
holomorphic. Also, if T} (M) is integrable, V* is the Tanaka-Webster
connection of (M,7n) and then (cf. e.g. [45], p. 569) Or, jr) is a O-

operator.

6.1 — P-connections

We shall prove the following

THEOREM 9.  Let (M,n) be a real (2n + 1)-dimensional contact
manifold and g € M(n) an associated Riemannian metric. Let (E, H) —
M be a Hermitian vector bundle, where H is the Hermitian metric, Oy a
pre-0-operator on E, and P € T=(End(E, H)) a skew-symmetric bundle
endomorphism, i.e. H(Pu,v)+ H(u,Pv) = 0 for any u,v € IT'°(E).
There is a unique connection D in E so that i) D*' = dp, ii) DH = 0,
and iil) A,RP = 2nP.

Given a connection D in E, D%!'w is the restriction of Du to Ty 1 (M).
Also R” denotes the curvature of D. The trace of R” is given by

i(AgRP)u=> RP(&,&)u,

where {£,} is a (local) orthonormal (g(§.,&5) = dap) frame of 11 o(M).
We establish first uniqueness. Let D be a connection in F satisfying
(1)-(iii) in Theorem 9. Then

(101) Dzu = (Opu)Z,

(102) H(Dgzu,v) = Z(H(u,v)) — H(u, (0gv)Z)

hence it remains to be shown that D¢u is uniquely determined. To this

end, set
(DQu)(X, Y) = DnyU — Dv}yu7

B(X,Y)u := (D*u)(X,Y) — (D*u)(Y, X)
where V* is the Tanno connection of (M, 7, g). Note that

(103) B(X,Y)u=R”(X,Y)u— Dr«(xy)u
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for any X, Y € T(M). Taking traces in (103) and noting that
D T (bar&a) = —2ni
a=1

we obtain

(104) Deu = —(AyB)u— P(u).

1
2n
CramM. A, B is determined by (101)-(102). Therefore, by (101)-(102)

and (104) D is uniquely determined.
Note that Q(X,Y) € I'°(H(M)) for any X,Y € T(M). Indeed,
applying 7 to (5) gives
n(Q(X,Y)) = g((Vy )X, ) +(Vyn)eX = g(Vy X, &) =n(VypX) = 0.
Moreover (by (10))
iV, Z — ¢V Z = Q(Z,Z)
hence V3 Z € H(M)® C, for any Z € T; (M) and then (by (101)-(102))

B(Z,Z)u = DzDzu — DzDzu — DV*ZEU + Dy+ zu
Z

is determined. The Claim is proved. Let us prove the existence statement
in Theorem 9. Define D : I'*(E) — I'*(T(M)* ® E) as the (real) differ-
ential operator given by (101)-(102) and (104). Then D is a connection
in E. Let us check for instance that D¢ is a derivation in I'*(E) (as a
C*(M)-module). Note that

B(X,Y)(fu) = fB(X,Y)u - T"(X,Y)(f)u

hence

(A,B)(Fu) = f (A,BJu + 2n&()u.
Next (by (104))
De(fu) = 5 (A, B)(fu) ~ P(fu) =

= o F(ABJu+ &(f)u— FP(w) = f Deu+ €(f)u.
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Clearly (101) yields D*! = 9. Also (by (103))

i(AyRP)u = Z B(&,,&5)u —inDeu = i(AyB)u — 2inDeu = 2inP(u) .

a=1
Finally, we wish to check that DH = 0. We have already
(105) V(H(u,v)) = H(Dyu,v) + H(u, Dyv)
for any V € H(M) ® C. As a consequence of (105)
(106)  T*(V,W)(H (u,v)) = —H(B(V,W)u,v) — H(u, B(V,W)v)
for any V,W € H(M) ® C. Taking traces in (106) gives (as B is skew)
né(H(,0)) = H((A,BYu, 0) + H(u, (A, B)0)
hence (by (104))
&(H(u,v)) = H(D¢u + P(u),v) + H(u, Dev + P(v)) . 0
COROLLARY 2. Let (M,n) be a contact manifold of CR dimension
n, g € M(n) an associated Riemannian metric. The canonical connection

D inT, o(M) extending ng,o(M)i parallelizing g, and such that Ay RP =0
1$ given by

1 T s
_ * * af
D=m,V +%77®771,0AnR ~ Y Qﬁang nent e,

for any (local) frame {&,} in Tho(M).

Using the connection D of Corollary 2 one may express the Chern
classes of T} o(M) in terms of R, »z and the Tanno tensor (and its first
order covariant derivatives). It is an open problem whether the first Chern
class of Tj (M) vanishes on contact Riemannian manifolds admitting
global pseudo-Einsten contact forms.
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6.2 — Almost CR structures as G-structures

Let Gy be the Lie subgroup of GL(2n+1, R) consisting of all matrices
of the form

U 0 0
(aa aj bg) , uweR\{0}, a0 € R, [aj +ib3] € GL(n,C).
b —bg as

Any Gy-structure (in the sense of [37], p. 309) on a real (2n+1)-dimensio-
nal manifold M determines an almost CR structure on M and conversely.
Originally, S.S. Chern & J.K. Moser (cf. [14]) regarded almost CR struc-
tures as principal subbundles of the principal GL(2n + 1, C)-bundle of
linear frames in T*(M) ® C, rather than Go-structures on M. The two
points of view are equivalent due to the obvious group monomorphism
Gy — GL(2n+1,0C)

u 0 0 U 0 0
(ao‘ ag bg)n—> (aa—l—iba a%—i—ibg 0 )

b — 5 ag a® — b 0 ag — ibg

Let B — M be a Gy-structure of M. If B is locally flat (in the sense
of [37], p. 315) then the corresponding almost CR structure is Levi flat.
Therefore, the Gy-structure arising from the almost CR structure of a
contact Riemannian manifold is not locally flat. Let

¢: B — Hom(R** AR R /9 Hom (R, L(Gy))

be the first structure function of B (cf. [37], p. 318). As is well known, ¢ =
0 is only a necessary condition for locally flatness of the given G-structure.
It is a natural question whether ¢ = 0 for the almost CR structure of a
contact Riemannian manifold. As an application of Theorem 9 we shall
prove the following

THEOREM 10.  Let (M,n,g) be a contact Riemannian manifold.
The U(n) x 1-structure B(n) — M has a nonzero first structure function.
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PRrROOF. The connection D furnished by Corollary 2 extends to a
linear connection on M by setting DxZ = DxZ and Dx¢ = 0 for any
X eT(M)and Z € Ty o(M). As D parallelizes T} o(M) and g, it gives rise
to a connection I' in B(n). Consequently c¢(u) = [cr(u)] (the class of cr(u)
modulo @ Hom(R*"*! L(U(n) x 1))) for any u € B(n), where cp(u)(xz A
y) = (dw),(X,Y) and w € T>°(T*(B(n)) ® R**!) is the canonical 1-
form. Also X,Y € T, are such that w,(X) = z and w,(Y) = y, with
xz,y € R*™M. Let {X,,»X,, &} be a local section in B(n), defined on
an open set U. Of course, the torsion form of I' may may be express in
terms of the torsion tensor TP of D, hence

2CF(U)(ea A eBJrn) = Uil(TD(Xm (PXB)P) ,
where v = (p,{Xap, PpXap &ty pEU. Set &, = (1/\/5)()(@ —ipX,).
Using (47)-(52) we obtain

TD(fa,fg) = %(an - Zﬁ)gﬁa TD(gaa gﬁ) =1 5@6 53

hence
<CI‘(ea A eﬁ+n)7 60> = _6(1,8 5

where (, ) is the Euclidean inner product in R?"*. 0

7 — Gauge invariants

Let (M,n, g) be a contact Riemannian manifold. As as a consequence
of axioms (8)-(9)

XY, 2)+Y(9(Z,X)) - Z(9(X,Y)) =29(VYY,Z)+
+29(X, 0Z)n(Y) +29(Y, pZ))n(X) — 29(X, Y )n(Z)+
+g([X, Z]aY) +g([Y, Z]>X) - g([X, Y]>Z)’

for any X,Y,Z € T(M). This leads to the explicit expressions of the
connection coefficients

(107) L5 905 = €al987) — 9([6as &1, )
(108) I25 97 = 9([6a, €5, &)
(109) 05 97 = &(987) — 9([€: &5, €5)



[61] Pseudohermitian geometry on contact etc. 335

and then to the transformation laws in

LEmMMmA 10. Under a gauge transformation (12) the connection
coefficients of the Tanaka-Webster connection and the Webster torsion
change as

~

110 s =105+ 2(uq 0f + up d5)

(110)
(111) fgﬁ =T%s —2u gap

(112) eQ“IA”gB =T+ 2u00f+2iugu’—iug +iu T, —iuTE,
(113)

_ , , 1
113 Aap = Aap = tap + 20attp + 5(Qha — @, )ugs7

where u := log V/A. Consequently, the connection 1-forms change as

(114) W5 = wg + 2uedgn + 2(uw(5§‘ +ugd)n’ — 2ung+
—i(ug®™ + 205uyu” + 2uug)n

Also Qgﬂy = Q3,, i.e. Qf, is a gauge invariant. Here u.” = u 5 g°" and

uap denote second order covariant derivatives (with respect to V*).

ProoF. Note that n(¢) =0, ((A) =0 and g,5 = Ag,3. Therefore

€ = e +iucE, — iuEs},

where u® = gaguﬁ A straightforward calculation (based on (12)) shows
that (107)-(108) yield (110)-(111). To prove (112) one establishes first
the identity

ué P DV
62 [5755] = [gagg] + {2ZUE’LL — E_i_ 5( G~ 7B)u»‘/}ga_‘r
+ {iu"g — 2iugu”™ + i(l“%m _ F%zﬁ)} &

(115)

[and then (109) is shown to imply (112)]. Also (113) follows from

Aap = —9([€: €l s 5)

and (115). To prove (114) one substitutes from (110)-(112) into

@ = D+ D07+ 10,
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where {77} is the admissible coframe (corresponding to {£,,£}) given by
0" =n"—iu®n.

Finally, from
Q5 gan = 20 (€. 6] &)
it follows that QF, = QF,. 0
We shall prove the following

THEOREM 11. Let (M,n,9) be a contact Riemannian manifold and G,
its Fefferman metric. Then, under a gauge transformation (12), G,
changes conformally, i.e. G5 = (Aom)G,. Consequently the restricted
conformal class [G,] = {(Aom)G, : A € C®(M), X > 0} is a gauge
1nvariant.

Theorem 11 is the contact Riemannian analogue of the main result
n [28]. S. Tanno considered (cf. [39], p. 363) the second order differen-
tial operator Ay [coinciding with the sublaplacian A, when Tj o(M) is
integrable| given by
Apu=Au—E(&(u)), ueC*(M),

where A is the ordinary Laplacian of the Riemannian manifold (M, g).
To prove Theorem 11 we contract the indices o, 5 in (114) and use

Agu=2u,“+2inug

[a consequence of definitions and of (29)] to yield
1
(116) oY =wi+ndu+(n+ 2)(uano‘—uo‘na)—i{2(n + l)uaua+§AHu}n .

Differentiating we obtain

dot =dws + (n+ 2)d(uan® — u*ny )+
1
_ i{Q(n + Duau® + §AHu}d17, mod 7.
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On the other hand (by (30))

d(uan® —u®na) = —(u,z +uz,) 1" An’, mod n® An®, 4= AP, n,
hence
dog = dwy — (n+2)(u,5 +uz,) n® A n’ - z{2(n + Dusu™ + %AHU,} dn.

Let us multiply by i, take traces in the resulting identity, use the calcula-
tions in Section 4.2, and observe the cancellation of the terms involving
the Tanno tensor (by the gauge invariance in Lemma 10). We obtain

(117) e p* = p* —2(n+ 1)Agu —4n(n + 1) u,u®.

Using (116)-(117) and the gauge invariance of the fibre coordinate § = =,
one may derive the transformation law for the real 1-form o in Section 4.2
[under a gauge transformation (12)]

o =0+ 7 {i(uan® — un,) + usu®n}.
Next, note that L, = —2n* ® n, hence
5= €"{L, — 2i(uan™ — u®n,) ©n — 2uu®n ©n}

and then G, = e*°" G,,. 0
REMARK 5. If ) = v¥™5, that is A = e2* = v¥™, then (117) becomes

72(”"’ 1)AHU+[)*'U _ ﬁ*,U(n+2)/n

which has been obtained by S. TANNO, [39], by a different technique. As
stated in [39], this is the contact Riemannian analogue of the CR Yamabe
problem in [26]. Whether the Yamabe equation for the (generalized)
Fefferman metric G,, projects on M to give (117) is unclear as yet. Indeed
the wave operator O [i.e. the Laplace-Beltrami operator of (F(M),G,)]
pushes forward to an operator 7,00 which turns out to be precisely %A H
(cf. [3], p. 30) yet it is unknown whether the scalar curvature of G,
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projects on (a multiple of) p* [the proof in [28] employs the Chern-Moser
normal form, which is unavailable yet for a contact Riemannian manifold
(with nonintegrable almost CR structure)].

As another consequence of Lemma 10 one obtains

THEOREM 12. Let (M,n,g) be a contact Riemannian manifold. Let
(E,H) — M be a Hermitian vector bundle and Oy a pre-0-operator on
E. Let D be the unique connection in E extending Og, parallelizing H
and of zero curvature trace. Then D is a gauge invariant (and Ay,RP =0
a gauge invariant condition).

PRrOOF. Note that Dxs = Dxs for any X € H(M) and any s €
I'>°(E). Let {£,} be a local orthonormal frame of T} o(M). Then (by the
very definitions)

E(é&v&&)s = B(éu,ga)s + 2(U’ED§E8 - uﬁDfﬁs) ’

hence
e*(AgB)s = (AgB)s + 2in(u*De,s — u®De_) .

Finally, a calculation based on (104) with P = 0 leads to D¢s = Des. [
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