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Pseudohermitian geometry on contact

Riemannian manifolds

DAVID E. BLAIR – SORIN DRAGOMIR

Riassunto: A partire dai lavori di S. Tanno, [39], e E. Barletta et al., [3], si
studia la geometria delle quasi CR strutture (possibilmente non integrabili) su varietà
riemanniane di contatto. Si caratterizzano le funzioni CR-pluriarmoniche in termini
di operatori differenziali naturali associati alla struttura riemanniana di contatto data.
Si mostra che la quasi CR struttura di una varietà riemanniana di contatto (M,η) il
cui fibratto canonico ammette sezioni globali, non nulle e chiuse, è integrabile e η è una
forma di contatto pseudo-Einstein. Si mostra che il gruppo di olonomia pseudohermi-
tiano di una varietà sasakiana è contenuto in SU(n) × 1 se e solo se la connessione
di Tanaka-Webster è Ricci piatta. Inoltre, per ogni varietà sasakiana quaternionica
(M4m+1, (F, T, θ, g)) o la connessione di Tanaka-Webster di (M4m+1, θ) è Ricci piatta
oppure m = 1 e allora (M5, θ) è pseudo-Einstein se e solo se 4p+ρ∗θ è chiusa, dove p è
una 1-forma locale su M5 tale che ∇G = p⊗H e ∇H = −p⊗G per qualche riferimento
{F,G,H}, e ρ∗ è la curvatura scalare pseudohermitiana di (M5, θ). Su ogni varietà
sasakiana M esiste un sistema di Pfaff integrabile, invariante per Ψ(x) (il gruppo di
olonomia pseudohermitiana in x ∈ M) e contenente il flow di contatto come una sot-
tofogliazione. Si costruiscono connessioni canoniche (che ramentano la connessione di
Tanaka, [38]) in fibrati vettoriali complessi su varietà riemanniane di contatto, dotati

di un un operatore pre-∂ e di una metrica Hermitiana. Come un’applicazione, si calcola
la prima funzione di struttura della quasi CR struttura di una varietà riemanniana di
contatto. Si mostra che la classe conforme ristretta [Gη] della metrica di Fefferman
(generalizzata) come pure certe connessioni canoniche D (con traccia ΛgR

D = 0) sono
invarianti di gauge.

Abstract: Starting from work by S. Tanno, [39], and E. Barletta et al., [3], we
study the geometry of (possibly non integrable) almost CR structures on contact Rie-
mannian manifolds. We characterize CR-pluriharmonic functions in terms of differen-
tial operators naturally attached to the given contact Riemannian structure. We show
that the almost CR structure of a contact Riemannian manifold (M,η) admitting global
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nonzero closed sections (with respect to which η is volume normalized) in the canonical
bundle is integrable and η is a pseudo-Einstein contact form. The pseudohermitian
holonomy of a Sasakian manifold M2n+1 is shown to be contained in SU(n)× 1 if and
only if the Tanaka-Webster connection is Ricci flat. Also, for any quaternionic Sasakian
manifold (M4m+1, (F, T, θ, g)) either the Tanaka-Webster connection of (M4m+1, θ) is
Ricci flat or m = 1 and then (M5, θ) is pseudo-Einstein if and only if 4p + ρ∗ θ is
closed, where p is a local 1-form on M5 such that ∇G = p ⊗ H and ∇H = −p ⊗ G
for some frame {F,G,H}, and ρ∗ is the pseudohermitian scalar curvature of (M5, θ).
On any Sasakian manifold M there is a smooth integrable Pfaffian system, invariant
by Ψ(x) (the pseudohermitian holonomy group at x ∈ M) containing the contact flow
as a subfoliation. We build canonical connections (reminiscent of the Tanaka connec-
tion, [38]) on complex vector bundles over contact Riemannian manifolds, carrying a

pre-∂-operator and a Hermitian metric. As an application, we compute the first struc-
ture function of the underlying almost CR structure of a contact Riemannian manifold.
The restricted conformal class [Gη] of the (generalized) Fefferman metric and certain
canonical connections D (with trace ΛgR

D = 0) are shown to be gauge invariants.
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1 – Introduction

Let M be a real (2n + 1)-dimensional C∞ manifold. An almost CR

structure is a rank n complex subbundle T1,0(M) ⊂ T (M) ⊗ C so that

(1) T1,0(M) ∩ T0,1(M) = (0) ,
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where T0,1(M) = T1,0(M) (overbars denote complex conjugation) and a

pair (M,T1,0(M)) is an almost CR manifold (of CR dimension n). If

{ξα : 1 ≤ α ≤ n} is a local frame of T1,0(M), defined on some open

neighborhood U , then T0,1(M) corresponds to the system of PDEs

(2) ξα(u) = 0, 1 ≤ α ≤ n ,

(the tangential Cauchy-Riemann equations) and a solution u ∈ C∞(U)

to (2) is a CR function. Almost CR structures appear for instance on

smooth real hypersurfaces M in a complex manifold V

T1,0(M) := [T (M) ⊗ C] ∩ Span{∂/∂zj : 1 ≤ j ≤ n + 1} ,

where zj are (local) complex coordinates on V and, as such, possess the

following (formal) Frobenius integrability property

(3) [Γ∞(T1,0(M)),Γ∞(T1,0(M))] ⊆ Γ∞(T1,0(M)) ,

or, in terms of the local generators ξα

(4) [ξα, ξβ] = Cγ
αβ ξγ ,

for some smooth complex valued functions Cγ
αβ on U . An almost CR

structure satisfying the integrability condition (3) is a CR structure and

the pair (M,T1,0(M)) is a CR manifold. On the other hand, a smooth

real hypersurface M in an almost Hermitian manifold (e.g. S6 with the

canonical nearly Kähler structure, [12]) inherits an almost contact metric

structure (ϕ, ξ, η, g) (cf. [11]) and T1,0(M) = {X − iϕX : X ∈ Ker(η)} is

an almost CR structure, not integrable, in general. The 1-form η is a sec-

tion in the conormal bundle of H(M) := Ker(η) i.e. a pseudohermitian

structure (cf. [48]) on M . Even if M is nondegenerate, that is η is a con-

tact form, the tools of pseudohermitian geometry are unavailable, e.g. the

construction of the Tanaka-Webster connection, (cf. [38] and [48]) is tied

to the integrability property of the almost CR structure. Nevertheless,

due to the work of S. Tanno, [39], a sort of pseudohermitian geometry,

in many ways similar to that of S. Webster (cf. op. cit.), may be devel-

oped on a contact manifold (with a generally non integrable almost CR
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structure) in the presence of a fixed associated Riemannian metric (cf.

also [40]-[42]). Let (M,η) be a contact manifold, that is a real (2n + 1)-

dimensional C∞ manifold carrying a 1-form η such that Ψ = η ∧ (dη)n

is a volume form on M . There is a unique vector field ξ ∈ X (M) such

that η(ξ) = 1 and ξ ! dη = 0 (the characteristic direction of (M,η)). By

a well known result (cf. [11]), given a contact manifold (M,η) there are

a Riemannian metric g and a (1, 1)-tensor field ϕ on M such that

g(X, ξ) = η(X), ϕ2 = −I + η ⊗ ξ ,

g(X,ϕY ) = (dη)(X,Y ) ,

for any X,Y ∈ X (M). Such a metric g is said to be associated to the con-

tact form η. Let us denote by M(η) the set of all associated Riemannian

metrics. Of course, once g ∈ M(η) is fixed, ϕ is uniquely determined.

Each g ∈ M(η) has the same volume form Ψ. S. Tanno considered (cf.

op. cit.) the (1,2)-tensor field

(5) Q(X,Y ) = (∇Y ϕ)X + {(∇Y η)ϕX}ξ + η(X)ϕ(∇Y ξ)

(the Tanno tensor field) and the linear connection ∇∗ (the (generalized)

Tanaka-Webster connection of (M,η)) given by

(6) ∇∗
XY = ∇XY + η(X)ϕY − η(Y )∇Xξ + [(∇Xη)Y ]ξ

where ∇ is the Levi-Civita connection of (M, g). The connection ∇∗ may

be described axiomatically (cf. Proposition 3.1 in [39], p. 354) as the

unique linear connection obeying

∇∗η = 0, ∇∗ξ = 0 ,(7)

∇∗g = 0 ,(8)
{

T ∗(X,Y ) = 2(dη)(X,Y )ξ, X, Y ∈ H(M) ,

T ∗(ξ, ϕZ) = −ϕT ∗(ξ, Z), Z ∈ T (M) ,
(9)

(∇∗
Xϕ)Y = Q(Y,X), X, Y ∈ T (M) .(10)

where T ∗ is the torsion of ∇∗. As Q = 0 if and only if (3) holds ([39],

p. 353-354), the axioms (7)-(10) show that on any contact Riemannian
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manifold with integrable almost CR structure ∇∗ is the Tanaka-Webster

connection of (M,−η).

The present paper continues the work in [3] as an attempt to apply

the geometric methods devised by S. Tanno to the study of the eqs. (2),

without the involutivity property (4). We consider the Webster torsion

τ(X) = T ∗(ξ,X), X ∈ T (M) .

It is both trace-less (and, as a geometric interpretation, for any asso-

ciated Riemannian metric g ∈ M(η) the contact distribution H(M) is

minimal in (M, g)) and self-adjoint, a property playing a crucial role in

the derivation of the structure equations

(11)
Ωα

β = Rα
β
λµη

λ ∧ ηµ − W β
αλη

λ ∧ η + W β
αµη

µ ∧ η+

− i

4
gβσ{gρλQρ

µα,ση
λ ∧ ηµ + gρλQ

ρ
µσ,αη

λ ∧ ηµ} ,

the CR counterpart of which allows one to relate the existence of (local

or global) pseudo-Einstein structures to CR-pluriharmonic functions and

the existence of closed sections in the canonical bundle (cf. [29]). In

particular (11) is shown to imply the symmetry property Rαβλµ = Rλβαµ.

As a general strategy, we express the terms without a CR counterpart in

terms of the Tanno tensor Q and its first order covariant derivatives with

respect to ∇∗ [e.g. Rµ
β
σα

, a term which vanishes on a contact manifold

with (3) as (by (10)) the Tanaka-Webster connection parallelizes T1,0(M)].

Given a contact manifold (M,η), a C∞ function u : M → R is CR-

pluriharmonic if it is locally the real part of a CR function. We determine

natural differential operators characterizing CR-pluriharmonic functions.

Precisely, we show that a smooth real valued funcion u on M is CR-

pluriharmonic if and only if

uαβ = µ gαβ , (Qγ
αβ − Qγ

βα)uγ = 0 ,

for some complex-valued function µ, provided the CR dimension is n ≥ 2.

The complex Hessian uαβ is computed with respect to ∇∗. Note that the

first set of equations are second order and correspond to the equations

found by J. M. Lee, [29], while the second set are first order and have
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no (integrable) CR counterpart. Of course, the almost CR structure of

any 3-dimensional contact Riemannian manifold is integrable, hence a

characterization of CR-pluriharmonic functions in the case n = 1 already

exists, cf. [29] (the relevant differential operators are third order).

In [3] one built a contact Riemannian analogue of the Fefferman met-

ric in CR geometry (cf. e.g. [28]) relying on the existence, for any nowhere

vanishing section Z in the canonical bundle, of a unique positive func-

tion λ so that

2n in(n+2) n! η ∧ (ξ !Z) ∧ (ξ !Z) = λ η ∧ (dη)n .

If λ = 1 then η is said to be volume normalized with respect to Z. We

show that, if there is a closed globally defined nowhere zero section in

the canonical bundle, with respect to which the contact form is volume

normalized, then the almost CR structure is integrable and M is a pseudo-

Einstein manifold.

The pseudohermitian holonomy groups of a nondegenerate CR man-

ifold are the holonomy groups of its Tanaka-Webster connection (for a

fixed choice of contact form). We show (cf. Section 5) that a strictly pseu-

doconvex CR manifold M 2n+1 with vanishing Webster torsion (τ = 0)

has pseudohermitian holonomy contained in SU(n) × 1 if and only if its

Tanaka-Webster connection is Ricci flat. In Section 5.1 we deal again

with the integrable case and start a study of quaternionic Sasakian man-

ifolds. These are pseudohermitian analogues of quaternion Kähler mani-

folds (and one may bring to CR geometry a result by M. Berger, [9], and

S. Ishihara, [24]). In Section 5.2 we show that, on any Sasakian mani-

fold, a Ψ(x)-invariant subspace Dx of the tangent space at x [where Ψ(x)

is the pseudohermitian holonomy group with reference point x] gives rise

(by parallel translation with respect to the Tanaka-Webster connection)

to a smooth integrable Pfaffian system. The key ingredient is parallel

displacement along parabolic geodesics (cf. [26]).

Given a complex vector bundle E over a contact Riemannian man-

ifold, endowed with a pre-∂-operator ∂E and a Hermitian metric H, we

build canonical connections in E extending ∂E, parallelizing H, and with

a prescribed trace P of their curvature tensor, thus generalizing the

Tanaka connection of a Hermitian CR-holomorphic vector bundle over

a strictly pseudoconvex CR manifold M ([39]), a CR invariant of M . As
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an application, we show that on any contact Riemannian manifold the

first structure function of the underlying almost CR structure [regarded

as a U(n) × 1-structure] is nonzero.

Let (M, (ϕ, ξ, η, g)) be a contact Riemannian manifold. An object

built in terms of (ϕ, ξ, η, g) is a gauge invariant (cf. S. Tanno, [39],

p. 362-363, and [40], p. 537) if it is invariant under a transformation

(ϕ, ξ, η, g) '→ (ϕ̂, ξ̂, η̂, ĝ) where

(12)

ϕ̂ = ϕ +
1

2λ
η ⊗ {∇λ − ξ(λ)ξ} ,

ξ̂ =
1

λ
(ξ + ζ) , η̂ = λ η ,

ĝ = λ g − λ (η ⊗ w + w ⊗ η) + λ (λ − 1 + ‖ζ‖2)η ⊗ η ,

with λ ∈ C∞(M) such that λ(x) > 0 for any x ∈ M . Here ζ is given by

ζ = (1/(2λ))ϕ∇λ and w is the dual 1-form w(X) = g(X, ζ), X ∈ T (M).

For instance, the Bochner curvature tensor given by (8) in [40], p. 537,

is a gauge invariant [coinciding with the Chern-Moser tensor when (3)

holds]. If the almost CR structure of M is integrable then the gauge

invariants of M are precisely its CR invariants. Let Gη be the (gener-

alized) Fefferman metric of the contact Riemannian manifold (M,η, g),

cf. [3], p. 27. The Fefferman metric is a Lorentz metric defined on the

total space of a certain principal circle bundle S1 → F (M)
π−→ M

(cf. Section 4.2 for definitions). The restricted conformal class of Gη is

[Gη] := {exp(2u◦π)Gη : u ∈ C∞(M)}. In Section 7 we show that the re-

stricted conformal class of Gη is a gauge invariant. The proof relies on the

explicit calculation of the Fefferman metric Gη in terms of pseudohermi-

tian invariants (cf. Section 4.2). Also, each canonical connection D whose

curvature has trace ΛgR
D = 0 (cf. Theorem 9) is shown to be a gauge

invariant.

2 – Contact Riemannian versus CR geometry

Let M 2n+1 be a real (2n + 1)-dimensional C∞ manifold. An almost

contact Riemannian structure (ϕ, ξ, η, g) on M 2n+1 consists of a (1, 1)-

tensor field ϕ, a vector field ξ, a 1-form η, and a Riemannian metric g
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such that

ϕ2 = −I + η ⊗ ξ, η ◦ ϕ = 0, ϕξ = 0 ,

g(ϕX,ϕY ) = g(X,Y ) − η(X)η(Y ) ,

for any X,Y ∈ T (M 2n+1). It is a contact Riemannian structure if it

satisfies Ω = dη (the contact condition) where Ω(X,Y ) = g(X,ϕY ).

Set h := 1
2
Lξϕ, where L is the Lie derivative. A contact metric struc-

ture is K-contact if the contact vector ξ is Killing (equivalently h = 0).

The Riemannian metric g, underlying a contact Riemannian structure, is

Sasakian if

(∇Xϕ)Y = g(X,Y )ξ − η(Y )X ,

for any X,Y ∈ T (M 2n+1), where ∇ is the Levi-Civita connection of g.

Any Sasakian metric is K-contact (the converse is not true, in general,

cf. [11]). Another approach to Sasakian metrics is as Webster metrics on

strictly pseudoconvex CR manifolds whose Webster (or pseudohermitian)

torsion vanishes.

As we need to apply the result in [13] to CR submanifolds (in the

sense of [8]) of a Hermitian manifold (cf. Section 5.1) the notion of

CR manifold considered in the introduction is not sufficiently general.

We recall here the relevant notions, emphasizing on the relationship

between contact Riemannian and CR geometry. A CR structure of

type (n, k) on a (2n + k)-manifold M is a complex rank n subbundle

T1,0(M) ⊂ T (M) ⊗ C satisfying (1) and (3), and a pair (M,T1,0(M))

is a CR manifold of type (n, k). The integers n and k are respectively

the CR dimension and CR codimension of (M,T1,0(M)). A posteriori, a

CR manifold of type (n, 1) (cf. Section 1) is said to be of hypersurface

type. The real rank 2n distribution H(M) := Re{T1,0(M) ⊕ T0,1(M)} is

the Levi (or maximally complex) distribution of (M,T1,0(M)). The Levi

form is L(Z,W ) = iπ[Z,W ], Z,W ∈ T1,0(M), where π : T (M) ⊗ C →
[T (M) ⊗ C]/[T1,0(M) ⊕ T0,1(M)] is the natural bundle map. If L = 0

then (M,T1,0(M)) is Levi flat. For a Levi flat CR manifold H(M) is

integrable, hence M is foliated by complex n-dimensional manifolds.

(M,T1,0(M)) is nondegenerate if the Levi form L is nondegenerate. Let

E ⊂ T ∗(M) be the conormal bundle of H(M). If M is an oriented CR

manifold of hypersurface type then E is a trivial line bundle, hence ad-

mits globally defined nowhere zero sections θ (i.e. real 1-forms on M
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such that Ker(θ) = H(M)), each of which is referred to as a pseudoher-

mitian structure on M . The Levi form may be recast as Lθ(Z,W ) =

−i(dθ)(Z,W ), Z,W ∈ T1,0(M), [L, Lθ are easily seen to coincide up

to a bundle isomorphism [T (M) ⊗ C]/[T1,0(M) ⊕ T0,1(M)] ≈ E]. M is

strictly pseudoconvex if Lθ is positive-definite, for some θ. There is no

obvious way to define strict pseudoconvexity in higher CR codimension

(k ≥ 2). If M is nondegenerate then each pseudohermitian structure is

actually a contact form (i.e. θ ∧ (dθ)n is a volume form on M). For

a fixed contact form θ there is a unique vector field T on M so that

θ(T ) = 1 and T ! dθ = 0 (the characteristic direction of (M, θ)). If this is

the case, i.e. M is nondegenerate, then the Levi form extends naturally

to a semi-Riemannian metric g on M (the Webster metric) given by

g(X,Y ) = (dθ)(πHX,ϕπHY ) + θ(X)θ(Y ), X, Y ∈ T (M) .

Here πH : T (M) → H(M) is the projection associated with T (M) =

H(M) ⊕ RT and ϕ(Z + Z) = i(Z − Z), Z ∈ T1,0(M), is the complex

structure in H(M). Then Ω = −dθ, i.e. if M is strictly pseudoconvex

and θ has been chosen so that Lθ is positive definite then (ϕ,−T,−θ, g)

is a contact metric structure on M . Let ∇∗ be the Tanaka-Webster

connection of (M, θ), i.e. the linear connection uniquely determined by

the axioms (7)-(10) with ξ = −T and Q = 0. Let τ(X) = T ∗(T,X) be

its Webster torsion. Then (ϕ,−T,−θ, g) is normal (i.e. g is Sasakian) if

and only if τ = 0 (cf. [11], [18]).

2.1 – Basic formulae

Let (M,η) be a contact manifold and g ∈ M(η) an associated Rie-

mannian metric. Let {ξα} be a local frame of the almost CR structure

T1,0(M) and {ηα} the corresponding admissible coframe, i.e.

ηα(ξβ) = δαβ , ηα(ξβ) = 0, ηα(ξ) = 0 ,

where ξβ = ξβ. Due to the contact condition the (local) components of

the Levi form are gαβ = g(ξα, ξβ). Then (cf. (44) in [3])

(13) dη = −2igαβ ηα ∧ ηβ .
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We collect a few elementary properties of the Webster torsion in the

following

Lemma 1. Let (M,η, g) be a contact Riemannian manifold and ξ the

characteristic direction of (M,η). Then i) τ(ξ) = 0, ii) τ ◦ϕ + ϕ ◦ τ = 0,

iii) τ T (M) ⊆ H(M), iv) τ T1,0(M) ⊆ T0,1(M) and τ T0,1(M) ⊆ T1,0(M),

and v) trace(τ) = 0.

Proof. Property (ii) follows from axiom (9). Next (by (ii)) τX =

ϕτϕX ∈ H(M), i.e. τ is H(M)-valued. Also (again by (ii)) ϕ(τZ) =

−iτZ for any Z ∈ T1,0(M) hence (by (iii)) property (iv) is proved, and (v)

is a corollary of (iv) and of the fact that the traces of an endomorphism

and its complex linear extension coincide.

As a consequence of Lemma 1 τξα = Aβ
αξβ, for some smooth complex

valued functions Aβ
α on U . The connection 1-forms of the (generalized)

Tanaka-Webster connection ∇∗ are given by ∇∗ξA = ωB
A ⊗ ξB. Our con-

vention as to the range of indices is A,B,C, · · · ∈ {0, 1, · · · , n, 1, · · · , n}
with ξ0 = ξ. Note that ωB

0 = 0 (by (7)). We shall need the following

Lemma 2. Let {ηα} be an admissible frame on a contact Rieman-

nian manifold. Then

(14) dηα = ηβ ∧ ωα
β + ηβ ∧ ωα

β
+ η ∧ τα

where τα := Aα
β
ηβ and Aα

β
= Aα

β .

The proof of Lemma 2 follows from the identity

2(dηα)(X,Y ) = (∇∗
Xηα)Y − (∇∗

Y ηα)X + ηα(T ∗(X,Y )) .

Let QA
BC be the components of the Tanno tensor (with respect to

{ξA}). We introduce connection coefficients (of ∇∗) by setting ωA
B =

ΓA
CBηC . The Tanno tensor (5) may be written

Q(X,Y ) = πH(∇Y ϕ)X − η(X)(∇Y ϕ)ξ .
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On the other hand (by Corollary 6.1 in [11])

2g((∇Xϕ)Y,Z) = g(N (1)(Y,Z), ϕX) + 2(dη)(ϕY,X)η(Z)+

− 2(dη)(ϕZ,X)η(Y ) ,

where N (1) = [ϕ,ϕ] + 2(dη) ⊗ ξ. Consequently

(15)
2g(Q(X,Y ), Z) = g(N (1)(X,Z) − η(X)N (1)(ξ, Z)+

− η(Z)N (1)(X, ξ) , ϕY ) ,

for any X,Y, Z ∈ T (M). Using (10) and (15) one may derive (cf.

also (31)-(34) in [3])

Qγ
βα = 0, Γγ

αβ = − i

2
Qγ

βα, Γ0
αβ = 0 ,(16)

Γγ

αβ
= 0, Qγ

βα
= 0, Qγ

βα
= 0, Γ0

αβ
= 0 ,(17)

Γγ
α0 = 0, Γγ

α0 = 0, Γγ
0β = 0, Γ0

0β = 0 .(18)

Lemma 3. Let (M,η, g) be a contact Riemannian manifold. The

Webster teorsion τ is self-adjoint, i.e. g(τX, Y ) = g(X, τY ) for any

X,Y ∈ T (M). Locally, if Aαβ := Aγ
α gβγ then Aαβ = Aβα.

Proof. As ∇∗g = 0 (cf. (8))

(19) dgαβ = ωγ
α gγβ + gαγ ωγ

β

Differentiating in (13)

0 = −2i dgαβ ∧ ηα ∧ ηβ − 2igαβ(dη
α ∧ ηβ − ηα ∧ dηβ)

and substituting dgαβ from (19), respectively dηα, dηβ from (14) (and its

complex conjugate) we have

0 = (ωγ
α gγβ + gαγ ωγ

β
) ∧ ηα ∧ ηβ+

+ gαβ{(ηρ ∧ ωα
ρ + ηρ ∧ ωα

ρ + η ∧ τα) ∧ ηβ+

− ηα ∧ (ηρ ∧ ωβ
ρ + ηρ ∧ ωβ

ρ + η ∧ τβ)}
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or (by Γα
0ρ = 0)

0 = η ∧ {gαβ Aα
γ ηγ ∧ ηβ + gαβ Aβ

γ ηα ∧ ηγ}+
+ gαβ Γβ

µρ ηα ∧ ηµ ∧ ηρ + gαβ Γα
µρ ηµ ∧ ηβ ∧ ηρ .

Therefore (by looking at types)

(20) gαβ Aβ
γ η ∧ ηα ∧ ηγ = 0 .

The identity (20) leads to gαβ Aβ
γ = gγβ Aβ

α.

Remark 1. Note that, for any contact Riemannian structure, τ =

−ϕ ◦ h as a straightforward consequence of (6), thus providing an alter-

native proof of Lemmas 1 and 3 (cf. also Lemma 6.2 in [11]).

2.2 – Geometric interpretation of τ

Given a Riemannian manifold (M, g) and a smooth distribution D
on M , we say D is minimal in (M, g) if traceg B(D) = 0 with B(D) given

by

B(D)(X,Y ) = π⊥ ∇XY, X, Y ∈ D ,

where ∇ is the Levi-Civita connection and π⊥ the natural projection with

respect to T (M) = D⊕D⊥ (orthogonal decomposition). If M and N are

almost CR manifolds, a CR map is a smooth map f : M → N such that

(dxf)T1,0(M)x ⊆ T1,0(N)f(x), for any x ∈ M . A CR automorphism of M

is a C∞ diffeomorphism (of M in itself) and a CR map. A vector field

X ∈ X (M) is an infinitesimal CR automorphism if the local 1-parameter

group of X consists of (local) CR automorphisms. We shall prove the

following

Theorem 1. Let (M,η) be a contact manifold. Then for any as-

sociated Riemannian metric g ∈ M(η) the contact distribution H(M) =

Ker(η) is minimal in (M, g). Moreover, for any fixed associated metric

g ∈ M(η), the characteristic direction ξ of (M,η) is an infinitesimal CR

automorphism of the underlying almost CR manifold if and only if the

Webster torsion vanishes or, equivalently, g is a K-contact metric.
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Proof. Let B := B(H(M)). Then B(X,Y ) is the ξ-component of

∇XY , for any X,Y ∈ H(M). Now since ∇ξξ = 0 and ξ has vanishing

divergence with respect to any associated metric, traceg(B) = 0. To

prove the second statement in Theorem 1 we recall

LX = X ! d + dX !

for any vector field X on M . By (14)

Lξη
α = ξ ! dηα + d(ξ ! ηα) = ξ ! (ηβ ∧ ωα

β + ηβ ∧ ωα
β

+ η ∧ τα) =

= −1

2
ωα
β (ξ) ηβ − 1

2
ωα
β
(ξ) ηβ +

1

2
τα

so that (by ωα
β
(ξ) = Γα

0β
= 0) we get Lξη

α ≡ 1
2
τα, mod ηβ. Therefore

Lξη
α ≡ 0, mod ηβ, if and only if τξα = Aβ

αξβ = 0 (i.e. τ = 0). Also

Lξη = ξ ! dη + d ξ ! η = 0 hence the proof of Theorem 1 follows from

Lemma 4. A tangent vector field X on a contact manifold (M,η)

is an infinitesimal CR automorphism if and only if LXη ≡ 0, mod η

and LXηα ≡ 0, mod η, ηβ, for any admissible (local) frame {ηα} of

T1,0(M)∗.

The proof of Lemma 4 follows easily from Proposition 3.2 in [27],

vol. I, p. 29.

For further use, note that the formula (6) may be also written

(21) ∇ = ∇∗ − (Ω + A) ⊗ ξ + τ ⊗ η − 2η ( ϕ

where A(X,Y ) = g(τX, Y ) and ( is the symmetric tensor product.

2.3 – The tangent sphere bundle

As an example of contact Riemannian manifold with (generally) non-

integrable almost CR structure we recall the tangent sphere bundle of

a Riemannian manifold. Let (Mn, G) be a Riemannian manifold and

U(Mn)x = {v ∈ Tx(M
n) : Gx(v, v) = 1}, x ∈ Mn. The total space

U(Mn) of the corresponding sphere bundle Sn−1 → U(Mn)
π−→ Mn is

a real hypersurface in the almost complex manifold (T (Mn), J), where
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JβX = γX, JγX = −βX, X ∈ X (Mn), is the standard almost

complex structure on T (Mn). Here βv : Tx(M
n) → Tv(T (Mn)) and

γv : Tx(M
n) → Tv(T (Mn)), v ∈ Tx(M), are respectively the horizontal

and vertical lifts with respect to the Levi-Civita connection of (Mn, G).

Thus U(Mn) carries the almost CR structure

H = [T (U(Mn)) ⊗ C] ∩ T 1,0(T (Mn)) ,

where T 1,0(T (Mn)) = {Y − iJY : Y ∈ T (T (Mn))}. Although J is rarely

integrable (in fact only when (Mn, G) is locally Euclidean, cf. [16]) H
turns out to be a CR structure in a number of geometrically interesting

situations. If n ≥ 3 then H is integrable if and only if (Mn, G) is a

real space form (cf. Proposition 4.1 in [40], p. 540). U(Mn) carries

the contact form (locally) given by η = 1
2
gijy

idxj. Here (xi) is a local

coordinate system on Mn and (xi, yi) are the induced local coordinates

on T (Mn). Let g̃ be the Sasaki metric on T (Mn), i.e.

g̃
( δ

δxi
,

δ

δxj

)
= gij, g̃

( ∂

∂yi
,

∂

∂yj

)
= gij ,

where δ/δxi = ∂/∂xi − Γk
ij(x)yj∂/∂yk is the horizontal lift of ∂/∂xi de-

termined by Γi
jk [and Γi

jk are the Christoffel symbols of (Mn, G)]. The

metric g = 1
4
j∗g̃ [where j : U(Mn) ⊂ T (Mn)] is an associated metric

[i.e. g ∈ M(η)] and the corresponding field of (1, 1)-endomorphisms ϕ

is given by ϕ = tan ◦ J , where tanv : Tv(T (Mn)) → Tv(U(Mn)) is the

projection associated to Tv(T (Mn)) = Tv(U(Mn)) ⊕ E(j)v, v ∈ U(Mn),

and E(j) → U(Mn) is the normal bundle of j. Set ξ = 2yiδ/δxi. Then

(ϕ, ξ, η, g) is a contact Riemannian structure on U(Mn) (cf. e.g. [11]). g

is a K-contact metric if and only if (Mn, G) has constant sectional curva-

ture 1 (cf. [43]) and, if this is the case then g is actually a Sasakian metric;

also (U(Mn), η) is pseudo-Einstein (cf. our Section 5 for definitions) of

positive pseudohermitian scalar curvature (cf. [2]).

3 – CR-pluriharmonic functions

A complex-valued q-form ω on a contact manifold (M,η) is of type

(0, q) (or a (0, q)-form) if T1,0(M) !ω = 0 and ξ !ω = 0. Let Λ0,q(M) →
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M be the bundle of all (0, q)-forms on M and Ω0,q(M) = Γ∞(Λ0,q(M)).

Associated to the almost CR structure, there is a natural differential

operator

∂H : Ω0,q(M) → Ω0,q+1(M), q ≥ 0 ,

(the tangential Cauchy-Riemann operator) so that the eqs. (2) may be

written ∂Hu = 0. If ω is a (0, q)-form then ∂Hω is the unique (0, q +

1)-form coinciding with dω on T0,1(M) ⊗ · · · ⊗ T0,1(M) (q + 1 terms).

Therefore, on functions (∂Hf)Z = Z(f), for any Z ∈ T1,0(M). The

sequence of C∞(M)-modules and differential operators

(22) · · · → Ω0,q−1(M)
∂H−→ Ω0,q(M)

∂H−→ Ω0,q+1(M) → · · ·

is only a pseudocomplex (in the sense of [46]) and ∂
2

H = 0 precisely when

the almost CR structure of (M,η) is integrable (cf. [3]). Of course, one

may associate with (22) a twisted cohomology

H0,q

∂H
(M) =

Ker(∂H : Ω0,q(M) → Ω0,q+1(M))

[∂HΩ0,q−1(M)] ∩ [Ker(∂H : Ω0,q(M) → ·)] ,

(cf. also Theorem 4 in [3]) yet its study presents a number of difficulties.

For instance the natural filtration of the de Rham complex

F pΩk(M) = {ω ∈ Ωk(M) : ω(W1, · · · ,Wp−1, V 1, · · · , V k−p+1) = 0 ,

for any Wi∈T (M)⊗C and Vj ∈T1,0(M), 1≤ i≤p − 1, 1≤j≤k − p + 1}

is not stable under exterior differentiation, the problem of devising a

contact Riemannian analogue of the Frölicher spectral sequence (cf. [38])

being open. Also, given a Riemannian manifold (Mn, G), the problem

of computing the twisted cohomology groups H0,q

∂H
(U(Mn)) is currently

unsolved [even for the integrable case, e.g. compute H0,1

∂H
(U(S2)), the

Kohn-Rossi cohomology of U(S2)].

A smooth real valued function u on (M,η) is CR-pluriharmonic if

for any x ∈ M there is an open neighborhood U ⊂ M and a real-valued

function v ∈ C∞(U) so that u + iv is a CR function, i.e. ∂H(u + iv) = 0.

Given a simply connected smooth domain Ω ⊂ Cn+1 and a holomor-

phic function F defined on an open neighborhood of the closure of Ω,
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the trace f of F on M = ∂Ω is a CR function (∂Hf = 0). As pluri-

harmonic functions on Ω are real parts of holomorphic functions, one

may think of CR-pluriharmonic functions as boundary values of pluri-

harmonic functions. One of the antique problems in analysis (going back

to H. Poincaré, T. Levi-Civita, and E. E. Levi, [34]) is to characterize

boundary values of pluriharmonic functions in terms of tangential differ-

ential operators. L. Amoroso, [1], was the first to solve(1) the problem

for n = 1, followed by work for arbitrary n and investigating ramifications

of the phenomenon (cf. e.g. [5], [7]). Real parts of CR-functions on CR

submanifolds of Cn+1 were first studied in [6] and a characterization of

CR-pluriharmonic functions in the abstract CR setting (employing the

tools of pseudohermitian geometry) was obtained in [29]. Our purpose

in the present paper is to characterize CR-pluriharmonic functions on

contact Riemannian manifolds, very much in the spirit of [29].

Let (M,η) be a contact manifold. A complex-valued p-form ω on

M is a (p, 0)-form if T0,1(M) !ω = 0. Unlike (0, q)-forms (which are

locally sums of monomials of the form fα1···αqη
α1 ∧ · · · ∧ ηαq) the exterior

monomials entering the local manifestation of a (p, 0)-form may contain η

[hence the top degree (p, 0)-forms are Λn+1,0(M)]. We define a differential

operator

∂H : C∞(M) → Ω1,0(M) ,

by declaring ∂Hf to be the unique (1, 0)-form on M such that ξ ! ∂Hf = 0.

For further use, set dc
H = i(∂H − ∂H). We shall need the following result

of [29]

Lemma 5. Let (M,η) be a contact manifold and u ∈ C∞(M) a

real-valued function. Then u is CR-pluriharmonic if and only if for any

x ∈ M there is an open neighborhood U ⊆ M of x and a real-valued

function λ ∈ C∞(U) so that dc
Hu + λη is a closed 1-form. Moreover,

there is a (globally defined) real-valued function v ∈ C∞(M) such that

∂H(u + iv) = 0 if and only if dc
Hu + λη is exact, for some (real-valued)

λ ∈ C∞(M).

(1)Although later F. Severi has shown (cf. [35]) that the conditions found by L. Amoroso
were overdetermined, the work of L. Amoroso (cf. op. cit.) remains of great importance
and, according to G. Fichera, [21], insufficient credit is given to L. Amoroso in the
existing literature on functions of several complex variables.
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Let us check that the arguments in [29] carry over to the case of a

contact manifold with a possibly non integrable almost CR structure. For

the sake of simplicity, we denote by P and CR∞ respectively the sheaves

of CR-pluriharmonic and CR functions on M . Assume that u ∈ P(M),

i.e. in a neighborhood U of each point of M we may consider a function

v ∈ C∞(U) so that u + iv ∈ CR∞(U) i.e.

i uα ηα − vα ηα = 0

(throughout we set fA = ξA(f), for any f ∈ C∞(U)), an identity which

summed up with its complex conjugate gives dc
Hu+ v0η = dv. Viceversa,

if dc
Hu + λη is closed then (by the Poincaré lemma) dc

Hu + λη = dv, for

some v ∈ C∞(V ) and some open set V ⊆ U , hence (by looking at the

(0, 1)-components) i uα = vα, i.e. u + iv ∈ CR∞(V ).

Lemma 6. Let (M,η) be a contact manifold of dimension ≥ 5 (that

is n ≥ 2) and Ξ ∈ Ω2(M) a closed 2-form (dΞ = 0). If Ξ|H(M)⊗H(M) = 0

then Ξ = 0.

The proof is similar to that of Lemma 3.2 in [29], p. 167. We shall

prove the following

Theorem 2. Let (M,η) be a contact manifold of CR dimension

n ≥ 2. Let u ∈ C∞(M) be a real-valued function and g ∈ M(η) an

associated Riemannian metric. Then u is CR-pluriharmonic if and only

if for any (local) frame {ξα} of (the almost CR structure) T1,0(M) on

U ⊆ M there is a complex-valued function µ ∈ C∞(U) such that

(23) uαβ = µ gαβ

and

(24) (Qγ
αβ − Qγ

βα)uγ = 0 .

If this is the case [i.e. u ∈ P(M)] then

(25) uα0 = Aβ
α uβ +

(
iµ − 1

2
u0

)
α
.

Here uAB = (∇2u)(ξA, ξB) and (∇2u)(X,Y ) := (∇∗
Xdu)Y , for X,Y ∈

T (M).
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Proof. Assume that u ∈ P(M). By Lemma 5 we may consider, in

the neighborhood U of each point of M , a real valued function λ ∈ C∞(U)

such that dc
Hu + λη is closed, i.e.

0 = d(iuα ηα − iuα ηα + λ η) =

= iduα ∧ ηα + iuα dηα − iduα ∧ ηα − iuα dηα + dλ ∧ η + λ dη .

Let us substitute from (13)-(14)

(26)

i ξβ(uα) ηβ ∧ ηα + i ξβ(uα) ηβ ∧ ηα + i ξ(uα) η ∧ ηα+

+ iuα(ηβ ∧ ωα
β

+ ηβ ∧ ωα
β + η ∧ τα)+

− i ξβ(uα) ηβ ∧ ηα − i ξβ(uα) ηβ ∧ ηα − i ξ(uα) η ∧ ηα+

− i uα(ηβ ∧ ωα
β + ηβ ∧ ωα

β
+ η ∧ τα)+

+ λα ηα ∧ η + λα ηα ∧ η − 2 i λ gαβ ηα ∧ ηβ = 0 .

The ηα ∧ ηβ-component in (26) is

(27) {ξα(uβ) − uγ Γγ

αβ
+ ξβ(uα) − uγ Γγ

βα
− 2λ gαβ}ηα ∧ ηβ = 0 .

By (16)-(18) uβα = ξα(uβ) − Γγ

αβ
uγ hence (27) may be written

(28) uβα + uαβ − 2λ gαβ = 0 .

At this point, using the identity

(∇∗
Xdu)Y = (∇∗

Y du)X − T ∗(X,Y )(u), X, Y ∈ T (M) ,

one may derive the (second order) commutation formulae

(29)





uα0 = u0α − Aβ
α uβ

uαβ = uβα

uβα = uαβ + 2 i gαβ u0

where u0 = ξ(u). Now substitution from (29) into (28) yields

uαβ + (iu0 − λ)gαβ = 0 ,



[19] Pseudohermitian geometry on contact etc. 293

which is (23) with µ := λ − i u0. The ηα ∧ ηβ-component in (26) is

{
ξβ(uα) − uγ Γγ

βα − i

2
uγ Qγ

αβ

}
ηα ∧ ηβ = 0

and substitution from uαβ = ξβ(uα) − Γγ
βα uγ + i

2
Qγ

αβ uγ leads to

Qγ
αβ uγ ηα ∧ ηβ = 0

which is (24). Finally, the η ∧ ηα-component in (26) is

{i uγ Γγ
0α − i uγ Aγ

α + i ξ(uα) − i uγ Γγ
0α + λα}ηα ∧ η = 0

and substitution from uα0 = ξ(uα) − Γγ
0α uγ gives

uα0 = i λα + Aβ
α uβ

which is (25).

Conversely, let us assume that u satisfies (23)-(24) for some complex-

valued function µ ∈ C∞(U).

Claim. The function λ ∈ C∞(U) given by λ := µ+i u0 is real-valued.

Summing (23) to its complex conjugate uβα = (λ+ i u0)gβα gives (by

the commutation formulae (29)) λ = λ. The claim is proved.

Let us differentiate uαη
α, substitute from (13)-(14), and replace the

ordinary derivatives in terms of covariant derivatives (with respect to

∇∗). We obtain the identity

(30)
d(uαη

α) =
i

2
(Qγ

αβ uγ ηα ∧ ηβ + Qγ

αβ
uγ ηα ∧ ηβ)+

− uαβ ηα ∧ ηβ + η ∧ (uα0 ηα + uα aα
β
ηβ)

for any real-valued u ∈ C∞(M). Next, for u satisfying (23)-(24) (by (30))

(31) d(uαη
α) = η ∧ (uα0 ηα + uα Aα

β
ηβ) − (λ − i u0) gαβ ηα ∧ ηβ .
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Then

d(dc
Hu + λη) = d(i uα ηα − i uα ηα + λη) = (by (31))

= i{η ∧ (uα0 ηα + uα Aα
β ηβ) − (λ + i u0)gαβ ηα ∧ ηβ}+

− i{η ∧ (uα0 ηα + uα Aα
β
ηβ) − (λ − i u0) gαβ ηα ∧ ηβ}+

+ dλ ∧ η − 2iλ gαβ ηα ∧ ηβ

i.e.

d(dc
Hu + λη) = η ∧ φ

where

φ := i uα0 ηα + i uα Aα
β ηβ − i uα0 ηα − i uα Aα

β
ηβ − λα ηα − λα ηα .

Applying Lemma 6 to the 2-form Ξ = d(dc
Hu+λη) gives Ξ = 0 hence (by

Lemma 5) u ∈ P(M).

For a given Riemannian manifold (Mn, G), no examples of functions

in CR∞(U(Mn)) or P(U(Mn)) are known. Of course, for any (almost)

holomorphic function f ∈ C1(T (Mn)) i.e.

(32)
δf

δxj
+ i

∂f

∂yj
= 0, 1 ≤ j ≤ n ,

the trace of f on U(Mn) is a CR function, yet the existing information

on the solutions to (32) is equally scarce. We recall the commutation

formula

(33)
[ δ

δxi
,

∂

∂yj

]
= Γk

ij(x)
∂

∂yk

If f = u + iv are the real and imaginary parts of f then (32) may be

written

(34)
δu

δxj
=

∂v

∂yj
,

∂u

∂yj
= − δv

δxj
.

Therefore, the holomorphic functions on T (Rn) are precisely the ordi-

nary holomorphic functions on Cn and each element of CRω(U(Rn)) is
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the trace of a holomorphic function. Indeed, when Γi
jk = 0, (34) are the

ordinary Cauchy-Riemann equations in R2n. Moreover U(Rn) is the real

analytic hypersurface
∑n

i=1(y
i)2 = 1 hence, by a theorem of G. Tomassini

(cf. [44]), any real analytic CR function on U(Rn) extends holomorphi-

cally to a neighborhood of U(Rn) in Cn. Applying δ/δxi to the first

equation in (34), respectively ∂/∂yi to the second, and adding the result-

ing equations gives (by (33))

(35)
δ2u

δxiδxj
+

∂2u

∂yj∂yi
= Γk

ij(x)
δu

δxk
.

We have

Proposition 1. Let F = u + iv ∈ C2(Mn). If the vertical lift

F v := F ◦ Π is (almost) holomorphic then u, v are harmonic functions.

In particular, if Mn is compact then C2(Mn)v ∩ O(T (Mn)) = C.

Proof. If f = F v, i.e. f is a function of the positional arguments xi

alone, then (35) becomes

∂2u

∂xi∂xj
= Γk

ij(x)
∂u

∂xk

in a neighborhood of each point of Mn. Now contraction with gij gives

∆u = 0, i.e. u is harmonic. The same arguments apply to v.

Remark 2. 1) Set zj = xj + iyj and δ/δzj = 1
2
(δ/δxj + i∂/∂yj). Un-

der a coordinate transformation x′j = x′j(x1, · · · , xn), det[∂x′j/∂xk] 	= 0

in U ∩ U ′, one has y′j = (∂x′j/∂xk)yk hence z′j = z′j(z1, · · · , zn) are

(almost) holomorphic (i.e. δz′j/δzk = 0 in Π−1(U ∩ U ′)) if and only if

∆x′j = 0 in U ∩ U ′.

2) If f ∈ O(T (Mn)) then ∂f/∂zj = 1
2
Γk
j�(x)y� ∂f/∂yk in Π−1(U)

reminiscent of I.N. Vekua’s generalized analytic functions (cf. [47], [23]).

4 – Curvature theory

Let (M,η, g) be a contact Riemannian manifold. Let R, R∗ be re-

spectively the curvature tensor fields of ∇, ∇∗. We consider the tensor
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field S defined by

S(X,Y ) = (∇∗
Xτ)Y − (∇∗

Y τ)X .

A straightforward calculation based on (21) leads to

(36)

R(X,Y )Z = R∗(X,Y )Z + (LX ∧ LY )Z + 2Ω(X,Y )ϕZ+

− g(S(X,Y ), Z)ξ + η(Z)S(X,Y )+

− 2g((η ∧ O)(X,Y ), Z)ξ + 2η(Z)(η ∧ O)(X,Y )

for any X,Y, Z ∈ T (M), where

L = ϕ − τ, O = τ 2 − 2ϕ τ − I ,

and (X ∧Y )Z = g(X,Z)Y − g(Y,Z)X. In particular, if X,Y, Z ∈ H(M)

R(X,Y )Z = R∗(X,Y )Z + (LX ∧LY )Z + 2Ω(X,Y )ϕZ − g(S(X,Y ), Z)ξ

Take the inner product with W ∈ H(M) to obtain

(37)
R(W,Z,X, Y ) = g(R∗(X,Y )Z,W )+

+ g((LX ∧ LY )Z,W ) − 2Ω(X,Y )Ω(Z,W )

for any X,Y, Z,W ∈ H(M), where R(W,Z,X, Y ) = g(R(X,Y )Z,W ) is

the Riemann-Christoffel 4-tensor of (M, g). Exploiting the well known

symmetry

R(W,Z,X, Y ) = R(X,Y,W,Z)

the identity (37) furnishes

(38)
g(R∗(X,Y )Z,W ) = g(R∗(W,Z)Y,X)+

+ g((LW ∧ LZ)Y,X) − g((LX ∧ LY )Z,W ) .

We adopt the following convention as to the curvature components

R∗(ξB, ξC)ξA = RA
D

BCξD .
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Then (by (7)) R0
D

BC = 0. Moreover

(39)

R∗(X,Y )ξA = 2(dωB
A − ωC

A ∧ ωB
C )(X, )ξB ,

2(dωB
A − ωC

A ∧ ωB
C ) = 2RA

B
λµ ηλ ∧ ηµ+

+ RA
B
λµ ηλ ∧ ηµ + RA

B
λµ + 2η ∧ (RA

B
0µ ηµ − RA

B
λ0 ηλ) .

We shall prove the following

Theorem 3. Let (M,η, g) be a contact Riemannian manifold.

Consider the 2-forms

Πβ
α = dωβ

α − ωγ
α ∧ ωβ

γ − ωγ
α ∧ ωβ

γ ,

Ωα
β = Πβ

α + 2i ηα ∧ τβ − 2i τα ∧ ηβ ,

Ωα
β = dωβ

α − ωγ
α ∧ ωβ

γ − ωγ
α ∧ ωβ

γ ,

where ηα = gαβη
β and τα = gαβτ

β, τβ = τβ. Then

Ωα
β = Rα

β
λµ ηλ ∧ ηµ − W β

αλ ηλ ∧ η + W β
αµ ηµ ∧ η+

− i

4
gβσ {gρλ Qρ

µα,σ ηλ ∧ ηµ + gρλ Qρ
µσ,α, η

λ ∧ ηµ}(40)

Ωα
β = −W β

αλ ηλ ∧ η + W β
αµ ηµ ∧ η+

+
i

2
{Qβ

αµ,λ ηλ ∧ ηµ − Qβ

αλ,µ
ηλ ∧ ηµ} ,(41)

where

W β
αλ = Sρ

ασgλρg
βσ, W β

αµ = −Sρ
ασgρµg

βσ

W β
αλ = Sρ

ασgλρg
βσ, W β

αµ = −Sρ
ασgρµg

βσ

and comas denote covariant derivatives with respect to the generalized

Tanaka-Webster connection.
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We need the following

Lemma 7. On any contact Riemannian manifold M the curvature

of ∇∗ is expressed as

Rα
ρ
λµ = 2i(Aαλ δρµ − Aαµ δρλ) −

i

2
gρσgβλ Qβ

µα,σ(42)

Rα
ρ
λµ = 2i(Aρ

λ
gαµ − Aρ

µ gαλ) −
i

2
gρσgβλQ

β
µσ,α(43)

Rα
β

0µ = gβσgρµS
ρ
ασ(44)

Rα
β
λ0 = gβσgλρS

ρ
σα(45)

Proof. For instance, to establish (42) we set X = ξλ, Y = ξµ, Z =

ξα and W = ξσ in (38) and use

Lξα = iξα − Aβ
α ξβ

and Lemma 3 to obtain

(46) Rα
β
λµgβσ = Rµ

β
σα

gβλ + 2i(Aαλgµσ − Aαµgλσ) .

On the other hand a calculation based on (16)-(18) and the following

decomposition

η([ξσ, ξα]) = −2 i gασ(47)

[ξσ, ξα]1,0 = Γρ
σα ξρ(48)

[ξσ, ξα]0,1 = −Γρ
ασ ξρ(49)

(where V1,0 is the T1,0(M)-component of V ∈ T (M) ⊗ C with respect to

T (M) ⊗ C = T1,0(M) ⊕ T0,1(M) ⊕ Cξ and V0,1 = V1,0) of commutators,

leads to

Rµ
β
σα

= − i

2
Qβ

µα,σ

and then (46) yields (42). A similar approach leads to (43). The proof

of (44) (respectively (45)) is a bit trickier. Let us take the inner product
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of (36) by W ∈ T (M) and use the resulting identity and the symmetry

of the 4-tensor R to obtain an identity of the form g(R∗(X,Y )Z,W ) =

g(R∗(W,Z)Y,X) + other terms. Set X = ξ and Y,Z,W ∈ H(M). This

leads to (as Lξ = 0 and H(M) is ∇∗-parallel)

(50) g(R∗(ξ, Y )Z,W ) = g(Y, S(Z,W )) .

Now (50) for Y = ξµ, Z = ξα and W = ξσ is (44) and (45) follows

similarly.

The substitution from (42)-(45) into (39) and the identity

(Aαλ δβµ − Aαµ δβλ)ηλ ∧ ηµ = 2 τα ∧ ηβ

lead now to (40) in Theorem 3. The proof of (41) is similar and thus

omitted.

The Ricci curvature of ∇∗ is

Ric∗(X,Y ) := trace{V '→ R∗(V, Y )X}, X, Y ∈ T (M) ,

and Rαβ = Ric∗(ξα, ξβ) is the contact Riemannian analogue of the pseu-

dohermitian Ricci curvature of [48] and [29]. From the very definition

Rαβ = Rα
γ
γβ + Rα

γ
γβ .

Next, a calculation based on

[ξλ, ξµ]1,0 = (Γρ
λµ − Γρ

µλ)ξρ(51)

[ξλ, ξµ]0,1 =
i

2
(Qρ

λµ − Qρ
µλ)ξρ(52)

leads to Rα
β
λµ = 0 and hence

(53) Rαβ = Rα
γ
γβ .

As a consequence of Theorem 3 we shall prove

Corollary 1. Let (M,η, g) be a contact Riemannian manifold and

set

RABCD := g(R∗(ξC , ξD)ξA, ξB) ,
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for any (local) frame {ξα} in T1,0(M). Then

(54) Rαβλµ = Rλβαµ ,

and consequently the pseudohermitian Ricci tensor is given by

(55) Rαβ = Rγ
γ
αβ

.

Proof. Let us contract with gβγ in (40) (respectively in (41)). We

get

(56)
Ωαγ = Rαγλµ ηλ ∧ ηµ + λαγ ∧ η+

− i

4
{gρλ Qρ

µα,γ ηλ ∧ ηµ + gρλ Qρ
µ γ,α ηλ ∧ ηµ} ,

(57) Ωαγ = λαγ ∧ η +
i

2
gβγ Qβ

αµ,λ ηλ ∧ ηµ + − i

2
gβγQ

β

αλ,µ
ηλ ∧ ηµ ,

where
λαγ = −W β

αλgβγη
λ + W β

αµgβγη
µ ,

λαγ = −W β
αλgβγη

λ + W β
αµgβγη

µ .

Differentiating in (14) we have

0 = dηβ ∧ ωα
β − ηβ ∧ dωα

β + dηβ ∧ ωα
β
− ηβ ∧ dωα

β
+ dη ∧ τα − η ∧ dτα

and substituting from (13)-(14)

0 = ηγ ∧ (−Πα
γ − 2i ηγ ∧ τα)+ ηγ ∧ (−Ωγ

α)+ η∧ (τβ ∧ωα
β + τβ ∧ωα

β
− dτα)

or, by observing that ηγ ∧ τγ = 0

(58) ηγ ∧ Ωγ
α + ηγ ∧ Ωγ

α + η ∧ Ωα = 0

where

Ωα = dτα − τβ ∧ ωα
β − τβ ∧ ωα

β
.

Let us contract with gαβ in (58) and subsequently substitute from (56)-

(57). The ηα ∧ ηβ ∧ ηγ-component of the resulting identity is

Rαγλµ ηα ∧ ηλ ∧ ηµ = 0 ,

which yields the first statement in Corollary 1. The second part is a

consequence of the first and of (53).
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4.1 – Pseudo-Einstein contact forms

Let M be a nondegenerate CR manifold, of CR dimension n. A con-

tact form η on M is pseudo-Einstein if the pseudohermitian Ricci tensor

(of the Tanaka-Webster connection) of (M,η) is proportional to the Levi

form. That is Rαβ = (ρ∗/n)gαβ, where ρ∗ = gαβRαβ is the pseudoher-

mitian scalar curvature (cf. [29]). A CR manifold admitting a (glob-

ally defined) pseudo-Einstein contact form is a pseudo-Einstein manifold.

Odd-dimensional spheres (with the standard Sasakian structure) and unit

tangent bundles over real space forms (of sectional curvature 1, cf. [2]) are

pseudo-Einstein manifolds. Also, the quotient of the Heisenberg group by

the (discrete) group of dilations is a strictly pseudoconvex CR manifold

admitting a pseudo-Einstein contact form (cf. [19]) with nonvanishing

Webster torsion (τ = 0 in the previous examples). The local existence of

pseudo-Einstein contact forms on a nondegenerate CR manifold is related

to the existence of closed sections in K0(M) := K(M) \ {zero section},
where K(M) = Λn+1,0(M) is the canonical bundle, and therefore to the

local embedding problem for CR structures (cf. [29]).

Let (M,η) be a contact manifold and Z ∈ Γ0(K0(M)). We say η is

volume normalized with respect to Z if

(59) 2n in(n+2)n! η ∧ (ξ !Z) ∧ (ξ !Z) = Ψ ,

where Ψ = η∧(dη)n. In CR geometry, if such sections Z exist and dZ = 0

then η is pseudo-Einstein (cf. [29]). Opposite to the integrable case, on a

contact manifold with a non integrable almost CR structure there exist

none. Precisely, we shall prove

Theorem 4. Any contact manifold (M,η) admitting a smooth,

globally defined, nowhere vanishing, closed section in the canonical bundle

has an integrable almost CR structure (and η is pseudo-Einstein).

Proof. Let Z ∈ Γ∞(K0(M)). Locally, with respect to an orthonor-

mal frame {ξα} in T1,0(M) on U

Z = f η ∧ η1 ∧ · · · ∧ ηn ,

for some smooth function f : U → C \ {0}. As

ξ !Z =
f

n + 1
η1 ∧ · · · ∧ ηn ,
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substitution in (59) together with the identity (46) in [3] (with det(gαβ) =

1)

Ψ = 2nin(n+2)n! η ∧ η1 ∧ · · · ∧ ηn ∧ η1 ∧ · · · ∧ ηn

lead to |f | = n + 1. Set

ξ̂α = Uβ
α ξβ, [Uα

β ] = diag (f, 1, · · · , 1) ,

and let {η̂α} be the corresponding admissible coframe. Then

Z = η ∧ η̂1 ∧ · · · ∧ η̂n

and exterior differentiation gives

dZ = (dη) ∧ η̂1 ∧ · · · ∧ η̂n+

+
n∑

α=1

(−1)α η ∧ η̂1 ∧ · · · ∧ (dη̂α) ∧ · · · ∧ η̂n = (by (13)-(14))

=
n∑

α=1

(−1)α η ∧ η̂1 ∧ · · · ∧ (η̂β ∧ ω̂α
β + η̂β ∧ ω̂α

β
+ η ∧ τ̂α) ∧ · · · ∧ η̂n

hence (by (16)-(18))

(60)

dZ = −ω̂α
α ∧ Z+

+
i

2
Q̂α

βµ
η̂β∧η̂µ

n∑

α=1

(−1)αη ∧ η̂1∧· · ·∧η̂α−1∧η̂α+1∧· · ·∧η̂n .

If dZ = 0, the (n, 2) component in (60) is (note that the first term is of

type (n + 1, 1))

Q̂α
β µ

η̂β ∧ η̂µ
∑

α

η ∧ η̂1 ∧ · · · ∧ η̂α−1 ∧ η̂α+1 ∧ · · · ∧ η̂n = 0

which yields Q̂ρ

β µ
= Q̂ρ

µ β
and together with

[ξ̂λ, ξ̂µ]1,0 =
i

2
(Q̂ρ

µλ
− Q̂ρ

λµ
)ξ̂ρ

completes the proof of Theorem 4.
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By a result of J.M. Lee (cf. [29]) on any nondegenerate CR manifold

a contact form η is pseudo-Einstein if and only if the 1-form ωα
α − i

2n
ρ∗ η

is closed, for any (local) frame {ξα} in T1,0(M). We shall prove

Proposition 2. Let (M,η) be a contact manifold, of CR dimension

n, and g ∈ M(η) an associated Riemannian metric so that the 1-form

ωα
α − i

2n
ρ∗ η is closed, for some frame {ξα} in T1,0(M). Then

(61) Rλµ = (ρ∗/n) gλµ − 1

4
Qρ

γ µQ
γ
ρλ .

Proof. Let us contract α and β in (40) of Theorem 3. As

ηα ∧ τα = 0, ωα
γ ∧ ωγ

α = 0, ωα
γ ∧ ωγ

α = −1

4
Qα

γ µQ
γ
αλ ηλ ∧ ηµ

we obtain (by (55) in Corollary 1)

(62)
dωα

α =
(
Rλµ +

1

4
Qα

γ µQ
γ
αλ

)
ηλ ∧ ηµ − Wα

αλη
λ ∧ η + Wα

αµη
µ ∧ η+

− i

2
gασgρλQ

ρ
µα,σ ηλ ∧ ηµ − i

2
gασgρλ Qρ

µσ,α ηλ ∧ ηµ .

Assume ωα
α − i

2n
ρ∗η to be closed i.e.

dωα
α =

i

2n
(dρ∗ ∧ η + ρ∗dη) ,

substitute into (62), and apply the resulting identity to the pair (ξλ, ξµ).

This procedure yields (61) in Proposition 2 .

Remark 3. The converse of Proposition 2 is not true in general. For

if we assume (61) to hold for a pair (η, g) then (62) may be written

(63) d
(
ωα
α − i

2n
ρ∗ η

)
= φ ∧ η − i

2
φλµη

λ ∧ ηµ − i

2
φλµη

λ ∧ ηµ ,

where
φ = −Wα

αλη
λ + Wα

αµη
µ + (i/2n) dρ∗ ,

φλµ = gασgρλQ
ρ
µα,σ , φλµ = gασgρλ Qρ

µσ,α ,

hence Lemma 6 does not apply [due to the presence of terms of type

(2, 0), respectively (0, 2) in (63), originating in the non integrability of

T1,0(M)].
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4.2 – The Fefferman metric

Let (M,η), g ∈ M(η), be a contact Riemannian manifold. Con-

sider the principal S1-bundle F (M) := K0(M)/R+
π−→ M , where R+ =

GL+(1,R). We shall need the tautologous form Ξ∈Γ∞(Λn+1T ∗(K(M))⊗
C) given by

Ξω(Z1, · · · , Zn+1) = ω((dωπ0)Z1, · · · , (dωπ0)Zn+1) ,

Z1, · · · , Zn+1 ∈ Tω(K(M)), ω ∈ K(M),

where π0 : K(M) → M is the projection. By Lemma 3 in [3], p. 19, for

any [ω] ∈ F (M) with π0(ω) = x, there is a unique λ ∈ (0,+∞) such that

2n in(n+2) n! ηx ∧ (ξx !ω) ∧ (ξx !ω) = λΨx .

Consequently, there is a natural embedding

ιη : F (M) → K(M), ιη([ω]) = (1/
√

λ)ω .

Next, we consider Z ∈ Γ∞(Λn+1T ∗(F (M)) ⊗ C) given by

Z =
1

n + 1
ι∗η Ξ .

Given a (local) frame {ξα} of T1,0(M) and the corresponding admissible

coframe {ηα}, we build a local form Ξ0 ∈ Γ∞(U,K0(M)) by setting

Ξ0 = det(gαβ)
1/2 η ∧ η1 ∧ · · · ∧ ηn

and consider Z0 ∈ Γ∞(π−1(U),Λn+1T ∗(F (M))⊗C) given by Z0 = π∗Ξ0.

Let γ : π−1(U) → R be the natural fibre coordinate on F (M) and Γ ∈
X (F (M)) the tangent to the S1-action. Then (by Lemma 4 in [3], p. 22)

Z = eiγZ0 and (dγ)Γ = 1. By Proposition 3 in [3], p. 23, there is a unique

real 1-form σ ∈ Γ∞(T ∗(F (M))) such that

dZ = i(n + 2)σ ∧ Z + eiγ π∗[det(gαβ)
1/2 W](64)

σ ∧ (dr) ∧ r = trace(dσ) i σ ∧ (π∗ η) ∧ r ∧ r .(65)
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Here r is the complex n-form on F (M) such that V ! r = 0 and Z =

(π∗η) ∧ r, for any lift V of ξ to F (M), i.e. π∗V = ξ (the existence and

uniqueness of r follow from Lemma 5 in [3], p. 22). Also W is the complex

(n + 2)-form on M given by

W =
i

2
η ∧

n∑

α=1

(−1)α η1 ∧ · · · ∧ (Qα
βγ

ηβ ∧ ηγ) ∧ · · · ∧ ηn .

The (generalized) Fefferman metric of the contact Riemannian manifold

(M,η, g) is the Lorentz metric Gη on F (M) given by

Gη = π∗ Lη + 2(π∗η) ( σ ,

where Lη is the (degenerate) bilinear form on T (M) given by1)Lη(X,Y )=

−g(X,Y ), X, Y ∈ H(M), and 2) Lη(ξ,X) = 0, X ∈ T (M). Cf. [3],

p. 27. When the almost CR structure is integrable Gη is the ordinary Fef-

ferman metric (of [20] and [28]). Also, if this is the case (i.e. Q = 0) then

σ may be explicitely calculated in terms of pseudohermitian invariants.

In this section, we attack the similar problem for a contact Riemannian

manifold with a nonintegrable almost CR structure. We shall show that

σ =
1

n + 2

{
dγ + π∗

[
iωα

α − i

2
gαβdgαβ +

1

4(n + 1)

(
ρ∗ +

1

4
gλµQβ

αλQ
α
βµ

)
η
]}

.

First, note that

(66) r = eiγπ∗(Gη1 ∧ · · · ∧ ηn) ,

where G = det(gαβ)
1/2. Indeed, if V is a lift of ξ to F (M) then

r = (n + 1)V !Z = (n + 1)V ! (eiγZ0) = (n + 1) eiγ V !π∗Ξ0 =

= (n + 1)eiγ π∗(ξ !Ξ0) = eiγπ∗[det(gαβ)
1/2η1···n] ,

where η1···n is short for η1 ∧ · · · ∧ ηn. A calculation similar to that in the

previous section shows that

d(η ∧ η1···n) = −ωα
α ∧ η ∧ η1···n + W



306 DAVID E. BLAIR – SORIN DRAGOMIR [32]

and then

dΞ0 = (d log G − ωα
α) ∧ Ξ0 + GW .

Consider the (1, 0)-form

ω = (hβ − Γα
βα)ηβ +

1

2
Γα

0α η ,

where h = log G and hβ = ξβ(h). Then

dΞ0 = (hβ − Γα
βα

) ηβ ∧ Ξ0 + GW = (ω − ω) ∧ Ξ0 + GW .

As ω − ω is pure imaginary, there is a real 1-form σ0 on M such that

ω − ω = i(n + 2)σ0 hence

(67) dΞ0 = i(n + 2)σ0 ∧ Ξ0 + GW .

At this point, differentiating Z = eiγZ0 and using (67) leads to (64) with

σ given by

σ =
1

n + 2
dγ + π∗σ0 .

We wish to compute σ0 in terms of pseudohermitian invariants. To this

end, note that

hµ =
1

2
gαβξµ(gαβ) .

Indeed

ξµ(h) = ξµ(log G) =
1

2G2
ξµ(G

2) =
1

2G2

∂G2

∂gαβ
ξµ(gαβ) =

1

2
gαβξµ(gαβ) .

On the other hand gαβdgαβ = ωα
α + ωα

α hence hµ = 1
2
(Γα

µα + Γα
µα) thus

leading to

(68) σ0 =
i

2(n + 2)
(ωα

α − ωα
α)

or

σ0 =
i

n + 2

(
ωα
α − 1

2
gαβd gαβ

)
.
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For f ∈ C∞(M) set

σf = σ + π∗(fη) .

Note that, should one replace σ by σf , (64) still holds. We wish to

determine f such that (65) holds as well (with σ replaced by σf ). Only

the existence of such f has been proved in [3], p. 26. To accomplish our

task we need to compute trace(dσ0). Recall that, for any complex 2-form

Ω on M , if Ω ≡ iΩαβ ηα ∧ ηβ , mod ηα ∧ ηβ, ηα ∧ ηβ, then trace(Ω) =

− 1
2
gαβΩαβ. Also trace(π∗Ω) := trace(Ω). Differentiating in (68) we get

dσ0 =
i

2(n + 2)
(dωα

α − dωα
α) .

By (62)

dωα
α ≡

(
Rλµ +

1

4
Qγ

αλQ
α
γ µ

)
ηλ ∧ ηµ , mod η ∧ ηλ, η ∧ ηµ, ηλ ∧ ηµ, ηλ ∧ ηµ ,

hence

trace(i dωα
α) = −1

2
ρ∗ − 1

8
gλµ Qγ

αλ Qα
γ µ ,

trace(i dωα
α) =

1

2
ρ∗ +

1

8
gλµ Qα

γλ Qγ
αµ .

We conclude that

(69) trace(dσ0) = − 1

2(n + 2)

{
ρ∗ +

1

4
gλµ Qγ

αλ Qα
γ µ

}
.

Now we wish to solve for f in the equation

σf ∧ (dr) ∧ r = trace(dσf ) i σf ∧ (π∗η) ∧ r ∧ r .

By the very definition of σf

dσf = dσ + (df) ∧ η + f dη ≡ dσ0 − 2i f gαβ ηα ∧ ηβ ,

hence

trace(dσf ) = n f + trace(dσ0) .
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Therefore, we must solve for f in

(σ + fη) ∧ (dr) ∧ r = {nf + trace(dσ0)} i σ ∧ (π∗η) ∧ r ∧ r .

Differentiating in (66)

dr = i eiγ dγ ∧ π∗(Gη1···n) + eiγ π∗(dG ∧ η1···n + Gdη1···n)

we get

(70) (dr) ∧ r = (i dγ + d log G) ∧ r ∧ r + G2(dη1···n) ∧ η1···n ,

where η1···n = η1···n and π∗ is omitted for simplicity. Yet

(dη1···n) ∧ η1···n = −ωα
α η1···n ∧ η1···n

hence (70) becomes

(dr) ∧ r = i dγ ∧ r ∧ r + (d log G − ωα
α) ∧ r ∧ r

and then [as η ∧ (d log G − ωα
α) ∧ r ∧ r = 0]

η ∧ (dr) ∧ r = i η ∧ (dγ) ∧ r ∧ r =

= i(n + 2) η ∧ (σ − σ0) ∧ r ∧ r = (as η ∧ σ0 ∧ r ∧ r = 0)

= i(n + 2) η ∧ σ ∧ r ∧ r .

One is led to solve for f in

σ ∧ (dr) ∧ r = i {trace(dσ0) + 2(n + 1) f}σ ∧ η ∧ r ∧ r .

Yet, the left hand member vanishes:

σ ∧ (dr) ∧ r = i σ ∧ (dγ) ∧ r ∧ r + σ ∧ (d log G − ωα
α) ∧ r ∧ r =

= i σ0 ∧ (dγ) ∧ r ∧ r + σ ∧ (h0 − Γα
0α)η ∧ r ∧ r =

=
1

2(n + 2)
(ωα

α − ωα
α) ∧ (dγ) ∧ r ∧ r + (h0 − Γα

0α)σ ∧ η ∧ r ∧ r =

=
{
h0 − 1

2
(Γα

0α + Γα
0α)
}

σ ∧ η ∧ r ∧ r = 0
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because h0 = 1
2
gαβξ(gαβ) = 1

2
(Γα

0α + Γα
0α). Moreover σ ∧ η ∧ r ∧ r is a

volume form on F (M) and hence

f = − 1

2(n + 1)
trace(dσ0) ,

or (by (69))

f =
1

4(n + 1)(n + 2)

{
ρ∗ +

1

4
gλµ Qβ

αλ Qα
β µ

}
.

5 – Pseudohermitian holonomy

Let (M,T1,0(M)) be a strictly pseudoconvex CR manifold, of CR

dimension n. Let θ be a contact form on M such that the Levi form

Lθ be positive definite. Let T be the characteristic direction of (M, θ).

Let GL(2n + 1,R) → L(M) −→ M be the principal bundle of all linear

frames tangent to M . For each x ∈ M , let B(θ)x consist of all R-linear

isomorphisms u : R2n+1 → Tx(M) such that

u(e0) = Tx, u(eα) ∈ H(M)x, u(eα+n) = ϕx u(eα) ,

gx(u(eα), u(eβ)) = δαβ, gx(u(eα), u(eβ+n)) = 0 ,

where g is the Webster metric of (M, θ). Also {e0, eα, eα+n} ⊂ R2n+1

is the canonical linear basis. Then B(θ) → M is a U(n) × 1-structure

on M [i.e. a principal U(n) × 1-subbundle of L(M)]. On a strictly

pseudoconvex CR manifold, there are two natural families of holonomy

groups one may consider, the holonomy of the Levi-Civita connection

of (M, g) and the holonomy of the Tanaka-Webster connection. The

Tanaka-Webster connection ∇∗ of (M, θ) gives rise to a connection Γ in

B(θ). Let Φ0(u) be the restricted holonomy group of Γ, with reference

point u ∈ B(θ). We call Φ0(u) the pseudohermitian holonomy group of

(M, θ) at u. A systematic study of the (pseudohermitian) holonomy of a

CR manifold is still missing in the present day mathematical literature.

In the present note we establish a pseudohermitian analogue of a result

by H. Iwamoto, [25] (cf. also [27], Vol. II, p. 151)
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Theorem 5. Let (M, (ϕ, ξ, η, g)) be a real (2n + 1)-dimensional

Sasakian manifold. The pseudohermitian holonomy groups of (M,η) are

contained in SU(n) × 1 if and only if the Tanaka-Webster connection of

(M,η) is Ricci flat (Ric∗ = 0).

Proof. As indicated in Section 2, M is thought of as a strictly pseu-

doconvex CR manifold carrying a contact form with vanishing Webster

torsion (τ = 0) and g is its Webster metric. For any u ∈ B(θ), Φ0(u) ⊂
U(n) × 1. Let Ω be the curvature 2-form of Γ. By Lemma 1 in [27] ,

Vol. II, p. 151, given an ideal h of L(U(n)×1), L(Φ0(u)) ⊂ h if and only

if Ω is h-valued. Throughout L(G) is the Lie algebra of the Lie group

G. Let Ei
j ∈ gl(2n + 1,R) be the matrix with 1 in the j-th row and

i-th column and 0 at all other entries. Then Ω = Ωi
j ⊗ Ej

i . A basis of

L(U(n) × 1) is

{Eβ+1
α+1−Eα+1

β+1 +Eβ+n+1
α+n+1−Eα+n+1

β+n+1 , Eβ+1
α+n+1−Eα+n+1

β+1 +Eα+1
β+n+1−Eβ+n+1

α+1 } ,

hence

Ωi
1 = 0, Ω1

j = 0 ,

Ωα+1
β+1 = Ωα+n+1

β+n+1 = Φα
β − Φβ

α ,

Ωα+n+1
β+1 = −Ωα+1

β+n+1 = Ψα
β + Ψβ

α ,

for some scalar 2-forms Φα
β , Ψα

β on B(θ). As SU(n) = O(2n) ∩ SL(n,C)

it follows that Ω is L(SU(n) × 1)-valued if and only if Ψα
α = 0. On the

other hand, using the identity

(71) 2u(Ω(XΓ, Y Γ)u u−1(Zx)) = (R∗(X,Y )Z)x, u ∈ B(θ)x ,

we may compute the forms Ψα
α in terms of RA

B
CD. Here X,Y, Z are

vector fields on M and XΓ is the Γ-horizontal lift of X. Let x ∈ M and

{Xα, JXα, T} be a cross section in B(θ), defined on some open neigh-

borhood U of x. Set ξα = 1√
2
(Xα − iJXα) (hence gαβ = δαβ). Let

u = (x, {Xα,x, ϕxXα,x, Tx}) and note that u−1(ξγ,x) = 1√
2
(eγ − i eγ+n).

Then (71) leads to

(R∗(X,Y )ξγ)x = 2{Φα
γ − Φγ

α + i(Ψα
γ + Ψγ

α)}(XΓ, Y Γ)uξα,x ,
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because of Ei
jek = δikej. Take the inner product with ξα and contract α

and γ in the resulting identity. We obtain

(72) 4iΨα
α(XΓ, XΓ)u =

n∑

α=1

g(R∗(X,Y )ξα, ξα)x .

The curvature form Ω is horizontal, hence L(U(n) × 1)∗ !ψα
α = 0, where

A∗ is the fundamental vertical vector field associated to the left invariant

vector field A. Also (by (42) with Q = 0)

4iΨα
α(ξΓ

λ , ξ
Γ
µ)u =

∑

α

Rα
σ
λµgσα = Rα

α
λµ = 0 .

Similarly (by (45))

4iΨα
α(T Γ, ξΓ

λ) = Rα
α

0λ =
∑

α

Sλ
αα = 0 .

Finally (again by (72))

(73) Rλµ(x) = 4iΨα
α(ξΓ

λ , ξ
Γ
µ)u .

As Ψα
α is a real form, (73) shows that Ψα

α = 0 if and only if Rλµ = 0.

Yet when τ = 0 the only nonzero components of Ric∗ are Rλµ (cf. also

Lemma 8 in Section 5.1).

Note that the hypothesis τ = 0 was not fully used in the proof of

Theorem 5 (only S = 0 was actually needed). Therefore, we obtained the

following result

Theorem 6. Let M be a strictly pseudoconvex CR manifold, of

CR dimension n, and θ a contact form with parallel Webster torsion

(∇∗τ = 0). Then the Tanaka-Webster connection ∇∗ of (M, θ) has pseu-

dohermitian holonomy contained in SU(n) × 1 if and only if the pseudo-

hermitian Ricci tensor of (M, θ) vanishes (Rαβ = 0).



312 DAVID E. BLAIR – SORIN DRAGOMIR [38]

5.1 – Quaternionic Sasakian manifolds

The closest odd dimensional analogue of Kählerian manifolds seem to

be Sasakian manifolds (cf. [11]). On the other hand, real 4m-dimensional

Riemannian manifolds whose holonomy group is contained in Sp(m) (hy-

perkählerian manifolds) or in Sp(m)Sp(1) (quaternionic-Kähler mani-

folds) are quaternion analogues and, by a well known result of M. Ber-

ger, [9], any hyperkählerian manifold is Ricci flat, while any quaternion-

Kähler manifold is Einstein (provided that m ≥ 2). Cf. also S. Ishi-

hara, [24]. It is a natural question whether a Sasakian counterpart of

quaternionic-Kähler manifolds may be devised, with the expectation of

producing new examples of pseudo-Einstein contact forms (cf. [29]). Ev-

idence on the existence of such a notion may be obtained as follows.

Recall (cf. e.g. [10], p. 403) that a Riemannian manifold (M 4m, g) is

quaternionic-Kähler if and only if there is a covering of M 4m by open

sets Ui and, for each i, two almost complex structures F and G on Ui

so that a) g is Hermitian with respect to F and G on Ui, b) FG =

−GF , c) the covariant derivatives (with respect to the Levi-Civita con-

nection of (M 4m, g)) of F and G are linear combinations of F, G and

H := FG, and d) for any x ∈ Ui ∩ Uj the linear space of endomor-

phisms of Tx(M
4m) spanned by F,G and H is the same for both i

and j. In an attempt to unify the treatment of quaternionic subman-

ifolds, and of totally real submanifolds of a quaternionic-Kähler manifold

(cf. S. Funbashi, [22], S. Marchiafava, [30], A. Martinez, [31], A.

Martinez & J.D. Pérez & F.G. Santos, [32], G. Pitis, [33], Y.

Shibuya, [36]) M. Barros & B-Y. Chen & F. Urbano introduced (cf. [4])

the notion of quaternionic CR submanifold of a quaternionic-Kähler man-

ifold, as follows. Let N be a real submanifold of a quaternionic-Kähler

manifold M 4m. A C∞ distribution H(N) on N is a quaternionic dis-

tribution if for any x ∈ N and any i such that x ∈ Ui ⊆ M 4m one

has F (H(N)x) ⊆ H(N)x, G(H(N)x) ⊆ H(N)x [and then, of course,

Hx(H(N)x) ⊆ H(N)x]. A submanifold N of a quaternionic-Kähler man-

ifold is a quaternionic CR submanifold if it is endowed with a quaternionic

distribution H(N) such that its orthogonal complement H(N)⊥ in T (N)

satisfies F (H(N)⊥x ) ⊆ T (N)⊥x , G(H(N)⊥x ) ⊆ T (N)⊥x and H(H(N)⊥x ) ⊆
T (N)⊥x for any x ∈ Ui and any i. Here T (N)⊥ → N is the normal bundle

(of the given immersion of N in M 4m). Let us also recall (cf. e.g. [10],
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p. 398) that a Riemannian manifold (M 4m, g) is hyperkählerian if and

only if there exist on M 4m two complex structures F and G compatible

with g and such that a) F and G are parallel, i.e. g is a Kählerian

metric for both F and G, and b) FG = −GF . Given a quaternionic CR

submanifold (N,H(N)) of a hyperkähler manifold (M 4m, g, F,G), by a

theorem of D.E. Blair & B-Y. Chen, [13], the complex structures F and

G induce two CR structures on N (provided N is proper, i.e. H(N) 	= 0

and H(N)⊥ 	= 0) so that H(N) is the Levi distribution for both. Taking

this situation as a model one may produce the following notion of abstract

(i.e. not embedded) hyper CR manifold. Let (M,T1,0(M)) be a CR

manifold of type (n, k) where n = 2m (hence dimR M = 4m + k) and

k ≥ 1. Let H(M) be its Levi distribution and

F : H(M) → H(M), F (Z + Z) = i(Z − Z), Z ∈ T1,0(M) ,

its complex structure. We say (M,T1,0(M)) is a hyper CR manifold if it

pssesses two additional CR structures, say T1,0(M)′ and T1,0(M)′′, with

the same Levi distribution H(M), such that the corresponding complex

structures G,H : H(M) → H(M) satisfy

(74)





F 2 = G2 = H2 = −I

FG = −GF = H

GH = −HG = F

HF = −FH = G .

More generally, a quaternionic CR manifold is a real (4m+k)-dimensional

manifold M , k ≥ 1, endowed with a real rank 4m subbundle H(M) ⊂
T (M) and a real rank 3 subbundle E → M of H(M)∗⊗H(M) → M such

that for any x ∈ M there is an open neighborhood U of x and a local

frame {F,G,H} of E on U satisfying the identities (74). A priori, the no-

tions of a hyper CR manifold, or a quaternionic CR manifold, seem not to

be direct analogues of the notions of hyperkähler and quaternionic-Kähler

manifolds, as there is no counterpart of the metric structure there. How-

ever, in complex analysis one is interested in the metric structure arising

from the complex structure, e.g. the Levi form of a given CR mani-

fold, extending (for nondegenerate CR structures) to a semi-Riemannian

metric (the Webster metric).
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Let M 4m+1 be a hyper CR manifold, such that (M 4m+1, T1,0(M)) is

nondegenerate, and let θ be a fixed contact form. We say θ is a hyper

contact form if ∇∗G = 0 and ∇∗H = 0, where ∇∗ is the Tanaka-Webster

connection of (M 4m+1, θ). More generally, let (M 4m+1, H(M), E) be a

quaternionic CR manifold of the following sort: M 4m+1 carries a non-

degenerate CR structure T1,0(M) whose Levi distribution is H(M) and

for any x ∈ M 4m+1 there is an open neighborhood U and a local frame

of E on U of the form {F,G,H} where F is the (restriction to U of

the) complex structure in H(M) associated to T1,0(M) and satisfying the

identities (74). Such a local frame of E at x will be referred hereafter as

an F -frame. A contact form θ on (M 4m+1, T1,0(M)) is said to be a quater-

nionic contact form if for any x ∈ M 4m+1 there is an open neighborhood

U and an F -frame {F,G,H} of E on U such that

(75)





(dθ)(FX,FY ) + (dθ)(X,Y ) = 0 ,

(dθ)(GX,GY ) + (dθ)(X,Y ) = 0 ,

(dθ)(HX,HY ) + (dθ)(X,Y ) = 0 ,

for any X,Y ∈ H(M), and moreover

(76)





∇∗
XF = 0 ,

∇∗
XG = p(X)H ,

∇∗
XH = −p(X)G ,

for some 1-form p on U and any X ∈ T (M), where ∇∗ is the Tanaka-

Webster connection of (M 4m+1, F, θ). Note that the first row identities

in (75)-(76) are written for uniformity sake (and are automatically satis-

fied, one as a consequence of the formal integrability property of T1,0(M),

and the other by the very construction of ∇∗). A quaternionic CR man-

ifold carrying a quaternionic contact form θ is said to be a quaternionic

Sasakian manifold. This is motivated by Theorem 7 below, according

to which the Webster torsion of θ vanishes (τ = 0), i.e. the underlying

Riemannian metric is indeed Sasakian.

Theorem 7. Let (M 4m+1, θ) be a quaternionic Sasakian manifold.

Then τ = 0, i.e. the Webster metric g of (M 4m+1, θ) is a Sasakian metric.

Moreover, either the Tanaka-Webster connection of (M 4m+1, θ) is Ricci
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flat, or m = 1. If this is the case (i.e. m = 1) then (M 5, θ) is pseudo-

Einstein if and only if 4p+ρ∗ θ is a closed 1-form on U , for any F -frame

of E on U obeying (75)-(76).

Remark 4.

1) By Theorem 5 any quaternionic Sasakian manifold M 4m+1 of dimen-

sion ≥ 9 has pseudohermitian holonomy contained in SU(2m) × 1.

2) By a result of J.M. Lee, [29], the first Chern class of the CR structure

of M 4m+1 must vanish (c1(T1,0(M)) = 0).

3) Let Mn(1) be a real space form of sectional curvature 1. By a re-

sult in [2] the pseudohermitian Ricci tensor of U(Mn(1)) is given by

Rαβ = [ 1
2

+ 2(n + ‖µ‖)]gαβ, where µ is the mean curvature vector

of U(Mn(1)) in T (Mn(1)). Therefore (by Theorem 7) U(M 2m+1(1))

admits no quaternionic Sasakian structure for m ≥ 2.

To prove Theorem 7, let (M 4m+1, θ) be a quaternionic Sasakian man-

ifold and {F,G,H} a (local) F -frame on U , satisfying (74)-(76). Let g

be the Webster metric of (M 4m+1, θ). Then

(77)





g(FX,FY ) = g(X,Y ) ,

g(GX,GY ) = g(X,Y ) ,

g(HX,HY ) = g(X,Y ) ,

for any X,Y ∈ H(M). The first identity is obvious. The second, for

instance, follows from

g(GX,GY ) = (dθ)(GX,FGY ) = (dθ)(GX,HY ) =

= −(dθ)(G2X,GHY ) = (dθ)(X,FY ) = g(X,Y ) ,

by the very definition of the Webster metric g. We shall need the following

curvature identities

[R∗(X,Y ), F ] = 0(78)

[R∗(X,Y ), G] = α(X,Y )H(79)

[R∗(X,Y ), H] = −α(X,Y )G(80)
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for any X,Y ∈ T (M), where α := 2 dp. The first identity is a consequence

of ∇∗F = 0. The second, for instance, follows from

[R∗(X,Y ), G]Z = R∗(X,Y )GZ − GR∗(X,Y )Z =

=∇∗
X(∇∗

Y G)Z−∇∗
Y (∇∗

XG)Z−(∇∗
[X,Y ]G)Z+(∇∗

XG)∇∗
Y Z−(∇∗

Y G)∇∗
XZ =

= 2(dp)(X,Y )HZ + p(Y )(∇∗
XH)Z − p(X)(∇∗

Y H)Z = α(X,Y )HZ ,

for any X,Y ∈ T (M) and Z ∈ H(M).

Let us take the inner product of (80)

[R∗(X,Y ), H]Z = −α(X,Y )GZ, Z ∈ H(M) ,

with GZ to obtain

(81) α(X,Y )‖Z‖2 = g(HZ,R∗(X,Y )GZ) + g(R∗(X,Y )Z,FZ) .

Consider a local orthonormal frame of H(M) on U of the form

{Xi : 1 ≤ i ≤ 4m} = {Xa, FXa, GXa, HXa : 1 ≤ a ≤ m} .

Set Z = Xi in (81) and sum over i

(82) 4mα(X,Y ) =
4m∑

i=1

{g(HXi, R
∗(X,Y )GXi)+ g(R∗(X,Y )Xi, FXi)} .

Since

{(GXi, HXi) : 1 ≤ i ≤ 4m} = {(εiXi, εiFXi) : 1 ≤ i ≤ 4m} ,

where εi ∈ {±1}, the equation (82) becomes

(83) 2mα(X,Y ) =
4m∑

i=1

g(R∗(X,Y )Xi, FXi) .

We shall need the first Bianchi identity

∑

XY Z

{R∗(X,Y )Z + T ∗(T ∗(X,Y ), Z) + (∇∗
XT ∗)(Y,Z)} = 0
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for any X,Y, Z ∈ T (M). Throughout
∑

XY Z denotes the cyclic sum over

X,Y, Z. Also, we recall (cf. [18])

T ∗(X,Y ) = 2(dθ)(X,Y )T ,

for any X,Y ∈ H(M). Therefore (by ∇∗T = 0 and ∇∗Ω = 0)

(84)
∑

XY Z

{R∗(X,Y )Z − 2Ω(X,Y ) τZ} = 0 .

for any X,Y, Z ∈ H(M). Set Z = FXi in (84), and take the inner

product with Xi in the resulting identity. Next, sum over i so that to

yield

(85)
−2mα(X,Y )+

4m∑

i=1

{g(Xi, R
∗(Y, FXi)X)+g(Xi, R

∗(FXi, X)Y )}=

= 2Ω(X,Y ) trace(τF ) + 2Ω(Y, FτX) + 2Ω(FτY,X) .

Note that trace(τF ) = 0, because τ T1,0(M) ⊆ T0,1(M), and

Ω(Y, FτX) + Ω(FτY,X) = 0 ,

by the symmetry property of A(X,Y ) = g(τX, Y ), with the correspond-

ing simpler from of (85). Let us replace (X,Y, Z,W ) by (FXi, X, Y,Xi)

in (38). We obtain

4m∑

i=1

g(R∗(FXi, X)Y,Xi)=
4m∑

i=1

g(R∗(Xi, Y )X,FXi)+g(X,LY )trace(FL)+

− g(X,LFLY ) + g(LX, Y )trace(LF ) − g(LFLX, Y ) .

Substitution into (85) gives

2mα(X,Y ) =
4m∑

i=1

{g(R∗(Y, FXi)X,Xi) − g(R∗(Y,Xi)X,FXi)}+

+ g(X,LY ) trace(FL) − g(X,LFLY )+

+ g(LX, Y ) trace(LF ) − g(LFLX, Y )
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and, by observing that

{(FXi, Xi) : 1 ≤ i ≤ 4m} = {(λiXi, µiFXi) : 1 ≤ i ≤ 4m} ,

λi, µi ∈ {±1}, λiµi = −1 ,

we obtain

2mα(X,Y ) = 2
∑

i

g(R∗(Xi, Y )X,FXi) + terms

or (replacing X by FX)

(86)

2 Ric∗(X,Y ) = 2mα(FX, Y ) + g(FX,LFLY )+

− g(FX,LY ) trace(FL)+

+ g(LFLFX, Y ) − g(LFX, Y ) trace(LF ) ,

for any X,Y ∈ H(M). Next, let us take the inner product of (78),

[R∗(X,Y ), F ]Z = 0, X, Y, Z ∈ H(M) ,

with GZ so that

g(R∗(X,Y )FZ,GZ) + g(R∗(X,Y )Z,HZ) = 0 .

Set Z = Xi and sum over i

4m∑

i=1

{g(R∗(X,Y )FXi, GXi) + g(R∗(X,Y )Xi, HXi)} = 0

and observe that

{(FXi, GXi) : 1 ≤ i ≤ 4m} = {(εiXi, εiHXi) : 1 ≤ i ≤ 4m}, εi ∈ {±1} .

Therefore

(87)
4m∑

i=1

g(R∗(X,Y )Xi, HXi) = 0 .
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Set Z = HXi in (84) and take the inner product with Xi in the resulting

identity. Then (by (87))

(88)

4m∑

i=1

{g(R∗(Y,HXi)X,Xi) + g(R∗(HXi, X)Y,Xi)} =

= 2Ω(X,Y ) trace(τH) + 2Ω(Y,HτX) + 2Ω(HτY,X) .

Now replace (X,Y, Z,W ) by (HXi, X, Y,Xi) in (38)

g(R∗(HXi, X)Y,Xi) = g(R∗(Xi, Y )X,HXi)+

+ g((LXi ∧ LY )X,HXi) − g((LHXi ∧ LX)Y,Xi)

and substitute into (88). Also observe that

{(HXi, Xi) : 1 ≤ i ≤ 4m} = {(λiXi, µiHXi) : 1 ≤ i ≤ 4m} ,

λi, µi ∈ {±1}, λiµi = −1 ,

hence

(89)

2
4m∑

i=1

g(R∗(Xi, Y )X,HXi) − g(LHLY,X) + g(LY,X) trace(HL)+

− g(LHLX, Y ) + g(LX, Y ) trace(LH) =

= 2Ω(X,Y ) trace(τH) + 2Ω(Y,HτX) + 2Ω(HτY,X) .

The inner product of (80),

R∗(X,Y )HZ = HR∗(X,Y )Z − α(X,Y )GZ ,

with Xi gives

g(R∗(X,Y )HZ,Xi) = g(HR∗(X,Y )Z,Xi) − α(X,Y )g(GZ,Xi)

or, replacing (X,Z) by (Xi, X)

g(R∗(Xi, Y )HX,Xi) = g(H R∗(Xi, Y )X,Xi) − α(Xi, Y )g(GX,Xi)
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and, taking the sum over i we have

4m∑

i=1

g(R∗(Xi, Y )X,HXi) = −α(GX,Y ) − Ric∗(HX,Y )

i.e. (by (89) and replacing X by HX)

(90)

2 Ric∗(X,Y ) = 2α(FX, Y )+

+ g(LHLY,HX) − g(LY,HX) trace(HL)+

+ g(LHLHX,Y ) − g(LHX,Y ) trace(LH)+

+ 2Ω(HX,Y ) trace(τH) + 2Ω(Y,HτHX)+

+ 2Ω(HτY,HX) ,

for any X,Y ∈ H(M). To compute the pseudohermitian Ricci curvature,

set first X = ξλ and Y = ξµ in (86). We obtain

Rλµ = imαλµ +
1

2
(Aβ

λ Aβµ − Aαλ Aα
µ) ,

The torsion terms vanish (by Aαβ = Aβα) hence

(91) Rλµ = imαλµ .

Set also X = ξλ and Y = ξµ in (86) and note that

g(Fξλ, LFLξµ) = −2iAλµ = g(LFLFξλ, ξµ) ,

g(Fξλ, Lξµ) = iAλµ = g(LFξλ, ξµ) ,

trace(FL) = −4m = trace(LF ) ,

i.e.

(92) Rλµ = imαλµ + 2i(2m − 1)Aλµ .

Taking traces in (36) we obtain

Lemma 8. Let M 2n+1 be a nondegenerate CR manifold, on which a

contact form θ has been fixed. Let g be the Webster metric of (M 2n+1, θ).

Then

Rαβ = 2(gαβ − Rg

αβ
), Rαβ = i(n − 1)Aαβ ,

R0β = Sα
αβ, Rα0 = R00 = 0 ,



[47] Pseudohermitian geometry on contact etc. 321

for any local frame {ξα} in T1,0(M). Here Rg

αβ
= Ric(ξα, ξβ) and Ric is

the Ricci tensor of (M 2n+1, g). Also SA
BCξA := S(ξB, ξC) with A,B, · · · ∈

{0, 1, · · · , n, 1, · · · , n} and T0 = T .

Cf. also a result in [17]. Combining (92) and Lemma 8 (with n = 2m)

gives mαλµ +(2m−1)Aλµ = 0. Yet α is skew, while the Webster torsion

is symmetric, hence αλµ = 0 and Aλµ = 0. Thus g is a Sasakian metric.

As another consequence of τ = 0, (90) becomes

2 Ric∗(X,Y ) = 2α(FX, Y ) + g(FHFY,HX) + g(FHFHX,Y )

(as trace(HL) = trace(HF ) = trace(G) = 0) and then (by (77))

Ric∗(X,Y ) = α(FX, Y ) ,

for any X,Y ∈ H(M). Consequently Rλµ = i αλµ and by (91) we get (m−
1)Rλµ = 0, hence either m = 1 or the pseudohermitian Ricci curvature

vanishes. Therefore, if m ≥ 2 then (by Lemma 8) Ric∗ = 0. Let us look

now at the case m = 1. As a consequence of (81) we may write

α(FX,X)‖Z‖2 = g(R∗(FX,X)Z,FZ) + g(R∗(FX,X)GZ,HZ)

α(HX,GX)‖Z‖2 = g(R∗(HX,GX)Z,FZ) + g(R∗(HX,GX)GZ,HZ)

Summing up the last two identities we get

α(FX,X)‖Z‖2 + α(HX,GX)‖Z‖2 =

= g(R∗(FX,X)Z,FZ) + g(R∗(FX,X)GZ,HZ)+

+ g(R∗(HX,GX)Z,FZ) + g(R∗(HX,GX)GZ,HZ)

Note that the right hand member of this last identity is symmetric in

X,Z. Hence

{α(FX,X) + α(HX,GX)}‖Z‖2 = {α(FZ,Z) + α(HZ,GZ)}‖X‖2

or

{Ric∗(X,X)+Ric∗(GX,GX)}‖Z‖2 = {Ric∗(Z,Z)+Ric∗(GZ,GZ)}‖X‖2
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Set Z = Xi and sum over i. We have

4{Ric∗(X,X)+Ric∗(GX,GX)}=
4∑

i=1

{Ric∗(Xi, Xi)+Ric∗(GXi, GXi)}‖X‖2

or, again due to the particular form of our frame

2{Ric∗(X,X) + Ric∗(GX,GX)} =
4∑

i=1

Ric∗(Xi, Xi)‖X‖2

Finally, by a result in [17], trace(Ric∗) = 2ρ∗ hence (by T ! Ric∗ = 0, cf.

Lemma 8 with τ = 0)

(93) Ric∗(X,Y ) + Ric∗(GX,GY ) = ρ∗ g(X,Y )

for any X,Y ∈ H(M). Note that use was made of the symmetry of Ric∗

on H(M)⊗H(M), a consequence of lemma [8], as well. It remains to be

shown that θ is pseudo-Einstein if and only if

(94) d(4p + ρ∗ θ) = 0

Due to FG = −GF, G2 = −I, and g(GX,GY ) = g(X,Y ) for any

X,Y ∈ H(M), one has

Gξα = Gβ
αξβ, Gβ

αG
λ
β

= −δλα, gαβ = Gµ
αG

λ
β
gλµ ,

for some smooth functions Gβ
α : U → U , where Gβ

α = Gβ
α. Set αAB =

α(ξA, ξB) and note that αλµ = 0, αλµ = 0. The identity (93) may be

written

Rαβ + iGµ
αG

λ
β
αλµ = ρ∗ gαβ .

Consequently θ is pseudo-Einstein, i.e. Rαβ = (ρ∗/2)gαβ, if and only if

(95) i αλβ = (ρ∗/2) gαβ .

As d(ρ∗θ) = (dρ∗) ∧ θ + ρ∗ dθ and θ vanishes on H(M), (95) may be

written

4(dp)(ξα, ξβ) + d(ρ∗θ)(ξα, ξβ) = 0 ,

i.e. d(4p + ρ∗θ) = 0 on H(M) ⊗ H(M). Finally, by Lemma 6 if a closed

2-form Ξ vanishes on H(M) ⊗ H(M) then Ξ = 0, hence (94) holds.
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5.2 – Reducible CR manifolds

Let M be a nondegenerate CR manifold of CR dimension n, θ a

contact form on M , g the Webster metric, and ∇∗ the Tanaka-Webster

connection of (M, θ). Let Ψ(x) the holonomy group of ∇∗ with reference

point x ∈ M . Let T be the characteristic direction of (M, θ). Since

∇∗T = 0, Ψ(x) is reducible, as a linear group acting on Tx(M). Let Dx

be a subspace of Tx(M) which is invariant by Ψ(x) and such that Tx ∈ Dx.

Let D be the distribution on M obtained by parallel displacement of Dx,

with respect to ∇∗, along curves issuing at x. We shall prove the following

Theorem 8. Let M be a strictly pseudoconvex CR manifold and θ a

contact form on M with Lθ positive definite. Then D is a smooth Pfaffian

system on M . Moreover, if g is a Sasakian metric (i.e. τ = 0) then D is

integrable.

Examples (of strictly pseudoconvex CR manifolds) with dimR D ≥ 2

do exist. For instance let M = R3 with the contact form θ = 1
2
(y dx−dz).

The characteristic direction is T = −2∂/∂z. An associated Riemannian

metric is

g :
1

4




1 + y2 0 −y

0 1 0

−y 0 1




[and the corresponding (1, 1)-tensor field is ϕ(∂/∂y) = ∂/∂x + y∂/∂z,

ϕ(∂/∂x+y∂/∂z) = −∂/∂y (and ϕ(∂/∂z) = 0)]. The Levi-Civita connec-

tion of (R3, g) is given by

∇ ∂
∂y

( ∂

∂x
+ y

∂

∂z

)
=

1

2

∂

∂z
, ∇ ∂

∂x
+y ∂

∂z

∂

∂y
= −1

2

∂

∂z
,

∇ ∂
∂y

∂

∂y
= 0, ∇ ∂

∂x
+y ∂

∂z

∂

∂x
+ y

∂

∂z
= 0 ,

∇ ∂
∂y

∂

∂z
= ∇ ∂

∂z

∂

∂y
= −1

2

( ∂

∂x
+ y

∂

∂z

)
,

∇ ∂
∂x

+y ∂
∂z

∂

∂z
= ∇ ∂

∂z

( ∂

∂x
+ y

∂

∂z

)
=

1

2

∂

∂y
.

A calculation (based on (6)) shows that the distribution D spanned by

{∂/∂x + y ∂/∂z , ∂/∂z} is ∇∗-parallel (hence D is invariant by pseudo-

hermitian holonomy). The following simple philosophy underlies the pre-

ceeding example. Given a contact Riemannian manifold M 2n+1 let Σ be
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an integral manifold of the contact distribution H(M), of real dimension

≤ n [although H(M) is nonintegrable, it possesses lower dimensional inte-

gral manifolds (of dimension not higher than n, cf. [11]. Then T (Σ)⊕Rξ

may be expected to be Ψ(x)-invariant. Using this approach, we may build

a non-Sasakian example. Precisely, we shall prove

Proposition 3. Let H2(−1) be the 2-dimensional hyperbolic spa-

ce of constant sectional curvature −1 and assume S1 is embedded in

U(H2(−1)) as a fibre over some x ∈ H2(−1). Then T (S1) ⊕ Rξ is

invariant by the pseudohermitian holonomy of U(H2(−1)).

Proof. Let Mn be a Riemannian manifold. Let (xi) be a local

coordinate system on Mn and (xi, yi) the induced local coordinates on

T (Mn). The Levi-Civita connection of the Sasaki metric g̃ [with the

notations and conventions in Section 2.3] is given by (cf. (13) in [40],

p. 539)

(96)

∇̃δiδj = Γk
ijδk − 1

2
Rk

ij0∂̇k

∇̃δi ∂̇j = Γk
ij ∂̇k − 1

2
Rk

j0iδk

∇̃∂̇i
δj = −1

2
Rk

i0jδk , ∇̃∂̇i
∂̇j = 0 .

Here Ri
jk0 = Ri

jk�y
� (throughout an index 0 denotes contraction with

the supporting element yi). Also we set δi = δ/δxi and ∂̇i = ∂/∂yi for

simplicity. Let ∇ and h be the induced connection on U(Mn) and the

second fundamental form of j : U(Mn) ⊂ T (Mn), respectively. By (96)

and the Gauss formula

∇̃j∗Xj∗Y = j∗∇XY + h(X,Y ), X, Y ∈ T (U(Mn)) ,

we obtain

∇δiδj = Γk
ijδk − 1

2
Rk

ij0∂̇k , ∇δiY = Y j
|i∂̇j −

1

2
Y jRk

j0iδk ,

∇Xδj = −1

2
X iRk

i0jδk , ∇XY = X i∂Y j

∂yi
∂̇j + g(X,Y )ν ,
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for any X,Y ∈ Ker(π∗), where

Y j
|i =

δY j

δxi
+ Γj

ikY
k

and ν = yi∂̇i is a unit normal section on U(Mn). In particular

∇δiξ = −Rj
i00∂̇j , ∇Xξ = −2ϕX − X iRj

i00δj .

We ought to recall that the {δi} span a (globally defined) distribution

N on T (Mn) (the nonlinear connection associated with the Levi-Civita

connection of Mn) orthogonal to Ker(Π∗) (with respect to the Sasaki met-

ric g̃). Here Π : T (Mn) → Mn is the projection (and π = Π|Mn). While

Nv ⊂ Tv(U(Mn)), v ∈ U(Mn), i.e. any horizontal vector is tangential, for

the vertical vectors one has only Ker(dvπ) = Ker(dvΠ)∩Tv(U(Mn)), v ∈
U(Mn), and X ∈ Ker(Π∗) is tangential if and only if gijX

iyj = 0, where

X = X i∂̇i. It should be noticed that in general the components X i de-

pend on the directional arguments yi, i.e. in general X is not the vertical

lift of some vector field on Mn [but rather of a section in the pullback

bundle Π−1T (Mn) → T (Mn) of T (Mn) via Π, a point of view which

will not be needed in this paper]. As ∂̇i decomposes [with respect to

T (T (Mn)) = j∗T (U(Mn)) ⊕ E(j)] as

∂̇i = (δji − giky
kyj)∂̇j + gijy

jν

it follows that

ϕ(δi) = (δji − giky
kyj)∂̇j .

Then (by (6)) the (generalized) Tanaka-Webster connection of U(Mn) is

∇∗
δi
δj = Γk

ijδk +
1

2
{gj0Rk

i00 − Rk
ij0 + gi0(δ

k
j − gj0y

k)}∂̇k

∇∗
δi
Y =

1

2
Y j{R�

j0ig�0y
k − Rk

j0i − gi0δ
k
j }δk + Y j

|i∂̇j

∇∗
Xδj = X i

{
− 1

2
Rk

i0j +
1

2
Rk

i00gj0 +
1

2
R�

i0jg�0y
k − gj0δ

k
i + gijy

k
}
δk

∇∗
XY = X i

{∂Y k

∂yi
+ gijY

jyk
}
∂̇k .
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Now assume that Sn−1 is embedded in U(Mn) as some fibre of π. Then

∇∗
XY ∈ T (Sn−1), for any X,Y ∈ T (Sn−1), and ∇∗

δi
Y ∈ T (Sn−1) ⊕ Rξ if

and only if

(97) Rk
j0i + gioδ

k
j = (R�

j0ig�0 + gi0gj0)y
k .

As a byproduct, if Mn = Rn, n ≥ 2, then T (Sn−1) ⊕ Rξ is not ∇∗-

parallel. Indeed, if this is the case (97) yields yiδkj = yiyjyk hence (by

contracting j and k) (n − 1)yi = 0, i.e. n = 1, a contradiction. Let us

contract j and k in (97). We obtain

yj(Rji + (n − 1)gji) = 0 ,

which is clearly satisfied if Mn is an Einstein manifold of scalar curvature

ρ = −(n− 1)n. Finally, when n = 2, M 2 has constant curvature −1 and

then (97) holds.

To prove Theorem 8 we need some preparation. Recall (cf. [26] that

a smooth curve γ(t) in M is a parabolic geodesic if it satisfies the ODE

(98)
(
∇∗

dγ
dt

dγ

dt

)
γ(t)

= 2cTγ(t) ,

for some c ∈ R and any value of the parameter t. Let x ∈ M and

W ∈ H(M)x. By standard theorems on ODEs, there is δ > 0 so that

whenever gx(W,W )1/2 < δ the unique solution γW,c(t) to (98) of initial

data (x,W ) may be uniquely continued to an interval containing t = 1

and the map ψx : B(0, δ) ⊂ Tx(M) → M given by ψx(W + cTx) = γW,c(1)

(the parabolic exponential map) is a diffeomorphism of a sufficiently small

neighborhood of 0 ∈ Tx(M) onto a neighborhood of x ∈ M . If γ(t) is

a parabolic geodesic, a C1 diffeomorphism t = φ(s) such that γ̂(s) =

γ(φ(s)) is a parabolic geodesic is called an Eulerian parameter for γ(t)

(the terminology is motivated by Lemma 9 below).

Now let {ξα} be a local orthonormal frame of T1,0(M), defined on

a neighborhood of a point x ∈ M . It determines an isomorphism λ :

Tx(M) → Hn given by λx(v) = (ηα
x (v)eα, θx(v)), for any v ∈ Tx(M). Here

Hn = Cn×R is the Heisenberg group and {ηα} is the admissible coframe

corresponding to {ξα, T}. The resulting local coordinates (z, x) := λx ◦
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ψ−1
x , defined in some neighborhood of x, are the pseudohermitian normal

coordinates at x determined by {ξα}. See also Proposition 2.5 in [26],

p. 313. We shall need the following

Lemma 9. If γ(t) is a solution to (98) such that (dγ/dt)t=0 ∈
H(M)γ(0), then γ̂(s) = γ(φ(s)) with

(99) φ(s) =
√

α s2 + a s + b, α > 0, a, b ∈ R, a2 − 4αb ≥ 0 ,

satisfies (∇∗
dγ̂/dsdγ̂/ds)γ̂(s) = 2ĉTγ̂(s) with ĉ = αc. Viceversa, any Eulerian

parameter t = φ(s) for γ(t) is of the form (99). In particular, for any

point x on γ and any W ∈ H(M)x, there is a unique Eulerian parameter

t = φ(s) for γ such that γ̂(0) = x and (dγ̂/ds)s=0 = W . Moreover,

the parabolic geodesic γ = γW,c is locally expressed, with respect to a

pseudohermitian normal coordinate system, as

γ :

{
zα = Wαt, 1 ≤ α ≤ n ,

x = ct2

where W = Wαξα + Wαξα, Wα = Wα. Conversely, any local coordinate

system (z, t) with this property is the pseudohermitian normal coordinate

system determined by {ξα}.

Proof. A local coordinate calculation shows that γ̂(s) = γ(φ(s)) is

a parabolic geodesic, with the constant ĉ ∈ R, if and only if

(100) 2[ĉ − c φ′(s)2]Tγ(t) = φ′′(s)
dγ

dt
(t) .

On the other hand, applying θ to both members of (98) gives (by (7)-(8)

in Section 1)

2c = θ
(
∇∗

dγ
dt

dγ

dt

)
γ(t)

= g
(
T,∇∗

dγ
dt

dγ

dt

)
=

d

dt

[
θ
(dγ
dt

)]
,

hence

θ
(dγ
dt

)
γ(t)

= 2ct .
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Therefore, by applying θ to (100) we obtain the ODE

2[ĉ − c φ′(s)2] = 2ctφ′′(s) ,

with the obvious solution φ(s)2 = (ĉ/c)s2 + as + b, with a, b ∈ R such

that a2 − 4(ĉ/c)b ≤ 0 (and ĉ/c > 0). To check the second statement in

Lemma 9 we reparametrize γ(t) as γ̂(s) = γ(ts) (i.e. we set a = b = 0 and

α = t2, t > 0, in (99)). Then ψ−1
x (γ(t)) = ψ−1

x (γ̂(1)) = tW + ct2Tx.

At this point we may prove Theorem 8. Let y0∈M and (z1, · · · , zn, x)

a pseudohermitian normal coordinate system at y0, defined on an open

set U . Let {X1, · · · , Xk} be a linear basis of Dy0
. Let y ∈ U and consider

the parabolic geodesic expressed locally (with respect to (z, x)) by

γ : zα = zα(y)t, x = x(y)t2 .

Set X∗
i,y = Tγ(Xi) ∈ Tγ(Dy0

) = Dy, where Tγ is the parallel displacement

operator (associated with ∇∗ and γ). Clearly {X∗
i,y} is a basis of Dy

and the vector fields X∗
i are smooth [because the parallel displacement

depends differentiably on (z(y), x(y))]. To see that D is involutive, note

first that for any X,Y ∈ D (by a standard argument, cf. [27], Vol. I,

p. 181) ∇∗
XY ∈ D. On the other hand, as τ = 0, the torsion T ∗ has

nozero components only along ξ. Therefore [X,Y ] ∈ D.

It is an open problem to study the geometry of the leaves of D. Note

that each leaf of D is foliated by real curves (the integral lines of the

contact vector ξ), i.e. the contact flow of M is a subfoliation ([15]) of D.

6 – Canonical connections

Let c1 be the first Chern class of T1,0(M). By a result of J. M.

Lee, [29], a strictly pseudoconvex CR manifold admitting a globally de-

fined pseudo-Einstein contact form satisfies c1 = 0. For any connection

D in T1,0(M), c1 is represented by the 2-form −(1/2πi)RD
α
α
ABηA ∧ ηB.

If D is the Tanaka-Webster connection, the components RD
α
α
AB may be

computed in terms of ρ∗ and its first order derivatives, a procedure which

leads to c1 = 0. On a contact Riemannian manifold, Tanno’s connection

∇∗ does not descend to a connection in T1,0(M). However, canonical
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connections in T1,0(M) may be built, by taking into account its almost

CR holomorphic structure (arising from the presence of a natural pre-∂-

operator induced by ∇∗) and its Hermitian structure (induced by a fixed

associated Riemannian metric g).

Let E be a complex vector bundle over an almost CR manifold

(M,T1,0(M)). A pre-∂-operator is a differential operator

∂E : Γ∞(E) → Γ∞(T0,1(M)∗ ⊗ E)

such that

∂E(fu) = f ∂Eu + (∂Hf) ⊗ u

for any f ∈ C∞(M) and u ∈ Γ∞(E).

Examples. 1) Let (M,η) be a contact manifold and ξ the charac-

teristic direction of (M,η). Then

T̂ (M) := T1,0(M) ⊕ Cξ ≈ (T (M) ⊗ C)/T0,1(M)

is a complex vector bundle over M (the holomorphic tangent bundle) and

∂T̂ (M) : Γ∞(T̂ (M)) → Γ∞(T0,1(M)∗ ⊗ T̂ (M)) ,

(∂T̂ (M)W )Z := [Z,W ]T̂ (M), Z ∈ T1,0(M), W ∈ T̂ (M) ,

is a pre-∂-operator on T̂ (M). Here XT̂ (M) denotes the T̂ (M) component

of X ∈ T (M) ⊗ C = T̂ (M) ⊕ T0,1(M).

2) Let g ∈ M(η) be an associated Riemannian metric and ∇∗ the

Tanno connection of (M,η, g). Then

∂T1,0(M) : Γ∞(T1,0(M)) → Γ∞(T0,1(M)∗ ⊗ T1,0(M)) ,

(∂T1,0(M)V )Z := π1,0 ∇∗
Z
V, Z, V ∈ T1,0(M) ,

is a pre-∂-operator on T1,0(M). Here π1,0 : T (M) ⊗ C → T1,0(M) is the

natural projection associated with T (M)⊗C = T1,0(M)⊕T0,1(M)⊕Cξ.

Let (M,T1,0(M)) be a CR manifold. A pre-∂-operator ∂E satisfying

the integrability condition

Z · W · u − W · Z · u = [Z,W ] · u ,

Z · u := (∂Eu)Z, Z,W ∈ T1,0(M), u ∈ Γ∞(E) ,
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is a ∂-operator and (E, ∂E) is a CR-holomorphic vector bundle. When

the almost CR structure of (M,η) is integrable (T̂ (M), ∂T̂ (M)) is CR-

holomorphic. Also, if T1,0(M) is integrable, ∇∗ is the Tanaka-Webster

connection of (M,η) and then (cf. e.g. [45], p. 569) ∂T1,0(M) is a ∂-

operator.

6.1 – P -connections

We shall prove the following

Theorem 9. Let (M,η) be a real (2n + 1)-dimensional contact

manifold and g ∈ M(η) an associated Riemannian metric. Let (E,H) →
M be a Hermitian vector bundle, where H is the Hermitian metric, ∂E a

pre-∂-operator on E, and P ∈ Γ∞(End(E,H)) a skew-symmetric bundle

endomorphism, i.e. H(Pu, v) + H(u, Pv) = 0 for any u, v ∈ Γ∞(E).

There is a unique connection D in E so that i) D0,1 = ∂E, ii) DH = 0,

and iii) ΛgR
D = 2nP .

Given a connection D in E, D0,1u is the restriction of Du to T0,1(M).

Also RD denotes the curvature of D. The trace of RD is given by

i (ΛgR
D)u =

n∑

α=1

RD(ξα, ξα)u ,

where {ξα} is a (local) orthonormal (g(ξα, ξβ) = δαβ) frame of T1,0(M).

We establish first uniqueness. Let D be a connection in E satisfying

(i)-(iii) in Theorem 9. Then

DZu = (∂Eu)Z ,(101)

H(DZu, v) = Z(H(u, v)) − H(u, (∂Ev)Z)(102)

hence it remains to be shown that Dξu is uniquely determined. To this

end, set
(D2u)(X,Y ) := DXDY u − D∇∗

X
Y u ,

B(X,Y )u := (D2u)(X,Y ) − (D2u)(Y,X)

where ∇∗ is the Tanno connection of (M,η, g). Note that

(103) B(X,Y )u = RD(X,Y )u − DT∗(X,Y )u
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for any X,Y ∈ T (M). Taking traces in (103) and noting that
n∑

α=1

T ∗(ξα, ξα) = −2n i ξ

we obtain

(104) Dξu =
1

2n
(ΛgB)u − P (u) .

Claim. ΛgB is determined by (101)-(102). Therefore, by (101)-(102)

and (104) D is uniquely determined.

Note that Q(X,Y ) ∈ Γ∞(H(M)) for any X,Y ∈ T (M). Indeed,

applying η to (5) gives

η(Q(X,Y )) = g((∇Y ϕ)X, ξ)+(∇Y η)ϕX = g(∇Y ϕX, ξ)−η(∇Y ϕX) = 0 .

Moreover (by (10))

−i∇∗
ZZ − ϕ∇∗

ZZ = Q(Z,Z)

hence ∇∗
ZZ ∈ H(M)⊗C, for any Z ∈ T1,0(M) and then (by (101)-(102))

B(Z,Z)u = DZDZu − DZDZu − D∇∗
Z
Zu + D∇∗

Z
Zu

is determined. The Claim is proved. Let us prove the existence statement

in Theorem 9. Define D : Γ∞(E) → Γ∞(T (M)∗ ⊗ E) as the (real) differ-

ential operator given by (101)-(102) and (104). Then D is a connection

in E. Let us check for instance that Dξ is a derivation in Γ∞(E) (as a

C∞(M)-module). Note that

B(X,Y )(fu) = fB(X,Y )u − T ∗(X,Y )(f)u

hence

(ΛgB)(fu) = f (ΛgB)u + 2n ξ(f)u .

Next (by (104))

Dξ(fu) =
1

2n
(ΛgB)(fu) − P (fu) =

=
1

2n
f(ΛgB)u + ξ(f)u − fP (u) = f Dξu + ξ(f)u .
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Clearly (101) yields D0,1 = ∂E. Also (by (103))

i(ΛgR
D)u =

n∑

α=1

B(ξα, ξα)u − inDξu = i(ΛgB)u − 2inDξu = 2inP (u) .

Finally, we wish to check that DH = 0. We have already

(105) V (H(u, v)) = H(DV u, v) + H(u,DV v)

for any V ∈ H(M) ⊗ C. As a consequence of (105)

(106) T ∗(V,W )(H(u, v)) = −H(B(V,W )u, v) − H(u,B(V ,W )v)

for any V,W ∈ H(M) ⊗ C. Taking traces in (106) gives (as B is skew)

nξ(H(u, v)) = H((ΛgB)u, v) + H(u, (ΛgB)v)

hence (by (104))

ξ(H(u, v)) = H(Dξu + P (u), v) + H(u,Dξv + P (v)) .

Corollary 2. Let (M,η) be a contact manifold of CR dimension

n, g ∈ M(η) an associated Riemannian metric. The canonical connection

D in T1,0(M) extending ∂T1,0(M), parallelizing g, and such that Λg RD = 0

is given by

D = π1,0 ∇∗ +
1

2n
η ⊗ π1,0 ΛηR

∗ − i

4n
gαβQρ

µαQ
γ

ρ β
η ⊗ ηµ ⊗ ξγ ,

for any (local) frame {ξα} in T1,0(M).

Using the connection D of Corollary 2 one may express the Chern

classes of T1,0(M) in terms of Rα
β
λµ and the Tanno tensor (and its first

order covariant derivatives). It is an open problem whether the first Chern

class of T1,0(M) vanishes on contact Riemannian manifolds admitting

global pseudo-Einsten contact forms.
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6.2 – Almost CR structures as G-structures

Let G0 be the Lie subgroup of GL(2n+1,R) consisting of all matrices

of the form




u 0 0

aα aα
β bαβ

bα −bαβ aα
β


 , u ∈ R \ {0}, aα, bα ∈ R, [aα

β + i bαβ ] ∈ GL(n,C) .

Any G0-structure (in the sense of [37], p. 309) on a real (2n+1)-dimensio-

nal manifold M determines an almost CR structure on M and conversely.

Originally, S.S. Chern & J.K. Moser (cf. [14]) regarded almost CR struc-

tures as principal subbundles of the principal GL(2n + 1,C)-bundle of

linear frames in T ∗(M) ⊗ C, rather than G0-structures on M . The two

points of view are equivalent due to the obvious group monomorphism

G0 → GL(2n + 1,C)




u 0 0

aα aα
β bαβ

bα −bαβ aα
β


 '−→




u 0 0

aα + ibα aα
β + ibαβ 0

aα − ibα 0 aα
β − ibαβ


 .

Let B → M be a G0-structure of M . If B is locally flat (in the sense

of [37], p. 315) then the corresponding almost CR structure is Levi flat.

Therefore, the G0-structure arising from the almost CR structure of a

contact Riemannian manifold is not locally flat. Let

c : B → Hom(R2n+1 ∧ R2n+1,R2n+1)/∂ Hom(R2n+1, L(G0))

be the first structure function of B (cf. [37], p. 318). As is well known, c =

0 is only a necessary condition for locally flatness of the given G-structure.

It is a natural question whether c = 0 for the almost CR structure of a

contact Riemannian manifold. As an application of Theorem 9 we shall

prove the following

Theorem 10. Let (M,η, g) be a contact Riemannian manifold.

The U(n)×1-structure B(η) → M has a nonzero first structure function.
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Proof. The connection D furnished by Corollary 2 extends to a

linear connection on M by setting DXZ = DXZ and DXξ = 0 for any

X ∈ T (M) and Z ∈ T1,0(M). As D parallelizes T1,0(M) and g, it gives rise

to a connection Γ in B(η). Consequently c(u) = [cΓ(u)] (the class of cΓ(u)

modulo ∂ Hom(R2n+1, L(U(n) × 1))) for any u ∈ B(η), where cΓ(u)(x ∧
y) = (dω)u(X,Y ) and ω ∈ Γ∞(T ∗(B(η)) ⊗ R2n+1) is the canonical 1-

form. Also X,Y ∈ Γu are such that ωu(X) = x and ωu(Y ) = y, with

x, y ∈ R2n+1. Let {Xα, ϕXα, ξ} be a local section in B(η), defined on

an open set U . Of course, the torsion form of Γ may may be express in

terms of the torsion tensor TD of D, hence

2cΓ(u)(eα ∧ eβ+n) = u−1(TD(Xα, ϕXβ)p) ,

where u = (p, {Xα,p, ϕpXα,p, ξp}, p ∈ U . Set ξα = (1/
√

2)(Xα − iϕXα).

Using (47)-(52) we obtain

TD(ξα, ξβ) =
i

2
(Qρ

βα − Qρ
αβ)ξρ, TD(ξα, ξβ) = −i δαβ ξ ,

hence

〈cΓ(eα ∧ eβ+n), e0〉 = −δαβ ,

where 〈 , 〉 is the Euclidean inner product in R2n+1.

7 – Gauge invariants

Let (M,η, g) be a contact Riemannian manifold. As as a consequence

of axioms (8)-(9)

X(g(Y,Z)) + Y (g(Z,X)) − Z(g(X,Y )) = 2 g(∇∗
XY,Z)+

+ 2g(X,ϕZ)η(Y ) + 2g(Y, ϕZ))η(X) − 2g(X,ϕY )η(Z)+

+ g([X,Z], Y ) + g([Y,Z], X) − g([X,Y ], Z) ,

for any X,Y, Z ∈ T (M). This leads to the explicit expressions of the

connection coefficients

Γρ
αβ gργ = ξα(gβγ) − g([ξα, ξγ ], ξβ)(107)

Γρ
αβ gργ = g([ξα, ξβ], ξγ)(108)

Γρ
0β gργ = ξ(gβγ) − g([ξ, ξγ ], ξβ) ,(109)
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and then to the transformation laws in

Lemma 10. Under a gauge transformation (12) the connection

coefficients of the Tanaka-Webster connection and the Webster torsion

change as

Γ̂ρ
αβ = Γρ

αβ + 2(uα δρβ + uβ δρα)(110)

Γ̂ρ
αβ = Γρ

αβ − 2uρ gαβ(111)

e2uΓ̂ρ

0̂β
=Γρ

0β+2u0δ
ρ
β+2iuβu

ρ−iuβ
ρ+iuαΓρ

αβ−iuαΓρ
αβ(112)

Âαβ = Aαβ − iuαβ + 2iuαuβ +
1

2
(Qγ

ρα − Qγ
αρ)u

ρgβγ(113)

where u := log
√

λ. Consequently, the connection 1-forms change as

(114)
ω̂α
β = ωα

β + 2u0δ
α
βη + 2(uγδ

α
β + uβδ

α
γ )ηγ − 2uαηβ+

− i(uβ
α + 2δαβuγu

γ + 2uαuβ)η

Also Q̂α
βγ = Qα

βγ, i.e. Qα
βγ is a gauge invariant. Here uα

ρ = uαβ gρβ and

uAB denote second order covariant derivatives (with respect to ∇∗).

Proof. Note that η(ζ) = 0, ζ(λ) = 0 and ĝαβ = λ gαβ. Therefore

ξ̂ = e−2u{ξ + iuαξα − iuαξα} ,

where uα = gαβuβ. A straightforward calculation (based on (12)) shows

that (107)-(108) yield (110)-(111). To prove (112) one establishes first

the identity

(115)
e2u[ξ̂, ξβ] = [ξ, ξβ] +

{
2iuβu

α − iuα
β +

1

2
(Qα

β γ
− Qα

γ β
)uγ
}
ξα+

+ {iuα
β − 2iuβu

α + i(Γα
γβ

uγ − Γα
γ β

uγ)}ξα

[and then (109) is shown to imply (112)]. Also (113) follows from

Aαβ = −g([ξ, ξα] , ξβ)

and (115). To prove (114) one substitutes from (110)-(112) into

ω̂α
β = Γ̂α

γβ η̂γ + Γ̂α
γβ η̂γ + Γ̂α

0̂β η̂ ,
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where {η̂γ} is the admissible coframe (corresponding to {ξα, ξ̂}) given by

η̂α = ηα − i uα η .

Finally, from

Qα
βγ gαµ = 2i g([ξµ, ξβ] , ξγ)

it follows that Q̂α
βγ = Qα

βγ .

We shall prove the following

Theorem 11. Let (M,η,g) be a contact Riemannian manifold and Gη

its Fefferman metric. Then, under a gauge transformation (12), Gη

changes conformally, i.e. Gη̂ = (λ ◦ π)Gη. Consequently the restricted

conformal class [Gη] = {(λ ◦ π)Gη : λ ∈ C∞(M), λ > 0} is a gauge

invariant.

Theorem 11 is the contact Riemannian analogue of the main result

in [28]. S. Tanno considered (cf. [39], p. 363) the second order differen-

tial operator ∆H [coinciding with the sublaplacian ∆b when T1,0(M) is

integrable] given by

∆Hu = ∆u − ξ(ξ(u)), u ∈ C∞(M) ,

where ∆ is the ordinary Laplacian of the Riemannian manifold (M, g).

To prove Theorem 11 we contract the indices α, β in (114) and use

∆Hu = 2uα
α + 2 i n u0

[a consequence of definitions and of (29)] to yield

(116) ω̂α
α =ωα

α+ndu+(n + 2)(uαη
α−uαηα)−i

{
2(n + 1)uαu

α+
1

2
∆Hu

}
η .

Differentiating we obtain

d ω̂α
α ≡ dωα

α + (n + 2)d(uαη
α − uαηα)+

− i
{
2(n + 1)uαu

α +
1

2
∆Hu

}
dη , mod η .
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On the other hand (by (30))

d(uαη
α − uαηα) ≡ −(uαβ + uβα) ηα ∧ ηβ, mod ηα ∧ ηβ, ηα ∧ ηβ, η ,

hence

d ω̂α
α ≡ dωα

α − (n + 2)(uαβ + uβα) ηα ∧ ηβ − i
{
2(n + 1)uαu

α +
1

2
∆Hu

}
dη .

Let us multiply by i, take traces in the resulting identity, use the calcula-

tions in Section 4.2, and observe the cancellation of the terms involving

the Tanno tensor (by the gauge invariance in Lemma 10). We obtain

(117) e2u ρ̂∗ = ρ∗ − 2(n + 1)∆Hu − 4n(n + 1)uαu
α .

Using (116)-(117) and the gauge invariance of the fibre coordinate γ̂ = γ,

one may derive the transformation law for the real 1-form σ in Section 4.2

[under a gauge transformation (12)]

σ̂ = σ + π∗{i(uαη
α − uαηα) + uαu

α η} .

Next, note that Lη = −2ηα ( ηα hence

Lη̂ = e2u{Lη − 2i(uαη
α − uαηα) ( η − 2uαu

α η ( η}

and then Gη̂ = e2u◦π Gη.

Remark 5. If η̂ = v2/nη, that is λ = e2u = v2/n, then (117) becomes

−2(n + 1)

n
∆Hv + ρ∗v = ρ̂∗v(n+2)/n

which has been obtained by S. Tanno, [39], by a different technique. As

stated in [39], this is the contact Riemannian analogue of the CR Yamabe

problem in [26]. Whether the Yamabe equation for the (generalized)

Fefferman metric Gη projects on M to give (117) is unclear as yet. Indeed

the wave operator � [i.e. the Laplace-Beltrami operator of (F (M), Gη)]

pushes forward to an operator π∗� which turns out to be precisely 1
2
∆H

(cf. [3], p. 30) yet it is unknown whether the scalar curvature of Gη
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projects on (a multiple of) ρ∗ [the proof in [28] employs the Chern-Moser

normal form, which is unavailable yet for a contact Riemannian manifold

(with nonintegrable almost CR structure)].

As another consequence of Lemma 10 one obtains

Theorem 12. Let (M,η, g) be a contact Riemannian manifold. Let

(E,H) → M be a Hermitian vector bundle and ∂E a pre-∂-operator on

E. Let D be the unique connection in E extending ∂E, parallelizing H

and of zero curvature trace. Then D is a gauge invariant (and ΛgR
D = 0

a gauge invariant condition).

Proof. Note that D̂Xs = DXs for any X ∈ H(M) and any s ∈
Γ∞(E). Let {ξα} be a local orthonormal frame of T1,0(M). Then (by the

very definitions)

B̂(ξα, ξα)s = B(ξα, ξα)s + 2(uβDξ
β
s − uβDξβs) ,

hence

e2u(ΛĝB̂)s = (ΛgB)s + 2in(uαDξαs − uαDξα
) .

Finally, a calculation based on (104) with P = 0 leads to D̂ξs = Dξs.
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