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The Atiyah-Ward Ansätze in 3-dimensions

LIANA DAVID

Riassunto: Sia M una varietà conforme autoduale complessa di dimensione 4,

Z il suo spazio di twistori e Ŵ un fibrato olomorfo di rango 1, su Z, banale sulle
reti twistoriali. L’idea del Ak Atiyah-Ward Ansatz è di scrivere soluzioni autoduali di
Yang-Mills ottenute come trasformazione di Penrose-Ward di una estensione E

0 → O(−k) ⊗ Ŵ → E → O(k) ⊗ Ŵ ∗ → 0

su Z. Siccome l’estensione E viene definita dal fibrato in rete Ŵ e da una classe di

estenzione in H1 (Z,O(−2k) ⊗ Ŵ 2), il Ak Atiyah-Ward Ansatz dà un metodo per ge-
nerare un SL(2,C) campo di Yang-Mills autoduale rispetto al gruppo SL(2,C) da un

campo di Maxwell autoduale (che corrisponde a Ŵ ) e da una soluzione di una equazione

ausiliaria (che corrisponde all’elemento di H1(Z,O(−2k)⊗Ŵ 2). Imponendo condizioni
di realtà, simili Ansätze sono stati ottenuti sulle varietà riemanniane conformi auto-
duali.

In questo articolo, riduciamo il Ak Atiyah-ward Ansatz (per k = 0, 1, 2) dalle
varietà riemanniane autoduali di dimensione 4 alle varietà reali di Einstein-Weyl di
dimensione 3. Otteniamo cos̀ı un metodo per costruire una soluzione delle equazioni
di Einstein-Weyl Bogomolny da una soluzione dell’equazione dei monopoli abeliani ed
una soluzione di una equazione ausiliara. Soluzioni delle equazioni di Einstein-Weyl
Bogomolny sono importanti poiché si possono usare per trovare degli esempi espliciti di
varietà autoduali di dimensine 4.

Abstract: Consider M a complex self-dual conformal 4-manifold, Z its twistor

space and Ŵ a holomorphic line bundle over Z trivial on the twistor lines. The idea of
the Ak Atiyah-Ward Ansatz is to write down self-dual Yang-Mills solutions which are
the Penrose-Ward transform of an extension E

0 → O(−k) ⊗ Ŵ → E → O(k) ⊗ Ŵ ∗ → 0

over Z. Since the data which define E is the line bundle Ŵ and the extension class
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in H1(Z,O(−2k) ⊗ Ŵ 2), the Ak Atiyah-Ward Ansatz provides a method of generating
a SL(2,C) self-dual Yang-Mills field from a self-dual Maxwell field (which corresponds

to Ŵ ) and a solution of an auxiliary equation (which corresponds to H1(Z,O(−2k) ⊗
Ŵ 2)). Imposing reality conditions similar Ansätze on Riemannian self-dual conformal
4-manifolds have been obtained.

In this paper we will reduce the Ak Atiyah-Ward Ansatz (for k = 0, 1, 2) from 4-
dimensional Riemannian self-dual manifolds to 3-dimensional real Einstein-Weyl man-
ifolds. We obtain a method of constructing a solution of the Einstein-Weyl Bogomolny
equations from a solution of the abelian monopole equation and a solution of an aux-
iliary equation. Solutions of Einstein-Weyl Bogomolny equations are important since
they can be used to find explicit examples of self-dual 4-manifolds.

1 – Conformal geometry

The material from this section can be found in [2], [3] and [4]. All

our manifolds will be real. For a manifold M , TM and Ek
M will denote

the tangent bundle of M and the bundle of k forms on M respectively.

Density line bundles and conformal structures. If V is

a real n-dimensional vector space and w any real number, the one di-

mensional linear space Lw = Lw(V ) carrying the representation A →
|detA|w/n of GL(V ) is called the space of densities of weight w. For M

an arbitrary manifold, we will use the density line bundle Lw = Lw(TM)

of M which is defined to be the bundle over M whose fiber at x ∈ M is

Lw(TxM). Any sub-bundle or quotient bundle of Lk ⊗ Λs(TM) ⊗ Ep
M is

said to have weight k + s − p.

A conformal structure on M is a positive definite bilinear form c on

L−1TM (when tensoring with a density line bundle we generally omit the

tensor product sign). If the conformal manifold (M, c) is also oriented

and has dimension n, there is a Hodge star operator ∗ which maps a k

form on M to an (n − k) form on M with values in Ln−2k and which

satisfies the relations
{

iX ∗ (α) = ∗(X ∧ α)

∗(1) = orM .

for any vector field X and form α on M. (Here orM ∈ Γ(M,Ln ⊗ En
M) is

the unit section given by the orientation. Also, for the wedge product we
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shall always use the convention (X ∧ Y )(Z) := 〈X,Z〉Y -〈Y,Z〉X, where

〈·, ·〉 denotes the conformal structure c.) A direct calculation shows that

∗2 = (−1)
1
2n(n−1).

Weyl connections. A Weyl connection on a conformal manifold

is a connection on L1. The fundamental theorem of conformal geometry

(see [7]) states that on a conformal manifold (M, c) there is a bijective

correspondence between Weyl connections and torsion free connections

on TM which preserve the conformal structure c. The corresponding

linear map sends a 1-form γ to the co(TM)-valued 1-form Γ defined by

ΓX = γ(X) Id +γ ∧ X, where “Id” denotes the identity endomorphism.

The Jones and Tod construction. Let M be a 4-dimensional

self-dual oriented conformal manifold and K is a non-vanishing conformal

vector field. Then B := M/K inherits an orientation related to the

orientation of M by the formula

∗M(ξ ∧ α) = (−1)k+1 ∗B (α)

which holds for any k-form α on B (where ξ := K/|K|), a conformal struc-

ture cB and a Weyl derivative DB which respect to which it is Einstein-

Weyl (that is, the symmetric trace free part of the Ricci tensor of DB

vanishes). Moreover, the Einstein-Weyl space B comes with a solution

(w,A) (where A ∈ E1(B) and w ∈ L−1) of the abelian monopole equation

∗BDB(w) = dA from which M can be recovered: the real line bundle M

is locally isomorphic to U × R; the conformal structure on M is given

locally by the formula π∗(cB) + w−2(dt + A)2 and the conformal vector

field K is ∂
∂t

. In other words there is a correspondence between self-dual

4-spaces with symmetry and Einstein-Weyl 3-spaces with monopoles (see

[3] and [5] for details about this construction).

2 – The Ansätze in 4-dimensions

The Atiyah-Ward Ansätze in 4-dimensions have been well under-

stood (see [1] and [6]). However, our treatment of these Ansätze in the

language of conformal geometry does not appear in the literature and is

particularily useful for the reduction process. The proofs of the results

from this section follow by direct calculations.
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2.1 – The case k = 0

Lemma 1. Consider ∇ a connection on a complex vector bundle W

over the 4-dimensional conformal oriented manifold M .

If A ∈ Γ(M, E1 ⊗ End(W ∗,W )) then the connection

(∇ 0

0 ∇
)

+

(
0 A

0 0

)

on W ⊕ W ∗ is self-dual if and only if ∇ is a self-dual Yang-Mills field

and A satisfies the equation (d∇A)ASD = 0. (Here and elsewhere the

subscript “ASD” denotes the anti-self-dual part of a 2-form).

2.2 – The case k = 1

Notation. On a 4-dimensional conformal oriented manifold M S−
is the weight 1/2 spin bundle. It is a complex rank 2 vector bundle

over M such that (S− = Λ2
ASD(L−1/2TM)C and Λ2(S−) = L1

C. (The

subscript C denotes complexifications and ( denotes the symmetrised

tensor product).

Theorem 2. Let D be a Weyl connection on a 4-dimensional

oriented conformal manifold M and ∇ a connection acting on a complex

line bundle W over M . Let ρ be a section of L−1W and suppose that W

has a square root. Then the curvature of the connection [D + ρ−1(D ⊗
∇)(ρ)] ⊗ ∇ on S− ⊗ W−1/2 has the form

RX,Y =W−
X,Y − ρHX,Y (ρ−1)+

+
1

2
{ρ−1∆(ρ) · X ∧ Y + F∇(X) ∧ Y − F∇(Y ) ∧ X}ASD

where F∇ is the curvature of ∇, the Hessian

H : L1W−1 → L−1 End(TM)

is defined by the formula

H(µ) = sym0

(
(D ⊗ ∇)2(µ) + rDµ

)
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(“sym0” denoting the symmetric trace free part) and the conformally in-

variant Laplacian

∆ : L−1W → L−3W

is defined by

∆(ρ) = tr (D ⊗ ∇)
2
(ρ) − 1

6
scalD ρ.

In particular if M is a self-dual, ρ is harmonic and the connection ∇ is

a self-dual Maxwell field, then the connection [D + ρ−1(D ⊗ ∇)(ρ)] ⊗ ∇
on S− ⊗ W−1/2 has self-dual curvature.

2.3 – The case k = 2

Theorem 3. Let ∇ be a self-dual Maxwell field acting on a line

bundle W over the 4-dimensional oriented conformal self-dual manifold

M . Let ρ ∈ Γ(M, E2 ⊗ W ) be non-degenerate and anti-self-dual such

that d∇(ρ) = 0, and let D be a Weyl connection on M . Define F ∈
E1
M⊗End[L−1Λ2

ASD(TM)⊗W−1/2] by the formula FX(α) = [η(α)∧X]ASD

where α ∈ L−1Λ2
ASD(TM) ⊗ W−1/2, X ∈ TM and η(α) is determined by

the condition iη(α)(ρ) = 〈(D ⊗ ∇)(ρ), α〉. Then on the anhilator of ρ in

L−1Λ2
ASD(TM)⊗W−1/2 the connection D ⊗∇+ F is independent of the

Weyl connection D and has self-dual curvature.

3 – The reduced equations

Assumptions. In this section we consider (B,DB) a 3-dimensional

oriented Einstein-Weyl space, (w,A) a solution of the abelian monopole

equation on B and π : M → B the conformal submersion it generates with

M an oriented 4-dimensional self-dual manifold. On B we fix a vector

bundle V with a connection ∇1 acting on it and a section w1 ∈ L−1 ⊗
End(V ). We define a connection ∇ on π∗(V ) by the formula π∗(∇1)−w1ξ,

where ξ := w−1(dt + A) with t the fiber coordinate of π.

One should note that (w1,∇1) is a solution of the Einstein-Weyl

Bogomolny equations ∗B(DB ⊗∇1)(w1) = F∇1 on B if and only if ∇ is a

self-dual Yang-Mills field on M. In particular this is the correspondence

between solutions of the abelian monopole equation on B and self-dual

Maxwell fields on M (in the case when the rank of V is 1).
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Notations. In order to simplify the notations, the tensor product

connection DB ⊗∇1 on B applied to a section of Lk ⊗ V (or to a section

of LkTB ⊗ V ) will be denoted simply ∇1. Similarly, the tensor product

connection DB ⊗ ∇ on M applied to a section of Lk ⊗ π∗(V ) (or to a

section of LkTM ⊗ π∗(V )) will be denoted simply ∇.

3.1 – The case k = 0.

Lemma 4. Let A2 ∈ Γ(B, E1
B ⊗ Hom(V ∗, V )) and w2 ∈ L−1 ⊗

Hom(V ∗, V ) such that they satisfy the the relation

d∇1(A2) = ∗B(∇1(w2) − w1A2)

Then the 1-form A ∈ Γ(M, E1
M⊗Hom(π∗V ∗, π∗V )) defined by the formula

A = π∗(A2) − w2ξ satisfies the equation d∇(A)ASD = 0.

Proof. We first notice that

d∇(A) = dπ∗(∇1)−w1ξ(A) =

= dπ∗(∇1)(A) − w1ξ ∧ A =

= dπ∗(∇1)(π∗(A2) − w2ξ) − w1ξ ∧ A2 =

= π∗(d∇1(A2)) − ∇1(w2) ∧ ξ − w2d
DB

(ξ) − w1ξ ∧ A2 =

= π∗(d∇1(A2)) + ξ ∧ (∇1(w2) − w1A2) − w2d
DB

(ξ) .

Then we notice that, since (w,A) satisfies the abelian monopole equation,

the form dDB
(ξ) is self-dual, being equal to the expression

w−1
(
ξ ∧ DB(w) + ∗M

(
ξ ∧ DB(w)

))
.

Also, since ∗M(α) = −ξ∧∗B(α) for α ∈ E2(B) we obtain that the anti-self

dual part of d∇(A) is 0 if and only if d∇1(A2) = ∗B(∇1(w2)−w1A2). The

conclusion follows.
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3.2 – The case k = 1

Lemma 5. If s ∈ L
−1/2
B ⊗ V is a solution of the equation

trB ∇2
1(s) −

1

6
scalD

B

s + w2
1s = 0

then w1/2π∗(s) ∈ L−1
M ⊗ π∗(V ) is a solution of the conformally invariant

Laplacian coupled with the connection ∇.

Proof. Using Proposition 2.6 and Proposition 5.6 of [4] one first

shows that the scalar curvatures scalD
B

M of DB on M and scalD
B

B of DB

on B are related by the formula

scalD
B

M = scalD
B

B −9

2
|w−1DB(w)|2.

The proof then follows from a direct calculation.

3.3 – The case k = 2

Lemma 6. If α ∈ Γ(B, E1
B ⊗ V ) is a solution of the system

{
d∇1(α) = w1∗B(α)

d∇1(∗Bα) = 0

then π∗(wα) ∈ Γ(M, E2
ASD ⊗ π∗(V )) satisfies

d∇π∗(wα) = 0.

Proof. First we recall that the isomorphism π∗(L−1E1
B) ∼= E2

ASD

used implicitly in the statement of the lemma associates to β ∈ L−1E1
B

the anti-self-dual 2-form ξ ∧ β − ∗M(ξ ∧ β). Then we notice that

d∇[ξ ∧ (wα) − ∗M(ξ ∧ (wα))] = −(dt + A) ∧ π∗(d∇
1 (α)) − d∇1(∗Bα)w+

+ w1wξ ∧ ∗Bα

The conclusion follows by identifying the horizontal and vertical parts of

the above equality.
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4 – The Ansätze for 3-dimensional Einstein-Weyl spaces

4.1 – The case k = 0

The reduced Ansatz for k = 0 gives an interpretation of the affine

monopole equations (see [2]):

{
∗B∇1(w1) = F∇1

d∇1(A2) = ∗B(∇1(w2) − w1A2)

where A2 ∈ Γ(B, E1
B ⊗ Hom(V ∗, V )) and w2 ∈ L−1 ⊗ Hom(V ∗, V ). The

first of these equations is the abelian monopole equation. The second

of these equations is obtained by reducing the auxiliary equation of the

A0 Ansatz from 4 to 3 dimensions (see Lemma 4). The following lemma

holds.

Lemma 7. The affine monopole equations on 3-dimensional Einstein-

Weyl manifolds are natural reductions of the A0 Atiyah-Ward Ansatz on

self-dual conformal 4-manifolds.

4.2 – The case k = 1.

Notation. For B an oriented conformal 3-manifold, S is the weight

1/2-spin bundle. It is a rank two complex vector bundle on B such that

(2S = TCB.

Theorem 8. Let (∇1, w1) be a solution of the abelian monopole

equation defined on the line bundle V over the 3-dimensional oriented

Einstein-Weyl space B. Suppose that V has a square root. If s ∈ L−1/2V

is a solution of the equation

tr∇2
1(s) −

1

6
scalD

B

s + w2
1s = 0

then the Higgs field

−1

2
s−1∇1(s) ∈ L−1

B ⊗ End(L
−1/4
B S ⊗ V −1/2)
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and the connection (DB + Γ) ⊗ ∇1 on L
−1/4
B S ⊗ V −1/2 with

ΓX =
1

2
s−1(∇1)X(s) · Id−1

2
w1X +

1

2
∗B (s−1∇1(s) ∧ X)

(where X ∈ TB) satisfy the Einstein-Weyl Bogomolny equations on B.

Proof. Consider (w,A) a solution of the abelian monopole equation

on B and π : M → B the conformal submersion it generates with M

a 4-dimensional self-dual oriented conformal manifold. From Theorem 2

and Lemma 5 we obtain a self-dual Yang-Mills field on S− ⊗ π∗(V −1/2)

defined by the formula (DB + ρ−1∇(ρ))⊗∇, where S− is the spin bundle

over M such that (2S− = L−1Λ2
ASD(TM), ρ := w1/2s ∈ L−1 ⊗ π∗(V )

and the connection ∇ on π∗(V −1/2) is induced by the connection ∇ :=

π∗(∇1) − w1ξ on π∗(V ). The proof has three steps.

1. Step 1. We show that on S− the connection DB + ρ−1∇(ρ) is the

connection

π∗(DB) +
1

2

(
1

2
w−1DB(w) + s−1∇1(s) − w1ξ

)
· Id +F

where F ∈ T ∗M ⊗ End
(
S− ⊗ π∗(V −1/2)

)
is

FX = [(s−1∇1(s) − w1ξ) ∧ X]ASD

For this we first notice that

∇(ρ) =
1

2
w−1/2DB(w)s + w1/2(∇1(s) − w1ξ · s)

and

ρ−1∇(ρ) =
1

2
w−1DB(w) + s−1∇1(s) − w1ξ

It follows that on L1 the connection DB + ρ−1∇(ρ) is equal to

DB +
1

2
w−1DB(w) + s−1∇1(s) − w1ξ.

On L1 we define the Weyl connection Dsd to be DB + 1
2
w−1DB(w)

which has the property that on L−1/2S− it is the pull-back of DB on
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L−1/2S (see [2]). Since on L1 the connection DB+ρ−1∇(ρ) is equal to

Dsd + s−1∇1(s)−w1ξ, it follows that on L−1/2S− (which is of weight

0) it is equal to π∗(DB) + F , with F ∈ Γ(M, E1
M ⊗ End[L−1/2S−])

defined by

FX = [(s−1∇1(s) − w1ξ) ∧ X]ASD

(for every X ∈ TM). Then on L1/2 ⊗ L−1/2S− the connection

DB + ρ−1∇(ρ) is the tensor product [Dsd + 1
2
(s−1∇1(s)−w1ξ) · Id]⊗

[π∗(DB) + F ], which is equal to [DB + 1
2
( 1

2

DB(w)

w
+ s−1∇1(s) −w1ξ) ·

Id] ⊗ [π∗(DB) + F ], because Dsd = DB + 1
2
w−1DB(w) on L1. The

claim follows.

2. Step 2. We change the weight of the bundle S−⊗π∗(V −1/2) in order

to get a self-dual Yang-Mills field with horizontal part independent

of w.

The change of weight is realized by the diffeomorphism

w1/4 : S− ⊗ π∗(V −1/2) → L
−1/4
M S− ⊗ π∗(V −1/2)

The self-dual Yang-Mills field [DB +ρ−1∇(ρ)]⊗∇ on S−⊗π∗(V −1/2)

induces a self-dual Yang Mills field

[π∗(DB) +
1

2
(s−1∇1(s) − w1ξ) · Id +F ] ⊗ ∇

on L
−1/4
M S− ⊗ π∗(V −1/2), with F having the same formal expression

as in Step 1.

3. Step 3. We determine the horizontal and the vertical parts of the

self-dual Yang-Mills field on L
−1/4
M S− ⊗ π∗(V −1/2). They will pro-

vide the connection and the Higgs field which form a solution of the

Einstein-Weyl Bogomolny equations on B.

For this, we first notice that on π∗(V −1/2) the connection∇ is π∗(∇1)+
1
2
w1ξ, and that the Yang-Mills field on L

−1/4
M S−⊗π∗(V −1/2) becomes

π∗(DB ⊗ ∇1) + 1
2
s−1∇1(s) · Id +F , with F a 1-form with values in

End
(
L

−1/4
M S− ⊗ π∗(V −1/2)

)
defined by

FX = [(s−1∇1(s) − w1ξ) ∧ X]ASD
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(X ∈ TM). It follows that the vertical part of the self-dual Yang-

Mills field is Fξ = − 1
2
s−1∇1(s) (since (DB ⊗ ∇1)ξ(s) is 0, the con-

nection ∇1 being a pull-back connection on L−1/2 ⊗ π∗(V ), ξ being

vertical and s being the pull-back of a section on the base). The hor-

izontal part of the self-dual Yang-Mills field is DB ⊗ ∇1 + Γ, where

ΓX =
1

2
s−1(∇1)X(s) · Id +iξ(FX)

(X ∈ TB). A simple calculation shows that

iξ(FX) = −1

2
w1X +

1

2
∗B (s−1∇1(s) ∧ X)

and the conclusion follows.

4.3 – The case k = 2

Theorem 9. Let (w1,∇1) be a solution of the abelian monopole

equation defined on the line bundle V over the 3-dimensional oriented

Einstein-Weyl space B. Suppose that V has a square root. If α ∈
Γ(B, E1

B ⊗ V ) satisfies

{
d∇1(α) = w1 ∗B (α)

d∇1(∗Bα) = 0

then the Higgs field H ∈ L−1 ⊗ End(L−1/2TB ⊗ V −1/2) defined by

H(χ) = |α|−2∗B (α ∧ 〈∇1(α), χ〉) +
1

2
w1χ

and the connection DB ⊗∇1 +G with G ∈ T ∗B⊗End(L−1/2TB⊗V −1/2)

given by

G(X)(χ) = |α|−2[〈(∇1)α(α), χ〉X + 〈(∇1)X(α), χ〉α − 〈∇1(α), χ〉α(X)]

(where X ∈ TB) induces a solution the Einstein-Weyl Bogomolny equa-

tions on B defined on the orthogonal complement of α in the bundle

L−1/2TB ⊗ V −1/2.
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Proof. Consider (w,A) a solution of the abelian monopole equation

on B and π : M → B the conformal submersion it generates with M

a 4-dimensional self-dual oriented conformal manifold. Let ρ := w(ξ ∧
α−∗Bα) and ∇ the connection on π∗(V ) defined by ∇ := π∗(∇1)−w1ξ.

Preserving the notations from Theorem 3, we obtain the self-dual Yang-

Mills field D ⊗ ∇ + F acting on the anhilator of ρ in L−1Λ2
ASD(TM) ⊗

π∗(V −1/2). Since L−1Λ2
ASD(TM) ∼= π∗(TB), the self-dual Yang-Mills field

can be considered to act on the anhilator of π∗(α) in π∗(TB ⊗ V −1/2).

Also, the self-dual Yang-Mills field is independent of the choice of the

Weyl connection D. We shall choose the Weyl connection D to be Dsd

(see the proof of Theorem 8).

The proof has three steps.

1. Step 1. We show that the self-dual Yang-Mills field acting on

π∗(TB ⊗ V −1/2) is

π∗(DB ⊗ ∇1) +
1

2

(
w−1DB(w) + w1ξ

) · Id +F

where F is a 1-form with values in End
(
π∗(TB ⊗ V −1/2)

)
such that

when X is basic

FX(χ) = −|α|−2〈(∇1)α(χ), α〉X − |α|−2α(X)〈(∇1)(α), χ〉+
+ |α|−2〈(∇1)X(α), χ〉α

and

Fξ(χ) = |α|−2 ∗B (α ∧ 〈∇1(α), χ〉)

for χ ∈ TB ⊗ V −1/2.

For this, we first note that Dsd = π∗(DB) + 1
2
w−1DB(w) · Id on

π∗(TB), and that the product connection Dsd⊗∇ on π∗(TB⊗V −1/2)

is the connection π∗(DB ⊗ ∇1) + 1
2
(w−1DB(w) + w1ξ) · Id. Next we

determine F as a 1-form with values in End
(
π∗(TB ⊗ V −1/2)

)
. For

this let χ ∈ TB⊗V −1/2 orthogonal to α and β := ξ∧χ−∗M(ξ∧χ) ∈
L−1Λ2

ASD(TM) ⊗ π∗(V −1/2). Then (see also the definition of F from

Theorem 3) the 1-form F with values in End
(
π∗(TB ⊗ V −1/2)

)
is

defined by

FX(χ) = iξ ([η(β) ∧ X]ASD)
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where X ∈ TM and η(β) ∈ L−1TM ⊗ π∗(V −1/2) is determined by

the equality

ρ(η(β), Y ) = −〈ρ, (Dsd ⊗ ∇)Y (β)〉

which holds for every Y ∈ TM . Our next aim is to determine η(β)

explicitly. Let η(β) = h(β) + v(β) with h(β) horizontal and v(β) =

λ(β) · ξ is vertical. The connections Dsd ⊗∇ and π∗(DB ⊗∇1) differ

by a multiple of the identity on π∗(TB ⊗ V −1/2). This multiple will

be ignored since applied to β it is always going to be killed by the

inner product with ρ. Also, recall that in our convention of notations

the tensor product connection DB⊗∇1 (or its pull-back) applied to a

section of TB⊗V −1/2 (or to a section of its pull-back π∗(TB⊗V −1/2))

will be simply denoted ∇1 and π∗(∇1) respectively.

Let Y = ξ in the relation ρ(η(β), Y ) = −〈ρ, (Dsd ⊗ ∇)Y (β)〉. Using

the fact that π∗(∇1)ξ(β) = 0 we get ρ(η(β), ξ) = 0 or equivalently

〈α, h(β)〉 = 0. Now let Y be basic. A simple calculation shows that

ρ(η(β), Y ) = wλ(β)α(Y ) + w∗B(h(β) ∧ Y ∧ α).

On the other hand we have

〈ρ, (Dsd ⊗ ∇)Y (β)〉 = 〈ρ, (π∗∇1)Y (β)〉 =

= 〈ρ, ξ ∧ (∇1)Y (χ) − ∗M(ξ ∧ (∇1)Y (χ))〉 =

= 2w〈(∇1)Y (χ), α〉

and we obtain

λ(β)α(Y ) + ∗B(h(β) ∧ Y ∧ α) = −2〈(∇1)Y (χ), α〉.

Now this relation determines the vertical as well as the horizontal

part of η(β): to determine the vertical part v(β) we take Y := α to

get

λ(β) = −2|α|−2〈(∇1)α(χ), α〉.

To determine the horizontal part h(β) we take Y orthogonal to α to

get

∗B(h(β) ∧ Y ∧ α) = −2〈(∇1)Y (χ), α〉



356 LIANA DAVID [14]

Since the horizontal part of η(β) is orthogonal to α we can write it

down explicitly from the above relation:

h(β) = −2|α|−2∗B (α ∧ 〈∇1(α), χ〉) .

The claim now follows.

2. Step 2. We change the weight of the bundle π∗(TB⊗V −1/2) in order

to get a self-dual Yang-Mills field with horizontal part independent

of w. The change of weight is realized by the diffeomorphism w1/2 :

π∗(TB ⊗ V −1/2) → π∗(L−1/2TB ⊗ V −1/2). On the anhilator of α in

π∗(L−1/2TB ⊗ V −1/2) we obtain the self-dual Yang-Mills field

π∗(DB ⊗ ∇1) +
1

2
w1ξ · Id +F̃

the 1-form F̃ with values in End
(
π∗(L−1/2TB ⊗ V −1/2)

)
having the

same formal expression as F .

3. Step 3. We identify the horizontal and vertical parts of the self-dual

Yang-Mills field on π∗(L−1/2TB ⊗ V −1/2) in order to get the connec-

tion and the Higgs field which form a solution of the Einstein-Weyl

Bogomolny equations on B. This follows from a simple calculation,

and we obtain the statement of the theorem.

5 – Examples

To any solution u ∈ C∞(R3) of the Toda equation

uxx + uyy + (eu)zz = 0

there is an associated Einstein-Weyl space defined in a gauge (called

LeBrun-Ward gauge) µ ∈ L1 by

{
g = eu(dx2 + dy2) + dz2

ω = −uzdz

Here g is the metric µ−2c and ω is the connection 1-form of the Einstein-

Weyl connection on L1 relative to the gauge µ.
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A direct calculation shows that µ− 1
2 is a solution of the equation of

Lemma 5 and dz is a solution of the equation of Lemma 6 (with V trivial

of rank one).

Theorem 10. Let (B,DB) be a Toda Einstein Weyl space. Then

the couples (DB + Γ,− 1
4
uzdz) and (DB + G,H) defined by

ΓX =
1

4
uzX(z) · Id +

1

4
∗ (uzdz ∧ X)

(for X ∈ TB) and

H(χ) = −1

2
uz ∗ (dz ∧ χ)

GX(χ) = uzχ(z)X +

(
3

2
uzχ(z)〈X,

∂

∂z
〉 − 1

2
uz〈X,χ〉

)
dz+

− X(z)

(
3

2
uzχ(z)

∂

∂z
− 1

2
uzχ

)

(for X ∈ TB and χ ∈ L−1TB, χ(z) = 0) are solutions of the Einstein-

Weyl Bogomolny equations.

The main importance of the reduced Ansätze comes from the fact

that solutions of the Einstein-Weyl Bogomolny equations on a 3-dimen-

sional Einstein-Weyl space generate self-dual 4-manifolds (see [2]). Ex-

plicit examples of self-dual 4-manifolds using the reduced Ansätze still

need to be developed.
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