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Vector cross products and almost contact structures

PAOLA MATZEU – MARIAN-IOAN MUNTEANU

Riassunto: Si definiscono delle strutture di quasi contatto su varietà 7-dimensio-
nali dotate di prodotto vettoriale. In particolare, si dimostra che i due prodotti vettoriali
non isomorfi di IR8 inducono su ogni ipersuperficie M ⊂ IR8 due differenti strutture di
quasi contatto, una delle quali coincide con l’usuale struttura definita su M mediante
la struttura complessa di IR8. Infine, si costruisce in questo modo una struttura non
normale di quasi K-contatto sulla sfera S7.

Abstract: Special almost contact structures on 7-dimensional manifolds endowed
with a 2-fold vector cross product have been defined. Between them, the almost contact
structures induced by the two non-isomorphic 3-fold vector cross products of IR8 on
any orientable hypersurface M have been considered, proving that one of them always
coincides with the structure inherited by M from the complex structure of IR8, while
the second one generally provides an unknown example of almost contact structure on
M . In particular, in this way, a non normal almost K-contact metric structure on S7

has been constructed.

1 – Introduction

In 1969 A. Gray gave a general definition of the well-known notion

of vector cross product, studying in particular vector cross products on

manifolds [6]. A careful exam of vector cross products from the point

of view of differential geometry was mainly suggested by their strong
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relations with almost complex structures. Moreover, vector cross prod-

ucts provided an approach to the study of Riemannian manifolds with

holonomy group G2 or Spin(7) (cf. [8]). In particular, by means of the

two non-isomorphic 3-fold vector cross products of IR8, some new almost

complex structures on S6 have been obtained in [6]. In the same way,

some examples of manifolds with different almost complex structures J1

and J2 such that J1 is Kählerian but J2 is not, have been constructed.

In the light of these results on 6-dimensional case, we show that some

classes of 7-dimensional manifolds admitting a 2-fold vector cross product

P have an almost contact structure naturally induced by P . As special

case, we consider the orientable hypersurfaces M of IR8 which inherit

two almost contact structures from the two non-isomorphic vector cross

products of IR8. The properties of the two vector cross products of IR8

imply strong differences between these structures. In fact, one of them is

just the almost contact structure naturally induced on M by the complex

structure of IR8. On the contrary, the second one provides in most cases

a new example of almost contact structure on the hypersurfaces M . In

particular, concerning its general properties, we prove that the conditions

for the normality impose very special restrictions to the corresponding

vector cross product P .

In the last section, as remarkable example, we construct the so defined

almost contact structures on S7. Besides of the well known Sasakian

structure, we obtain in this way a different almost contact structure on

the unitary 7-dimensional sphere. More precisely, a careful analysis by

means of the results of [1], [4], shows that it can be classified as an almost

K-contact, non normal structure on S7.

2 – Preliminaries

Definition 2.1. [6] Let V be an n-dimensional vector space over

the real numbers and let g be a non-degenerate bilinear form on V . An

r-fold vector cross product on V (1 ≤ r ≤ n) is a multilinear map P ,

P : V r −→ V , such that

(2.1)
‖P (a1, · · · , ar)‖2 = det(g(ai, aj)) = ‖a1 ∧ · · · ∧ ar‖2 and

g(P (a1, · · · , ar), ai) = 0,
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for all a1, · · · , ar in V , with ‖a‖2 = g(a, a). Let P and P ′ two r-fold

vector cross products on V with respect to the same bilinear form g. If

there exists a map Ψ : V → V such that

g(Ψa,Ψb) = g(a, b) and P (Ψa1, · · · ,Ψar) = (−1)qP (a1, · · · , ar),

with q ∈ IN even (odd), then P and P ′ are said isomorphic (anti-iso-

morphic).

In what follows we will be interested to 2-fold and 3-fold vector cross

products described below (a complete classification of the vector cross

products can be found in [3], [5]).

a) Let V be the orthogonal complement of the identity e of an 8-dimen-

sional composition algebra W . Then we can define 2-fold vector cross

product P : V × V −→ V on V by

P (a, b) = ab + g(a, b)e.

Two 2-fold vector cross products on the same vector space (V, g) are

always isomorphic.

b) Let V be an 8-dimensional composition algebra with bilinear form g.

Then the following maps P, P ′ : V × V × V −→ V

P (a, b, c) = −a(bc) + g(a, b)c + g(b, c)a − g(c, a)b,(2.2)

P ′(a, b, c) = −(ab)c + g(a, b)c + g(b, c)a − g(c, a)b(2.3)

define two non-isomorphic 3-fold vector cross products on V with respect

to g. Every other 3-fold vector cross product with bilinear form g is

isomorphic to either P or P ′.

Examples of vector cross products of type a) and b) can be obtained

on IR7 and IR8 via the non associative 8-dimensional algebra Cay of the

Cayley numbers. Denoting by IH the quaternions algebra, we can think

Cay as the product IH × IH endowed with the multiplication

(2.4) (z, w)(z′, w′) = (zz′ − w̄′w,w′z + wz̄′),
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where z, w, z′, w′ ∈ IH and q̄ denotes the conjugation in IH of the quater-

nion q. Furthermore, a basis B and the conjugation for Cay are respec-

tively given as follows:

B = {i0 = (1, 0), i1 = (i, 0), i2 = (j, 0), i3 = (k, 0), i4 = (0, 1),(2.5)

i5 = (0, i), i6 = (0, j), i7 = (0, k)}

(z, w) = (z̄,−w).(2.6)

Following [6], we say that a Riemannian manifold (M, g) has an r-fold

vector cross product P if, for each m ∈ M , the corresponding tangent

space TmM has an r-fold vector cross product Pm : TmM×TmM → TmM ,

requiring that the map m → Pm be C∞.

We recall the following remarkable theorem which will be useful for

us [6]

Theorem 2.1. Let M be an m-dimensional oriented submanifold

of the n-dimensional Riemannian manifold (M, g). Suppose that the re-

strictions of g to M and to the normal bundle of M are nondegenerate

and positive definite respectively. If M has an r-fold vector cross product

P with respect to g, then P induces a k-fold vector cross product P on M

with k = r − p, being p the codimension of M .

A partial vice versa of the previous Theorem 2.1 has been also ob-

tained in [6]. In fact, the author proved that the existence of an r-fold

vector cross product on the unitary n-dimensional sphere Sn implies the

existence of an (r+1)-fold vector cross product on IRn+1. So, the only

spheres admitting almost complex structures are S2 and S6 while S7

surely has 2-fold vector cross products.

Other important properties of the geometry of a Riemannian mani-

fold (M, g) admitting a vector cross product can be found in [6].

3 – Vector cross products and almost contact structures

Let M be a differentiable manifold of odd dimension 2n + 1. An

almost contact metric structure (a.c.m.s.) (ϕ, ξ, η, g) on M is given by a
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field of endomorphisms of the tangent bundle ϕ, a vector field ξ and a

1-form η satisfying the following relations [2]:

(3.7)

{
ϕ2 = −I + η ⊗ ξ, η(ξ) = 1,

ϕ(ξ) = 0, η ◦ ϕ = 0, rank ϕ = 2n.

together with a Riemannian metric on M such that

(3.8) g(X, ξ) = η(X) , g(ϕX,ϕY ) = g(X,Y ) − η(X)η(Y )

for every X,Y ∈ X− (M). Then (M,ϕ, ξ, η, g) is called an almost contact

metric manifold.

Let now V be a 7-dimensional vector space over IR with positive

definite inner product g and let P be a 2-fold vector cross product. Given

the unitary vector ξ of V , consider the (1,1)-tensor ϕ and the 1-form η

respectively defined by the relations

(3.9) ϕa = P (ξ, a), η(a) = g(ξ, a) for every a ∈ V.

Proposition 3.1. (ϕ, ξ, η, g) is an almost contact metric structure

on V .

Proof. In fact, the definitions of ϕ and η trivially imply ϕξ = 0 and

η(ξ) = 1. Moreover for a, b, c ∈ V we have [8]

P (a, P (a, b)) = −‖a‖2b + g(a, b)a,(3.10)

g(P (a, b), P (a, c)) = g(a ∧ b, a ∧ c).(3.11)

By substituting ξ for a in (3.10) and (3.11) we respectively obtain ϕ2 =

−I +η⊗ ξ as well as g(ϕb, ϕc) = g(b, c)−η(b)η(c), proving the assert.

This definition gives us the possibility to induce an almost contact

metric structure on every Riemannian 7-dimensional manifold M en-

dowed of a 2-fold vector cross product which admits a globally defined

unitary vector field ξ, as the parallelizable 7-dimensional manifolds and

the orientable hypersurfaces of IR8 [6]. In the sequel we just shall focus
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our attention on this second class of manifolds which inherit from IR8

further nice properties. In fact, if M is such a hypersurface of IR8, then

there exists a naturally defined global unitary vector field ξ on M given by

ξ = −JN , where N denotes the unitary normal vector field to M and J

the complex structure of IR8. Moreover, since IR8, conveniently identified

with the Cayley algebra of octonions, possesses the two non-isomorphic

3-fold vector cross products P and P ′, formulas (2.2) and (2.3) define

on M the following two almost contact metric structures (ϕ, ξ, η, g) and

(ϕ′, ξ, η, g)

ϕX = −P (N, ξ,X) = N(ξ̄X) − g(ξ,X)N = N(ξ̄X) − η(X)N,(3.12)

ϕ′X = −P ′(N, ξ,X) = (Nξ̄)X − g(ξ,X)N = (Nξ̄)X − η(X)N,(3.13)

where g is the restriction to M of the metric G of IR8, ξ = −JN and

η(X) = g(ξ,X) for every X ∈ X− (M).

Remak 3.2. It should be remarked that there is one fundamental

difference between the vector cross products and the a.c.m.s. In fact,

a.c.m.s. are generally defined without reference to a Riemannian metric,

and if a metric exists, a compatibility condition is required. In contrast

to this, a vector cross product has a unique metric associated with it (see

[6], [8]).

We shall describe now some useful properties of the 2-fold vector cross

products induced on M by P and P ′. With this purpose, we shall use the

notation P̃ for both P and P ′, as well as ϕ̃ for both the corresponding

almost contact structures on M .

Firstly, we remark that, because of the linearity of P̃ , applying (2.1),

for every X,Y ∈ X− (M), we obtain

‖P̃ (N,X + ξ, Y )‖2 = ‖X + ξ‖2‖Y ‖2 − (g(X,Y ) + η(Y ))2,(3.14)

‖P̃ (N,X, Y )‖2 = ‖X‖2‖Y ‖2 − (g(X,Y ))2(3.15)

and, as usual, ‖ϕ̃Y ‖2 = ‖Y ‖2 − (η(Y ))2. Moreover, from the equality

g(P̃ (N,X + Y,Z), X + Y ) = 0 (see (2.1)), we also have

(3.16) g(P̃ (N,X,Z), Y ) = −g(P̃ (N,Y, Z), X)
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for all X,Y, Z ∈ X− (M). Then, taking account of the previous relations,

from (3.16) we deduce the following fundamental relation

(3.17) P̃ (N,Y, ϕ̃Y ) = η(Y )Y − ‖Y ‖2ξ.

On the other hand, because of the enunciated properties of P̃ and

(3.17), we can write (see also (2.7) in [8])

(3.18) P̃ (N, ϕ̃X, Y ) + ϕ̃P̃ (N,X, Y ) = −2η(Y )X + η(X)Y + g(X,Y )ξ.

Thus, after some computations, by substituting in (3.18) ϕ̃Y for Y , we

get the new useful equation true for all X,Y ∈ X− (M).

(3.19) P̃ (N, ϕ̃X, ϕ̃Y )+P̃ (N,X, Y )=−η(X)ϕ̃Y +η(Y )ϕ̃X +2g(X, ϕ̃Y )ξ .

Then, since the equality g(P̃ (X,ξ,Y ),P̃ (N,ξ,Y )) = −g(P̃ (ϕ̃Y, ξ, Y ), X)

and (2.1) imply that P̃ (X, ξ, Y ) is orthogonal both to ϕ̃X and ϕ̃Y , we

deduce that P̃ (Y, ξ, ϕ̃Y ) is always parallel to N for every Y ∈ X− (M).

Then, we can choose the vector fields X,Y on M such that X,Y, ϕ̃X, ϕ̃Y

are independent to each other and give rise to the following local frame

on M :

(3.20) {Ẋ, Ẏ , ϕ̃X, ϕ̃Y, P̃t(X, ξ, Y ), ϕ̃P̃t(X, ξ, Y ), ξ},

where Ẋ, Ẏ and P̃t(X, ξ, Y ) denote the horizontal components of X,Y

and the tangent part of P̃ (X, ξ, Y ) respectively. Finally the following

theorem gives the fundamental relation which characterizes the a.c.m.s.

induced on M by the vector cross products of IR8

Theorem 3.3. For the vector cross products P̃ one of the following

relations holds

(3.21)
P̃ (X,N, Y ) = ∓(P̃ (ϕ̃X, ξ, Y ) − g(ϕ̃X, ϕ̃Y )N) +

+ η(X)ϕ̃Y − η(Y )ϕ̃X − g(ϕ̃X, Y )ξ,

for all X,Y ∈ X− (M).
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Proof. In fact, since the scalar product g(P̃ (X,N, Y ), P̃ (X, ξ, Y ))

vanishes (see formulas (2.1)), considering the local vector frame (3.20) of

M , we can write

(3.22) P̃ (Ẋ,N, Ẏ ) = αϕ̃P̃t(Ẋ, ξ, Ẏ ) + βξ,

where β = g(ϕ̃X, Y ). On the other hand, taking into account that

‖P̃ (Ẋ,N, Ẏ )‖ = ‖P̃ (Ẋ, ξ, Ẏ )‖ and P̃ (Ẋ, ξ, Ẏ )= P̃t(Ẋ, ξ, Ẏ )−g(ϕ̃X, Y )N ,

from (3.22) we get

(3.23) ‖P̃ (Ẋ,N, Ẏ )‖2 = α2‖P̃ (Ẋ, ξ, Ẏ )‖2 −α2(g(ϕ̃X, Y ))2 +(g(ϕ̃X, Y ))2,

from which, the necessary equalities of the lengths imply α = ±1. Finally,

since ϕ̃Pt(X, ξ, Y ) = −P̃t(ϕ̃X, ξ, Y ) for every X,Y ∈ X− (M), the proof

of the theorem is completed by substituting in (3.23) X − η(X)ξ for Ẋ

and Y − η(Y )ξ for Ẏ respectively.

Now, remembering the definition of P and P ′, a straightforward com-

putation proves that the sign positive holds for P ′, while P obeys to (3.21)

with the negative sign.

On the other hand, every orientable hypersurface M ⊂ IR8 naturally

inherits an almost contact metric structure (ϕ̇, ξ, η, g) from the complex

structure J of IR8 defined as follows:

(3.24) ξ = −JN, η(X) = g(X, ξ), JX = ϕ̇X + η(X)N

where X ∈ X− (M) and N is the unit normal to M in IR8.

Then, if ∇,∇ denote the Levi-Civita connections of G on IR8 and

of g on M respectively, we have the following well-known Gauss and

Weingarten equations:

(3.25)

{
∇

X
Y = ∇

X
Y + B(X,Y )

∇
X
N = −AX, X, Y, Z ∈ X− (M)

where the normal part B(X,Y ) of ∇
X
Y , called the second fundamental

form of M , is correlated to the symmetric Weingarten operator A by the
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relation G(B(X,Y ), N) = g(AX,Y ). From (3.25) we obtain the follow-

ing equations satisfied by the induced almost contact metric structure of

M [11]

(3.26)





(∇
X
ϕ̇)Y = η(Y )AX − g(AX,Y )ξ,

(∇
X
η)(Y ) =

1

2
dη(X,Y ) = g(ϕ̇AX, Y ), ∇

X
ξ = ϕ̇AX.

Now, considering the identification of R8 with the octonions algebra

Cay=IH× IH and the complex structure J as the left multiplication by an

imaginary unity ik, k = 1, · · · , 7, of the basis (2.5) of Cay, by a direct com-

putation in every point m ∈ M we get Nmξ̄m = ik and (ϕ′X)m = (ϕ̇X)m
for every vector field X ∈ X− (M). In other words, the vector cross prod-

ucts P ′ gives rise just to the same almost contact metric structure induced

on M by the complex structure J of IR8.

Furthermore, directly from definition of ϕ and ϕ′ = ϕ̇ we can also

prove the following theorem.

Theorem 3.4. Let M be an orientable hypersurface of IR8. Then

the almost contact metric structures (ϕ, ξ, η, g) and (ϕ′ = ϕ̇, ξ, η, g) re-

spectively induced on M by the vector cross products P and P ′ of IR8,

coincide iff the horizontal fiber bundle HM is always normal to the iden-

tity vector field I0 of the Cayley multiplication.

Proof. As before, we consider the complex structure J of IR8 as

the left multiplication by a fixed imaginary unity ik, k = 1, · · · , 7. If we

denote I0, Ik the vector fields along M with constant component equal to

i0, ik of B in every point m ∈ M , it is trivial that, when N = αI0 + βIk
with α, β ∈ C∞(M), then the two structures coincide.

To prove the vice versa, suppose (Nξ̄)X = N(ξ̄X) for every X ∈
X− (M), with N = αI0 + βIk + γZ, for differentiable functions α, β, γ on

M such that α2+β2+γ2 = 1 and some unitary vector field Z orthogonal to

I0, Ik. In the sequel, to simplify our proof, without loosing the generality,

we shall suppose Z = Ij, for some j 	= k. Then, if W is the vector

field defined by W = IkZ, W is also an imaginary unity satisfying the

equation ZW = Ik. Furthermore, for every point m ∈ M , the vectors

i0, ik, Zm,Wm are four orthonormal elements in IR8; as a consequence, we

obtain the decomposition IR8 = span[i0, ik, Zm,Wm] ⊕ IR4. Let now X
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a unitary vector field given by X = (0, y), with ym ∈ IR4 and ‖y‖ = 1.

Obviously, X ∈ X− (M) so that we must have N(ξ̄X) = (Nξ̄)X. We

already know that (Nξ̄)X = Ik(0, y). We shall compute now the left part

considering that ξ = βI0−αIk−γW, and consequently ξ̄ = βI0+αIk+γW.

Then, taking into account the definition and the properties of Z and W ,

we have

(3.27)

N(ξ̄X) =(αI0 + βIk + γZ)((βI0 + αIk + γW )(0, y)) =

=(αI0 + βIk + γZ)(βI0(0, y) + αIk(0, y) + γW (0, y)) =

=(α2+ β2)Ik(0, y)+ 2αγW (0, y)+ 2βγZ(0, y)− γ2Ik(0, y).

Because of the equality of the structures, the previous equation (3.27)

implies

(3.28) (α2 + β2 − γ2)Ik + 2αγW + 2βγZ = Ik,

from which, since ‖N‖2 = α2 + β2 + γ2 = 1, we finally get

(3.29) αγW + βγZ = γ2Ik

and then γ = 0. Consequently we obtain N = αI0 + βIk, completing the

proof of the theorem.

On the other hand, by using (3.26), we can also see that the structure

(ϕ, ξ, η, g) and the old structure (ϕ̇, ξ, η, g) induced on M by J are strictly

related. In particular, we have the fundamental relation

(3.30)
(∇

X
ϕ)Y = −(∇

X
P )(ξ, Y ) − P (∇

X
ξ, Y ) =

= −(∇
X
P )(ξ, Y ) − P (ϕ̇AX, Y );

here, abusing a little of notations, we still denote by P the 2-fold vector

cross product induced on M by the 3-fold vector cross product P of IR8,

that is P (X,Y ) = P (N,X, Y ), for all X,Y ∈ X− (M). The equation

(3.30) appears more significant in the light of the results of [6], [8], where

the authors studied the covariant derivative of vector cross products on

manifolds.

Definition 3.1 [6]. Let (M, g) be a Riemannian manifold endowed

of an r-fold differentiable vector cross product P on M associated to g.
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Let ∇ and δ denote the Riemannian connection and the coderivative

of M relative to g respectively, and let Π be the (r+1)-fold differential

form determined by P : Π(X1, · · · , Xr+1) = g(P (X1, · · · , Xr), Xr+1) for

all X1, · · · , Xr+1 ∈ X− (M). Then

(a) P is parallel if ∇P = 0;

(b) P is nearly parallel if ∇X1
(P )(X1, X2, · · · , Xr) = 0 for all vector fieds

X1, X2, · · · , Xr on M ;

(c) P is almost parallel if dΠ = 0;

(d) P is semiparallel if δΠ = 0.

Leaving from the definition above, in [8] it has been showed the following

theorem

Theorem 3.5. Let M be an orientable hypersurface of IR8 with

unit norm N and let P denote one of the 2-fold vector cross products

determined on M by the ordinary vector cross products of IR8. Then:

(i) P is parallel if and only if M is totally geodesic (i.e. M is a part of

a hyperplane);

(ii) P is nearly-parallel if and only if M is totally umbilical (i.e. M is a

part of a sphere);

(iii) P is semiparallel if and only if M is minimal.

The previous results and relations obviously give rise to several conse-

quences for the induced a.c.m.s. too. For example, the conditions for

(ϕ, ξ, η, g) to be normal result to be very strong and imply some restric-

tive relations for the vector cross product P of M . As it is well known,

an a.c.m.s. (ϕ, ξ, η, g) on a manifold M is said to be normal when the

(1,2)-tensor N = Nϕ + dη ⊗ ξ, where Nϕ denotes the Nijenhuis tensor of

ϕ, identically vanishes on M . The normality is one of the most remark-

able properties for an a.c.m.s.; it insures the integrability of a naturally

defined almost complex structure on N × IR (see [2] for more details and

several examples).

Consider firstly that for a normal a.c.m.s. (ϕ, ξ, η, g) the equation

Lξϕ = 0 is always satisfied and ξ is a Killing vector field [2]. Then,

taking account of (3.25), from the equation g(∇Xξ, Y ) + g(∇Y ξ,X) = 0

we get the relation ϕ̇A = Aϕ̇ which assures that (ϕ̇, ξ, η, g) is normal [11].

In other words, the normality of (ϕ̇, ξ, η, g) is a first necessary condition
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for the normality of (ϕ, ξ, η, g). On the other hand, from Lξϕ = 0, for

every vector field X on M we also get

(3.31)

0 = [ξ, ϕX] − ϕ[ξ,X] = P (ξ, [ξ,X]) − [ξ, P (ξ,X)] =

= P (ξ,∇ξX) + P (ξ,∇Xξ) =

= (∇ξP )(ξ,X) − ϕ̇AϕX + ϕϕ̇AX.

Then, when (ϕ, ξ, η, g) is normal, P obeys to the equation

(3.32) (∇ξP )(ξ,X) = ϕ̇AϕX − ϕϕ̇AX

for every X ∈ X− (M). We remark that, taking account of Theorem 3.5,

in the case of a nearly parallel vector cross product, (3.32) implies the

commutativity of ϕ and ϕ̇.

A further condition for the derivative of P follows from the equation:

(LϕXη)(Y )−(LϕY η)(X) = 0, always satisfied on a normal almost contact

manifold [2]. In fact, after some computations this equation becomes

(3.33)
0 = (∇ϕXη)(Y ) + η(∇Y ϕX) − (∇ϕY η)(X) − η(∇XϕY ) =

= g(ϕ̇AϕX, Y ) + η((∇Y ϕ)X) − g(ϕ̇AϕY,X) − η((∇Xϕ)Y ),

from which, since A and ϕ̇ commute, we also obtain

(3.34) η((∇XP )(ξ, Y )) = η((∇Y P )(ξ,X)),

for every X,Y ∈ X− (M) supposing (ϕ, ξ, η, g) normal.

4 – The induced structure (ϕ, ξ, η, g) of S7

It is known that the existence of an a.c.m.s. on a differentiable man-

ifold M is equivalent to the existence of a reduction of the structural

group O(2n + 1) to U(n) × 1. If we denote by Φ the fundamental 2-form

of (M,ϕ, ξ, η, g) defined by Φ(X,Y ) = g(X,ϕY ) and by ∇ the Rieman-

nian connection of g, the covariant derivative ∇Φ is a covariant tensor of

degree 3 which has various symmetry properties.
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For every odd dimensional real vector space V endowed with an

a.c.m.s. (ϕ, ξ, η, g), let C(V ) be the vector space of 3-forms on V having

the same symmetries of ∇Φ, i.e.

C(V ) =
{
α ∈ ⊗0

3V | α(a, b, c) = −α(a, c, b) =

= −α(a, ϕb, ϕc) + η(b)α(a, ξ, c) + η(c)α(a, b, ξ)
}
,

for all a, b, c ∈ V .

A decomposition of C(V ) into twelve components Ci(V ) mutually

orthogonal, irreducible and invariant under the action of U(n) × 1 has

been obtained in [1] and [4]. Applying this algebraic decomposition to the

geometry of the a.c.m.s., for each invariant subspace we obtain a different

class of almost contact metric manifolds; more precisely, we shall say M

of class Ck, k = 1, . . . , 12, if, for every m ∈ M, the 3-form (∇Φ)m of the

vector space (TmM,ϕm, ξm, ηm, gm) belongs to Ck(TmM).

Our aim now is to study the almost contact structures induced in the

unitary 7-dimensional sphere S7 of IR8 in the light of the cited decompo-

sitions. Considering the identification IR8 ≡ IH × IH, we have

S7 =
{
m = (x, y) ∈ IH × IH ≡ IR8; |x|2 + |y|2 = 1

}

and the normal vector field on S7 is N = (x, y). Then, a vector field

X = (u, v) is tangent to S7 at m = (x, y) if and only if it satisfies:

g(N,X) =< x, u > + < y, v >= 0, where we denoted by <,> the usual

scalar product in IR4 ≡ IH. Finally, the tangent vector field ξ = −JN at

m = (x, y) is given as usual by ξm = −ik(x, y).

Following our general results, the almost contact metric structure

(ϕ′, ξ, η, g) of S7 is just the canonical Sasakian structure (ϕ̇, ξ, η, g) in-

duced by the complex structure J of IR8 and, comparing with [4], it

belongs to C6. In what follows we classify the a.c.m.s. (ϕ, ξ, η, g) that

the unitary 7-dimensional sphere inherits from the vector cross product

P (see (3.12)) following [4].

Then, since S7 is a totally umbilical hypersurface of IR8 with A = −I,

Theorem 3.5 assures that P is nearly parallel so that

(4.35) (∇
X
P )(Y,X) = 0

holds for every X,Y ∈ X− (S7).
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Furthermore, comparing the Gauss and Weingarten equations (3.25)

with (3.26), we obtain

(4.36) ∇Xξ = −JX + η(X)N = −ϕ̇X.

And finally (3.30) and (4.35) for Y = ξ imply

(4.37) (∇
X
ϕ)X = −P (∇

X
ξ,X) = P (ϕ̇X,X),

or, equivalently,

(4.38) (∇
X
ϕ)Y + (∇

Y
ϕ)X = P (ϕ̇X, Y ) + P (ϕ̇Y,X),

for every X,Y vector fields on S7.

Before giving the complete decomposition of a.c.m.s. (ϕ, ξ, η, g) of

S7, we prove the following

Proposition 4.1. Let Φ be the fundamental 2-form of (S7, ϕ, ξ, η, g)

and let ∇ be the Riemannian connection of g. Then, for the covariant

derivative ∇Φ of Φ the following equation holds for all X,Y ∈ X− (S7)

(4.39) (∇XΦ)(Y, ξ) − (∇ϕXΦ)(ϕY, ξ) = g(ϕX, ϕ̇Y ) − g(ϕY, ϕ̇X).

Proof. The proof of the proposition follows from (3.30). In fact,

taking into account that S7 is a totally umbilical hypersurface with A =

−I, for all X,Y ∈ X− (S7) we get

(4.40)
(∇XΦ)(Y, ξ) = −g(Y, (∇XP )(ξ, ξ)) + g(Y, P (ϕ̇X, ξ)) =

= g(ϕY, ϕ̇X).

Developing in the same way (∇ϕXΦ)(ϕY, ξ) we obtain (4.39).
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The above proposition has a very important meaning. Since (∇XΦ)(Y,ξ)−
(∇ϕXΦ)(ϕY, ξ) is generally different from zero, we deduce from (4.39)

that the endomorphisms ϕ and ϕ̇ don’t commute each other. Then,

taking account of the results concerning the normality of (ϕ, ξ, η, g), we

can already state that the structure is non normal.

The following theorem concludes the exam of (ϕ, ξ, η, g). For an

extensive and detailed description of the twelve classes of C we shall refer

to [4].

Theorem 4.2. (S7, ϕ, ξ, η, g) is of class D1 ⊕ C6 ⊕ C7 ⊕ C10. In

particular, (ϕ, ξ, η, g) is a non normal almost K-contact on S7.

Proof. Following [4], we split the space C(TmS7), m ∈ S7, into the

direct sum

(4.41) C(TmS7) = D1 ⊕ D2 ⊕ D3,

where

(4.42)





D1 = C1 ⊕ · · · ⊕ C4 =

= {α ∈ C(V ) | α(ξ, x, y) = α(x, ξ, y) = 0}

D2 = C5 ⊕ · · · ⊕ C11 =

= {α ∈ C(V ) | α(x, y, z) =

= η(x)α(ξ, y, z) + η(y)α(x, ξ, z) + η(z)α(x, y, ξ)}

D3 = C12 = {α ∈ C(V ) | α(x, y, z) =

= η(x)η(y)α(ξ, ξ, z) + η(x)η(z)α(ξ, y, ξ)}.
Because of (4.42), we can consider the covariant derivative (∇Φ)m, m ∈
S7, of the fundamental 2-form Φ of (ϕ, ξ, η, g), as the sum of three com-

ponents αk ∈ Dk, k = 1, 2, 3:

(4.43) (∇Φ)m = α1 + α2 + α3.

At first we remark that, since P is nearly parallel on S7, the components

αk have very simple expressions. In fact, (3.30) and (4.35) imply

(4.44)
(∇ξΦ)(X,Y ) = g(X, (∇ξϕ)Y ) =

= −g(X,P (∇ξξ, Y )) = g(X,P (ϕ̇ξ, Y )) = 0
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for all X,Y ∈ X− (S7). From the previous relation we deduce that α3 = 0

which means that ∇Φ has not component in D3 and then in C12. More-

over, ∇ξΦ = 0 assures that the structure is almost K-contact (see [4]).

In order to compute the complete decomposition, let us consider that

the equation ∇Xξ = −ϕ̇X implies that α2(X,ϕX, ξ) = g(ϕX, (∇Xϕ)ξ) =

g(ϕX,ϕϕ̇X) = 0, which, following [4], simply says that ∇Φ doesn’t have

component in C5.

Now, making the necessary computations, we find

(4.45)
∑

l

α2(el, el, ξ) =
∑

l

g(el, (∇elϕ)ξ) = −
∑

l

g(ϕel, ϕ̇el),

with {el} an orthonormal basis for TmS7. If, in particular, we consider

the basis B (2.5) for the octonions algebra Cay, we can choose on TmS7

the basis {el = ilN}, l = 1, · · · , 7, obtaining that
∑
l

α2(el, el, ξ) = 1
3
(1 −

‖ikN + Nik‖2). From this last equation, we get that the component β6

of ∇Φ in C6 is given by [4]: β6(X,Y, Z) = µ(g(X,Y )η(Z)− g(X,Z)η(Y ))

with µ = 1 − ‖ikN + Nik‖2.

To find the other components of the structure in D2, let us denote

by θ the remaining part α2. If we write θ = θ+ ⊕ θ−, with θ±(X,Y, ξ) =
1
2
(θ(X,Y, ξ) ± θ(ϕX,ϕY, ξ)) for all X,Y ∈ X− (S7), a direct computation

proves that

(4.46) θ(X,Y, ξ) + θ(Y,X, ξ) = θ(ϕX,ϕY, ξ) + θ(ϕY, ϕX, ξ)

getting also

(4.47) θ−(X,Y, ξ) + θ−(Y,X, ξ) = 0,

which yields the vanishing of the component in C9.

On the other hand, θ+ expresses just the sum of components in C7

and C8 [4]. More precisely we have

(4.48) β7,8(X,Y, ξ) =
1

2
(θ+(X,Y, ξ) ± θ+(Y,X, ξ)).

Because of this relation, due to the symmetry in X and Y of θ+, the

component in C8 vanishes identically. Finally, concerning the component
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β11 in C11, since for definition β11(X,Y, Z) = η(X)β11(ξ, Y, Z) the shown

equality ∇ξΦ = 0 gives β11 = 0 too.

Then the only other components of ∇Φ in D2 are β7, β10 which are

respectively given by

β7(X,Y, ξ) = −1

2
(g(ϕ̇X, ϕY ) + g(ϕ̇Y, ϕX)) − µg(X,Y ),(4.49)

X,Y ∈ X− (S7),

β10(X,Y, ξ) = −1

2
(g(ϕ̇X, ϕY ) − g(ϕ̇Y, ϕX)),(4.50)

X,Y ∈ X− (S7), X, Y ⊥ ξ.

Now, a laborious direct check of the belonging conditions for the twelve

classes of almost hermitian structures given in [7], shows that the restric-

tion of the structure to the horizontal subbundle HS7 gives a generic

almost hermitian structure.

Then, finally, we obtain ∇Φ=α1 + β6 + β7 + β10, proving the theo-

rem.
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