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A multiplicity result for solutions of a nonlinear

elliptic system with Neumann conditions

ALESSIO POMPONIO

Riassunto: Consideriamo un sistema ellittico con condizioni di Neumann{
−ε∆u1 + Fx1(u1, u2) = 0 in Ω

−ε∆u2 + Fx2(u1, u2) = 0 in Ω

dove Ω⊂ IRn è un dominio aperto e limitato. Proveremo che il numero di soluzioni è
strettamente legato al numero di punti critici diFusando una generalizzazione della
teoria di Morse dovuta a Benci e Giannoni che si applica anche per punti critici dege-
neri.

Abstract: We consider an elliptic system with Neumann conditions
{

−ε∆u1 + Fx1(u1, u2) = 0 in Ω

−ε∆u2 + Fx2(u1, u2) = 0 in Ω

where Ω ⊂ IRn is an open bounded domain. We will show that the number of solutions
is strictly linked with the number of critical points of F using a generalized Morse theory
developed by Benci and Giannoni which works also for degenerate critical points.

1 – Introduction and statement of the result

Let us consider the problem

(1)





u1, u2 ∈ C2(Ω)

−ε∆u1 + Fx1
(u1, u2) = 0 in Ω

−ε∆u2 + Fx2
(u1, u2) = 0 in Ω

∂u1

∂n
=

∂u2

∂n
= 0 on ∂Ω
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where Ω ⊂ IRn is an open bounded domain with sufficiently regular

boundary (n ≥ 2), ε > 0 is a real number and F ∈ C2(IR2, IR).

This problem is used as mathematical model for some phase tran-

sition problems arising from mathematical physics (see, for example, [3]

and references therein).

We want to study the existence and the multiplicity of (1) under some

assumptions on F and we will show that the number of solutions is strictly

linked with the number of critical points of F . We observe explicitly that

if a ∈ IR2 is a critical point of F , then ua, the function constantly equal to

a, is a trivial solution of (1). Therefore we must be sure that each critical

point found is nontrivial. In order to do this and in order to estimate

from below the number of critical points, we will use Morse theory. There

is a technical complication due to the fact that critical points of Lε may

be degenerate. We will overcome this difficulty by using a generalized

Morse theory developed by Benci and Giannoni [2].

Similar problems are also been studied by Modica, Mortola, Pas-

saseo and Vannella [3], [4], [5], [7]. In particular we will extend the

results of Vannella [7] to the case of an elliptic system with Neumann

conditions. The difficulty consists of the fact that, while in Vannella’s

paper there are only minimum and maximum points of F , here we have

also saddle points and this requires more attention, as we will see.

Here we consider the problem (1) under these conditions:

(i.1) F is coercive, that is

lim
‖(x1,x2)‖→∞

F (x1, x2) = +∞;

(i.2) there exist a, b > 0 such that

∀(x1, x2) ∈ IR2 ∀i = 1, 2 |Fxi(x1, x2)| ≤ a‖(x1, x2)‖p−1 + b

where p ∈]2, 2∗[ and 2∗ =
2n

n − 2
if n ≥ 3, while p > 2 if n = 2;

(i.3) F has only isolated critical points, in finite number, and in each

critical point the Hessian HF is invertible;

(i.4) there exists r > 0 such that, for i = 1, 2 and for all (x1, x2) ∈ IR2

with xi > r we have that Fxi(x1, x2) > 0, while if xi < −r, then

Fxi(x1, x2) < 0.
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The solutions of (1) are critical points of the functional Lε : H1(Ω)×
H1(Ω) → IR defined by

(2) ∀u = (u1, u2) Lε(u) =
ε

2

∫

Ω

2∑

i=1

|∇ui|2dx +

∫

Ω

F (u(x))dx.

We can now enunciate a first version of the main result of this paper.

Theorem 1. Under hypotheses (i.1), (i.2), (i.3) and (i.4), if Lε

has k critical points and if ε is suitably small and it doesn’t belong to a

countable set, then the problem (1) has at least k−1 non trivial solutions.

The outline of the paper is as follows. In Section 2 we recall some

basic definitions and then we will give some properties of critical points

of the functional (2). In Section 3 we will give the precise statement of

Theorem 1 and we will prove it.

2 – Preliminary results

As said before, since Lε could have degenerate critical points we can-

not apply the classical Morse theory, we will use the generalized Morse

theory developed by Benci and Giannoni [2]. To this end, in this sec-

tion, we will see some preliminary properties of Lε and of its critical

points under assumptions (i.1), (i.2) (i.3) and (i.4).

First of all the functional Lε is of class C2 in H1(Ω) × H1(Ω) and,

for every u, v, w ∈ H1(Ω) × H1(Ω),

dLε(u)[v] = ε

∫

Ω

2∑

i=1

(∇ui|∇vi)dx +

∫

Ω

(∇F (u)|v)dx

and

d2Lε(u)[v, w] = ε

∫

Ω

2∑

i=1

(∇vi|∇wi)dx +

∫

Ω

(HF (u)v|w)dx

where (·|·) is the inner product in IR2.

We recall now some basic definitions.
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Definition 2. We say that u ∈ H1(Ω)×H1(Ω) is a critical point of

Lε if

dLε(u) = 0.

We will denote with KLε the set of all the critical points of Lε.

Moreover we say that Lε satisfies the Palais-Smale condition (PS) if

any sequence {un} ⊂ H1(Ω)×H1(Ω) such that {Lε(un)} is bounded and

limn dLε(un) = 0 in the dual space of H1(Ω) × H1(Ω) has a convergent

subsequence.

Definition 3. If u ∈ KLε and there exists d2Lε(u), the Morse index

of u is the maximal dimension of a subspace of H1(Ω)×H1(Ω) on which

d2Lε(u) is negative definite and it is denoted by m(u).

The nullity of u is the dimension of the kernel of d2Lε(u).

The large Morse index is the sum of the Morse index and the nullity

and it is denoted with m∗(u).

A critical point u is called nondegenerate if its nullity is 0, otherwise

it is called degenerate.

We can start with the investigation on Lε.

Lemma 4. There exists r > 0 such that, if u = (u1, u2) is a critical

point of Lε, then u ∈ [−r, r] × [−r, r] and in particular u ∈ L∞(Ω) ×
L∞(Ω).

Proof. By hypothesis (i.4), there exists r > 0 such that for all

(x1, x2) ∈ IR2 with x1 > r we have that Fx1
(x1, x2) > 0.

Let u = (u1, u2) be a critical point of Lε. We will prove that u1 ∈
L∞(Ω).

We take G ∈ C1(IR, IR) bounded and such that

∀t ≤ r G(t) = 0 and ∀t > r 0 < G′(t) ≤ M

with M > 0.

Let v(x) = (G(u1(x)), 0) ∈ H1(Ω) × H1(Ω), we have

0 = dLε(u)[v] = ε

∫

Ω

G′(u1(x))|∇u1|2dx +

∫

Ω

Fx1
(u(x))G(u1(x))dx.
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As the sum of these two positive quantities is zero, both of them have to

vanish and observing that

∀x ∈ Ω with u1(x) > r : Fx1
(u(x))G(u1(x)) > 0,

then

u1 ≤ r a.e. in Ω.

Analogously

u1 ≥ −r a.e. in Ω.

Let us now see a regularization result for solutions of (1).

Lemma 5. If u = (u1, u2) is a critical point of Lε, then its compo-

nents are of class C2(Ω) and so u is a classical solution of (1).

Proof. We recall a regularization result holding under our assump-

tions (see [6]).

If r ≥ 1 and f ∈ Lr(Ω), then there exists a unique solution v ∈
H2,r(Ω) of { −∆v + v = f in Ω

γ(
∂v

∂n
) = 0 on ∂Ω

where γ : H1,r(Ω) −→ H1− 1
r
,r(∂Ω) is the trace operator.

From the Lemma 4 and the fact that Fx1
is continuous, we get

f1(x) = −1

ε
Fx1

(u(x)) + u1(x) ∈ L∞(Ω)

and so, for the previous result and the fact that u = (u1, u2) is a critical

point of Lε, we have

u1 ∈ H2,r(Ω) for each r > 1.

By Sobolev embedding theorem we have u1 ∈ C1(Ω) and so f1 ∈ C1(Ω).

Since in particular f1 ∈ L2(Ω) and u1 ∈ H2,2(Ω), taking v ∈ C∞
0 (Ω) ⊂

H1(Ω), we have

0 = Lε(u)[(v, 0)] = ε

∫

Ω

(∇u1|∇v)dx +

∫

Ω

Fx1
(u(x))v(x)dx =

=

∫

Ω

(−ε∆u1 + Fx1
(u(x)))v(x)dx
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hence

−ε∆u1 + Fx1
(u(x)) = 0 a.e. in Ω

and using regularity results we conclude that u1 ∈ C2(Ω).

Lemma 6. Lε is a coercive functional.

Proof. Let (un) ⊂ H1(Ω) × H1(Ω) be a sequence such that

‖un‖H1(Ω)×H1(Ω) → ∞.

If ‖∇un‖L2(Ω)×L2(Ω) → ∞, as F is bounded from below, then Lε(un) → ∞.

In the other case, up to subsequence ‖un‖L2(Ω)×L2(Ω) → ∞. By

Lemma 4, taken r > 0 sufficiently big and indicated with R = [−r, r]2,

without lost of generality we can suppose F such that

F (x1, x2) ≥ c(x2
1 + x2

2) if (x1, x2) /∈ R.

Let

Ωn = {x ∈ Ω|un(x) /∈ R.}.
Since ∫

Ω\Ωn

(|un,1(x)|2 + |un,2(x)|2)dx ≤ 2r2|Ω|,

we get ∫

Ωn

(|un,1(x)|2 + |un,2(x)|2)dx → +∞.

Finally

Lε(un)≥
∫

Ω

F (un(x))dx≥
∫

Ω\Ωn

F (un(x))dx+

∫

Ωn

(|un,1(x)|2+|un,2(x)|2)dx,

and so Lε is coercive.

As seen in [7], the following lemma holds.

Lemma 7. Lε verifies (PS) and ∃Ψ of class C1 with Ψ′ completely

continuous such that Lε(u) =
ε

2
〈u, u〉H1(Ω)×H1(Ω) + Ψ(u).

lemma 8. The set KLε of critical points of Lε is compact.
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Proof. Since Lε satisfies (PS), it is sufficient to prove that KLε is

bounded in H1(Ω) × H1(Ω).

Let u ∈ KLε , we have:

dLε(u)[u] = ε

∫

Ω

2∑

i=1

|∇ui|2dx +

∫

Ω

(∇F (u)|u)dx = 0.

By Lemma 4 the claim immediately follows.

Following propositions deal with the Morse index of trivial critical

points of Lε.

In the following, we will denote with 0 = λ0 < λ1 ≤ · · · ≤ λi ≤ · · ·
the eigenvalues of −∆ on Ω with Neumann boundary conditions, while if

a = (a1, a2) ∈ IR2, ua will denote a function constantly equal to a in Ω.

Let s be a saddle point of F and let µ1, µ2 be the eigenvalues of HF (s)

with µ1 < 0 < µ2.

Proposition 9. If ε 	= −µ1

λj
for all j ≥ 1, then us is nondegenerate.

Besides let  be the natural number such that ε ∈]−µ1

λ
, −µ1

λ−1
[, or otherwise

 = 1 if ε ∈]−µ1

λ1
,+∞[, then:

m(us) = .

Proof. Let us observe that us is degenerate if and only if there exists

v ∈ H1(Ω) × H1(Ω) such that for all w ∈ H1(Ω) × H1(Ω)

0 = d2Lε(us)[v, w] = ε

∫

Ω

2∑

i=1

(∇vi|∇wi)dx +

∫

Ω

(HF (us)v|w)dx

and so if and only if, indicated with −∆v the vector (−∆v1,−∆v2), the

equation

(3) −ε∆v + HF (us)v = 0

has a nonzero solution in H1(Ω) × H1(Ω).
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Since HF (us) is a symmetric matrix, there exists an invertible matrix

B such that

BHF (us)B
−1 = D and HF (us) = B−1DB

with D =
(

µ1 0

0 µ2

)
. It is easy to verify that for all matrices A we have

−ε∆(Av) = A(−ε∆v), therefore v is a solution of (3) if and only if

0 = B−1B(−ε∆v + HF (us)B
−1Bv) = B−1(−ε∆(Bv) + BHF (us)B

−1Bv)

and so Bv is a nonzero solution of

(4) −ε∆w + Dw = 0.

Conversely, we can prove that if w satisfies the (4), then B−1w is a solution

of (3). The degeneration of us is equivalent to the existence of a nonzero

solution of (4), that is w = (w1, w2) such that

{
−ε∆w1 + µ1w1 = 0

−ε∆w2 + µ2w2 = 0

and this happens if and only if −µ1

ε
or −µ2

ε
is an eigenvalue of −∆. Since

µ1 < 0 < µ2, us is nondegenerate if and only if ε 	= −µ1

λj

for all j ≥ 1.

The first part of the thesis is proved, let us show the last one.

Let (ei)i∈IN be the orthonormal basis of L2(Ω) such that ei is the

eigenfunction relative to λi:





ei ∈ H1(Ω) ∩ C∞(Ω)

−∆ei = λiei in Ω
∂ei
∂n

= 0 on ∂Ω.

Let p1 = (p1
1, p

1
2) and p2 = (p2

1, p
2
2) be the orthonormal eigenfunctions

of HF (us) relative respectively to µ1 and µ2. For l = 1, 2 and j ∈ IN,

denoted with

vl
j = plej = (pl

1ej, p
l
2ej),
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{
vl
j

}l=1,2

j∈IN
is a basis of H1(Ω) × H1(Ω).

For the calculus of

(5) d2Lε(us)[v
l
j, v

l
j] = ε

∫

Ω

2∑

i=1

|∇pl
iej|2dx +

∫

Ω

(HF (us)v
l
j|vl

j)dx

we observe that for all i
∫

Ω

|∇pl
iej|2dx = (pl

i)
2

∫

Ω

|∇ej|2dx = (pl
i)

2λj

and so the first term of (5) becomes

ε

∫

Ω

2∑

i=1

|∇pl
iej|2dx = ε

2∑

i=1

(pl
i)

2λj = ελj

while for the second we have
∫

Ω

(HF (us)v
l
j|vl

j)dx =

∫

Ω

(HF (us)p
lej|plej)dx = (HF (us)p

l|pl)

∫

Ω

(ej)
2dx =

= (HF (us)p
l|pl) = (µlpl|pl) = µl‖pl‖2 = µl.

Therefore

d2Lε(us)[v
l
j, v

l
j] = ελj + µl.

Now we observe that for all j ∈ IN

(6) d2Lε(us)[v
2
j , v

2
j ] > 0.

At the contrary

(7) d2Lε(us)[v
1
0, v

1
0] = µ1 < 0

and for all j ≥ 1

(8) d2Lε(us)[v
1
j , v

1
j ] < 0 ⇐⇒ ελj + µ1 < 0 ⇐⇒ ε <

−µ1

λj

.

Let us prove now that

if (l1, j1) 	= (l2, j2) then d2Lε(us)[v
l1
j1
, vl2

j2
] = 0.
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In fact

d2Lε(us)[v
l1
j1
, vl2

j2
]= ε

∫

Ω

2∑

i=1

(∇pl1
i ej1 |∇pl2

i ej2)dx +

∫

Ω

(HF (us)v
l1
j1
|vl2

j2
)dx =

=ε(pl1 |pl2)

∫

Ω

(∇ej1 |∇ej2)dx+ µl1(pl1 |pl2)

∫

Ω

ej1ej2dx = 0.

Therefore in our hypotheses and by (6), (7) and (8) d2Lε(us) is neg-

ative definite on
⊕

0≤j≤−1

IRv1
j

and positive on
⊕

j≥

IRv1
j ⊕

⊕

j∈IN

IRv2
j

and so m(us) = .

The next proposition is obvious.

Proposition 10. If c is a minimum point of F , then m(uc) =

m∗(uc) = 0.

Let d be a maximum point of F and let η1, η2 be the eigenvalues of

HF (d) with η1 ≤ η2 < 0.

Proposition 11. If ε 	= −η1

λj
and ε 	= −η2

λj
for all j ≥ 1, then ud is

nondegenerate. Besides for l = 1, 2 let l be the natural number such that

ε ∈]−ηl

λl

, −ηl

λl−1
[, or otherwise l = 1 if ε ∈]

−ηl

λ1

,+∞[, then:

m(ud) = 1 + 2

in particular m(ud) ≥ 2.
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Proof. In a similar way of Proposition 9 we can prove that ud is

nondegenerate.

Let q1 = (q1
1, q

1
2) and q2 = (q2

1, q
2
2) the orthonormal eigenfunctions

of HF (ud) relative respectively to η1 and η2. For l = 1, 2 and j ∈ IN,

indicated with

wl
j = qlej,

{
wl

j

}l=1,2

j∈IN
is a basis of H1(Ω) × H1(Ω).

We have

d2Lε(ud)[w
l
j, w

l
j] = ελj + ηl.

Now we observe that for l = 1, 2 and for all j ∈ IN

(9) d2Lε(ud)[w
l
0, w

l
0] = ηl < 0

while for all j ≥ 1

(10) d2Lε(ud)[w
l
j, w

l
j] < 0 ⇐⇒ ελj + ηl < 0 ⇐⇒ ε <

−ηl

λj

.

We can prove that

if (l1, j1) 	= (l2, j2) then d2Lε(ud)[w
l1
j1
, wl2

j2
] = 0.

So in our hypotheses and by (9) and (10) d2Lε(ud) is negative definite

on
l=1,2⊕

0≤j≤l−1

IRwl
j

and positive on

l=1,2⊕

j≥l

IRwl
j

hence m(ud) = 1 + 2.
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Remark 12. As said before we will use the generalized Morse theory

developed by Benci and Giannoni [2] which works for a big class F of

functionals on H1(Ω)×H1(Ω). Since in Example 5.2 of [2] we can replace

the hypothesis that f is bounded with the one that Kf is bounded and

since Lemma 7 holds, Lε belongs to F . Therefore as Lε is bounded from

below, by Theorem 5.9 of [2], we have a generalized Morse equality

(11) iλ(KLε) = 1 + (1 + λ)Qλ

where iλ(KLε) is the Morse index of KLε , that is a formal series in one

variable λ with coefficients in IN∪{+∞} that, in the classical theory, is

nothing else that the Morse polynomial. In fact, if u is a nondegenerate

critical point of Lε, we have

iλ({u}) = λm(u).

3 – Main result

In this section we will present the main result of the paper giving the

precise statement of Theorem 1.

Let c1, · · · , ck1
be the minimum points of F , d1, · · · , dk2

the maximum

points and s1, · · · , sk3
the saddle points. For all 1 ≤ h2 ≤ k2 we indicate

with η1
h2

, η2
h2

the eigenvalues of HF (dh2
) and for all 1 ≤ h3 ≤ k3 we indicate

with µ1
h3

the only negative eigenvalue of HF (sh3
).

Theorem 13. Under hypotheses (i.1), (i.2) (i.3) and (i.4), if ε is

sufficiently small and such that ε 	= −µ1
h3

λj
, ε 	= −η1

h2
λj

and ε 	= −η2
h2

λj
for all

j ≥ 1, for all 1 ≤ h2 ≤ k2 and for all 1 ≤ h3 ≤ k3, then the problem (1)

has at least k1 + k2 + k3 − 1 nontrivial solutions.

Proof. Let K denote the set of nontrivial critical points of Lε. By

Propositions 9, 10 and 11 each trivial critical point of Lε is nondegenerate

and so

KLε = K ∪{uc1}∪ · · · ∪ {uck1
}∪{ud1

}∪ · · · ∪ {udk2
}∪{us1}∪ · · · ∪ {usk3

}

where each subset is an isolated critical set of KLε .
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So, by (11), Theorem 5.8 of [2] and Remark 12, we have

(12)

iλ(K) + λm(uc1 ) + · · · + λ
m(uck1

)
+ λm(ud1

)+

+ · · · + λ
m(udk2

)
+ λm(us1 )+

+ · · · + λ
m(usk3

)
= 1 + (1 + λ)Qλ.

Writing

iλ(K) =
∑

h∈IN

ahλ
h and Qλ =

∑

l∈IN

blλ
l

from Proposition 10 we get m(uc1) = · · · = m(uck1
) = 0 and so the (12)

becomes

(13)

∑

h∈IN

ahλ
h + k1 + λm(ud1

)+ · · · + λ
m(udk2

)
+ λm(us1 )+ · · · + λ

m(usk3
)
=

= 1 + (1 + λ)
∑

l∈IN

blλ
l

Suppose that ε < min
1≤h3≤k3

−µ1
h3

λ1

, then, by Proposition 9, for all 1 ≤
h3 ≤ k3 we have m(ush3

) ≥ 2, while, by Proposition 11, for all 1 ≤ h2 ≤ k2

we have m(udh2
) ≥ 2.

Comparing the coefficients of the same degree of (13), we get

a1 = b0 + b1 ≥ b0 = k1 − 1 + a0 ≥ k1 − 1

so there exist at least k1−1 critical points, counted with their multiplicity,

with Morse index 1.

In the following uj will indicate ush3
or udh2

for all 1 ≤ j ≤ k2 + k3.

Let us prove that for all 1 ≤ j ≤ k2 + k3 there exists a nontrivial critical

point of Lε with index m(uj) + 1 or m(uj) − 1 and they are all different

each other.

Suppose in a first moment that all the elements of the set {−η1
h2
|1 ≤

h2 ≤ k2} ∪ {−µ1
h3
|1 ≤ h3 ≤ k3} are different each other. Let us order

them in a strictly increasing order ρ1 < ρ2 < · · · < ρk2+k3
. We want to

prove that

(14) for all 1 ≤ j ≤ k2 + k3 we have m(uj+1) ≥ m(uj) + 2.
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By [1] (Theorem 14.6) there exists ε sufficiently small such that for all

1 ≤ j ≤ k2 + k3 the interval ]
ρj
ε
,
ρj+1

ε
[ contains at least two of eigenvalues

(λi)i∈IN.

There are different cases. We will study the most complex one, the

others follow immediately.

Suppose that there exist h and h′ such that −η1
h < −η1

h′ , then we can

choose ε sufficiently small such that the interval ]
−η1

h
ε

,
−η1

h′
ε

[ contains so

many eigenvalues (λi)i∈IN that m(udh′ ) ≥ m(udh) + 2.

In this way we have that the difference of the Morse indexes of any

two elements of {udh2
|1 ≤ h2 ≤ k2} ∪ {ush3

|1 ≤ h3 ≤ k3} is at least two

and so we have shown the (14).

For j = 1, from (13) we know that bm(u1) 	= 0 or bm(u1)−1 	= 0, and so

respectively am(u1)+1 	= 0 or am(u1)−1 	= 0, therefore there exists a critical

point with index m(u1) + 1 or m(u1) − 1 which is different from all the

uch1
and from all the critical points found previously.

Now assuming the assert true for j, let us prove that it is also true

for j + 1.

In fact m(uj+1) 	= 0 yields bm(uj+1) 	= 0 or bm(uj+1)−1 	= 0 and so there

exists a critical point of Lε with index m(uj+1) + 1 or m(uj+1)− 1 which

is nontrivial and, by the (14), different from all the critical points already

found.

If, at the contrary, −µ1
h3

and −η1
h2

are not all different each other,

there are various cases. If ε is chosen sufficiently small, we have

• −µ1
h3

= −η1
h2

=⇒ m(udh2
) ≥ m(ush3

) + 2;

• −η1
h = −η1

h′ and −η2
h < −η2

h′ =⇒ m(udh′ ) ≥ m(udh) + 2.

The last two cases are −µ1
h = −µ1

h′ and, simultaneously, −η1
h = −η1

h′

and −η2
h = −η2

h′ . We may have

∃, l such that ρ−1 < ρ = · · · = ρ+l < ρ+l+1

where we have excluded the cases already discussed. Reasoning as before,

bm(u)
+ bm(u)−1 ≥ l + 1 and there exist at least l + 1 critical points,

counted with their multiplicity, whose Morse index is equal to m(u) − 1

or to m(u) + 1.
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