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The perturbation functor

in the calculus of variations

O. AMICI – B. CASCIARO – M. FRANCAVIGLIA

Abstract: In the framework of second order Calculus of Variations on jet bundles
we show that the operator which determines the “First Variation” is a functor which we
call “Perturbation Functor”. This functor allows us to link the Jacobi morphism for the
second variation to the first variation of a new Lagrangian. Its naturality properties are
discussed. We also show that it permutes with most of the relevant cohomology functors
of the Calculus of Variations and with the de Rham’s one.

0 – Introduction

In the last decades several techniques having a geometrical origin

have been developed to deal with partial differential equations in general

and, more particularly, for those equations which are the consequence of

a variational principle (see, e.g., [1], [2], [3], [4] and references quoted

therein). In all these frameworks, which are of course based on the use

of the jet-prolongations (possibly of infinite order) of both the bundles

and the equations involved, the tools of homological algebra have revealed

themselves to be extremely powerful. As a few examples we mention: the

work of Anderson and Duchamp ([5], for the introduction of cochain

Key Words and Phrases: Fibred manifold – Jet space – First variation – Category
– Functor.
A.M.S. Classification: 58A12 – 58A20 – 58E30 – 18F15 – 18G60



2 O. AMICI – B. CASCIARO – M. FRANCAVIGLIA [2]

complexes in the Calculus of Variations); the work of Bryant and Grif-

fiths ([6] and [7], where the notion of cohomological tower is extensively

used); of Tulczyjew and Dedecker ([8], with the introduction of the

so-called “Lagrange complex”); of Krupka ([9] and [10], with the intro-

duction of the so-called “variational sequences”; see also [11]).

The Calculus of Variations on jet bundles is a very powerful method

in Analysis, Geometry and Matematical Physics. It allows in fact a global

perspective on the problems and helps, via Noether’s theorem, to provide

a general setting for conservation laws (see, e.g., [14]). The fundamen-

tal ingredients in this direction are contained in the notion of contact

forms, of Poincaré-Cartan forms, of local and global exactness (both at

the “strong” level of the bundle or at the “weak” level of the space of

critical sections).

In recent investigations of ours ([15], [16], [17]) we have been consid-

ering the somehow neglected problem of second variation of a Lagrangian

action from the geometrical viewpoint, together with the ensuing notion

of (generalized) Jacobi equation. In particular, we have been able to show

that the Euler-Lagrange equations together with the Jacobi equations are

in fact the Euler-Lagrange equations of a “derived” variational principle

in a larger space, governed by a “deformed Lagrangian” which is an alge-

braic counterpart of the first variation of the original Lagrangian (see [16]

for the definition of this new Lagrangian, [15] and [18] for an application

to Riemannian Geometry and [19] for a short review).

In the course of our investigations we have realized that most of the

relevant constructions entering the first variation, the second variation,

the Poincaré-Cartan form and the Jacobi morphism can be alltogether

factorized through a functorial operation which can be given the name of

“perturbation functor”. The perturbation functor, denoted by P, essen-

tially associates to any given Lagrangian L its first order deformation, in

such a way that all relevant quantities of the Calculus of Variations are

carried over to the analogous quantities for the new Lagrangian. Such

a functor P is not unique, owing to the well known fact that equivalent

Lagrangians and equivalent Jacobi morphisms exist (see, e.g., [10], [14],

[18]), although it will be possible to choose “canonical” one.

In this paper we shall develop the basic tools to construct a reasonable

(and canonical) perturbation functor in the physically relevant case of

Lagrangian theories of order at most two; generalizations to higher orders
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are of course possible and will be considered elsewhere. We shall then

begin (Section 1) with a short account about the basic framework of

the Calculus of Variations on jet bundles and the notion of first order

deformation of a Lagrangian. Section 2 will be devoted to introduce the

fundamental categories of bundles and morphisms which are needed to

our purposes, as well as to define the perturbation functor P and discuss

some of its basic features; among them, the most useful comes from a

surprising aspect of the procedure which following [16] determines the

deformed Lagrangian, which in turn is determined by the existence of a

class of immersions (which will be investigated in this Section and which

must be taken into account, not only to understand the main properties

of the deformation procedure, but also to avoid mistakes which can occur

in practical calculations). In Section 3 we shall briefly account on some of

the many relations existing between the cohomological interpretation of

our functor P and the existing cohomological tools of [6] and of [9]. Our

comparison will be based on the introduction of suitable ideals of forms

in the de Rham complex of a convenient jet-prolongation of the relevant

bundle. The sub-complex we derive differs in general from the previously

existing ones and, in a sense, it is intermediate between the variational

complex of [9] and the whole de Rham’s complex. We shall investigate

how properties of P reflect in these three cohomological complexes, as

well as in the complex introduced in [6].

Among the results of this comparison we quote the construction of

a second type of “tower prolongation” (here called “Jacobi tower”) ob-

tained by iterating the action of the functor P. This tower prolongation

is in a sense the completion of the “tower prolongation” of Bryant and

Griffiths and, if applied to the cohomology investigated in [6], it pro-

vides informations on the conservation laws of the higher order Jacobi

fields, while, if applied to the cohomology introduced in [9], it provides

informations on the “Lepagean equivalence” of higher order deformed La-

grangians. Since the notion of “Jacobi tower” applies to any “level” of

the tower construction of [6], we obtain a family of cohomological groups,

here called “JBG-wall” (where JBG means Jacobi, Bryant and Griffiths).

An analogous construction is made for the cohomological groups of [9],

since the Bryant-Griffiths tower construction applies to these groups, too.

Finally, since closed ideals generate their own cohomological groups, we

show that a Jacobi tower construction is possible for both ideals used
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by Bryant-Griffiths in [6] and by Krupka in [9]. As we said above,

we also introduce a new complex in which the Euler-Lagrange form is

closed and we show that even for this complex it is possible to perform

the “wall construction”. More detailed investigations about the interre-

lationship among these various cohomologies will in fact form the subject

of a forthcoming paper ([20]).

Our investigation will pay a continuous attention to the “naturality”

properties of the perturbation functor, especially in view of its possible

applications to the problem of conservation laws. This intriguing aspect

of the theory is still under investigation and will as well form the subject

of a further paper ([21]). The present paper contains an appendix, which

contains a few remarks about the applications to some relevant partial

differential equations of parabolic type (in the sense of [6] and [7], heat

equation and KdV equation included).

1 – Preliminaries and notation

In this first Section we shall recall the main framework we need in

this paper.

1.1 – Basics on calculus of variations

Let us first list some basic facts about the Calculus of Variations on

fibered manifolds. Notation follows closely [2] and [22], to which we refer

the reader for further details.

Let B = (B,M, π) be a fibered manifold over a m-dimensional mani-

fold M , with p-dimensional fibers. We will denote by (xµ), µ ∈ {1, . . . ,m}
a local coordinate system on M and by (xµ, ya), a ∈ {1, . . . , p} a fibered

coordinate system on B over (xµ).

The bundle of vertical vectors of B is defined as follows. We set V π ≡
Ker(Tπ) ⊆ TB and we define a bundle over B as V B = (V π,B, νB),

where νB is the appropriate restriction of the natural projection τB :

TB → B. For notational convenience, if there is no danger of confusion,

we shall write V B instead of V π. In the sequel we shall be also concerned

with double fibrations C
α−→B

π−→M . In this case there are two vertical

bundles, namely those defined by Ker(Tα) over B and by Ker[T (π ◦ α)]

over M , respectively; they will be respectively denoted by V BC (or, more
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simply, just by V C) and by V MC. Hereafter, for the sake of simplicity,

“vertical” will shortly mean “vertical with respect to a given projection”

whenever there is no need to specify which projection is being considered

(if this is already clear from the context).

For any (regular) domain D (i.e., D ⊆ M is a compact m-dimensional

submanifold with sufficiently regular boundary) ΓD(π) will denote the set

of (local) sections λ : D → B. Moreover, JkB ≡ (JkB,B, πk) will denote

the k-th order jet-prolongation of B, with naturally induced coordinates

(xµ, ya, ya
µ, y

a
µν , . . . ). If λ ∈ ΓD(π) is a local section, locally expressed by

(xµ, λa(xρ)), thence its k-th order jet-prolongation jkλ has local expres-

sion (xµ, λa(xρ), ∂νλ
a(xρ), ∂2

µνλ
a(xρ), . . . ).

A section Σ : D → JkB is said to be holonomic iff there exists a sec-

tion λ : D → B such that Σ = jkλ. We denote by ΛM =
⊕

0≤h≤m ΛhM

the exterior bundle of M and by Ω(M) =
⊕

0≤h≤m Ωh(M) the module of

its sections, i.e. of differential forms of M . We set:

(1.1) ds = dx1 ∧ · · · ∧ dxm , dsµ ≡ ∂µ�ds ,

where X� (or, equivalently, sometimes iX) denotes inner product with

respect to a vectorfield X on M ; the forms (1.1) determine a (local) basis

for m-forms and (m− 1)-forms, respectively.

A fibered morphism L : J2B → ΛmM will be called a (second order)

Lagrangian. The Lagrangian L is locally expressed by:

(1.2) L = L(xµ, ya, ya
µ, y

a
µν)ds ,

where L is a scalar density on J2B with respect to coordinate changes

in the base manifold M . The Lagrangian L defines a variational problem

(of the second order) on B, through the action functionals:

(1.3) A(λ) =

∫

D

L ◦ (j2λ) .

Critical sections are those sections λ ≡ λ0 ∈ ΓD(π) such that

δA ≡ ∂

∂ε
A(λε)|ε=0

= 0

for all homotopic 1-parameter deformations λε (with ε ∈] − a, a[, a >

0) which strongly fix the boundary (i.e., j1λε|∂D = j1λ|∂D, for any ε).
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Here and in the sequel the first variation operator δ will shortly denote

the ε-derivative ∂
∂ε

evaluated at ε = 0. It is well known that critical

sections are those sections which satisfy the “Euler-Lagrange equations”

of L (see below). From now on we shall consider only homotopic 1-

parameter deformations which strongly fix the boundary.

1.2 – Horizontal forms and canonical momenta

For any integer k let Hor(JkB) =
⊕

0≤q≤m Horq(JkB) be the tensor

algebra of horizontal forms of JkB (i.e., those forms which vanish when-

ever they are evaluated on a set of vectorfields containing at least one

vertical vectorfield).

Definition 1.1 (see [23]). The horizontal differential is the oper-

ator dH uniquely defined on Hor(JkB) with values into Hor(Jk+1B) and

intrinsically expressed by:

(dHω) ◦ jk+1λ = d(ω ◦ jkλ) ∀λ ∈ Γ(π) ,

for all ω ∈ Hor(JkB), where d is the exterior differential operator of M .

Locally, dH is determined by a family of operators dµ acting on

smooth functions, called formal derivatives. As an example, if f : J4B →
IR is a differentiable mapping, then dµf is the function on J5B defined by:

dµf =
∂f

∂xµ

+
∂f

∂ya
ya
µ +

∂f

∂ya
ν

ya
νµ +

∂f

∂ya
νρ

ya
νρµ +

∂f

∂ya
νρσ

ya
νρσµ +

∂f

∂ya
νρστ

ya
νρστµ .

Finally, we set dV = d − dH , where d is now the exterior differential

operator in JkB (see [14]). It is known that d2
H = 0 and d2

V = 0, so that

dV dH = −dHdV because of d2 = 0 (in JkB).

We also recall that, if B = (B,M, π) is a fibered manifold and Bx ≡
π−1(x) is its fiber over x, for any x ∈ M , then one defines the dual

vertical bundle by setting V ∗B = 	x∈M(TBx)
∗; this vector bundle V ∗B =

(V ∗B,B, µB) is not a sub-bundle of the cotangent bundle (T ∗B,B, πB).

Let us denote by ⊗M the tensor product of vector bundles over M .

Theorem 1.1 (see [14]). There exist two global bundle mor-

phisms denoted by fB
(1)(L) : J3B → Λm−1M ⊗M V ∗B and fB

(2)(L) :
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J2B → Λm−1M⊗MV ∗J1B, and a global bundle morphism eB(L) : J4B →
ΛmM ⊗M V ∗B, associated to the Lagrangian L and to its action (1.3),

where V ∗J1B ∼= J1V ∗B is the dual bundle of the vector bundle V J1B ∼=
J1V B (these last two isomorphisms being canonical), which enter the fol-

lowing expression for the first perturbation of L under any homotopic

variation λε : D → B of any section λ ≡ λ0:

(1.4) δ(L ◦ j2λε) = eB(L) ◦ j4λ + dH [fB
(1)(L) + fB

(2)(L)] ◦ j4λ .

Equation (1.4) is known as the (global) first variation formula for L.

As we said above, the critical sections of (1.3) satisfy Euler-Lagrange

equations:

eB(L) ◦ j4λ = 0 .

The bundle morphisms entering (1.4) have local expressions given, re-

spectively, by:

(1.5)

fµ
a ≡ [fB

(1)(L)]µa = pµa − dνp
µν
a ,

fµν
a ≡ [fB

(2)(L)]µνa = pµνa ,

ea ≡ [e(L)B]a = pa − dµ[f
B
(1)(L)]µa =

= pa − dµp
µ
a + dνdµp

µν
a ,

having defined the canonical momenta (pa, p
µ
a , p

µν
a ) by setting

(1.6) pa ≡ pa(L)=
∂L

∂ya
, pµa ≡ p(L)µa =

∂L

∂ya
µ

, pµνa ≡p(L)µνa =
∂L

∂ya
µν

.

The local components (fµ
a , f

µν
a ) of the bundle morphisms fB

(1)(L) and

fB
(2)(L) are known as the true momenta, while eB(L) is the Euler-Lagrange

morphism.

Remark. Notice that the bundle morphisms above determine in turn

the following tensorfields, which by an abuse of notation will be denoted

by the same symbols of the corresponding morphisms:

(1.7)

fB
(1)(L) = fµ

a dy
a ∧ dsµ ,

fB
(2)(L) = fµν

a dya
µ ∧ dsν ,

eB(L) = eady
a ∧ ds .
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1.3 – Contact forms and symmetries

Definition 1.2. The ideal of contact forms K(J2B), is the ideal

of the exterior algebra Ω(J3B) formed by those forms η ∈ Ω(J2B) which

vanish along all holonomic sections j2λ of the bundle J2B = (J2B,M, π).

The ideal K(J2B) is generated by the following family of local 1-

forms:

(1.8) θa = dya − ya
σdx

σ , θaµ = dya
µ − ya

µσdx
σ ,

by the ring Ω0(J2B).

Definition 1.3. The Poincaré-Cartan form is the m-form along

the canonical projection of J3B onto B, having the following local ex-

pression:

(1.9) Θ ≡ ΘB(L) = (fµ
a θ

a + fµν
a θaν) ∧ dsµ + L .

Finally, the form Ω ≡ ΩB(L) = dΘ is the multiplectic form of the vari-

ational problem (see [24]). This form Ω determines the Euler-Lagrange

equations, which can in fact be equivalently written as:

(1.10) (j3σ)∗(iv(Ω)) = 0 , ∀v ∈ V J3B ∼= J3V B .

For more details see, e.g., [22] and [25].

Now we denote by L the Lie derivative operator, defined on the sec-

tions of a bundle B whenever the bundle is a natural bundle (see [26]) or

a gauge-natural bundle (see [27], [28] and [29]).

Definition 1.4 (see [12] and [25]). An infinitesimal symmetry is

a vectorfield Ξ ∈ X (J3B) is said to be of L if:

(1.11) LΞ[ΘB(L)] = 0 .

Then Ec(L,Ξ, λ) = (j3λ)∗(Ξ�Θ(L)) is called the conserved Noether

current associated to Ξ.

If λ is a solution of the Euler-Lagrange equations of L one has

dµ[E
c(L,Ξ, λ)]µ = 0 (see [12] and [25]).
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As we explained in the Introduction, we are here interested into in-

vestigating the naturality of the “first order perturbation” procedure, by

means of a functor suitably defined on a suitable category. Obviously, the

“largest” is the category on which the functor is defined, the strongest

will be its naturality properties.

Definition 1.5. A (local) section λ : U → B is said to be admissi-

ble for Φ if and only if the mapping φλ
t ≡ φt ◦ λ : U → φλ

t (U) = Vt is a

local diffeomorphism.

Theorem 1.2. Equation (1.11) is meaningful even if the local 1-

parameter group Φ = {Φt} generated by Ξ is not a (local) group of bundle

automorphisms, but just a group of diffeomorphisms of the total space.

Proof. In fact, let us set φt = π ◦ Φt : B → M . Then the action of

Φ on λ is defined by setting

(1.12) λt(x) ≡ (Φ∗
tλ)(x) = Φt ◦ λ ◦ (φλ

t )
−1(x)

for any x ∈ Vt; the family {λt}t∈(−ε,ε), with ε > 0, is a homotopic variation

of λ ≡ λ0 and, as in [22] and [26], we have:

(1.13) Lξ(λ) ≡
[
d

dt
λt

]

|t=0

= Tλ ◦ ξλ − Ξ ◦ λ ,

where ξλ = Tπ ◦ Ξ ◦ λ is a vectorfield over the basis M (which depends

of course on the section λ).

Remark. As a consequence, the results of [22] and [26] hold true also

in this case, which is obtained by restoring the classical definition of the

action of a differentiable mapping on a “field”. In fact, let B = (B,M, π)

and B′ = (B′,M ′, π′) be two fiber bundles and F : B → B′ a differentiable

mapping between the total spaces of the two bundles (not necessarily a

bundle morphism). We set fF = π′ ◦ F : B → M ′ and call it the basic

map associated to F . We also say that a section λ : M → B is admissible

for F if and only if f̃F = fF ◦ λ : M → M ′ is a (local) diffeomorphism; in

this case, of course, M and M ′ have to be of the same dimension. Then

the classical action of F on the set of admissible sections is given by:

(1.14) F.λ = F ◦ λ ◦ (f ◦ λ)−1 ,

for any admissible section λ : M → B.
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1.4 – Second variation of Lagrangians

We will follow [16] for the second variation.

Definition 1.6. The first order perturbation L(1) : J2V B →
ΛmM of the Lagrangian L ≡ L(0) is the (unique and global) morphism

with local expression given by:

(1.15) L(1) ≡ L(1)ds = {paρa + pµaρ
a
µ + pµνa ρaµν}ds ,

where (ρa, ρaµ, ρ
a
µν) are the local components of an element of V J2B

(canonically identified with J2V B).

The action functional associated to the Lagrangian L(1) is given by:

(1.16) Ã =

∫

D

L(1) ◦ (j2λ× j2v) ,

for any local section λ ∈ ΓD(π) and any vertical vectorfield v which

projects onto the section λ. We also set:

(1.17) eB(L(1)) = ẽadρ
a + Eady

a .

Theorem 1.3. The following holds:

(1.18)
ẽa =[eB(L)]a = ea ,

Ea ≡[EB(L)]a = Pa − dµ[F
B
(1)]

µ
a = Pa − dµP

µ
a + dµdνP

µν
a ,

where

(1.19)
[FB

(1)]
µ
a ≡[FB

(1)(L)]µa = P µ
a − dνP

νµ
a

[FB
(2)]

µν
a ≡[FB

(2)(L)]µνa = P µν
a ,

being

(1.20)

Pa ≡∂L(1)

∂ya

P µ
a ≡[PB(L)]µa =

∂L(1)

∂ya
µ

P µν
a ≡[PB(L)]µνa =

∂L(1)

∂ya
µν

,

with ea defined by (1.5).
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Proof. See [16].

Remark. With the positions of Theorem 1.3 the non-covariant part

Ea represents the coefficients of the Jacobi morphism of L (as defined in

our previous paper [15]).

Definition 1.7. The Hessian mapping HessB(L):J2B×BJ
2V B×B

J2V B→ΛmM , where ×B denotes the fibered product over B, is given by:

(1.21)
HessB(L)(x,y)(ξ; ρ) = [Pa](x,y)(ρ)ξ

a + [P µ
a ](x,y)(ρ)ξ

a
µ+

+ [P µν
a ](x,y)(ρ)ξ

a
µν ,

where ξ = (ξa, ξaµ, ξ
a
µν) are the local coordinates of a further point be-

longing to the fiber of J2V B over the point of B having local coordinates

(xµ, ya).

Equation (1.21) gives in fact the Hessian mapping of the variational

problem (see [17]).

1.5 – Basic categories

We finally list the basic categories used in this paper. We shall adopt

the following standard notation. If τ is any category , we shall denote

by τ(O,O′) the set of all morphisms in τ from O into O′, being O, O′

objects of τ .

i) The category Man having as objects the (C∞-differentiable) man-

ifolds and as morphisms the (C∞-differentiable) mappings between

manifolds.

ii) The category Bun whose objects are the fiber bundles B = (B,M, π)

over any manifold M (object of Man) and whose morphisms are

the usual bundle morphisms (i.e., the fiber preserving differentiable

mappings between fiber bundles).

iii) By VBun we denote the subcategory of Bun having as objects the

vector bundles and as morphisms the linear bundle morphisms.

iv) In this last category we will make use of the subcategory TMan

whose objects are the tangent bundles of the manifolds M of Man

and, if M and N are two manifolds of Man, a mapping F : TM →
TN belongs to the set of morphisms TMan(TM,TN) in this cate-

gory if and only if F = Tf is the tangent mapping of the mapping
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f ∈ Man(M,N). In the following, by an abuse of notation, we will

denote simply by TM the tangent bundle (TM,M, τM); moreover T

is the so called tangent functor .

v) Finally, Vec will denote the category of real vector spaces whose

morphisms are linear mappings between pairs of real vector spaces.

The basic functor we shall need between the category Man and the

category Vec, namely the functor which associates to any manifold M

its total de Rham cohomology group HdR(M), will be denoted by HdR.

Recently, (see, e.g., [6] and [9]), some new cohomological functors related

to the Calculus of Variations and/or to partial differential equations have

also been introduced in the literature.

A result which can be easily inferred by comparing [6] with [9] is

that the construction needed to obtain the cohomological groups related

to these functors is somehow standard. In fact, all these cohomological

groups are obtained by first choosing some graded ideal I(JkB) of the

graded exterior algebra Ω̂(JkB) ≡ Hor(Jk(B) ⊕ K(JkB) (k = ∞ is not

excluded) having the property

(1.22) d(I(JkB)) ⊆ I(JkB) .

One then takes the quotient of Ω̂(JkB) with respect to I(JkB), to obtain

a cochain complex, and then considers the cohomological groups of this

last complex. Notice that Ω(JkB) ⊆ Ω̂(JkB). Finally, the ideals of

Ω̂(JkB) verifying (1.22) will be called closed ideals.

In order to introduce the aforementioned functors (especially for the

functor defined in [6], which is far too general with respect to the case

considered here) we need some further construction. These will be given

in Section 2, where we shall introduce the “perturbation functor”, while

the relations of our new functor with the functors of [6] and [9] will be

shortly discussed in Section 3.

2 – The first order perturbation functor

Physicists make use of many “perturbation techniques”, which are

quite different among each other. Here we shall consider only those per-

turbations which were studied in an explicit way in [16], since they are
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the starting point from which many physical results are obtained through

the Calculus of Variations; we just quote [30] and [17] (where applications

to gravitational theories can be found, both in the case of General Rela-

tivity and in the case of non-linear gravitational Lagrangians) since these

two papers are more closely related to our present interest.

2.1 – Definition of the functor P
In a previous paper of ours [18] it was shown that the “complete lift”

used in differential geometry (see, e.g., [31]) is nothing but a particular

case of the perturbation technique recently introduced in [16]. The func-

tor we shall be dealing with can be deduced by using the perturbation

considered in the aforementioned papers and is in fact obtained by com-

posing the tangent functor with some other suitable functors, having the

same degree of naturality.

As is well known, adding any divergence to a given Lagrangian L does

not affect Euler-Lagrange equations eB(L)◦j4λ = 0, but several construc-

tions suffer changes: e.g., the Poincaré-Cartan form changes, giving then

rise to different boundary terms in the action, as well as a different but dy-

namically equivalent version of equation (1.10) (see, e.g., [32]). Therefore,

even in the class of “perturbations” considered here one can define many

different “perturbations” for the same “original” set of Euler-Lagrange

equations. We shall here propose a kind of a “canonical choice”. We think

in fact that our functor is the simplest possible one and, as an example,

we shall compare it with the one which could be deduced from Taub’s

paper [30]. In any case, all the functors obtained in this way would be

“equivalent in a suitable sense” from the viewpoint of the Calculus of

Variations.

Before going on, let us first notice that there is no substantial differ-

ence between mappings and sections from the viewpoint of the Calculus

of Variations. In fact, if the variational problem is defined on the set of

all mappings from M into a further manifold N , one can uniquely iden-

tify any mapping h : M → N with the section λh : M → M ×N of the

trivial bundle pr1 : M × N → M , being pr1 the natural projection on

the first factor, defined by λh(x) = (x, h(x)). The converse is also true,

as any section λ : M → B is nothing but a mapping which satisfies the

constraint π ◦ λ = id. An analogous remark holds also for the groups of

diffeomorphisms.
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In order to define our perturbation functor we need some new cat-

egories and some new functors which are easily obtained from the ones

considered in Section 1. Because of our introductory remarks about con-

servation laws, the category Bun does not contain enough morphisms.

Hence, we denote by B the category having as objects all the bundles

B = (B,M, π) of Bun and as morphisms all the differentiable mappings

between the total spaces of pairs of bundles. If B = (B,M, π) and B′ =

(B′,M ′, π′) are two objects of B, we have then B(B,B′) = Man(B,B′).

Obviously, the category Bun is a full sub-category of this category B.

Recall that for any pair of objects B, B′ of B and for any F ∈ B(B,B′)

we have set fF = π′ ◦ F and we have called it the basic map associated

to F . It is obvious that F belongs to Bun(B,B′) if and only if the

basic map fF is constant along the fibers of B. In this case fF defines a

map f ′
F : M → M ′ which is called the “induced map” and is such that

fF ≡ π′ ◦ F = f ′
F ◦ π.

The second category we need is denoted by TB. Its objects are the

tangent bundles TB = (TB, TM, Tπ), i.e. the images under the tangent

functor T of all bundles B = (B,M, π) of B, while its morphisms are the

images by T of the morphisms of B.

A third category we shall need, denoted by RB, is defined as follows:

its objects are the fiber bundles of the trivial type RB = (IR × B, IR ×
M, idIR × π), where B = (B,M, π) is any object of B, and idIR × π :

IR × B → IR × M is defined by setting (idIR × π)(t, y) = (t, π(y)) for

any (t, y) ∈ IR × B. In this category a morphism F ∈ RB(RB, RB′),

being B = (B,M, π) and B′ = (B′,M ′, π′) objects of B, is a pair of

mappings (idIR, F̃ ) : IR×B → IR×B′. Hence we have typical morphisms

(idIR, F̃ )(ε, y) = (ε, F̃ (ε, y)), where F̃ : IR × B → B′ is the mapping

defining a homotopic variation Fε ∈ B(B,B′) of F0 : B → B′, with

ε ∈ IR; i.e., F̃ (ε, x) = Fε(x), for any ε ∈ IR and x ∈ M .

Remark. Since in the Calculus of Variations we are interested only

into a neighborhood of 0 ∈ IR, we can consider as homotopic varia-

tions (modulo a possible reparametrization on ε) only the families Fε ∈
B(B,B′), with ε varying in the whole of IR, identifying them with the mor-

phisms of the category RB. Since all objects M of the category Man

are objects of B via the trivial bundle structure (M,M, idM), also the

homotopic variations of local sections can be considered as morphisms in



[15] The perturbation functor in the calculus of variations 15

the previous category; in this last case we shall consider only homotopic

variations strongly preserving the boundary (see [17]).

Theorem 2.1. There exists a natural covariant functor from the

category B into the category RB, which, with an abuse of notation, will

be again denoted by R. This functor R will be called the canonical lift.

Proof. Immediate, by defining R as the functor which associates to

any bundle B = (B,M, π) of B the bundle RB = (IR×B, IR×M, idIR×π)

of RB and to any morphism F ∈ B(B,B′) between the objects B and B′

of B the morphism RF = (idIR × F ) ∈ RB(RB, RB′).

The canonical lift of F acts on a homotopic variation σ : IR ×M →
IR × B in the following way. Let λε : M → B be the family of mappings

defining σ, i.e. σ(ε, x) = λε(x). We say that σ is admissible for RF

if and only if λε is admissible for F , for any ε ∈ IR. Then we can

consider the mapping τ : IR×M ′ → B′ defining the homotopic variation

F.λε = F ◦ λε ◦ (fF ◦ λε)
−1 : M ′ → B′, for any ε ∈ IR, being fF the basic

map associated to F . By these remarks the action of RF is defined as

(RF ).σ = (idIR, τ) : IR ×M → IR × B.

Finally we have the further category TRB whose objects are the

bundles TRB = (T IR × TB, T IR × TM, idT IR × Tπ), with B = (B,M, π)

any object of B, and whose morphisms are the mappings (idT IR, F̃ ) ∈
TRB(TRB, TRB′), where B = (B,M, π) and B′ = (B′,M ′, π′) are bundles

of B and F̃ : IR × TB → B′ is a mapping which defines a homotopic

variation Fε : TB → TB′ between linear bundle morphisms.

Definition 2.1. The evaluation functor E is the covariant functor

from the category TRB with values into the category B defined as follows:

the functor E associates to any object TRB of TRB the canonical lift

RTB of TB and to any morphism (idT IR, F̃ ) ∈ TRB(TRB, TRB′) the

morphism (idIR, F̃0) ∈ RB(RTB, RTB′), via the canonical identification

T IR = IR×IR obtained by means of the standard chart (IR, idIR), F̃0 being

defined by F̃0(z) = F̃ (0, z), for all z ∈ TB.

We set now E ◦ T = TE

Definition 2.2. The first order perturbation functor, is defined

on the category B and takes its values into the category RB. It is the
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covariant functor defined by

(2.1) P = E ◦ T ◦R = TE ◦R

and it associates to any bundle B = (B,M, π) the bundle PB = (IR ×
TB, IR × TM, idIR × Tπ).

It is now easy to see that the following holds:

Proposition 2.2. For any homotopic variation σ : IR ×M → B,
which is assumed to be admissible for a morphism F ∈ B(B,B′), with B
and B′ objects in B, one has:

E(T ((RF ).σ)) = TE((RF ).σ) = (PBF ).(TEσ) .

Moreover, we have:

Proposition 2.3. The functor P is a true perturbation functor.

Proof. Let us consider two bundles B=(B,M, π) and B′=(B′,M ′,π′)

and a morphism F̃ ∈ RB(RB, RB′). We first notice that TE F̃ belongs

to W ≡ T ∗(IR × B) ⊗ T (IR × B′) ∼= (T ∗IR ⊗ T IR) ⊕ (T ∗B ⊗ T IR) ⊕
(T ∗IR⊗TB′)⊕(T ∗B⊗TB′); here ⊗ and ⊕ generically denote the product

bundles over the product of the bases with the natural vector bundle

structures given by pairwise operations in the product of the fibers. Since

the standard chart (IR, idIR) is fixed in IR, we have the mapping w :

W → TB′, which acts as follows: to any element of W it associates the

component belonging to TB′ ⊗ T ∗IR, considered as forming a vector of

B′. In fact, if X belongs to W , we have:

X = a
∂

∂t
⊗ dt + ω ⊗ ∂

∂t
+ dt⊗ Y + P ,

where a is an arbitrary real number, Y a vector of B′, ω a 1-form of B

and P a tensor on T ∗B ⊗ TB′. Then it follows:

w(X) = Y .
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We have thence (with an obvious meaning of the symbols used):

(2.2) δλ = w((PBF ).(TEσ)) ,

with the obvious relation between the homotopic deformation λε and the

mapping σ. (We write δλ for the first variation of λε since it refers to the

value at ε = 0). This proves our claim.

2.2 – Coordinate expression of P
Some of the properties which will be useful in the sequel can now

be easily seen in terms of local coordinates. Hence we consider two fiber

bundles B = (B,M, π) and B′ = (B′,M ′, π′), a morphism F ∈ B(B,B′)

and a homotopic variation σ : IR × M → IR × B admissible for F . We

notice that M and M ′ have the same dimension, since we have assumed

that admissible sections exist; we denote by (xµ, ya) and (zµ, yA) natural

coordinate systems in B and B′, respectively, and by zµ = fµ(xν , ya) the

local representation of the basic map fF : B → M ′. Then we have:

(2.3) [w((PBF ).(TEσ))]A=

{
∂FA

∂yb
−
[
∂FA

∂xµ
+

∂FA

∂ya

∂σa

∂xµ

]
Cµ

ν

∂fν

∂yb

}
∂σb

∂ε
,

where the matrix ‖Cµ
ν ‖ ≡ ‖Cµ

ν (j1σ)‖ is the inverse of the matrix ‖C̄ν
µ‖

defined by:

(2.4) C̄ν
µ ≡ C̄ν

µ(j1σ) =
∂fν

∂xµ
+

∂fν

∂ya

∂σa

∂xµ
,

which has maximal rank since σ is an admissible homotopic variation.

Now we notice that Tσ is a section from the basis IR ×M into the total

space T ∗(IR×M)⊗T (IR×B) ∼= (T 1
1 IR)⊕ (T ∗IR⊗TB)⊕ (T ∗M ⊗T IR)⊕

(T ∗M ⊗TB). Since σ is a section of a bundle and many of its derivatives

are hence constant, we can replace the previous vector bundle by the

simpler vector bundle (V B ⊗ T ∗IR) ⊕ (T ∗M ⊗ V B). Finally, when the

functor TE is considered, the previous bundle simplifies further to a bundle

diffeomorphic to J1B×BV B. Hence we can define the new action of PBF

by simply setting:

(2.5) [(PBF )∗(y, v)]
A =

{
∂FA

∂yb
− (dµF

A)Cµ
ν

∂fν

∂yb

}
vb ,
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for any (y, v) not belonging to the closed subset of J1B ×B V B having

local equation:

(2.6) det ‖C̄ν
µ‖ = det ‖dµfν‖ = 0 .

Equation (2.2) shows that the functor P defined by (2.1) is a true pertur-

bation functor, acting through the action (2.5) and defined everywhere

except a closed subset of the bundle (J1B×B V B,M, τ), where τ denotes

the obvious projection, determined by equation (2.6); the elements of the

domain of regularity for PBF will be called admissible for PBF . Luckily

enough, the use of this complicated form of the first order perturbation

functor can be avoided in most cases: we shall need it, in fact, only

to study the perturbation of the Noether equation in its classical form,

i.e. when the action of the 1-parameter group is defined by (1.12). In

the other cases the category Bun is enough for the study of variational

problems.

Proposition 2.4. In the category Bun, the first order perturbation

functor restricted to a simpler functor P̂ which does not depend any longer

on j1σ, but only on the ε-derivative of σ.

Proof. In fact, in this case (2.5) becomes

(2.7) [w((PBF ).(TEσ))] =
∂FA

∂ya
(δλ)a

∂

∂yA

and all the sections become admissible. Hence (PBF ) can be considered

as a fiberpreserving linear mapping defined on V B taking its values into

V B′. As a consequence, we can replace P with a new functor P̂, which

associates to any bundle B over M the bundle V B over M endowed

with the obvious projection and which transforms morphisms according

to (2.7). In other words, P̂ associates to any mapping F ∈ Bun(B,B′)

the mapping P̂BF ∈ Bun(V B, V B′) defined by:

(2.8) (P̂BF )(y,v) =
∂FA

∂ya
va

∂

∂yA
,

for any vertical vector v over y ∈ B, having local components va. This

ends our proof.
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Definition 2.3. The functor P̂ is called reduced first-order per-

turbation functor.

Remarks.

1). Equation (2.8) shows that in this case P̂BF : V B → V B′ is a bundle

morphism also with respect to the bundle structures V B → B and

V B′ → B′ and moreover F : B → B′ is the map induced by P̂BF .

Because of this, in the sequel we shall omit to write the induced maps

and diagrams, for the sake of brevity.

2). We remark that in this case P̂ can be alternatively defined as the

unique functor which associates to any object B in the category Bun

its vertical bundle V B and to any bundle morphism F ∈ Bun(B,B′),

with B and B′ objects of Bun, the unique bundle morphism P̂(F ) :

V B → V B′ defined by setting:

(2.9) δ(F ◦ λ) = P̂B(F )(δλ)

for all mappings σ : IR×M → B which define a homotopic variation

of a section λ : M → B.

Theorem 2.5. When the functor P̂ is restricted to curves, as in the

case of Riemannian Geometry, it essentially coincides with the tangent

functor T .

Proof. This follows easily from (2.4) and (2.8).

Many of the consequences of Theorem (2.5) existence are well known,

even if they were never explicitely introduced as a consequence of vari-

ational principles (this aspect of Riemannian Geometry includes more

properties than what people generally think; as an example of this fact

we just quote [17], where the curvature of general variational problems

of “harmonic type” is discussed in some detail). The results related to

the existence of the perturbation functor for curves are in fact known as

consequences of the complete lift (see [31]) and are related to our functor

in the following way. The fiber bundle IR×M → IR can be associated to

the Riemannian manifold (M, g) and curves can be thought as sections

of this bundle in an obvious way. Since we have V (IR ×M) = IR × TM ,
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to any differentiable mapping f : M → M ′ one can associate the map-

ping Ff : IR × M → IR × M ′ defined by Ff (ε, x) = (ε, f(x)). Then

P̂IR×M(Ff ) = (id, Tf) : IR × TM → IR × TM ′ and the total differential

Tf of f is nothing but the complete lift of f . Most of the constructions

related to the variational aspects of Riemannian Geometry, e.g. those dis-

cussed in [31], will then coincide with our results (see also [18] for more

details).

2.3 – Some Lagrangian properties of the reduced first order perturbation

functor P̂
Let us now consider the tensor bundle τM = (TM,M,χM) with

total space T∗M =
⊕

(r,s)∈N2 T r
sM , where T r

sM is the bundle of tensors

of type (r,s), for any (r, s) ∈ IN2 and (r, s) �= (0, 0), while T 0
0M = M × IR.

We set T 0
r M ≡ TrM , for any r ∈ IN. We stress that, if B, B′ are

two objects in Bun and F ∈ Bun(B,B′), then the reduced first order

perturbation functor P̂ determines the map P̂B(F ) which associates to

any vertical vector of the total space of the bundle V B a contravariant

vector of the total space of B′. Hence, at a first sight, this functor seems

to have nothing to do with Lagrangians which are instead determined

by mappings from J2B into ΛmM . However, this is not the case, since

it easy to see that each vertical bundle V TrM splits as follows with a

natural projection:

(2.10) pr1 : V TrM ∼= (TrM) ⊕M (TrM) → TrM , ∀r ∈ N .

Proposition 2.6. Let L : B → ΛmM be a Lagrangian. The follow-

ing holds:

(2.11) P̂J2BL=(L,L(1)) :V J2B∼=J2V B−→V ΛmM∼=ΛmM ⊕M ΛmM ,

where L(1) is the first order perturbation of the Lagrangian L.

Proof. It is a straightforward consequence of results of [16] together

equation (1.15) of Section 1, since both the reduced first order perturba-

tion functor and the identification (2.10) preserve symmetries.

Remarks. A virtual application of a strictly analogous functor is due

to Taub, who explicitly introduced a Lagrangian previously used in an
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implicit way to study the stability of relativistic gaseous masses (see [30]

and the papers quoted therein). The perturbed Lagrangian used by Taub

is the following:

(2.12) L̃y(v) = {eB(L)}y(v) + {dH [fB
(1)(L) + fB

(2)(L)]}y(v) ,

for any y ∈ J2B and v ∈ V B, both projecting onto the same point of

B (see (1.4) of [30]). As a consequence, between Taub’s and our pertur-

bation there is only a “difference in simplicity”, since (2.12) is obtained

from (2.11) by means of a formal integration by parts, i.e. by adding to

the Lagrangian a divergence which does not affect the variational problem

(see [32]). This difference might however have some relevance, not only

because of the different complication in the calculations; in fact we know

that divergences determine those physical quantities which are pushed to

the boundary of the region considered and enter the conservation laws

through Stokes’ theorem, so that they cannot be arbitrarily changed.

This is true not only in classical physics, but also in General Relativity

(see [32] for an example related to the Komar superpotential).

We conclude this Section by noticing that the morphism P̂(L) con-

tains the first order “deformed” Lagrangian L(1) of L ≡ L(0) in the sense

of [16] and hence it contains informations on the Jacobi equations of the

variational problems.

2.4 – The reduced functor P
In order to consider all the other geometric objects related to the

Calculus of Variations, we need a more sophisticated construction than

(2.10). For this purpose we first recall some results of [31]. Let us de-

note by T r
s (M) the module of tensorfields of type (r,s) on M , being

T 0
0 (M) ≡ Ω0(M) ≡ F(M) the ring of smooth functions, and we set

T (M) ≡ ⊕
(r,s)∈IN2 T r

s (M). We also denote by (xµ, vν) the local coordi-

nates induced on the tangent bundle TM by a local coordinate system

(U, xµ) on M .

Proposition 2.7 (see, e.g., [31] for a proof). There exists an F(M)-

linear isomorphism from T (M) into T (TM), denoted by v and called

vertical lift, defined by :

(2.13a) (S⊗T )v =Sv⊗T v, ∀S ∈ T r
s (M),∀T ∈ T h

k (M),∀ r, s, h, k ∈ IN
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and

(2.13b)

(
∂

∂xµ

)v

=
∂

∂vµ
, (dxµ)v = dxµ ,

for any µ ∈ {1, . . . ,m}).

We need a further definition:

Definition 2.4. The complete lift is the IR-linear map c : T (M) →
T (TM) defined by:

(2.14a) f c ≡ df : TM → IR , ∀f ∈ F(M) ,

(2.14b)
(S ⊗ T )c = Sc ⊗ T v + Sv ⊗ T c ,

∀S ∈ T r
s (M) , ∀T ∈ T h

k (M) , ∀r, s, h, k ∈ IN

and

(2.14c)

(
∂

∂xµ

)c

=
∂

∂xµ
, (dxµ)c = dvµ , ∀µ ∈ {1, . . . ,m} .

Notice that if X and S are a vectorfield and a tensorfield defined

on M , respectively, then the following relation between Lie derivatives

exists:

(LX(S))c = LXc(Sc) .

Proposition 2.8. Let us fix (r, s) ∈ IN2, with r + s ≥ 1, and let

S ∈ T r
s (M) be a tensorfield. Consider the total differential TS : TM →

T (T r
sM) and the complete lift Sc : TM → T r

s (TM). Then there exists an

immersion ξ ≡ ξrs(M) : T r
s (TM) → T (T r

sM) such that φr
s(M) ◦TS = Sc,

for any S ∈ T r
s (M).
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Proof. In fact, a tensor S ∈ T r
sM belonging to the fiber over x ∈ M

has local expression:

(2.15) S = Sµ1...µr
ν1...νs

∂

∂xµ1
⊗ · · · ⊗ ∂

∂xµr
⊗ dxν1 ⊗ · · · ⊗ dxνs .

Denoting by (xµ, Sµ1...µr
ν1...νs

) the local coordinate system of T r
sM induced by

the local coordinate system (U, xµ) of M , we can write the local expression

of a vector X ∈ TS(T r
sM), being S ∈ T r

sM a tensor over a point x ∈ U ,

as follows:

(2.16) X = Xµ ∂

∂xµ
+ Xµ1...µr

ν1...νs

∂

∂Sµ1...µr
ν1...νs

.

We can always find a tensorfield S̃ defined on U such that:

(2.17) (Xµ∂µS̃
µ1...µr
ν1...νs

)x = Xµ1...µr
ν1...νs

, (S̃µ1...µr
ν1...νs

)x = Sµ1...µr
ν1...νs

,

where Y = Xµ ∂
∂xµ

∈ TxM and Sµ1...µr
ν1...νs

are the local components of S. We

stress that (2.17) is equivalent to (T S̃)Y = X. Then we set:

(2.18) ξrs(X) ≡ (S̃c)Y ,

since the tensor on the right hand side does not depend on the local

coordinate system nor it depends on the tensorfield S̃. By using (2.13)

and (2.14) one can see that:

ξrs(X) = Xµ1...µr
ν1...νs

∂

∂vµ1
⊗ · · · ⊗ ∂

∂vµr
⊗ dxν1 ⊗ · · · ⊗ dxνs+(2.19)

+
r∑

h=1

Sµ1...µh...µr
ν1...νs

∂

∂vµ1
⊗ · · · ⊗ ∂

∂xµh
⊗ · · · ⊗ ∂

∂vµr
⊗ dxν1 ⊗ · · · ⊗ dxνs+

+
s∑

h=1

Sµ1...µr
ν1...νh...νs

∂

∂vµ1
⊗ · · · ⊗ ∂

∂vµr
⊗ dxν1 ⊗ · · · ⊗ dvνh ⊗ · · · ⊗ dxνs .

This proves our claim.

Remark. We stress that, if B = (B,M, π) and B′ = (B′,M ′, π′)

are two fiber bundles and F ∈ Bun(B,B′) is a bundle morphism, then

equation (2.8) can be equivalently written as:

(2.20) P̂B(F ) = [(TF )|V B]⊥ ,



24 O. AMICI – B. CASCIARO – M. FRANCAVIGLIA [24]

where [. . . ]⊥ denotes the “vertical part” obtained by projection through

the natural projection of TB onto V MB.

When applied to vectorfields, equation (2.20) gives then rise to vec-

torfields which determine local 1-parameter groups having a trivial action

on the Lagrangians obtained by (2.11), since the the “horizontal” com-

ponents of the original vectorfields are lost. The existence of the family

ξrs ≡ ξrs(B) : T r
s (TB) → T (T r

sB) and equation (2.19) allow us to as-

sociate to the functor P̂ a new functor P in all the cases in which P̂
acts on tensorfields on the manifold B, considered as obvious bundle

morphisms. In fact, a tensorfield S ∈ T r
s (B) can be considered as a mor-

phism S : B → T r
sB, with respect to the bundle structure of B and the

obvious bundle structure T r
sB → M . Then, by using (2.17), we can set

(2.21) PB(S) = ξrs(P̂B(S)) .

The local expression of PB(S) can be easily calculated by using the local

expression of ξrs given by (2.16) for any tensorfield S of type (r,s) on B.

This gives quite complicated formulae in the general case, since several

terms are involved. We shall thence limit ourselves to write these formulae

only for vectorfields and 1-forms, because they will be needed below.

Hence, we set:

(
∂

∂xµ

)v

=
∂

∂vµ
,

(
∂

∂ya

)v

=
∂

∂va
,

(
∂

∂xµ

)c

=
∂

∂xµ
,

(
∂

∂ya

)c

=
∂

∂ya
,

(2.22)

(dxµ)v = dxµ , (dya)v = dya ,

(dxµ)c = dvµ , (dya)v = dva .

Let X = Xµ ∂
∂xµ

+ Xa ∂
∂ya

be the local expression of a vector field X and

ω = ωµdx
µ + ωady

a be the local expression of a 1-form, defined on B.

Then, for any vertical vector v = va ∂
∂ya

, we have:

(2.23a) PB(X)v = Xµ ∂

∂xµ
+ Xa ∂

∂ya
+ vb

∂Xµ

∂yb

∂

∂vµ
+ vb

∂Xa

∂yb

∂

∂va
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and

(2.23b) [PB(ω)]v = ωµdx
µ + ωady

a + vb
∂ωµ

∂yb
dvµ + vb

∂ωa

∂yb
dva .

2.5 – The variational component of P̃
In order to determine the last functor into which we are interested

we need some further construction. Let (xµ′
, ya′) (µ, µ′ ∈ {1, . . . ,m})

be a further local bundle coordinate system whose domain intersects the

domain of the coordinate system (xµ, ya). We will denote by ϕµ′
(xµ) and

ψa′(xµ, ya) the transition functions, together with their inverses φµ and

ψa. Let us consider the tangent bundle TB and let us recall that in the

charts induced on this manifold the following transformation laws hold:

(2.24)

i) xµ′
= ϕµ′

(xµ) ,

ii) ya′ = ψa′(xµ, ya) ,

iii) vµ
′
= vµϕµ′

µ

iv) va
′
= vµψa′

µ + vaψ
a
a′ ,

for any v = vµ ∂
∂xµ

+ va ∂
∂ya

∈ TyB in a point y ∈ B belonging to the

intersection domain. Here and in the sequel we set ϕµ
µ′ = ∂µ′ϕµ, ψa

µ′ =

∂µ′ψa and so on. Now, we consider the subbundle πV B : (πTB)−1(V B) =

τ ∗V B → V B of the cotangent bundle (T ∗(TB), TB, πTB) and a 1-form

α = αµdx
µ + αady

a + βµdv
µ + βadv

a ∈ τ ∗V B. Then, the transformation

laws (2.24) induce the following transformations on the local components

of α:

(2.25)

i) α′
µ′ = αµϕ

µ
µ′ + αaψ

a
µ′ + βaψ

a
a′µ′ψa′

b vb ,

ii) αa′ = αaψ
a
a′ + βaψ

a
a′b′ψ

b′
b v

b ,

iii) βµ′ = βµ′ϕµ
µ′ + βaψ

a
µ′ ,

iv) βa′ = βaψ
a
a′ .

On the other hand, one obtains from (2.4) the transition functions on the

bundle V B by simply setting vµ = 0. The corresponding transformation

laws of the local components of a 1-form r = ρµdx
µ + ρady

a + σadv
a
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defined on V B are then given by:

(2.26)

i) ρ′µ′ = ρµϕ
µ
µ′ + ρaψ

a
µ′ + σaψ

a
a′µ′ψa′

b vb ,

ii) ρa′ = ρaψ
a
a′ + σaψ

a
a′b′ψ

b′
b v

b ,

iii) βa′ = βaψ
a
a′ .

Theorem 2.9. Let us consider the vector bundle T ∗B⊕B T ∗V B →
V B, in which the fiber over a vector v ∈ VyB, with y ∈ B, is given by

T ∗
y ⊕ T ∗

v V B, with the obvious structure of real vector space. There exists

a bundle isomorphism η∗ : τ ∗V B → T ∗B ⊕B T ∗V B which associates

to any covariant vector α = αµdx
µ + αady

a + βµdv
µ + βadv

a of τ ∗V B

over the vector v of V B the ordered pair (ω, ρ) of T ∗B ⊕B T ∗V B, being

ω = βµdx
µ + βady

a and ρ = αµdx
µ + αady

a + βadv
a, with the covariant

vector ρ belonging to the fiber of T ∗V B over v.

Proof. Immediate by comparing (2.25), (2.26) together with the

transformation laws of T ∗B.

Remark. The bundle T ∗B ⊕B T ∗V B → V B possesses a naturally

induced structure of vector bundle. Moreover, the bundle over V B of

covariant tensors of order r determined by the vector bundle structure on

T ∗B⊕BT
∗V B turns out to be isomorphic to TrB⊕BTrV B, for any r > 0.

Hence, if νrV B denotes the restriction of the bundle of covariant tensors

TrTB to V B, we can consider the power (η∗)r : νrV B → TrB ⊕B TrV B.

Definition 2.5. We set φr = ξ0
r ◦ (η∗)r, for any r ≥ 0 and Φ ≡

(φr)r≥1. Then we have the following covariant functor:

(2.27) P̃B ≡ pr2 ◦ φr ◦ PB ≡ pr2 ◦ ξ0
r ◦ PB : TrB → TrV B ,

where pr2 : TrB ⊕B TrV B → TrV B is the canonical projection. The

functor P̃ acts on the appropriate categories which can be easily deter-

mined and it is called the variational component of the reduced

first order perturbation functor.

In order to determine the action of the functor P̃ on the local com-

ponents of covariant tensorfields we need some more pieces of notation.

Let us denote by Ar(h) the set of multiple indices

Ar(h) = (µ1, . . . , µh, a1, . . . , ar−h) ,
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with h ∈ {1, . . . , r}. We make the convention that the multiple indices

in which the µ’s do not appear are of the type Ar(0) and the multiple

indices not having the a’s are of the type Ar(r). We shall call the pre-

vious multiple indices basic multiple indices. The standard action of the

permutation group Gr on the basic multiple indices determines all the

multiple indices needed to study the tensors of B. We consider now the

set of local covariant tensors of B defined by:

(2.28) dzσ(Ar(h)) = dzσ(µ1) ⊗ · · · ⊗ dzσ(µh) ⊗ dzσ(a1) ⊗ · · · ⊗ dzσ(ar−h) ,

for any Ar(h) ∈ Ar and σ ∈ Gr, having set dzµ = dxµ and dza = dya, for

any µ ∈ {1, . . . , r} and any a ∈ {1, . . . , p}, respectively. Then the family

(dzσ(Ar(h))), obtained when σ spans Gr and Ar(h) spans Ar, is a local

system of generators of TrB, which is obtained from the standard local

basis of TrB by repeating exactly h!(r−h)!-times each element dzσ(Ar(h)),

for any σ ∈ Gr and Ar(h) ∈ Ar, for any r > 0. Moreover, if S ∈ TrB,

we have:

(2.29) S =
r∑

h=0

∑

σ∈Gr

1

h!(r − h)!
Sσ(Ar(h))dz

σ(Ar(h)) ,

where Sσ(Ar(h)) are the standard local components of S and the Einstein

convention on the multiple indices Ar(h) is used without any danger of

confusion.

Then, for all sections ω : B → TrB, having local expression:

(2.30) ω =
r∑

h=0

∑

σ∈Gr

1

h!(r − h)!
ωσ(Ar(h))dz

σ(Ar(h)) ,

we have:

(2.31)

P̃B(ω) =
r∑

h=0

∑

σ∈Gr

1

h!(r − h)!
va∂a[ωσ(Ar(h))]dz

σ(Ar(h)+

+
r−1∑

h=0

∑

σ∈Gr

1

h!(r − 1 − h)!
ωσ(Ar(h)â)dz

σ(A1
r(h)â) ,

having set

A1
r(h)â ≡ (µ1, . . . , µh, a1, . . . , ar−h−1, â)
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and

dzσ(A1
r(h)â) = dzσ(µ1) ⊗ · · · ⊗ dzσ(µh) ⊗ dzσ(a1) ⊗ · · · ⊗ dzσ(ar−h−1) ⊗ dzσ(â) ,

being, in this case, dzâ = dvâ, for any â ∈ {1, . . . , p}. Obviously, the

functor P can be easily obtained from P̃ in these cases.

Remark. We conclude this part by noticing that, if Ξ is a vectorfield

and ω is a covariant tensorfield both defined on B, then from (2.14d) and

the definition of P̃ we easily obtain:

(2.32) LPB(Ξ)(P̃B(ω)) = P̃B(LΞ(ω)) .

3 – Relations of the functor P with the calculus of variations

and with some cohomological functors

3.1 – Action on forms of the perturbation functors

Let B = (B,M, π) be a fiber bundle. We shall denote by T ∗(B) =⊕
r∈IN Tr(B) the direct sum of the modules Tr(B) of tensorfields of type

(0,r), i.e. the sections of the bundle τ ∗B. We also recall that, if B, B′ are

objects in Bun, then the functor P̂ defines a map P̂B,B′ : Bun(B,B′) →
Bun(P̂(B), P̂(B′)) = Bun(V B, V B′), which transforms a morphism f ∈
B(B,B′) into the morphism P̂(f) ∈ B(V B, V B′), given by (2.8). This

holds also for the functor P̃.

A number of results holds becuase of (2.14):

Proposition 3.1. The variational component P̃ of the reduced first

order perturbation functor P̂ acts as a derivative on T ∗(B), considered as

a T ∗(M)-algebra, via the natural identification induced by pull-back along

π : B → M .

As a consequence, by using the simplified notation introduced in

Section 2, we have:

(3.1) P̃B(ω ⊗ ω′) = P̃B,T∗B(ω) ⊗ ω′ + ω ⊗ P̃B,T∗B(ω′)

and

(3.1′) P̃B,T∗B(α⊗ ω) = α⊗ P̃B,T∗B(ω) ,
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for all ω ∈ Tr(B), ω′ ∈ Ts(B), α ∈ Th(M) and r, s, h ∈ IN; i.e., in this

section we shall consider the vertical lift as an identification morphism.

Proposition 3.2. The variational component P̃B,T∗B of the reduced

first order perturbation functor preserves the symmetries of tensors.

Hence, when P̃B is reduced to the exterior algebra of B, we can

replace in (3.1) the tensor product with the exterior product, so that:

(3.2) P̃B(Ω(B)) ⊆ Ω(V B) .

Proposition 3.3. The functor P̃B is localizable; i.e., if N is an

open submanifold of M and if π : B′ → N defines a sub-bundle of B,
then:

(3.3) [P̃B(ω)]|B′ = P̃B′(ω|B′) ,

for any ω ∈ Ω(B).

Now we are ready to prove one of the main results of this paper.

Theorem 3.4. There exists a morphism P̃∗
B,ΛB : HdRB → HdRV B,

being HdR the de Rham (IR-valued) cohomology functor.

Proof. We first recall that a function f : B → IR can be identified

with a section f : B → B × IR of the bundle pr1 : B × IR → B. Since

we have the identification pr1 : V M(B × IR) ∼= (V B) × IR → V B, the

mapping P̃B(f) is a section of this bundle, and hence a function. For this

function we have locally:

(3.4)

P̃B

(
∂f

∂xµ

)
=

∂(P̃Bf)

∂xµ
,

P̃B

(
∂f

∂ya

)
=

∂(P̃Bf)

∂ya
,

∂(P̃Bf)

∂va
=

∂f

∂ya
;
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the above identities hold since, in virtue of (2.14) we have:

(3.5) [P̃B(f)](v) =

(
∂f

∂ya
(y)

)
va ,

for any v ≡ va ∂
∂ya

∈ V B projecting onto y ∈ B. From (2.14) and (3.4),

it also follows:

(3.6) P̃B(dω) = d(P̃Bω) ,

for all ω ∈ Ωr(B) and any integer r ∈ {1, . . . ,m + p}. Hence, the map

P̃B,ΛB is a cochain morphism from Ω(B) into Ω(V B). As a consequence,

it defines a morphism P̃∗
B,ΛB : HdRD → HdR(V B), as we planed.

3.2 – Fundamental properties of P̃
Now, we consider the bundle J2V B together with its natural bun-

dle structure J2V B → V B and the local basis for the contact 1-forms,

given by:

(3.7) θ̃a = dva − vaσdx
σ , θ̃aµ = dvaµ − vaµσdx

σ .

The family of 1-forms defined by combining (1.8) together with (3.7)

determines a local basis for the contact 1-forms with respect to the bundle

structure J2V B → B. Moreover, from (2.14) we have:

(3.8) P̃J2B(θa) = θ̃a , P̃J2B(θaµ) = θ̃aµ .

We need two technical lemmae:

Lemma 3.5. Let f : J2B → IR be a function, which induces the

mapping dV f : J3B → T ∗M and the perturbation P̃J2Bf : J2V B →
IR, where the obvious identifications with sections are used. Considering

the induced morphisms dV (P̃J2Bf) : J3V B → T ∗J3V B and P̃J3B(dV f) :

J3V B → T ∗J3V B, the following hold

dV (P̃J2Bf) = P̃J3B(dV f) ,(3.9a)

dH(P̃J2Bf) = P̃J3B(dHf) .(3.9b)
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Proof. The lemma follows easily from (2.14), (3.4) and (3.8). Equa-

tion (3.9b) holds because of (3.6) and (3.9a), being dH = d− dV .

Analogous calculations give the following lemma:

Lemma 3.6. Let ω ∈ Ω(J2B) be any form the following hold :

dV (P̃J2Bω) = P̃J3B(dV ω) ,(3.10a)

dH(P̃J2Bω) = P̃J3B(dHω) .(3.10b)

Using the previous lemmae, by simple calculations one obtains also

the following fundamental result:

Theorem 3.7. The variational component of the reduced first order

perturbation functor P̃ satisfies the following “naturality properties”:

(3.11)

P̃J3B(fB
(1)(L)) =fV B

(1) (P̃J2BL) ,

P̃J3B(fB
(2)(L)) =fV B

(2) (P̃J2BL) ,

P̃J4B(eB(L)) =eV B(P̃J2BL) ,

P̃J3B(ΘB(L)) =ΘV B(P̃J2BL) ,

P̃J3B(ΩB(L)) =ΩV B(P̃J2BL) .

Finally, from (1.17), (2.9), (2.11) and (3.11) we deduce that:

Theorem 3.8. The morphism P̃J4B(eB(L)) is the Jacobi morphism

of L and the following holds:

(3.12) δ2(L◦ j2λε)= P̃J4B(eB(L)) ◦ j4v+ δ[(dHf
B
(1)(L)+ dHf

B
(2)(L)) ◦ j4λε].
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Remark. Equation (3.12) gives the second variation of the Lagragian

L expressed by the variational component P̃ of the first order perturba-

tion functor P̂.

3.3 – The comparison between cohomologies

Now, we determine some relations among the variational component

of the first order perturbation functor P̃ and some of the functors de-

fined by other authors in various cohomological theories related to prob-

lems involving partial differential equations. Obviously, these relations

can be considered as a further measure of the naturality of the functors

P, P̂ and P̃ introduced here. To this purpose we consider two differ-

ent versions of the cohomological theory introduced by Anderson and

Duchamp (see [5]) and developed by many authors, among which we re-

call Vinogradov ([33]; see [6] and [9] for a more detailed bibliography).

We shall also introduce a third version of Vinogradov’s cohomological

theory, which better exploits the naturality of the functors introduceded

here and puts forward some problems which apparently were not consid-

ered in the previous literature known to us.

The cohomology considered in [6] is not extremely well suited to in-

clude the global versions of the Euler-Lagrange equations. In fact, the

only case known to us in which this cohomological theory works well for

variational problems is the case obtained by taking B = M × IRp (with p

any integer) and π = pr1 : B → M (see [34]). Moreover, the “tower

construction” of [7] does not seem to be suited to include the differential

equations ensuing from variational problems, as we shall shortly see be-

low. We shall thence suggest a “naive” solution for both problems. We

recall once again that the construction considered here has the unique

purpose of testing the naturality of the variational component of the first

order perturbation functor. Accordingly, “better for our purposes” will

not in general mean “better” (especially when one considers the impor-

tant results of [7] and [10]), even if we believe that it could be useful

to compare some of the possible constructions together with their ap-

plications. Finally, we stress that the variational methods involve many

more types of partial differential equations than people generally think,

as it will be pointed out by the examples of the Appendix (related to

“parabolic” systems of partial differential equations in the sense of [6],

heat equations and KdV equations included). This remark can be es-



[33] The perturbation functor in the calculus of variations 33

pecially useful for the cohomological groups considered here, since the

problems coming from the degeneracy of the Lagrangian and from the

signature of its associated Hessian do not seem to play an important role,

at least for the moment.

Let again B = (B,M, π) be a bundle. Let us denote by πh
k : JhB →

JkB the canonical projections, for any h, k ∈ N, with h > k and let us set

J0B = B. Then we have canonical inclusions (πh
k )∗ : T∗JkB → T∗JhB,

for any h, k ∈ N, with h > k; we shall use (πh
k )∗ as identification mor-

phisms. Then, more or less clearly, the specific construction of [9] suggests

to overcome the use of the bundle J∞B of infinite jet prolongations of

sections of B which has better “flatness” properties but has a complicated

topology (see, e.g., [34]), by just considering and suitably working on jet

bundles of order k+1, being k the highest order on which the r-forms used

depend. Since in our hypotheses deB(L) = dV e
B(L) depends on the ele-

ments of J5B, for any Lagrangian L on J2B, we shall consider Ω(JkB) ⊆
Ω(J6B), for any k ≤ 5. We shall also consider Ω(M) ⊆ Ω(B) ⊆ Ω(J6B),

via the identification morphism π∗ : Ω(M) → Ω(J0B) = Ω(B). The pre-

vious identifications allow us to consider the ring of smooth functions

Ω0(J
kB) as a sub-ring of the ring of smooth functions Ω0(J

6B) which

are constant along the fibers of the bundle π6
k : J6B → JkB, with k < 6.

We shall denote by Ω̃h
r (J

kB) the Ω0(J
kB)-module of r-forms along the

canonical projection πh
k : JhB → JkB, for any h, k ≤ 5, with h > k. Fi-

nally, we denote by Ω̃r(M) the Ω0(J
kB)-submodule of r-forms along the

canonical projection π̄k : π ◦πk
0 : JkB → M , for any k ≤ 5; also this mod-

ule will be considered as a sub-module of Ωr(J
6B), for all r ∈ {1, . . . ,m}.

We shall use the following known results (see [9]):

Proposition 3.9. The following contact forms:

(3.13)
θaµνρ = dya

µνρ − ya
µνρσdx

σ, θaµνρσ = dya
µνρσ − ya

µνρστdx
τ ,

θaµνρσε = dya
µνρσε − ya

µνρσετdx
τ ,

together with the contact forms defined by (1.8), the forms dxµ and the

forms dya
µνρσεη, determine a local basis C of the Ω0(J

6B)-module Ω1(J
6B)

and hence generate Ω(J6B). Moreover, the subset C ′ obtained from C by

removing only all the forms dxµ and dya
µνρετ generates an ideal of Ω(J6B),

known as the ideal of contact forms.
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One of the most substantial differences beetwen the viewpoint of [6]

and the viewpoint of [9] is the definition of “solution of a system of

differential equations”. In fact, let I be an ideal of Ω(J6B) and σ ∈ ΓD(π)

be a local section, being D a domain in M . In [6] the section σ is said

to be a solution of the system of partial differential equations defined by

I if and only if (j6σ)∗(I|J6E) = 0, being E = π−1(D) the total space

of the bundle over D naturally induced by the bundle structure of B
and (j6σ)∗ : Ω(J6E) → Ω(M) the total differential of j6σ : D → J6B.

In the Calculus of Variations a section σ is instead a solution of the

system of partial differential equations defined by I if and only if I ◦σ ≡
{ω ◦ j6σ/ω ∈ I} = 0. This alternative definition of solution can be easily

inferred from the general theory, since if ωi ◦ j6σ = 0 for a family (ωi)i∈I

where I �= ∅ is any set of indices, then ω ◦ j6σ = 0 for all ω belonging to

the ideal I generated by the family (ωi)i∈I .

The definition of solution used in [6] cannot be applied immediately

to the Euler-Lagrange equations, since they are globally defined by an

(m+1)-form which is locally of the type eaθ
a ∧ ds, while (j6σ)∗(θa) = 0

holds for all a ∈ {1, . . . , p} because of the very definition of the structure

forms θa. We stress moreover that the solution suggested in [34] for

variational problems defined on the trivial bundle B given by pr1 : M ×
IRp → M is however viable, only due to the fact that one can avoid the use

of the contact forms θa by fixing on IRp the standard atlas containing the

unique chart (IRp, idIRp). This obstacle can be overcame by first noticing

that all general constructions of [6] continue to hold if one replaces the

closed ideal Ivar of Ω(J∞B), used in [6], with any family of closed ideals

Ii∈I (I �= ∅). Then we make the following “naive” suggestion: instead

of considering the ideal generated by means of the Euler-Lagrange form

eB(L), we consider the family of ideals generated by the family of m-

forms (iv(Ω))v∈V(J3B) together with the family of contact forms already

considered in [6], where V(J3B) is the module of vertical vectorfields

defined on J3B. The elements of V(J3B) must be here considered as a

mere parameters; for this reason we shall use boldface letters to denote

them. This construction allows us to use the results of [6] also in the

variational case, since (1.10) holds as an equivalent of the Euler-Lagrange

equations. This suggestion could be useful out of the context of this

paper, since equation (A.5) of the Appendix shows that iv(Ω) belongs to

the closed ideal Ivar generated by the contact forms of the adapted basis
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and by the m-form ds, for any v ∈ V(J3B). Hence, the previous ideal

can be replaced by this last one, obtaining cohomological groups which

do not depend on the Lagrangian L.

Remark. By using a variant of the construction presented in [9],

one can avoid to introduce the notation needed when using the infinite

jet bundle J∞B by just noticing that the set C ′ ∪ {ds} generate a closed

ideal I ′
var(J

6B) of Ω(J6B). This fact allows us to consider the cohomolog-

ical groups H ′
var(J

6B) of the quotient cochain complex Ω̂(J6B)/I ′
var(J

6B)

(recall that Ω(JkB) ⊆ Ω̂(JkB) = Hor(JkB)⊕K(JkB)), having the total

differential modulo I ′
var(J

6B) as a coboundary operator. Then the coho-

mological group Hvar is obtained by considering the projective limit of

H ′
var(J

6B), in the obvious way.

Also the “tower construction” of [6] (in the following it will be called

BG-tower construction, because the variational component of the first

order perturbation functor will determine a further tower which will be

called here the Jacobi tower) is not well suited to include the Euler-

Lagrange equations of variational problems. In fact, the (m+1)-form

dH(iv(Ω)) vanishes, when v ∈ V(J3B) is considered as a mere parameter,

as in (1.10), and the BG-tower construction coincides essentially with the

horizontal derivative. In order to overcome this problem we shall assume

for simplicity that M is orientable and that a global volume form vol is

fixed on M . Then, there exists a unique 1-form Ω̃ on J6B such that:

(3.14) iv(Ω) = iv(Ω̃ ∧ vol) , ∀v ∈ V(J3B) .

Following an idea first developed in [17] one can now consider the family

of Lagrangians L1
v = iv(dHΩ̃)vol : J4B×M TM → ΛmM , locally defined

by:

(3.15) L1
v(j4λ,X) = (j6λ)∗(dµ(Ω̃a)v

aXµ)vol ,

being Ω̃a, v
a and Xµ the local components of Ω̃, v and X, respectively,

where λ is any section, X is a vectorfield defined on M and v an element

of V(J3B). The first variation of the family of Lagrangians (3.14) splits

into:

(j6λ)∗dµ(Ω̃) = 0 ,(3.16a)

[δ(j6λ)∗(dµ(Ω̃a))]v
aXµ = 0 .(3.16b)
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As is well known, the inverse problem of the Calculus of Variations (i.e.,

the problem of finding a variational principle whose Euler-Lagrange equa-

tion is fixed a priori) is not at all trivial, while the same problem becomes

in a sense trivial if one allows the possibility of considering new variables

which are not a priori restricted to satisfy any further condition (even

if, in some cases, one can consider to be more important the advantages

coming from the introduction of variational methods than the problems

coming from the “triviality” of the new variables; see, e.g., [37]). Replac-

ing the original Euler-Lagrange equations with the new equations (3.16)

goes in fact in this “trivial” direction. However, the usefulness of this

alternative variational principle is garanteed by the results of [6] and [7],

which ensure that the solutions of the equation (3.16a) are of practical

importance, while the second equation (3.16b) does not eliminate any

solution of the first equation (3.16a), since it is always verified by the

vectorfield X = 0 and hence it preserves at least a copy of any solution

of the first equation. A second question is whether the relation between

Ω and Ω̃ preserves or not the informations on the variational problem

contained in the first (m+1)-form. A positive answer can be obtained by

remarking that being M orientable there exists an atlas of M in which

the local expression of Ω̃ coincides with the local expression of Ω. In

any case, most of the relations needed between Ω and Ω̃ can be easily

deduced from the results of [16].

Proposition 3.10. The following inlcusion holds:

(3.17) P̃J6B(I ′
var(J

6B)) ⊆ I ′
var(J

6V B)

and hence the corresponding homological construction can be easily iter-

ated.

Proof. This can be easily seen by using (2.7) together with the

appropriate extension of (3.8) to all the involved contact forms.

Remark. In particular equations (3.6) and (3.17) entail that P̃
induces a morphism between the corresponding cohomological groups,

which will be denoted by the same letter (with an abuse of notation).

The new tower construction obtained as in [6] by iterating the ap-

plication of P̃ to the equivalent Euler-Lagrange equations (1.10) of the
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Lagrangians which are obtained by iterating the action of P̃ on the orig-

inal Lagrangian L has a sure meaning, since it determines the “higher

order Jacobi fields” (the reasons for which those fields must be consid-

ered are strictly analogous to those well explained in [6], whereby they

refer to conservation laws rather than to higher order variations, as here).

Let us now notice that according to the method developed in [6]

and to (3.15) the other “levels” of the relevant BG-tower also determine

variational problems (in a sense “associated” to the original one we are

considering). Accordingly, the previous construction can also be iter-

ated for each level. For the other “levels” of the BG-tower construction

the problem of their usefulness comes from the “triviality” of the varia-

tional principle (3.15); again, because of (3.16), this problem is related to

the usefulness of “Jacobi fields” for generic systems of partial differential

equations, which does not seem to be clear to us, nor it has been con-

sidered in the existing literature. We limit ourselves to remark that, as

in the case of variational problems, also for generic differential equations

“Jacobi fields” determine the directions in which a homotopic variation

of a solution is still determined by means of solutions. This suggests us

to give the following definition:

Definition 3.1. We will call Jacobi tower the set of cohomological

groups so obtained by iterating the action of P̃ on L while the kth-Jacobi

tower will be the set of cohomological groups obtained by iterating the

action of P̃ on the Lagrangians constructed by iterating (3.15) till the

k-th term of the corresponding BG-tower. We shall call JBG-wall the

complete set of cohomological groups obtained in this way.

Let us now turn to consider the approach of “variational sequences”.

Differently from [6], the construction of [9] is explicitly worked out for

variational problems, hence it does not present the problems coming from

the definition of solutions of a differential partial equation we discussed

before. A further observation of [9] is that one does not need the struc-

ture of graded exterior algebra on a quotient cochain complex of Ω(J6B)

in order to define its cohomological groups, but simply an Abelian group

structure. Finally, a last observation can be obtained from the com-

parison of [6] and [9]. In fact, if I is a graded complex of closed mod-

ules and (Ir)1≤r≤N is its gradation, then Ir can be obtained by setting

Ir = Ĩr + dĨr−1, for 1 < r ≤ N and I1 = Ĩ1, where each of the mod-
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ules Ĩr can be chosen by using different criteria for each 1 ≤ r ≤ N .

As an example, in [9] the graded module IK , with gradation (Ir
K), is

obtained by taking the graded family of modules which are the ker-

nels of a suitable family of Ω0(J6B)-linear applications. This family

can be easily described in the following way. Let I1
K(J6U) = Ĩ1

K(J6U)

be the submodule of Ω1(J6U), generated by the set C ′, of all contact

forms on J6U , having set J6U ≡ (π ◦ π6
0)

−1(U), for any U open set of

M which is the domain of a local coordinate system. Let us also set

Ĩr
K(J6U) = I1

K(J6U) ∧ Ωr−1(J6U), for any r ∈ {2, . . .m}, for any open

set U of M , on which a local coordinate system is defined. Finally, we set

Ĩr
K(J6U) = (I1

K(J6U))r−m+1∧Ωm−1(J6U), where (I1
K(J6U))p denotes the

p-th power with respect to the wedge product, for any r ∈ {m+1, . . . N},
where N is the dimension of J6B. Then, Ĩr

K is the submodule of Ω(J6B)

of r-forms whose restrictions belong to Ĩr
K(U), for any r ∈ {2, . . . N} and

any open subset U of M which is the domain of a local coordinate sys-

tem and Ir
K = dĨr−1

K + Ĩr
K , for any r ∈ {2, . . . N}. Again, P̃J6B(IK) is

contained into the module obtained with the same criteria starting from

the variational problem P̃J6B(L). As a consequence the suitable Jacobi

tower can be constructed and analogous remarks hold, as in the previous

cohomological groups.

Let us now remark that the papers [9] and [10] were published be-

fore [6] and [7], so that they present problem analogous to those we al-

ready mentioned for the tower construction of [6]. In fact, the Euler-

Lagrange morphism eB(L) of a Lagrangian L is such that dHe
B(L) = 0

holds. We overcome this problem by assuming that M is orientable and

that a volume form vol is fixed on M . Then, there exists a unique 1-form

ẽB(L) on J6(B) such that

(3.18) eB(L) = ẽB(L) ∧ vol .

Again, we have the family of Lagrangians L1v = (dH ẽ
B)v ⊗vol : J4B×M

TM → ΛM , v ∈ J6V B, defined by:

(3.19) L1v(j4σ,X) = ((dµea)v
aXµ)vol .

Also in this case all the considerations already made for the BG-tower

construction will follow, so that at the end we have a second “wall con-



[39] The perturbation functor in the calculus of variations 39

struction” for the Euler-Lagrange differential equation (1.10) which dif-

fers from the standard BG-wall and contains other informations on the

same class of problems. These informations are obviously related to the

“Lepagean (equivalent) forms”, i.e. to the m-forms of J6B which are suit-

ably obtained from L to determine the same Euler-Lagrange equation

(see [10]).

Remarks. Let us finally make a couple of remarks, which in a sense

point towards suggestions which could be in contrast with each other. If

one chooses the family of modules Ĩ in such a way that it has a maximum

number of null spaces (as we shall suggest below), then the properties

of the cohomological groups obtained will be of course “closer” to the

properties of the full de Rham groups of the bundle. On the other hand,

when B coincides with the trivial bundle pr1 : [0, 1] × M → [0, 1], the

family (θa ∧ dt), where θa is now given by θa = dya − ẏadt, generates a

closed ideal of differential forms which determines cohomological groups

isomorphic to the de Rham cohomology of M , while the cohomological

groups of [6] and [9] considered here are necessarily trivial.

Example. As an example of a way to obtain cohomological groups

which are “close” to the de Rham ones, we consider the submodule Im+2
1

of Ωm+2(J6B) locally generated by the (m+2)-forms θaµ1...µh
∧ θbν1...νk

∧ds

(h, k ≤ 6). Then, by taking Ĩr
1 = 0, for any r �= m + 2, one obtains

a closed graded module and hence a cohomological graded group. In

this complex (Ir
1)1≤r≤N , the Euler-Lagrange form eB(L) is a cochain in

Im+1
1 (see (A.5)) and hence it determines a non-trivial cohomology class.

What is important here is that the combined action of the k-jet extensions

and of the variational components of the first order perturbation functor

allows us to construct the corresponding JBG-wall: this possibilty is a

further sign of the naturality of the functors considered here. Finally, let

us denote by Î anyone of the graded modules IBG, IK and I1. Then,

the restriction of the total differential to Î determines a structure of

cochain complex, which in turn determines cohomological groups. Again,

the “Jacobi tower construction” can be performed for those groups since

P̃J6B(Î) ⊆ Î. These cohomological groups could be useful, as the case of

the trivial bundle [0, 1]×M (which is related to the variational aspects of

Riemannian Geometry) shows. We conclude this part by remarking that

one could try to find the “best” closed submodule I, if it exists, which
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would contain most of the informations encoded into the cohomological

groups considered here. These problems will be considered in [20].

Conclusive Remark. We conclude our paper by stressing that

in the general case the first order perturbation functor is compatible

with (1.11), via (2.18), so that the conserved Noether currents of the

original Lagrangian L are transformed by PB into the Noether currents

of the deformed Lagrangian P̃(L) ≡ L(1). More details will be given

in [21].

– Appendix

A.1 – Augmented variational principles and examples

The basic justification for the introduction of the BG-tower comes

from the KDV equation (see [6] and [7]), hence it seems important to

indicate methods which allow one to write this equation as the Euler-

Lagrange equation of a non-trivial variational principle. This problem

has an importance of its own for other reasons, which are well explained

in the Introduction to Chapter 2 of the book [36]. As a consequence,

many methods have been developed to solve the inverse problem of the

Calculus of Variations, even in those cases in which it is clear from the

beginning that Lagrangians which determine the system of partial differ-

ential equations considered do not exist (e.g., the case of heat equations

and KdV equations).

Unfortunately, people interested into this “generalized aspect of the

inverse problem” have paid more attention to the systems of partial dif-

ferential equations coming from technical applications rather than from

Mathematics and Physics. In this Appendix, instead of applying one of

the existing methods to the KdV equation we prefer to suggest a new

one, because this choice will require simple calculations and will suggest

that, if one does not find the existing Lagrangians to be satisfactory, one

can always try to find new ones. The method considered here belongs

to a larger class of methods in which the basic tool is the addition of

new variables to the original variables of the given system of partial dif-

ferential equations. The first example we mention is the method known

as “method of mirror variables”, explicitely introduced by Glansdorff
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and Prigogine (see [38]), following an earlier example of a hydrodynami-

cal principle stated by Bateman (see [39]) and elaborated by Morse and

Feshbach (see [40]) with some contributions (see, e.g., the papers quoted

therein and in [37]). This method consists in adding to the variables of

the problem, which will be subjected to variations, an identical number

of “mirror variables”, which are considered as mere parameters. Obvi-

ously, this addition implies in many cases that some new solutions are

added to the solutions of the system of partial differential equations one

started from.

The method proposed here consists instead in adding just one new

dependent variable to the original dependent variables of the problem by

requiring that a Lagrangian exists so that: (i) among its Euler-Lagrange

equations the equation for the new variable has a simple and possibly

“canonical” solution; (ii) in corrispondence with this solution, the re-

maining Euler-Lagrange equations reduce to the original system of the

original variables or, at least, have the same set of solutions. In this way,

it is easy to control the relations between the geometric objects related

to the “associated Lagrangian” with those related to the original system

of partial differential equations (e.g., one might require that the group

of gauge transformations of the system coincides with the sub-group of

gauge transformations of the associated Lagrangian which preserves the

chosen solution for the extra variable; and so on). For the heat equation

and the KdV equation the obvious choice for the new variable is what we

call admissible time measure.

Example A.1 - The heat equation: For the case of the heat

equation, let us consider the trivial bundle B = (IR × IRm × IR2, IR ×
IRm, pr), where pr is the canonical projection of IR× IRm × IR2 onto IR×
IRm and let us look for a first order Lagrangian L = L(t, xµ, τ, q, . . . )ds,

where t, xµ, τ and q the time coordinate, the spatial coordinate and

the admissible time measure, while ds is the standard volume form on

IR×IRm and “dots” replace the remaining variables, i.e. the partial space-

time derivatives of τ and q. Moreover, we require that one of the two

Euler-Lagrange equations of L is satisfied by the solution τ = t and that

in correspondence of this solution the remaining equation coincides with

the heat equation. There exists a large class of functions L determining

Lagrangians with this property. The whole class can be determined by
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using a procedure analogous to the one used in [37] to show that the heat

equation cannot be determined by a variational principle in the classical

sense (see [37] paragraph 2.6, pp. 65-66). The following function seems

to be the simplest function belonging to this class:

(A.1) L = q

(
1 − ∂τ

∂t

)
+ δij

∂τ

∂xi

∂q

∂xj
.

The Euler-Lagrange equations of the “associated” Lagrangian are in fact:

(A.2a)
∂q

∂t
− δij

∂2q

∂xi∂xj
= 0

and

(A.2b) 1 − ∂τ

∂t
− δij

∂2τ

∂xi∂xj
= 0 ,

with the obvious meaning of the symbols used. One sees immediately

that τ = t makes (A.2b) satisfied, so that (A.2a) reduces to nothing but

the heat equation ∂q
∂t

− ∆q = 0 in flat space IRm.

Example A.2 - The KdV Equation: In the case of KdV equation

we take m = 1, hence L = L(t, x, τ, u . . . )ds, with the obvious meaning of

the symbols used. Even in this case, the set of all functions L whose Euler-

Lagrange equations allow the solution τ = t so that in correspondence of

this solution the remaining equation becomes the KdV equation, is large.

The following function seems to be the simplest one belonging to this

class:

(A.3) L = 6u2 ∂τ

∂x
+ u

∂τ

∂t
+

∂τ

∂x

∂2u

∂x2
− u .

This is a second order Lagrangian, whose Euler-Lagrange equations are:

(A.4a) 12u
∂u

∂x
+

∂u

∂t
+

∂3u

∂x3
= 0

and

(A.4b) 6u
∂τ

∂x
+

∂τ

∂t
− 1 +

∂3τ

∂x3
= 0 .

It is immediate to see that equation (A.2b) is satisfied by τ = t so

that (A.4a) reduces to the standard KdV equation required.
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A.2 – Some technical formulae

We list in this Appendix some formulae used in this papers. Let

us consider the IR-linear mapping ΘB : Ω̃m
2 (M) → Ω̃m

3 (J1B), where Ω̃h
k

are the module introduced in Section 3, which associates to any second

order Lagrangian L over M its Poincaré-Cartan m-form. Then we can

express the Euler-Lagrange (m+1)-form eB(L) of any Lagrangian L on

M by means of the multiplectic form ΩB(L) = dΘB(L). In fact, a simple

calculation shows that:

(A.5)

eB(L) = ΩB(L)+
(
dν

∂2L

∂yb∂ya
µν

− ∂2L

∂yb∂ya
µ

)
θb ∧ θa ∧ dsµ+

+

(
dν

∂2L

∂yb
ρ∂y

a
µν

+
∂2L

∂yb∂ya
ρµ

+
∂2L

∂ya∂yb
ρµ

− ∂2L

∂yb
ρ∂y

a
µ

)
θbρ ∧ θa ∧ dsµ+

+

(
dν

∂2L

∂yb
ρσ∂y

a
µν

+
∂2L

∂yb
ρ∂y

a
σµ

− ∂2L

∂yb
ρσ∂y

a
µ

)
θbρσ ∧ θa ∧ dsµ+

+
∂2L

∂yb
ρσ∂y

a
µτ

θbρστ ∧ θa ∧ dsµ − ∂2L

∂yb
ρ∂y

a
µν

θbρ ∧ θaν ∧ dsµ+

− ∂2L

∂yb
ρσ∂y

a
µν

θbρσ ∧ θaν ∧ dsµ ,

where L = Lds holds locally. From the previous equation, by standard

calculations we get:

(A.6) d[eB(L)]={αabθ
b+αρ

abθ
b
ρ+αρσ

ab θ
b
ρσ+αρσµ

ab θbρσµ+αρσµτ
ab θbρσµτ}∧θa∧ds ,

being

αab = dµ

(
dν

∂2L

∂yb∂ya
µν

− ∂2L

∂yb∂ya
µ

)
,(A.7)

αρ
ab = 2

∂2L

∂y[a∂y
b]
ρ

+ 2dµ

(
∂2L

∂yb∂ya
ρµ

− ∂2L

∂yb
ρ∂y

a
µ

+ dν
∂2L

∂yb
ρ∂y

a
µν

)
,(A.8)

αρσ
ab = dµdν

∂2L

∂yb
ρσ∂y

a
µν

+ 2
∂2L

∂y(b∂y
a)
ρσ

+ 2dν
∂2L

∂yb
r∂y

a
σν

+(A.9)

− dν
∂2L

∂yb
ρσ∂y

a
ν

− ∂2L

∂yb
ρ∂y

a
σ

,
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(A.10) αρσµ
ab = 2dν

∂2L

∂yb
ρσ∂y

a
µν

+
∂2L

∂yb
ρ∂y

a
σµ

− ∂2L

∂yb
ρσ∂y

a
µ

and

(A.11) αρσµτ
ab =

∂2L

∂yb
ρσ∂y

a
µτ

.

The coefficients (A.7)-(A.11) are the relevant coefficients which enter the

Jacobi form of the given Lagrangian L; see [16], [17] for details.
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