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Asymptotic behavior of convolution powers of

a probability measure on harmonic extensions

of H-type groups

F. TOLLI

Abstract: We give a local (central ) limit theorem and a renewal theorem for
radial probability measures on AN-groups.

– Introduction

Solvable extensions of H-type groups have been objects of inten-

sive studies in recent years, since the discovery made by E. Damek and

F.Ricci [4] of a counterexample to the Lichnerowicz conjecture. Indeed,

after E. Damek and F. Ricci have shown [5] that, despite the lack of

symmetry, it is possible to develop on these groups a harmonic analysis

similar to the one developed by Harish-Chandra for semisimple groups,

several authors have investigated the possibility to extend to these groups

analogous results known for rank one symmetric spaces: multipliers prob-

lems [2], Paley-Wiener theorems [6], asymptotic behavior of the heat ker-

nel [1], to mention just a few. In this paper we follow the mainstream, but

with a more probabilistic flavor. We first recall two well known results for
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the convolution powers of a nonarithmetic probability measure µ on IR.

The local (central) limit theorem states that if µ has mean zero and vari-

ance σ then the sequence n1/2µ∗n converges weakly to a multiple, which

depends only on σ, of the Lebesgue measure on IR. The renewal theorem

deals with the potential U(f)(x) =
∑+∞

n=0 µ
∗n ∗ f(x), where f is a con-

tinuous function with compact support. We have that limx→−∞ Uf(x) is

different from zero if and only if µ has finite positive mean and the mass

of f is different from zero; moreover, if this is the case, the value of the

limit is the reciprocal of the mean of µ multiplied by the mass of f .

Both these results have been extended to symmetric spaces by Bouge-

rol in [3] and in this paper we will show how Bougerol’s method can be

easily adapted to the setting of harmonic extensions of H-type groups. In

particular we consider a radial probability measure on an AN -group with

support not concentrated at the origin and we prove that the sequence

ρ−nn3/2µ∗n, where 0 < ρ < 1, converges weakly to a multiple of the

spherical function φ0. In particular, for any compact set K of the origin

µ∗n(K) decays exponentially. We should recall that the local asymp-

totic behavior of the convolution powers of a probability measure on any

(amenable) connected Lie group has been determined by N. Th. Varopou-

los [10]. According to Varopoulos’ classification our AN -groups are in

the category of NC groups and if µ is a symmetric (i.e. µ(A) = µ(A−1)

for every measurable set A) probability measure on such groups then

µ∗n(K) ≈ n−3/2; thus we do not have an exponential decay as for the the

radial measures. To clarify the reason of this difference consider the case

when the measure µ has a density f . Then µ is symmetric if and only if

f(x−1) = f(x)m(x) a.e., where m denotes the modular function. Since

radial densities are symmetric in the usual sense, i.e. f(x−1) = f(x), and

the modular function is trivial only at the origin, we have that probability

measures associated with radial densities are not symmetric.

– Preliminaries

Let n be a two-step nilpotent Lie algebra endowed with a scalar prod-

uct 〈·, ·〉. Denote by z the center of n and by p the orthogonal complement

of z in n. Let JZ : p → z the linear map defined by

〈JZX,Y 〉 = 〈Z, [X,Y ]〉 (X,Y ∈ p;Z ∈ z).
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Then n is a Heisenberg algebra if

J2
Z = −|Z|2I ∀ Z ∈ z,

and the corresponding simply connected group N is called of Heisenberg-

type or simply H-type group. If k = dim z and m = dim p we have

that m is always even so that Q = m
2

+ k is a positive integer called the

homogeneous dimension of N . Identifying the group with its Lie algebra

via the exponential map we have that the product on N is given by

(X,Z)(X ′, Z ′) =

(
X + X ′, Z + Z ′ +

1

2
[X,X ′]

)
.

The semidirect product G = N � IR+ defined by

(X,Z, a)(X ′, Z ′, a) =

(
X + a1/2X ′, Z + aZ ′ +

1

2
a1/2[X,X ′], aa′

)

is a solvable Lie group with Lie algebra g = p + z + IR. It is equipped

with the left invariant Riemannian metric induced by the scalar product

〈(X,Z, l), (X,Z ′, l′)〉 = 〈X,X ′〉 + 〈Z,Z ′〉 + ll′

on g. The associated left Haar measure is given by

dLg = dg = aQdXdZ
da

a

while the right Haar measure is given by

dRg = adXdZda

so that the group is not unimodular. We recall that if S = KAN is the

Iwasawa decomposition of semisimple connected Lie groups of real rank

one, then the solvable group AN = NA is an example of a harmonic

extension of an H-type group.

If g = an, a ∈ IR+, n ∈ N we denote by a(g) the element a and by

r(g) = d(g, e) the geodesic distance of g from the identity e. Furthermore

we denote by Sr = {g ∈ G : d(g, e) = r} the geodesic sphere of radius r.
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A function is said to be radial if it depends only on the geodesic

distance or equivalently if it is constant on every geodesic sphere. The

space of the continuous (resp. smooth) radial functions with compact

support is denoted by Cc(G)# (resp. C+∞
c (G)#). A (probability) measure

is said to be radial if χr∗µ = µ∗χr = µ ,where, for every r > 0, χr denotes

the normalized surface measure induced on Sr by the Haar measure dg.

Obviously if µ has a density f we have that µ is radial if and only if f is

a radial function. The spherical functions are the radial eigenfunctions of

the Laplace-Beltrami operator ∆ on G, normalized at the origin. They

are real analytic, since ∆ is elliptic, and have the following properties [5]:

• all the spherical functions are of the form

φz(g) = φz(r(g)) =

∫

Sr

a(y)Q/2−zdχr(y), z ∈ C;

• φz(r) = φ−z(r);

• φz(r) are holomorphic function of z uniformly bounded in z and r

for −Q
2
≤ "(z) ≤ Q

2
.

The Fourier transform of a radial measure µ is defined as

Fµ(z) =

∫

G

φz(g)dµ(g)

and obviously the Fourier transform of a radial function is defined as the

Fourier transform of the associated measure. If f ∈ C+∞
c (G)# then its

Fourier transform Ff is a symmetric entire function that decays expo-

nentially on every vertical line. Moreover the following inversion formula

holds true [9], [1]:

f(r) =
2k−3Γ

(
m + k + 1

2

)

π(m+k+3)/2

∫

IR

Ff(is)φis(r)|c(is)|−2ds

where c denotes the Harish-Chandra function i.e.

c(z) =
2Q−2zΓ(2z)Γ

(
m + k + 1

2

)

Γ

(
Q + 2z

2

)
Γ

(
m + 4z + 2

4

) , z ∈ C.
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In the following we will denote by C1 the constant in front of the integral

in the inversion formula.

– The Fourier transform of a measure

Lemma 1. Let µ be a nonsingular radial probability measure on G.

Then the Fourier Transform Fµ has the following properties:

1. Fµ(t + is) is continuous in the strip S = {t + is ∈ C : s ∈ IR,−Q
2
≤

t ≤ Q
2
} and holomorphic in its interior;

2. |Fµ(t + is)| < Fµ(t), s �= 0,−Q
2
≤ t ≤ Q

2

and Fµ(t) < Fµ(Q
2
) = 1, −Q

2
< t < Q

2
;

3. lim sup
s→∞

|Fµ(t + is)| < Fµ(t), −Q
2
≤ t ≤ Q

2
.

Proof.

1) The spherical functions φz(g) are holomorphic functions of z ∈ C that

are uniformly bounded in the strip S. This on the one hand implies

that the Fourier transform of µ is continuous on S and on the other

hand, by Cauchy’s formula, that also the derivatives of φz(g) are

uniformly bounded in any substrip −Q
2

+ ε ≤ "(z) ≤ Q
2
− ε. Thus the

integral
∫
G | dl

dz
φz(g)|dµ(g) is convergent and this guarantees that the

function Fµ(z) is smooth in the interior of S and that dl

dz
Fµ(z) =

∫
G

dl

dz
φz(g)dµ.

2) We will first show that analogous inequalities hold for the spherical

functions. This has been proved in [5], but for us it is essential to

check that the inequalities are strict. If s ∈ IR\{0}, −Q
2
< t < Q

2

and |g| = r �= 0,

|φt+is(g)| =

∣∣∣∣
∫

Sr

a(y)
Q
2 −t−isdχr(y)

∣∣∣∣ <

<

∫

Sr

a(y)
Q
2 −tdχr(y) <

<

(∫

Sr

a(y)Qdχr(y)

)Q/2−t
Q

=

= φ−Q
2
(g)

Q/2−t
Q = φQ

2
(g)

Q/2−t
Q = 1,
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where the first inequality follows from the passage of the absolute

value under the integral and the second one by Jensen’s inequality.

They are strict because the function a(y) is not constant on Sr, for

r > 0 and the first inequality also holds for t = ±Q
2
. Then 2) follows

from the fact that the support of µ is not concentrated at the origin.

3) This is an immediate consequence of the analogous property of the

spherical functions which, in turn, follows from the classical Riemann-

Lebesgue lemma.

Lemma 2. Let µ be as in the previous lemma and consider the

function of real variable h(s) = Fµ(is). Then

1. The first derivative of h vanishes at zero;

2. The second derivative of h at zero is strictly negative.

Proof. The first statement follows from the symmetry of the spher-

ical functions, namely φis(g) = φ−is(g). By the proof of the previous

lemma we have

d2

ds
h(0) =

∫

G

d2

ds
a(y)

Q
2 −is

∣∣∣∣
s=0

dµ(y) = −
∫

G

ln(a(y))2a(y)
Q
2 dµ(y)

which is clearly nonpositive. It is equal to zero if and only if a(y) = 1 µ

a.e. and this is not the case since the support of µ is not concentrated at

the identity.

Lemma 3. The Harish-Chandra function has the following properties:

1. For s ∈ IR we have

lim
n→+∞

n|c(is/√n)|−2 = 4s2

∣∣∣∣∣∣∣∣

Γ

(
Q

2

)
Γ

(
m + 2

4

)

Γ

(
m + k + 1

2

)
2Q

∣∣∣∣∣∣∣∣

2

= 4s2C2;

2. c(z)−1 is holomorphic in the region SQ = {z ∈ C : "(z) > −Q
2
} and

there exists k such that

|c(z)|−1 ≤ k(1 + |z|)k z ∈ SQ.
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Proof. Both statements are immediate consequence of the definition

of c and well known properties of the Gamma function. For instance 1

follows from the fact the Γ(z) is holomorphic and different from zero for

"(z) > 0 and that 1
Γ(2is)

≈ 2is for s in a neighborhood of the origin.

– The local limit theorem

Theorem 1. Let µ be a nonsingular radial probability measure on G

and f a continuous function with compact support. Then

lim
n→+∞

n3/2Fµ(0)−n

∫

G

f(g)dµ∗n(g) = C

∫

G

f(g)φ0(g)dg

where C = C1C2

∫
IR s2 exp(Fµ′′(0)s2

2Fµ(0)
)ds.

Proof. Let R be the operator of radialization [4], then
∫
G f(g)dµ∗n =∫

G Rf(g)dµ∗n(g), so we can suppose that f is radial. Since C∞
c (G)# is

dense in Cc(G)# [6], we can suppose that f is also smooth. Then, by the

Paley-Wiener theorem, the function f has an integrable Fourier transform

and thus, by the Fourier inversion formula, we have

Fµ(0)−nn3/2

∫

G

f(g)dµ∗n(g) =Fµ(0)−nn3/2f ∗ µ∗n(e) =

=C1Fµ(0)−nn3/2

∫

IR

Ff(is)Fµ(is)n|c(is)|−2ds.

Notice that for any positive η

lim
n→+∞

C1n
3/2

∫

|s|>η

(Fµ(is)

Fµ(0)

)n

Ff(is)|c(is)|−2ds = 0

since, by Lemma 1, there exists 0 < ε < 1 such that |Fµ(is)

Fµ(0)
|n ≤ εn,

for |s| ≥ η and the integrand is uniformly dominated by the integrable

function C|Ff(is)(1 + |s|k)|. Lemma 2 and Taylor’s formula give

Fµ(is) = Fµ(0) +
1

2

d2

ds2
Fµ(0)s2 + o(s2), |s| ≤ η,
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which implies that for |s| ≤ η
√
n, |Fµ(is/

√
n)| ≤ exp(−cs2/n) and

lim
n→+∞

(
Fµ(is/

√
n)

Fµ(0)

)n

= lim
n→+∞

(
1 +

Fµ′′(0)s2

2Fµ(0)n

)n

= exp

(Fµ′′(0)s2

2Fµ(0)

)
.

Performing a change of variable s→ s/
√
n and taking in account Lemma 3

we have

lim
n→+∞

C1n
3/2

∫

|s|≤η

(Fµ(is)

Fµ(0)

)n

Ff(is)|c(is)|−2ds =

= lim
n→+∞

C1

∫

|s|≤η
√
n



Fµ

(
is√
n

)

Fµ(0)




n

Ff

(
is√
n

)
n

∣∣∣∣c
(

is√
n

)∣∣∣∣
−2

ds =

= C1C2

∫

IR

exp

(Fµ′′(0)s2

2Fµ(0)

)
s2Ff(0)ds =

= C1C2

∫

IR

exp

(Fµ′′(0)s2

2Fµ(0)

)
s2ds

∫

G

f(g)φ0(g)dg.

– The renewal theorem

We first recall the classical renewal theorem for the potential of a

probability measure on IR. Let µ be a nonarithmetic noncentered prob-

ability measure on IR, define the potential measure γ =
∑∞

n=0 µ
∗n and

set U(f)(x) = γ ∗ f(x) for f ∈ Cc(IR). Notice that if µ̂ denotes the

Euclidean Fourier transform, and f is also smooth, we have, using the

Fourier inversion formula, that

(1) U(f)(x) =
∑

µ∗n ∗ f(x) =
1

2π
lim
b↑1

∫

IR

1

1 − bµ̂(ξ)
f̂(ξ)e−iξxdξ.

The asymptotic behavior of the function U(f)(x) is well known [8]:

• If µ does not have first moment, then lim
x→±∞

Uf(x) = 0;

• if µ has first moment and its mean m is positive, then lim
x→−∞

Uf(x) =
∫
f(y)dy/m and lim

x→+∞
Uf(x) = 0;
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• if µ has first moment and its mean m is negative, then lim
x→+∞

Uf(x) =
∫
f(y)dy/m and lim

x→−∞
Uf(x) = 0.

We consider the map π2 : G → IR that sends g = na(g) to ln(a(g)). This

induces a map on the space of measures by setting π2(ν)(B) = ν(π−1
2 (B))

for any Borel set in IR. In the following we will denote by µA the real

measure π2(µ). Notice that F(µ)(Q
2

+ is) = µ̂A(−s). In particular if µ

is a nonsingular probability measure on G we have, by Lemma 1, that

µA is a nonarithmetic probability measure on IR. We say that µ has

first moment if
∫
G | ln(a(g))|dµ(g) < +∞ and, if this is the case, we call

m =
∫
G ln(a(g))dµ(g) > 0 the mean of µ. Obviously µ has first moment

if and only if µA has (classical) first moment and if this is the case the

mean of µ coincides with the (classical) mean of µA.

Theorem 2. Let µ be a nonsingular radial probability measure on G.

Then if µ has mean m

lim
r→+∞

eQr
+∞∑

n=0

µ∗n ∗ f(r) =
4πC1

∫

G

fdg

c

(
Q

2

)
m

∀ f ∈ Cc(G)#,

while the above limit is zero if µ does not have first moment.

Proof. By the density of C∞
c (G)# in Cc(G)# we can suppose f

smooth. Then the Fourier inversion formula gives

(2) eQr
+∞∑

n=0

µ∗n ∗ f(r) = C1e
Qr

∫

IR

Ff(is)

1 −Fµ(is)
φis(r)|c(is)|−2ds

Recalling the asymptotic expansion of the spherical functions [2]

φis(r) = c(is)
+∞∑

l=0

Γl(is)e
(is−l−Q

2 )r + c(−is)
+∞∑

l=0

Γl(−is)e(−is−l−Q
2 )r

where Γ0 ≡ 1 and Γl(·) are holomorphic functions on {z ∈ C : "(z) < 1
2
}

that satisfy the estimates [2]

(3) sup
�(z)≤0

|Γl(z)| ≤ d(1 + l)d
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for some constant d independent of z. Then, since |c(is)|2 = c(is)c(−is),

(2) equals

C1

∫

IR

Ff(is)

1 −Fµ(is)
c(−is)−1

+∞∑

l=0

Γl(is)e
(is−l+

Q
2 )rds+

+ C1

∫

IR

Ff(is)

1 −Fµ(is)
c(is)−1

+∞∑

l=0

Γl(−is)e(−is−l+
Q
2 )rds.

The change of variable is → −is in the first integral allows us to write

the above sum as

2C1

∫

IR

Ff(is)

1 −Fµ(is)
c(is)−1

+∞∑

l=0

Γl(−is)e(−is−l+
Q
2 )rds.

Note that, by (3), limr→+∞
∑+∞

l=
Q
2 +1

Γl(−is)e(−is−l+
Q
2 )r = 0 for all s ∈ IR

and thus, applying the Lebesgue dominated convergence theorem, we are

left to estimate

(4)

lim
r→+∞

2C1

∫

IR

Ff(is)

1 −Fµ(is)
c(is)−1

Q
2∑

l=0

Γl(−is)e(−is−l+
Q
2 )rds =

= 2C1

Q
2∑

l=0

lim
r→+∞

lim
b↑1

∫

IR

Ff(is)

1 − bFµ(is)
c(is)−1Γl(−is)e(−is−l+

Q
2 )rds

If 0 < b < 1 the function Fl(z) = Ff(z)

1−Fµ(z)
c(z)−1Γl(−z)e(−z−l+

Q
2 )r is holo-

morphic in {z ∈ C : 0 < "(z) < Q
2
} and continuous on its closure. Since

Fl(t+ is) is rapidly decreasing for s → ∞, we can use the Cauchy integral

formula to shift the contour of integration obtaining that (4) is equal to

2C1

Q
2∑

l=0

lim
r→+∞

lim
b↑1

∫

IR

Ff

(
is +

Q

2

)

1−bFµ

(
is +

Q

2

)c
(
is +

Q

2

)−1

Γl

(
−is− Q

2

)
e(−is−l)rds.

If |s| > η for a fixed positive number η the quantity |1 − bFµ(is + Q
2
)| =

|1 − bµ̂A(−s)| is bounded from below uniformly in b and thus, by the
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classical Riemann Lebesgue lemma, we are reduced to estimate

(5)
2C1

Q
2∑

l=0

lim
r→+∞

lim
b↑1

∫

|s|≤η

Ff

(
is +

Q

2

)

1 − bµ̂A(−s)
c

(
is +

Q

2

)−1

×

× Γl

(
−is− Q

2

)
e(−is−l)rds

The function gl(s) = Ff(is+ Q
2
)c(is+ Q

2
)−1Γl(−is− Q

2
), for η sufficiently

small, can be written, by Taylor’s formula, as

(6) gl(s) = gl(0) +
d

ds
gl(0)s + s2Ml(s), |s| ≤ η

where Ml(s) are bounded. On the other hand |1 − bµ̂A(is)| ≥ cb|s|2,
∀|s| ≤ η and thus, using again the Riemann Lebesgue lemma, we have

(7)

Q
2∑

l=0

lim
r→+∞

lim
b↑1

∫

|s|≤η

s2M(s)

1 − bµ̂A(is)
e(−is−l)rds = 0.

We can find smooth functions hl with compact support whose Fourier

transforms satisfy

ĥl(−s) = gl(0) +
d

ds
gl(0)s + o(s), |s| ≤ η,

so that, taking in account (6) and (7), we have that (5) is equal to

(8)

2C1

Q
2∑

l=0

lim
r→+∞

lim
b↑1

∫

|s|≤η

ĥl(−s)

1 − bµ̂A(−s)
e(−is−l)rds =

= 4πC1

Q
2∑

l=0

lim
r→+∞

e−lr lim
b↑1

1

2π

∫

IR

ĥl(s)

1 − bµ̂A(s)
eisrds.

By (1) the limit in b is nothing but the potential Uhl(−r) associated with

the measure µA. By the classical renewal theorem we have that if µ and

thus µA, does not have first moment then

lim
r→+∞

e−rlUhl(−r) = 0, ∀ l = 0, 1, . . . ,
Q

2
.
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If the measure µ and thus µA has mean m then the above limit is zero

for all l �= 0 while

lim
r→+∞

Uh0(−r) =

∫

IR

h0(x)dx

m
=

ĥ0(0)

m
=

=
g0(0)

m
=

Fµ

(
Q

2

)
Γ0

(
−Q

2

)
c

(
Q

2

)−1

m
=

∫

G

f(g)dg

c

(
Q

2

)
m

which, in virtue of (8), concludes the proof of the theorem.
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