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A kinetic approach to studying the asymptotic

behaviour of convection-diffusion equations

R. CAVAZZONI

Abstract: We present a new approach to the study of the large time behaviour
of solutions to the Cauchy problem:





∂u

∂t
=

∂2u

∂x2
− up−1 ∂u

∂x
x ∈ IR, t > 0;

u(x, 0) = u0(x) x ∈ IR.

where p ≥ 2 and u0(x) ≥ 0.

1 – Introduction and main results

The aim of this paper is to show how kinetic methods can be used in

the study of the long time behaviour of the solution to Cauchy problems

for convection-diffusion equations having the form:

(1)





∂u

∂t
=

∂2u

∂x2
− up−1∂u

∂x
x ∈ IR, t > 0,

u(x, 0) = u0(x), x ∈ IR.

where p ≥ 2 and u0 is a nonnegative function from L1(IR). More precisely,
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we prove that there exists a function u∞ such that, for every q ∈ [1,∞),

(2) lim
t→+∞

(2t + 1)
1/2(1−1/q) ‖u(·, t) − u∞(·, 2t + 1)‖Lq(IR) = 0.

In 1950, Hopf [7] found an explicit regular solution to the viscous Burg-

ers equation, i.e. equation (1) with p = 2. His proof makes use of the so

called Hopf-Cole transformation, which turns the viscous Burgers equa-

tion into a linear heat equation. More recently, useful estimates on the

Lr-norm of the solution to (1) have been derived (see [11] or [5]). In

particular, the Lr(IR) to Lq(IR) smoothing properties of (1) have been

shown to be exactly the same as the standard heat equation. In 1987,

Chern and Liu [4] studied the large time behaviour of solutions of vis-

cous conservation laws. In 1991, Escobedo and Zuazua [5] analysed the

large time behaviour of solutions to the Cauchy problem for convection-

diffusion equations. The main result of [5] tells us that if p = 2, then the

general solution u = u(x, t) to (1) behaves like the self-similar solution as

t → +∞.

In the case where p > 2, it is proved in [5] that for every r ∈ [1,∞]

(3) ‖ u(·, t) −G(·, t) ‖Lr−→ 0 as t → +∞,

where G is the heat kernel. These results have been obtained by a di-

rect application of standard estimates for the heat kernel and by decay

estimates in the integral equation associated with (1).

Related results on the long time behaviour of nonnegative solutions

of nonlinear diffusion equations are contained e.g. in [6], [8], [11], [12],

[13].

Our main purpose here is the use of a completely different approach to

investigate the asymptotic behaviour of diffusion equations. The underly-

ing idea of our approach is derived from the H-theorem of kinetic theory

of rarefied gases [3]. In the last years the derivation of diffusion equa-

tions as a hydrodynamic limit of particles models has been a well studied

subject in kinetic theory [3]. In this paper we shall look for a suitable

functional to describe the evolution of the solution to problem (1), in a

similar way as for the solution of the Boltzmann equation (see [3] and

references cited in [3]). The kinetic approach has been recently applied

by Carrillo and Toscani [2] for the N -dimensional porous medium
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equation: they have obtained the rate of convergence to equilibrium, by

an analysis of the time evolution of the entropy production.

In the present paper we consider the asymptotic behaviour of the

solution to (1) by techniques different from those of [5]. In particular, we

do not make use of Lq-estimates for the derivatives of the solution. We

study separately the cases p = 2 and p > 2. In the case where p = 2, we

construct a suitable functional to prove the convergence to equilibrium

by using the monotonicity in time of the functional. The result on the

large time behaviour of equation (1) is proved in the following theorem.

Theorem 1.1. Assume that p = 2 and

(4)
u0 ∈ L1(IR),

∫

IR

u0(x)dx = 1;

u0(x) ≥ 0 a.e. x ∈ IR.

Let u be the solution to the Cauchy problem (1). Then for every q ∈ [1,∞)

lim
t→+∞

(2t + 1)
1/2(1−1/q) ‖u(·, t) − u∞(·, 2t + 1)‖Lq(IR) = 0,

where

u∞(x, 2t + 1) =
1

(2t + 1)1/2
e
− x2

2(2t+1)

(2π)
1
2 A− 1

2

∫ x

(2t+1)1/2

−∞
e−y2/2dy

,

and A = e1/2

2(e1/2−1)
.

A variant of the techniques involved in the proof of Theorem 1.1

enables us to describe the large time behaviour of the solution to (1)

when p > 2. Indeed, we perform the same time dependent scaling. Let

us emphasize that the equation obtained after scaling has coefficients

depending on t. The convex functional, which represents the physical

entropy for the viscous Burgers equation, will be used to study the large

time behaviour also for p > 2. However, in this case the functional is not

monotone in time. Nevertheless, the specific form of the time derivative

allows us to identify the limit as a stationary solution to the Fokker-

Planck equation.
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Theorem 1.2. Assume that p > 2 and

(5)
u0 ∈ L1(IR),

∫

IR

u0(x)dx = 1;

u0(x) ≥ 0 a.e. x ∈ IR.

Let u be the solution to the Cauchy problem (1). Then for every q ∈ [1,∞)

lim
t→+∞

(2t + 1)
1/2(1−1/q) ‖u(·, t) − u∞(·, 2t + 1)‖Lq(IR) = 0,

where

u∞(x, 2t + 1) =
1

(2t + 1)
1/2

γ exp

(
− x2

2(2t + 1)

)
,

and γ = (
∫
IR exp(−x2

2
)dx)−1.

The paper is organized as follows. In Section 2, we recall some known

results on the initial value problem (1) and we derive some bounds on the

solution. Section 3 is devoted to the study of the functional to which we

alluded above and to the proof of convergence results. In Section 4, we

describe the asymptotic behaviour of (1) when p ≥ 2, and conclude the

proofs of Theorems 1.1 and 1.2. In the last section, we prove that our

method can be applied to study the long time behaviour of the solution

to a class of convection-diffusion equations in IRN , with N > 1.

2 – Preliminaries

In the present section we recall some known results on the solution

to the Cauchy problem (1) and we prove some technical Lemmas.

Let us consider the Cauchy problem (1). Thanks to the results by

Hopf [7], we know that the viscous Burgers equation (i.e. equation (1)

with p = 2) admits the following regular solution.

Theorem 2.1. Let u0 ∈ L1(IR). Then

(6) u(x, t) =

∫ +∞

−∞

x− y

t
exp

{
−1

2

[
(x− y)

2

2t
+

∫ y

0

u0 (η) dη

]}
dy

∫ +∞

−∞
exp

{
−1

2

[
(x− y)

2

2t
+

∫ y

0

u0 (η) dη

]}
dy

,
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is a solution to the viscous Burgers equation for t > 0 and satisfies the

initial condition:

(7)

∫ x

0

u (ξ, t) dξ −→
∫ a

0

u0 (ξ) dξ as x → a and t → 0;

for every a ∈ IR. If u0 ∈ C (IR), then u(x, t) −→ u0(a) if x → a, t → 0.

Moreover, given any T > 0, the function u defined by (6) is the unique

regular solution to the viscous Burgers equation in the strip 0 < t < T ,

satisfying (7) for every a ∈ IR.

The solution to (1) given by (6) belongs to the space C ((0,∞);L1(IR)).

We shall make use of the following result of [5], on the existence of the

solution together with decay rates, for the initial value problem (1).

Theorem 2.2. Given u0 ∈ L1(IR), there exists a unique classi-

cal solution u ∈ C ([0,∞) ;L1(IR)) to (1), which satisfies the following

properties:

(i) for every q ∈ (1,∞), u ∈ C ((0,∞);W 2,q(IR))
⋂
C1 ((0,∞);Lq(IR)).

(ii) For every q ∈ [1,∞) , there exists a constant Cq = C (q, ‖u0‖1) such

that for every t > 0:

(8)

{
‖u(t)‖q ≤ Cqt

−1/2(1−1/q),

‖u(t)‖1 ≤ ‖u0‖1.

(iii) Let t0 be a nonnegative real number. Then there exists a positive

constant C∞ such that for every t ≥ t0:

(9) ‖u(t)‖∞ ≤ C∞t−1/2.

If p = 2, then

‖u(t)‖∞ ≤ C∞t−1/2,

for every t > 0.
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One can easily verify that the unique solution in C ([0,∞);L1(IR))

provided by Theorem 2.2 satisfies condition (6) of Theorem 2.1. Then

the unique solution to the viscous Burgers equation in C ([0,∞);L1(IR))

is the function given by (6).

Remark 2.1. Integrating equation (1) over all of IR, we obtain that

the total mass of solutions is preserved for every t > 0:

(10)

∫

IR

u(x, t)dx =

∫

IR

u0(x)dx.

With no loss of generality we assume that

∫

IR

u0(x)dx = 1.

Lemma 2.1. Consider equation (1) with p = 2. Let u be defined

by (6).

Then a real constant δ exists such that

(11) u(x, t) ≥ e−1/2

2t1/2
exp

(
−δ2

2t

)
exp

(
−x2

2t

)
,

for every t > 0.

Proof. Since
∫
IR u0(y)dy = 1, there exists a compact interval I ⊂ IR

such that
∫
I u0(y)dy ≥ 1

2
.

We have

(12)

∫ +∞

−∞
u0(y) exp

{
−1

2

[
(x− y)

2

2t
+

∫ y

0

u0 (η) dη

]}
dy ≥

≥
∫

I

u0(y) exp

{
−1

2

[
(x− y)

2

2t
+

∫ y

0

u0 (η) dη

]}
dy.

Set I = [−δ, δ], with δ ∈ IR.

Then:

(13)

∫

I

u0(y) exp

{
−1

2

[
(x− y)

2

2t
+

∫ y

0

u0 (η) dη

]}
dy ≥

≥ exp

(
−1

2

)∫

I

u0(y) exp

{
−1

2

(x− y)
2

2t

}
dy ≥

≥ 1

2
exp

(
−1

2
− δ2

2t

)
exp

(
−x2

2t

)
.
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Thus:

(14) u(x, t) ≥ A

t1/2
exp

(
−δ2

2t

)
exp

(
−x2

2t

)
;

where A = 1
2
exp(− 1

2
).

In the case where p > 2, we derive a similar estimate under an addi-

tional assumption on the initial value.

Lemma 2.2. Let p > 2. Assume that u0(x) ≥ M exp(− |x|2
2

) for

some positive constant M and for a.e. x ∈ IR. Then there exist positive

constants B and C such that

(15) u(x, t) ≥ Be−C

t1/2
exp

(
C

t
p−2
2

)
exp

(
−|x|2

4t

)
,

for every t > 1.

Proof. Let us define f : IR × [0,+∞) → IR as

f(x, t) =
M

(2(t + 1))
1/2

exp(−αt) exp

(
− |x|2

2(t + 1)

)
,

for (x, t) ∈ IR × [0,+∞), where α is a positive constant to be chosen

later. We prove that the function f is a subsolution to the equation (1)

in IR × (0, 1). We have

f(x, 0) ≤ u0(x),

for every x ∈ IR. It is not difficult to see that

(16)
∂f

∂t
− ∂2f

∂x2
− fp−1∂f

∂x
≤
(

1

2(t + 1)
− α + βe−(p−1)αt Mp−1

(t + 1)p/2

)
f ;

where β = 2
1
2 maxz∈IR[−

√
2ze−z2(p−1)]. Then, if α > 1

2
+ βMp−1,

∂f

∂t
− ∂2f

∂x2
− fp−1∂f

∂x
≤ 0,

for (x, t) ∈ IR × (0, 1). As a consequence of the comparison principle

proved in [10], we obtain that for every x ∈ IR, u(x, 1) ≥ B exp(− |x|2
4

),

with B = M
2
e−α.
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Let us define g : IR × (0,+∞) → IR as

g(x, t) =
Be−C

t1/2
exp

(
C

t
p−2
2

)
exp

(
−|x|2

4t

)
,

where the positive constant C will be fixed later and (x, t) ∈ IR× [1,∞).

We have that for every x ∈ IR, u(x, 1) ≥ g(x, 1). Moreover,

(17)

∂g

∂t
− ∂2g

∂x2
− gp−1 ∂g

∂x
=

=


−C(p− 2)

2t
p−2
2 +1

− x

2t

(
Be−C

t1/2
exp

(
C

t
p−2
2

)
exp

(
−|x|2

4t

))p−1

 g ≤

≤
(
−C(p− 2)

2t
p
2

+
Bp−1β̄

tp/2

)
g;

where β̄ = 2
p−2
2 β.

If we choose C sufficiently large, then we obtain the last expression

is negative.

Therefore, due to the comparison principle, inequality (15) follows.

3 – Convergence results

We now look for solutions to (1) having the form:

(18) u(x, t) =
1

R(t)
v

(
x

R(t)
, L(t)

)
=

1

R(t)
v (y, τ) ;

where R(t), L(t) are unknown functions. Let us impose that the pre-

vious function satisfies (1) and determine what functions R(t), L(t) are

admissible, in such a way that the initial values of u and v are the same.

The time-dependent scaling and the use of a suitable functional are

the main novelty of our approach. Instead of working directly with equa-

tion (1), we analyse the asymptotic behaviour of the solution v to the

problem

(19)





∂v

∂τ
=

∂

∂x

[
∂v

∂x
+ yv − e−(p−2)τvp

]
y ∈ IR, τ > 0,

v(y, 0) = v0(y) y ∈ IR.
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Indeed, it is easily seen that the solutions u and v to problems (1)

and (19), respectively, are related by

(20)

u(x, t) =
1

(2t + 1)
1/2

v

(
x

(2t + 1)
1/2

, log (2t + 1)
1/2

)
,

v (y, τ) = eτu

(
yeτ ,

e2τ − 1

2

)
.

Let us notice that u0 = v0.

We shall prove below convergence results on studying separately the

following two cases: p = 2 and p > 2.

In Section 5, we shall extend the results for a class of convection-

diffusion equations in IRN .

3.1 – Case p = 2

We introduce a suitable functional for the Fokker-Planck type equa-

tion (19). We shall prove the time monotonicity of the functional and its

decay to zero as τ → +∞, in order to study the asymptotic decay to a

fixed equilibrium state v∞ of the solution to (19).

We first derive the equilibrium state v∞, by looking for a stationary

solution to (19):

(21)
∂v∞
∂y

+ yv∞ − v2
∞ = 0,

i.e.:

(22) v∞(y) =
e−y2/2

(2π)
1
2

e1/2

2 (e1/2 − 1)
− 1

2

∫ y

−∞
e−s2/2ds

,

where v∞ is positive and

∫

IR

v∞(y)dy = 1.

Notice that v∞ = v1, where, in accordance with the result proved

in [1], v1 is the unique self-similar solution to (1) with a smooth profile

verifying

(23)
∂

∂x′

[
∂v1

∂x′ + x′v1 − v2
1

]
= 0.
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Since u ∈ C ((0,∞);W 2,q(IR))
⋂
C1 ((0,∞);Lq(IR)) for every q ∈

(1,∞), by Theorem 2.2, the solution v to the Cauchy problem (19), be-

longs to the same class.

Moreover, ‖v(·, τ)‖∞ ≤ C∞ for every τ > 0. Thanks to Lemma 2.1,

we have, as τ > 0,

(24)





(P1)

∫

IR

v(y, τ)dy = 1;

(P2) v(y, τ) ≥ 2
1
2 eτe−1/2

2 (e2τ − 1)
1
2

exp

(
− 2δ2

e2τ − 1

)
exp

(
− y2e2τ

e2τ − 1

)
.

Let us prove the following preliminary result.

Lemma 3.1. Let v be the solution to (19). Then

(25)

∫

IR

(
v(y, τ)

v∞(y)
− 1 − log

v(y, τ)

v∞(y)

)
e−y2/2dy < +∞,

for every τ > 0.

Proof. Thanks to (P2), fixed any δ > 0, we have:

(26)
v(y, τ)

v∞(y)
≥ C(δ) exp

[(
− e2τ

e2τ − 1
+

1

2

)
y2

]
= C(δ) exp(−γy2),

for every τ > δ > 0, for some positive constant γ. Moreover,

(27) − log
v(y, τ)

v∞(y)
< − log

(
C(δ) exp(−γy2)

)
< γy2 − logC(δ).

Thus,

(28)
0 ≤

(
v(y, τ)

v∞(y)
− 1 − log

v(y, τ)

v∞(y)

)
e−y2/2 <

< C̄v(y, τ) +
(−1 + γy2 − logC(δ)

)
e−y2/2,

where C̄ is a positive constant. Thus (25) follows.
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Let us introduce now the following functional, which represents the

physical relative entropy for the viscous Burgers equation.

Definition 3.1. For every solution v to (19), let L : IR+ → IR be

defined as

(29) L (τ) =

∫

IR

(
v(y, τ)

v∞(y)
− 1 − log

v(y, τ)

v∞(y)

)
e−y2/2dy.

The main property of L in connection with our discussion is that L

is a monotone non increasing function of τ when v is the solution to (19).

Lemma 3.2. Let v be the solution to (19). Then for every τ > 0,

(30) lim
|y|→+∞

(
1

ṽ∞
− 1

ṽ

)(
∂v

∂y
+ yv − v2

)
= 0,

where ṽ∞(y) = ey
2/2v∞(y) and ṽ(y, τ) = ey

2/2v(y, τ).

Proof.

Let us divide the proof in two steps.

1) We prove that

(31) lim
|y|→+∞

1

ṽ∞

(
∂v

∂y
+ yv − v2

)
= 0.

Since v(·, τ) ∈ W 2,q(IR), for every τ > 0 and for every q, with 1 < q < ∞,

then:

lim
|y|→+∞

v(y, τ) = lim
|y|→+∞

∂v

∂y
(y, τ) = 0.

Moreover, ṽ−1
∞ is bounded. Thanks to formula

(32) u(t) = G(t) ∗ u0 −
∫ t

0

∇G(t− s) ∗ u2(s)ds,

we have

lim
|x|→+∞

xu(x, t) = 0,

for t > 0.
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Hence,

lim
|y|→+∞

yv(y, τ) = 0.

2) Let us prove now that

(33) lim
|y|→+∞

1

ṽ

(
∂v

∂y
+ yv − v2

)
= 0.

Making use of the previous integral formula (32) for the solution to

(1) yields ∂u
∂x

:

(34)

∂u

∂x
=

1

(4πt)1/2

∫

IR

−x− y

2t
e−

(x−y)2

4t u0(y)dy+

+

∫ t

0

1

4π(t− s)

∫

IR

1

2(t− s)
e
− (x−y)2

4(t−s) u2(y, s)ds+

−
∫ t

0

1

4π(t− s)

∫

IR

(x− y)2

4(t− s)2
e
− (x−y)2

4(t−s) u2(y, s)ds.

Owing to the lower bound of Lemma 2.1, we have that

(35)
1

u

∣∣∣∣
∂u

∂x

∣∣∣∣ exp

(
− x2

2(2t + 1)

)
≤
∣∣∣∣
∂u

∂x

∣∣∣∣ t
1/2e1/t exp

(
x2

4t(2t + 1)

)
.

Therefore,

(36) lim
|x|→+∞

1

u

∣∣∣∣
∂u

∂x

∣∣∣∣ exp

(
− x2

2(2t + 1)

)
= 0.

Thus, on performing the time dependent scaling, we get the conclu-

sion.

Let us now prove the time monotonicity of the relative entropy L.

Lemma 3.3. Let v be the solution to (19) and let L be defined

by (29). Then
d

dτ
L (τ) ≤ 0,

for τ > 1.
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Proof. It is easily seen from formula (32) that ∂v
∂τ

∈ L1(IR).

Integration by parts yields:

(37)

d

dτ

∫

IR

(
v

v∞
− 1 − log

v

v∞

)
e−y2/2dy =

=

∫

IR

(
1

v∞
− 1

v

)
∂v

∂τ
e−y2/2dy =

=

∫

IR

(
1

ṽ∞
− 1

ṽ

)
∂ṽ

∂τ
e−y2/2dy =

=

∫

IR

(
1

ṽ∞
− 1

ṽ

)
∂

∂y

[
ṽ2e−y2/2 ∂

∂y

(
1

ṽ∞
− 1

ṽ

)]
dy =

=

(
1

ṽ∞
− 1

ṽ

)(
∂v

∂y
+ yv − v2

)∣∣∣∣
+∞

−∞
+

−
∫

IR

ṽ2e−y2/2

(
∂

∂y

(
1

ṽ∞
− 1

ṽ

))2

dy.

Thus, thanks to Lemma 3.2, we have

(38)
dL

dτ
= −

∫

IR

ṽ2e−y2/2

(
∂

∂y

(
1

ṽ∞
− 1

ṽ

))2

dy ≤ 0,

for τ > 1.

Let I be the function from IR+ into IR given by

(39) I(τ) = − d

dτ
L (τ) .

Remark 3.1. Thanks to Lemma 3.3,

∫ +∞

δ

I(s)ds = L(δ) − L(∞) < +∞,

for any δ > 1. Since I(τ) ≥ 0 for τ > 1, then there exists a sequence

τk → +∞ such that I(τk) → 0 as k → +∞.
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Let us define vk : IR → IR as

vk(y) = v(y, τk), k ∈ N.

Proposition 3.1. A real constant c exists such that if w∞ is the

function defined by 1
w∞

= 1
v∞

+ c, then the sequence of functions (vk)k∈N

converges a.e. in IR to w∞ as k → +∞.

Proof. Thanks to the previous remark and to (P2)

lim
k→+∞

∫

IR

e−2y2
(

∂

∂y

(
1

ṽ∞
− 1

ṽk

))2

dy = 0.

Consequently,

∂

∂y

(
1

ṽk
− 1

ṽ∞

)
−→ 0, strongly in L2

loc(IR).

Since 1
ṽk

is a bounded sequence of functions in L2
loc(IR), then there

exists a function w∞ such that

1

ṽk
−→ 1

w̃∞
, strongly in W 1,2

loc (IR);

as k → +∞ and

∂

∂y

(
1

w̃∞

)
=

∂

∂y

(
1

ṽ∞

)
, a.e. y ∈ IR.

Hence,
1

w̃∞
=

1

ṽ∞
+ c;

for some constant c ∈ IR; therefore

(40) w∞(y) =
e−

y2

2

c + (2π)
1
2

e1/2

2 (e1/2 − 1)
− 1

2

∫ y

−∞
e−

s2

2 ds

.

Since vk > 0, we have w∞ > 0.
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3.2 – Case p > 2

After performing the time-dependent scaling (20) in equation (1) as

p > 2, we study the large time behaviour of the solution to (1).

As a consequence of the results in Theorem 2.2, we have that

‖v(·, τ)‖L∞ ≤ C∞, for every τ ≥ τ0 and thanks to Lemma 2.2,

(41)





(P1′)

∫

IR

v(y, τ)dy = 1;

(P2′) v(y, τ) ≥ 2
1
2 eτBe−C

(e2τ − 1)
1
2

exp

(
2(p−2)/2C

(e2τ − 1)(p−2)/2

)
exp

(
− |y|2e2τ

e2τ − 1

)
;

where the constants B,C have been defined in Lemma 2.2.

We shall prove in this case that the large time behaviour of the solu-

tion v is determined by the following equation:

(42)
∂v

∂τ
=

∂2v

∂y2
+

∂

∂y
(yv).

We refer to (42) as the Fokker-Planck equation associated to (1) in

the case where p > 2.

A stationary solution to (42) is given by the function:

(43) v̄∞(y) = γ exp

(
−y2

2

)
,

where γ is a constant. Let us choose γ in such a way

(44)

∫

IR

γ exp

(
−y2

2

)
dy = 1.

In the present section we prove that the large time behaviour of (1)

is given by the function v̄∞.

Similarly as the case of the viscous Burgers equation, we define the

following convex nonnegative functional.

Definition 3.2. Let v be the solution to (19). Let L be the function

from IR+ into IR given by

(45) L (τ) =

∫

IR

(
v(y, τ)

v̄∞(y)
− 1 − log

v(y, τ)

v̄∞(y)

)
e−|y|2/2dy.



178 R. CAVAZZONI [16]

Lemma 3.4. If v is a solution to (19), then

L (τ) < +∞.

Moreover

Lemma 3.5. Let v be the solution to (19). Then

(46) lim
|y|→+∞

(
1

v̄∞
− 1

v

)(
∂v

∂y
+ yv − e−(p−2)τvp

)
e−|y|2/2 = 0,

for every τ > 0.

The proofs of Lemmas 3.4 and 3.5 follow the same lines as those of

Lemmas 3.1 and 3.2, respectively and will be omitted for brevity.

Lemma 3.6. Let L be defined as in (45). Then

(47)

dL

dτ
=

= −
∫

IR

(
v−2e−|y|2/2

(
∂v

∂y
+yv

)2
−v−2e−|y|2/2

(
∂v

∂y
+ yv

)
e−(p−2)τvp

)
dy,

for τ > 0.

Proof. Thanks to formula

(48) u(t) = G(t) ∗ u0 −
1

p

∫ t

0

∇G(t− s) ∗ up(s)ds,

we have on integrating by parts,

(49)

d

dτ

∫

IR

(
v

v̄∞
− 1 − log

v

v̄∞

)
e−|y|2/2dy =

=

∫

IR

(
1

v̄∞
− 1

v

)
∂v

∂τ
e−|y|2/2dy =

= e−|y|2/2
(

1

v̄∞
− 1

v

)(
∂v

∂y
+ yv − e−(p−2)τvp

)∣∣∣∣
+∞

−∞
+

−
∫

IR

(
v−2e−|y|2/2

(
∂v

∂y
+yv

)2
+v−2e−|y|2/2

(
∂v

∂y
+yv

)
e−(p−2)τvp

)
dy.
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Lemma 3.7. Set v(y, τj) = vj(y), where j ∈ IN. Let v be the solution

to (19). Then there exists a sequence (vk)k∈IN such that:

(50) lim
k→+∞

∫

IR

vk
−2e−|y|2/2

(
∂vk
∂y

+ yvk

)2

dy = 0.

Proof. Let us suppose by contradiction it does not exist a sequence

(τk)k in such a way that

lim
k→+∞

∫

IR

vk
−2e−|y|2/2

(
∂vk
∂y

+ yvk

)2

dy = 0.

Let I be the function I : IR+ → IR defined by

(51)
I (τ) =

∫

IR

v−2e−|y|2/2
(
∂v

∂y
+ yv

)2

dy+

+

∫

IR

v−2e−|y|2/2
(
∂v

∂y
+ yv

)
e−(p−2)τvpdy.

On integrating by parts and making use of the L∞-norm estimates

for the function v, we deduce that the second integral in (51) tends to 0

as τ → +∞. Therefore, there exists T > 0 such that for every τ > T

I (τ) > 0.

Moreover, dL
dτ

≤ 0 as τ > T ; then

∫ ∞

T

Ids = L(T ) − L(∞) < ∞.

Thus we can find a sequence (τj)j∈IN such that I(τj) → 0 as j → +∞ and

we have a contradiction.

The proof of the following result follows the same lines as the proof

of Proposition 3.1.

Proposition 3.2. A real constant C exists in such a way that if

w̄∞is the function defined by w̄∞ = Cv̄∞, then the sequence of functions

(vk)k∈N converges a.e. in IR to w̄∞.
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4 – Proofs of Theorems 1.1 and 1.2.

Let us begin with the proof of the following inequality, which allows

us to obtain the decay of the function v towards the equilibrium v∞ as

τ → +∞.

Lemma 4.1. Let v be the solution to (19) and w∞ be a positive

function. Assume there exist positive constants θ1, θ2 such that θ1e
−y2/2 <

w∞(y) < θ2e
−y2/2, a.e. y ∈ IR. Then for every τ > 0

(52) ‖v(·, τ)−w∞(·)‖2
L1(IR)≤B̃

∫

IR

(
v(y, τ)

w∞(y)
−1− log

v(y, τ)

w∞(y)

)
e−|y|2/2dx,

where B̃ = B̃(‖v‖1, θ1, θ2) is a suitable positive constant.

Proof. Let α ∈ IR, α > 2e2. Let us fix τ > 0 and define the

following set:

Aτ =

{
x ∈ IR :

v(y, τ)

w∞(y)
>

α

2

}
.

Let us denote by f the function:

f : [1,+∞) → IR, : f(z) = z − 1 − 2 log(z).

We have that f(z) > 0 for every z > α
2
.

Thus,

(53)

∫

Aτ

(v − w∞) dy =

∫

Aτ

(
v

w∞
− 1

)
w∞dy ≤

≤
∫

Aτ

(
v

w∞
− 1

)
θ2e

−y2/2dy ≤

≤
∫

Aτ

2θ2

(
v

w∞
− 1 − log

v

w∞

)
e−y2/2dy .

Since

(54)

0 ≤
∫

Aτ

(
v

w∞
− 1 − log

v

w∞

)
e−y2/2dy ≤

≤
∫

Aτ

v

w∞
e−y2/2dy ≤ 1

θ1

,
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we have that:

(55)

(∫

Aτ

(v − w∞) dy

)2

≤ 2θ2

θ1

∫

Aτ

(
v

w∞
− 1 − log

v

w∞

)
e−y2/2dy.

Set Bτ = IR\Aτ and define the function

g : IR+ → IR, g(z) = (z − 1)2 − α(z − 1 − log z).

One can verify that g(z) ≤ 0 if 0 < z ≤ α
2
. Hence, for any given τ > 0,

(56)

(
v

w∞
− 1

)2

e−y2/2 ≤ α

(
v

w∞
− 1 − log

v

w∞

)
e−y2/2,

for y ∈ Bτ , and

(57)

(∫

Bτ

(v − w∞) dy

)2

≤
∫

Bτ

θ2
2e

−y2/2dy

∫

Bτ

(
v

w∞
− 1

)2

e−y2/2dy ≤

≤ θ2
2 (2π)

1/2
∫

Bτ

(
v

w∞
− 1

)2

e−y2/2dy.

Then

(58)

‖v(·, τ) − w∞(·)‖2
L1(IR) ≤

≤
(
θ2
2 (2π)

1/2
α +

2θ2

θ1

)∫

IR

(
v

w∞
− 1 − log

v

w∞

)
e−y2/2dy,

if τ > 0.

Let us prove now Theorem 1.1 to state the large time behaviour of

the solution to (1) in the case where p = 2.

Proof of Theorem 1.1. As a consequence of Proposition 3.1, we

obtain by Lebesgue theorem that as k → +∞,

(59)

∫

IR

(
v(y, τk)

w∞(y)
− 1 − log

v(y, τk)

w∞(y)

)
e−y2/2dy → 0.

Thanks to the result of Lemma 4.1 and Proposition 3.1, we have that

‖v(·, τk)−w∞(·)‖L1(IR) −→ 0, as k → +∞. It follows that ‖w∞(·)‖L1(IR) =1
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and w∞ = v∞. Since for every τ > 0, ‖v(·, τ)‖∞ ≤ C∞, we have by

interpolation that

lim
τ→+∞

‖v − v∞‖Lp(IR) = 0;

as 1 < p < ∞.

After performing the time-dependent scaling, we get the conclu-

sion.

We prove now the main result on the large time behaviour of the

solution to (1) as p > 2.

In contrast to the case where p = 2, we are not able to define a

suitable functional L, which is monotone non increasing in time. Never-

theless, one can prove that
∫
IR( v(y,τ)

v̄∞(y)
− 1− log v(y,τ)

v̄∞(y)
)e−y2/2dy converges to

zero as τ → +∞.

Proof of Theorem 1.2. Thanks to the inequality of Lemma 4.1

and to Proposition 3.2, we deduce that w̄∞ = v̄∞. Let us prove now that

the function L (τ) converges to zero as τ → +∞.

Step 1. The function I is continuous in τ , thanks to the results of

Theorem 2.1. We have to consider the following three cases:

1) there exists T > 0 such that I(τ) ≥ 0 for every τ ≥ T ; then L is a

Lyapunov functional and the conclusion follows as for the case where

p = 2.

2) There exists T > 0 such that I(τ) ≤ 0 for every τ > T . It follows

that:

(60)
0 ≤

∫

IR

v−2e−y2/2

(
∂v

∂y
+ yv

)2

dy ≤

≤ −
∫

IR

v−2e−y2/2

(
∂v

∂y
+ yv

)
1

e(p−2)τ
vpdy.

Thus, on integrating by parts in the last integral of (60), we have

lim
τ→+∞

∫

IR

v−2e−y2/2

(
∂v

∂y
+ yv

)2

dy = 0.

3) The function I(τ) changes the sign as τ ∈ [0,∞). Let (τi)i∈I ∈ [0,∞)

such that I(τi) = 0. Suppose I(τ) > 0 as τ ∈ [τi−1, τi) and I(τ) ≤ 0
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as τ ∈ [τi, τi+1]. Then L(τi−1) ≥ L(τ) ≥ 0 for τ ∈ [τi−1, τi) and

L(τi+1) ≥ L(τ) ≥ 0 as τ ∈ [τi, τi+1].

As a consequence of I(τi) = 0, we have that L(τi) → 0 as τi → +∞.

Thanks to the previous inequalities, L(τ) → 0 as τ → +∞.

Step 2. Thanks to the inequality proved in Lemma 4.1, we obtain

the result of Theorem 1.2 in a similar way as in the case where p = 2 if

the intial value u0 satisfies the assumption of Lemma 2.2.

By density argument the result can be proved in the general case.

The solution to the Cauchy problem (1) satisfies indeed the following

L1(IR)-contraction property proved in [5]:

‖u(·, t) − ū(·, t)‖1 ≤ ‖u0 − ū0‖1,

for every t ≥ 0. Consider now a nonnegative initial value u0 ∈ L1(IR) and

approximate u0 in L1(IR) by a sequence of functions (u0,n)n∈IN ⊂ L1(IR)

such that u0,n(x) ≥ Mn exp(−x2

2
), a.e. x ∈ IR, where Mn are positive

constants. Let un be the solution to (1) with initial value u0,n. Thanks

to the result on the long time behaviour of un and the L1(IR)-contraction

property, we get the conclusion.

5 – Concluding remarks

Consider the following class of convection-diffusion equations in IRN :

(61)





∂u

∂t
= &u− a · ∇(up) x ∈ IRN , t > 0,

u(x, 0) = u0(x), x ∈ IRN .

where p > 1 + 1
N
, N > 1; a ∈ IRN and u0 is a nonnegative function from

L1(IRN).

In the present section we will prove that our procedure can be used

in the study of the long time behaviour of the solution to Cauchy prob-

lem (61).

Given u0 ∈ L1(IRN ), there exists a unique classical solution u ∈
C([0,∞); L1(IRN)) to (61), which satisfies the following properties

(see [5]):
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(i) for every q∈(1,∞), u∈C((0,∞);W 2,q(IRN))
⋂
C1((0,∞);Lq(IRN));

(ii) for every q ∈ [1,∞), there exists a constant Cq = C(q, ‖u0‖1) such

that for every t > 0:

(62)

{
‖u(t)‖q ≤ Cqt

−N/2(1−1/q),

‖u(t)‖1 ≤ ‖u0‖1.

(iii) Let t0 be a nonnegative real number. Then there exists a positive

constant C∞ such that for every t ≥ t0:

(63) ‖u(t)‖∞ ≤ C∞t−N/2.

By studying the problem in a similar way as the case where p > 2

and N = 1, we can prove the following result.

Theorem 5.1. Assume that p > 1 + 1
N

and

(64)
u0 ∈ L1(IRN),

∫

IRN
u0(x)dx = 1;

u0(x) ≥ 0 a.e. x ∈ IRN .

Let u be the solution to the Cauchy problem (61). Then for every

q ∈ [1,∞)

lim
t→+∞

(2t + 1)
N/2(1−1/q) ‖u(·, t) − u∞(·, 2t + 1)‖Lq(IRN ) = 0,

where

u∞(x, 2t + 1) =
1

(2t + 1)
N/2

γ exp

(
− x2

2(2t + 1)

)
,

and γ = (
∫
IRN exp(−x2

2
)dx)−1.
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We just give an outline of the proof.

Proof. Let us divide the proof in the following four steps.

Step 1. Following the same procedure of the proof of Lemma 2.2,

we prove that if u0(x) ≥ M exp(− |x|2
2

) for some positive constant M and

for a.e. x ∈ IRN , then there exist positive constants B and C such that

(65) u(x, t) ≥ Be−C

tN/2
exp

(
C

t
N(p−1)−1

2

)
exp

(
−|x|2

4t

)
,

for every t > 1.

Step 2. After performing a time-dependent scaling, we study the

long time behaviour of the solution to the following problem:

(66)





∂v

∂τ
= ∇ · [∇v + yv − ae−(pN−N−1)τvp] y ∈ IRN , τ > 0,

v(y, 0) = v0(y) y ∈ IRN .

Notice that the solutions u and v to problems (61) and (66) respec-

tively, are related by

(67)

u(x, t) =
1

(2t + 1)
N/2

v

(
x

(2t + 1)
1/2

, log (2t + 1)
1/2

)
,

v (y, τ) = eNτu

(
yeτ ,

e2τ − 1

2

)
.

The large time behaviour of the solution to (66) is determined by the

following equation:

(68)
∂v

∂τ
= &v + ∇ · (yv).

A stationary solution is given by the function:

(69) v̄∞(y) = γ exp

(
−|y|2

2

)
,

where γ is a constant. We fix γ in such a way that

(70)

∫

IRN
γ exp

(
−|y|2

2

)
dy = 1.
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Step 3. Similarly as the case of the viscous Burgers equation, we

define a nonnegative functional. Let v be the solution to (66). Let L be

the function from IR+ into IR given by

(71) L (τ) =

∫

IRN

(
v(y, τ)

v̄∞(y)
− 1 − log

v(y, τ)

v̄∞(y)

)
e−|y|2/2dy.

One can prove that if v is a solution to (66), then L (τ) < +∞.

Moreover, if v is the solution to (66), then

(72) lim
|yi|→+∞

(
1

v̄∞
− 1

v

)(
∂v

∂yi
+ yiv − aie

−(Np−N−1)τvp
)
e−|y|2/2 = 0,

for every τ > 0 and i = 1, ..., N .

Consider L defined above. On integrating by parts, we prove that

(73)

dL

dτ
= −

∫

IRN

N∑

i=1

(
v−2e−|y|2/2

(
∂v

∂yi
+ yiv

)2

+

− v−2e−|y|2/2
(
∂v

∂yi
+ yiv

)
aie

−(Np−N−1)τvp
)
dy,

for τ > 0.

Set v(y, τj) = vj(y), where j ∈ IN. Let v be the solution to (66).

Then there exists a sequence (vk)k∈IN such that:

(74) lim
k→+∞

N∑

i=1

∫

IRN
vk

−2e−|y|2/2
(
∂vk
∂yi

+ yivk

)2

dy = 0.

Let us suppose by contradiction that it does not exist a sequence

(τk)k in such a way that

lim
k→+∞

N∑

i=1

∫

IRN
vk

−2e−|y|2/2
(
∂vk
∂yi

+ yivk

)2

dy = 0.

Let I be the function I : IR+ → IR defined by

(75)

I (τ) =
N∑

i=1

∫

IRN
v−2e−|y|2/2

(
∂v

∂yi
+ yiv

)2

dy+

+
N∑

i=1

∫

IRN
v−2e−|y|2/2

(
∂v

∂yi
+ yiv

)
aie

−(Np−N−1)τvpdy.
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On integrating by parts and making use of the L∞-norm estimates

for the function v, we deduce that the second integral in (75) tends to 0

as τ → +∞. Therefore, there exists T > 0 such that for every τ > T

I (τ) > 0.

Moreover,
dL

dτ
≤ 0 as τ > T ; then

∫ ∞

T

Ids = L(T ) − L(∞) < ∞.

Thus we can find a sequence (τj) such that I(τj) → 0 as j → +∞ and

we get a contradiction.

Similarly as the cases studied in Section 3, we can prove that there

exists a real constant C in such a way that if w̄∞ is the function defined

by w̄∞ = Cv̄∞, then the sequence of functions (vk)k∈N converges a.e. in

IRN to w̄∞.

Step 4. The inequality proved in Lemma 4.1 holds true even in the

case where the functions v and w∞ are defined in IRN . Moreover, the

conclusion of the proof of Theorem 5.1 is achieved by following the same

procedure as for the proof of Theorem 1.2 in Section 4.

We have tried to apply the method to study the long time behaviour

of the solution to (61) in the case where p = 1 +
1

N
and N > 1. Un-

fortunately we are not able to conclude the proof because of technical

difficulties due to the lack of informations about the qualitative proper-

ties of the self-similar solution to (61) (see [1]).
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