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Nodal curves and Brill - Noether theory

E. BALLICO

Abstract: Here we prove some existence theorems for special spanned line bundles
on the general nodal curve of genus g ≥ 2. We give counterexamples to similar questions
for curves with seminormal singularities.

1 – Introduction

In the first 3 sections of this paper we study the Brill - Noether

theory of special divisors on the general k-gonal curve with only ordi-

nary nodes as singularities. On an integral projective curve, Y , there

are at least 4 quite different Brill - Noether theories: one can study

spanned line bundles, line bundles, spanned rank 1 torsion free sheaves or

rank 1 torsion free sheaves. The Brill - Noether theory of rank 1 torsion

free sheaves is the only one in which the set of the solutions is always

a complete scheme. Passing to the spanned subsheaf, one can reduce

the Brill - Noether theory of rank 1 torsion free sheaves to the one for

spanned torsion free sheaves. The Brill - Noether theory of line bun-

dles is interesting because it concerns important closed subschemes of

the non-complete scheme Picd(Y ). For the relations between the last two

theories for curves with only ordinary nodes or ordinary cusps as sin-
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gularities, see 2.3. The Brill - Noether theory of spanned line bundles

is the more important one because it concerns the morphisms Y → Pr.

But we have an additional problem because we are interested in k-gonal

curves and their Brill - Noether theories depend very much on the sin-

gularities of the degree k pencil. For any rank 1 torsion free sheaf F

on Y , set Sing(F ) := {P ∈ Y : F is not locally free at P}. Thus

Sing(F ) ⊆ Sing(Y ). We introduce the following definition.

Definition 1.1. Fix integers g, x, k and y with k ≥ 2, g ≥ 2k +

x − y + 2, g ≥ x ≥ y ≥ 0 and x ≥ 0. Let X be a general smooth

(k− y)-gonal curve of genus g− x. Call M ∈ Pick−y(X) the degree k− y

spanned line bundle on X and hM : X → P1 the associated morphism

with deg(hM) = k − y. Take x + y general points Pi, 1 ≤ i ≤ x− y, Aj,

1 ≤ j ≤ y, and Bj, 1 ≤ j ≤ y, on Y . Fix points Qi, 1 ≤ i ≤ x− y, with

hM(Pi) = hM(Qi) for every i. Let π : X → Y be the birational morphism

obtained gluing together the points Pi and Qi for 1 ≤ i ≤ x− y, and the

points Aj and Bj for 1 ≤ j ≤ y. Hence Y is a nodal curve with pa(Y ) = g

and x nodes. Set F := π∗(M). Thus F is a rank 1 torsion free sheaf on Y

with deg(F ) = k, Sing(F ) = {π(A1), . . . , π(Ay)} and h0(Y, F ) = 2. We

will say that Y or the pair (Y, F ) is the general k-gonal curve of genus

g with x nodes and a pencil with y singularities or just a general nodal

k-gonal curve of genus g with type (x, y).

We work over an algebraically closed field K with char(K) = 0. As a

sample of our results we state here the following one which will be proved

in Section 2.

Theorem 1.2. Fix integers g, x, y, k and d with k ≥ 2 + y,

x ≥ y ≥ 0, x > 0, g ≥ 2k + 2x + 1 and 2d ≥ g + 2. Let Y be the general

k-gonal nodal curve of genus g with type (x, y) and F the degree k pencil

with card (Sing(F )) = y. Then there is an irreducible locally closed subset

Z of Picd(Y ) with Z �= ∅, dim(Z) = ρ(g−x+y, d, 1)−x := 2d−g+x−2−y

such that every R ∈ Z is spanned. If d ≤ g− x+ y− 1, then we may find

Z such that h0(Y,Hom(F,R)) = 0 for every R ∈ Z.

The case y = x is the easier one. If y = x we obtain an existence

result for embeddings of Y into Pr, r ≥ 3 (see Theorem 3.1).

In the last section we will consider seminormal curves in the sense

of [17] and [9], i.e. curves with the simplest singularities compatible
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with their number of branches: if the singularity has r branches, then

it is formally equivalent to the germ at 0 ∈ Kr of the union of the r

coordinate axis. We will show that for non-nodal seminormal curves

the usual existence theorem for special line bundles (even non spanned

ones) are not always true if one uses only the Brill - Noether number

ρ(g, r, d) := g− (r+1)(g+r−d) in its statement as in the case of smooth

curves ([14] or [2]).

2 – Proof of 1.2

In the first part of this section we give several preliminary results

needed for the proof of 1.2 and of other related results. Let Y be an

integral projective curve, π : X → Y its normalization and F a rank 1

torsion free sheaf on Y . The sheaf G := π∗(F )/Tors(π∗(F )) has rank 1

and no torsion. Hence G ∈ Pic(X). We claim that the natural map

α : H0(Y, F ) → H0(X,G) is injective; set x := h0(Y, F ) and take x

general points P1, . . . , Px of X; there is f ∈ H0(Y, F ) with f(π(Pi)) = 0

for i < x and f(π(Px)) �= 0; hence α(f)(Pi) = 0 for i < x and α(f)(Px) �=
0, proving the claim.We will call the integer δ − deg(F ) := deg(G) the

δ-degree of F . By [10], Lemma 1, we have deg(F ) + pa(X) − pa(Y ) ≤
δ−deg(F ) ≤ deg(F ) and δ−deg(F ) = deg(F ) if and only if F ∈ Pic(Y ).

Furthermore, deg(F ) − δ − deg(F ) ≥ card(Sing(F )). If F is spanned,

then π∗(F ) is spanned and hence G is spanned.

(2.1) Let R be the one-dimensional complete semilocal ring which is ei-

ther the completion of an ordinary node or an ordinary cusp. Let m

be the maximal ideal of R (cusp case) or the intersection of the two

maximal ideals (nodal case). Let M be a torsion free finitely gener-

ated R-module with rank(M) = 1; here we assume that if R is the

completion of an ordinary node, then M has constant rank on each

of the two branches of R. Since char(K) = 0, there is a complete

classification of all such M : there are uniquely determined integers

a, b with a ≥ 0, b ≥ 0, a+ b = rank(M) such that M ∼= R⊕a ⊕m⊕b

[11]. We will need only the case rank(M) = 1.

(2.2) Let Y be an integral projective curve with only ordinary nodes

and ordinary cusps as singularities, π : X → Y its normalization

and F a rank 1 torsion free sheaf on Y . If P ∈ Sing(F ), then the
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completion of F at P is isomorphic either to the maximal ideal

(the cusp case) or the intersection of the two maximal ideals of the

completion of OY,P (the nodal case). Thus deg(F ) − δ − deg(F ) =

card(Sing(F )). Let Y be an integral projective curve with only ordi-

nary nodes and only ordinary cusps as singularities. The following

remark shows the relations between the Brill - Noether theory of

(not necessarly spanned) line bundles on Y and the Brill - Noether

theory of spanned rank 1 torsion free sheaves on Y .

Remark 2.3. Let Y be an integral projective curve and F a rank 1

torsion free sheaf such that for every P ∈ Sing(F ) the curve has at P

either an ordinary node or an ordinary cusp. By 2.1 for every P ∈ Sing(F )

the completion of the stalk of F at P is isomorphic to the maximal ideal of

the competion of the local ring OY,P . Thus there is a unique L ∈ Pic(Y )

with F ⊆ L, deg(L/F ) = card(Sing(F )) and Supp(L/F ) = Sing(F ). We

have h0(Y, F ) ≤ h0(Y, L) ≤ h0(Y, F ) + card(Sing(F )). Furthermore, the

integer h0(Y, L) − h0(Y, F ) is the number of points of Sing(F ) at which

L is spanned.

Remark 2.4. Let X be a smooth projective curve of genus q and h :

X → P1, f : X → P1 non-constant morphisms such that the associated

morphism j := (h, f) : X → P1 × P1 is birational. Set a := deg(h),

b := deg(f) and assume q < ab − a − b + 1. By the genus formula for

a divisor of type (a, b) on P1 × P1 the curve j(X) is singular. Assume

that j(X) has only nodal singularities; by [1], Proposition 2.4 and its

proof, this is the case if X is a general a-gonal curve and f is general

in the set of all degree b pencils on X not composed with h. Assume

that the monodromy group of a generic fiber of h is the full symmetric

group; since char(K) = 0 this is the case if the reduction of a fiber of

X has exactly a − 1 elements; this condition is always satisfied if X

is a general a-gonal curve and h is the associated degree a pencil. Set

z := ab−a−b+1−q. By our assumptions there is a non-empty set of 2z-

ples (P1, Q1, . . . , Pz, Qz) ∈ X2z with Pi �= Qi and j(Pi) = j(Qi) for every

i, i.e. h(Pi) = h(Qi) and f(Pi) = f(Qi) for every i. Take 3 general points

of P1, say B1, B2 and B3 and fix Ai ∈ X with j(Ai) = Bi, 1 ≤ i ≤ 3. Fix

an integer w with 0 < w ≤ z. Assume the existence of a quasi-projective

integral subvariety T of the scheme Homb(X,P1) of degree b morphisms

sending each Ai onto Bi, 1 ≤ i ≤ 3, with dim(T ) = w, j ∈ T and such
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that for every t ∈ T the pair jt := (h, ft) associated to the corresponding

morphism ft : X → P1 satisfies the previous conditions. We claim that

for a general (P1, . . . , Pw) ∈ Xw there is t ∈ T and (Q1, . . . , Qw) ∈ Xw

such that Pi �= Qi for every i and jt(Pi) = jt(Qi) for every i. Consider

the following statement T (k), 0 ≤ i ≤ w.

Statement T (k): for a general (P1, . . . , Pk) ∈ Xk there are a (w−k)-

dimensional irreducible subvariety T (P1, . . . , Pk) ⊆ T and (Q1, . . . , Qk)

∈ Xw with Pi �= Qi for every i with 1 ≤ i ≤ k such that for every

t ∈ T (P1, . . . , Pk) we have jt(Pi) = jt(Qi) for every i with 1 ≤ i ≤ k.

Furthermore, the set of all t ∈ T satisfying this condition has codimen-

sion k in T .

The first assertion of Statement T (w) is the claim we want to prove.

Statement T (0) is empty: just take T (∅) := T . Assume proved T (k) for

some integer k with k < w and take the corresponding points Q1, . . . , Qj.

Set J := {(P,Q, t) ∈ X2×T (P1, . . . , Pk) with P �=Q, ft(P ) /∈{ft(P1), . . . ,

ft(Pk), B1, B2, B3}, ft(P ) = ft(Q) and jt(Pi) = jt(Qi) for every i}. Call

π1 : J → X and π3 : J → T (P1, . . . , Pk) the projections on the first and

third factor. Since w ≤ z each fiber of π3 is finite and non-empty. Thus

every irreducible component of J has dimension w− k > 0. If J contains

a slice {P} ×X × {t}, then ft(X) = ft(P ) and hence ft is constant; this

is impossible because deg(jt) = b by assumption. Since J is not union of

slices {P} ×X × T (P1, . . . , Pk), π1 is dominant. By the assumption on

the monodromy group of the generic fiber of h, for any fixed t ∈ T and

for general P ∈ X either h−1(h(P )) ∩ f−1
t (ft(P )) = {P} or h−1(h(P )) is

contained in f−1
t (ft(P )), i.e. h = ft. We apply this observation to the

general element of T (P1, . . . , Pk) to obtain the first assertion of T (k + 1)

and to the general elements of similar codimension k irreducible com-

ponent of T to obtain the last assertion of T (k + 1). Hence we obtain

dim(T (P1, . . . , Pk, Pk+1)) < dim(T (P1, . . . , Pk)) for general Pk+1, i.e. we

obtain the last assertion of T (k + 1). We have T (P1, . . . , Pk+1) �=→ for

general Pk+1 because of π1 is dominant. Thus T (k + 1) holds. By induc-

tion we obtain T (w), proving the claim.

Remark 2.5. Let X be a smooth projective curve of genus q and h :

X → P1, f : X → P1 non-constant morphisms such that the associated

morphism j := (h, f) : X → P1 × P1 is birational. Set a := deg(h), b :=

deg(f) and assume q < ab− a− b+ 1. Assume that j(X) has only nodal
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singularities and that the monodromy group of a generic fiber of h is the

full symmetric group. By our assumptions there is a non-empty set of 2z-

ples (P1, Q1, . . . , Pz, Qz) ∈ X2z with Pi �= Qi and j(Pi) = j(Qi) for every

i, i.e. h(Pi) = h(Qi) and f(Pi) = f(Qi) for every i. Take 3 general points

of P1, say B1, B2 and B3 and fix Ai ∈ X with j(Ai) = Bi, 1 ≤ i ≤ 3. Fix

an integer w with 0 < w ≤ z and an integer α > w. Assume the existence

a quasi-projective integral subvariety T of the scheme Homb(X,P1) of

degree b morphisms sending each Ai onto Bi, 1 ≤ i ≤ 3, with dim(T ) = w,

j ∈ T and such that for every t ∈ T the pair jt := (h, ft) associated to the

corresponding morphism ft : X → P1 satisfies the previous conditions.

By Remark 2.5 for a general (P1, . . . , Pw) ∈ Xw there is t ∈ T and

(Q1, . . . , Qw) ∈ Xw such that Pi �= Qi for every i and jt(Pi) = jt(Qi) for

every i. Take a general element (Pα−w+1, Qα−w+1, . . . , Pα, Qα) of X2α−2w.

Let Y be the nodal curve obtained from X gluing together each pair

(Pi, Qi), 1 ≤ i ≤ α. By construction Y is a nodal curve with α nodes and

with a degree b pencil of type (α, α− w).

Example 2.6. Fix an even integer g = 2b ≥ 6 and let X be a general

smooth curve of genus g−1. Thus X has no spanned line bundle, L, with

1 ≤ deg(L) ≤ [(g−1+3)/2] = b and a finite set, S, of line bundles, R, with

deg(R) = b + 1 and h0(X,R) = 2. Furthermore, every R ∈ S is spanned

and card(S) = (2b)!/(b − 1)!b!) �= 0 ([2], p. 211) . Fix P , Q ∈ X such

that for every R ∈ S the morphism hR : X → P1 has hR(P ) �= hR(Q).

Let Y be the curve obtained from X gluing P and Q. Thus Y is a curve

with pa(Y ) = g, a unique ordinary node as singularities and with X as

normalization. Call π : X → Y the normalization. Thus π(P ) = π(Q) is

the singular point. For every R ∈ S the rank 1 torsion free sheaf π∗(R)

has degree b+2 and h0(Y, π∗(R)) = h0(X,R) = 2. The condition hR(P ) �=
hR(Q) is equivalent to the fact that R is not the pull-back of a spanned

line bundle on Y . Thus the condition hR(P ) �= hR(Q) is equivalent to

the spannedness of π∗(R). We claim that there is no M ∈ Pic(Y ) with

1 ≤ deg(M) ≤ b+ 1 and h0(Y,M) ≥ 2. Assume the existence of such M .

Thus h0(X,π∗(M)) ≥ h0(Y,M) ≥ 2. If deg(M) ≤ b this is impossible

because Y is general. Assume deg(M) = b+1. Then π∗(M) ∈ S. We just

saw that this is impossible by the choice of the pair {P,Q}. Notice that if

we choose {P,Q} general the curve Y is the general nodal curve of genus

g with exactly one node. However, if we fix X general of genus g−1 = 2b
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and take as Y ′ the curve obtained from X gluing together two points in

the same fiber of one of the morphisms, then we obtain a nodal curve Y ′

with one node, normalization with general moduli and L ∈ Pic(Y ′) with

deg(L) = b+1 and L spanned, while ρ(g, b+1, 1) = −1 < 0. Take a rank 1

torsion free sheaf F on Y with deg(F ) ≤ b + 2 and h0(Y, F ) ≥ 2. Since

F is not locally free, we have deg(π∗(F )/Tors(π∗(F ))) < deg(F ) and

indeed deg(π∗(F )/Tors(π∗(F ))) = deg(F ) − 1 ([10], Lemma 1). Since

π∗(F )/Tors(π∗(F )) ∈ Pic(X) and h0(X,π∗(F )/Tors(π∗(F ))) ≥ 2, we

obtain π∗(F )/Tors(π∗(F )) ∈ S. Thus deg(F ) = b + 2 and there is a

natural bijection between S and the set of all such sheaves F .

Example 2.7. Take b, g, X and S as in Example 2.6. Fix a point

A ∈ X such that for every R ∈ S the morphism hR is étale at A. Let

π′ : X → Y ′ the birational and bijective morphism with pa(Y
′) = g, Y ′

with π′(A) as unique singular point and an ordinary cusp at π′(A). By

the choice of A we may apply the proof of Example 2.6 in our situation

just with notational modifications. Since as A we may take a general

point of X, this description of the rank 1 torsion free sheaves of degree

at most b + 2 is the description of such sheaves for the general cuspidal

curve of genus g with a unique singular point.

Examples 2.6 and 2.7 may be generalized in the following way. We

omit the easy proof.

Proposition 2.8. Let X be a smooth projective curve. Fix pos-

itive integers r and d such that for every integer z ≤ d − 2 and every

L ∈ Picz(X) we have h0(X,L) ≤ r, while the set S := {R ∈ Pic(X) :

deg(R) = d − 1 and h0(X,R) = r + 1} is finite. Fix P, Q ∈ X such

that for every R ∈ S the morphism hR : X → Pr has hR(P ) �= hR(Q).

Let Y be the curve obtained from X gluing P and Q. Then there is

no M ∈ Pic(Y ) with 1 ≤ deg(M) ≤ d and h0(Y,M) ≥ r + 1. Fur-

thermore, every rank 1 torsion free sheaf F on Y with deg(F ) ≤ d and

h0(Y, F ) ≥ r+1 has deg(F ) = d and h0(Y, F ) = r+1 and there is R ∈ S

such that F ∼= π∗(R).

Proposition 2.9. Let X be a smooth projective curve. Fix pos-

itive integers r and d such that for every integer z ≤ d − 2 and every

L ∈ Picz(X) we have h0(X,L) ≤ r, while the set S := {R ∈ Pic(X) :

deg(R) = d− 1 and h0(X,R) = r + 1} is finite. Fix A ∈ X such that for
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every R ∈ S the morphism hR : X → Pr is étale at A. Let Y be the curve

with π : X → Y as normalization map, pa(Y ) = pa(X)+1 and π(A) as an

ordinary cusp. Then there is no M ∈ Pic(Y ) with 1 ≤ deg(M) ≤ d and

h0(Y,M) ≥ r + 1. Furthermore, every rank 1 torsion free sheaf F on Y

with deg(F ) ≤ d and h0(Y, F ) ≥ r+1 has deg(F ) = d and h0(Y, F ) = r+1

and there is R ∈ S such that F ∼= π∗(R).

Remark 2.10. Fix an integer y > 0. Let X ′ be an integral projective

curve and L ∈ Pic(X ′) with h0(Y, L) ≤ y. Let α : X ′ → Y be a birational

morphism with Y obtained from X ′ creating y new nodes gluing together

y general pairs of points of X ′. The proof of 2.6 and 2.7 shows that there

is no R ∈ Pic(Y ) with α∗(R) ∼= L and R spanned.

Remark 2.11. Let X be a smooth curve and R ∈ Pic(X) with R

spanned and h0(X,L) = r + 1 ≥ 3. Let hR : X → Pr be the morphism

induced by R. Fix P , Q ∈ X such that hR(P ) �= hR(Q), i.e. such that

h0(X,R(−P − Q)) = r − 1; this condition is satisfied for a general pair

(P,Q) ∈ X ×X. Let Y be the curve obtained gluing together P and Q,

i.e. let Y be the curve with π : X → Y as normalization map, pa(Y ) =

pa(X) + 1 and π(P ) = π(Q) as an ordinary node. Take a linear space V

with H0(X,R(−P −Q)) ⊂ V ⊂ H0(X,R), dim(V ) = r and V spanning

R; since r−1 > 0, R(−P −Q) has at most finitely many base points and

hence we may take as V a general linear subspace of H0(X,R) containing

H0(X,R(−P −Q)) and different from H0(X,R(−P −Q)); in particular

the set of all such linear spaces V is parametrized by an irreducible one-

dimensional variety. The morphism hV associated to V factors through

π and hence there is RV ∈ Pic(Y ) with π∗(RV ) = R, h0(Y,RV ) = r, RV

spanned and π∗(H0(Y,R)) = V . Hence if V �= V ′, then RV and RV ′ are

not isomorphic.

Remark 2.12. Let X be a smooth curve and R ∈ Pic(X) with R

spanned and h0(X,L) = r + 1 ≥ 3. Let hR : X → Pr be the morphism

induced by R. Fix A ∈ X such that hR is étale at P , i.e. such that

h0(X,R(−2P )) = r − 1; since char(K) = 0 this condition is satisfied by

a general A ∈ X. Let Y be the curve with π : X → Y as normalization

map, pa(Y ) = pa(X) + 1 and π(A) as an ordinary cusp. Take a linear

space V with H0(X,R(−2A)) ⊂ V ⊂ H0(X,R), dim(V ) = r and V span-

ning R; since r − 1 > 0, R(−2A) has at most finitely many base points
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and hence we may take as V a general linear subspace of H0(X,R) con-

taining H0(X,R(−2A)) and different from H0(X,R(−2A)); in particular

the set of all such linear spaces V is parametrized by an irreducible one-

dimensional variety. The morphism hV associated to V factors through

π and hence there is RV ∈ Pic(Y ) with π∗(RV ) = R, h0(Y,RV ) = r, RV

spanned and π∗(H0(Y,R)) = V . Hence if V �= V ′, then RV and RV ′ are

not isomorphic.

From Remarks 2.11 and 2.12 and the existence part of Brill - Noether

theory on smooth curves we obtaing at once the following result.

Corollary 2.13. Let Y be an integral projective curve with only

ordinary nodes and only ordinary cusps as singularities. Set g := pa(X)

and x := card(Sing(Y )). Fix integers r, d with r ≥ 2 and ρ(g − x, r +

x, d) ≥ 0. Then there exists an integer b ≤ d and L ∈ Pic(Y ) with

deg(L) = b, h0(Y, L) ≥ r + 1 and L spanned.

Proof of Theorem 1.2. Let X be a general smooth (k− y)-gonal

curve of genus g − x. Call M ∈ Pick−y(X) the degree k − y pencil. First

assume d ≤ g−x+y−1. We apply [8], part (2) of Cor. 1 of Section 1, to

X with respect to the following data: g′ := g− x, k′ := k− y, r = f = 1,

d = deg(E) = y, γ = g′+1. Since (g−x+y+2)/2 ≤ d ≤ g−x+y−1, we

obtain the existence of a spanned T ∈ W 1
d (X) with h0(X,T ⊗M∗) = 0.

Alternatively, we could quote here [6], Theorem 2.2.2. Thus there is an

irreducible component W of W 1
d (X) with W �= ∅, dim(W ) ≥ ρ(g−x, 1, d)

and such that a general N ∈ W is spanned and with h0(X,N ⊗M∗) = 0.

By our numerical assumptions we have ρ(g − x, 1, d) ≥ x. We claim that

for a general ordered set of x+ y points (P1, . . . , Px−y, A1, . . . , By) there

is (Q1, . . . , Qx−y) ∈ Xx−y with Qi �= Pi for every i and a locally closed

irreducible subset Z of W with Z �= ∅, dim(Z) = dim(W ) − x and such

that for every R ∈ Z we have hR(Pi) = hR(Qi) for every i ≤ x − y.

The claim and 1.2 in this range follow from Remark 2.10, the proof of

Remark 2.4 (see in particular Statement T (k) and Remark 2.5. Now

assume g−x+ y ≤ d ≤ g−x+ y+k− 3. We apply [8], part (2) of Cor. 1

of Section 1, k − 4 times with respect to the integers g′ := g − x + y,

r = f with 2 ≤ f ≤ k − 3, γ = g′ + r = g − x + y + f , d = deg(E)

and conclude in the same way. Now assume d > g − x. By assumption

we have x − y < g/2 and hence dim(Picd(X)) ≥ x − y. For a general
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R ∈ Picd(X) we have h1(X,R) = 0 and R is spanned. We apply the

previous proof taking as Z a non-empty open subset of Picd(X).

3 – Embeddings in Pr and the Lüroth semigroup

By [5], Section 1, 2 and 3, for all integers d, g and r with r ≥ 3 and

either d ≥ g+r or d−r < g ≤ d−r+[(d−r−2)/(r−2)] there is an irre-

ducible component W (d, g, r) of the Hilbert scheme Hilb(Pr) of degree d

curves of Pr with arithmetic genus g such that a general C ∈ W (d, g, r) is

smooth, connected and non-degenerate and with h1(C,NC,r) = 0, where

NC,r is the normal bundle of C in Pr. In particular W (d, g, r) is generi-

cally smooth and of dimension h0(C,NC,r) = (r + 1)d− (r− 3)(g− 1). If

ρ(g, r, d) ≥ 0, then W (d, g, r) contains smooth curves with general moduli

([5], Proposition 3.1). If d ≥ g + r for a general C ∈ W (d, g, r) we have

h1(C,OC(1)) = 0 and hence h0(C,OC(1)) = d + 1 − g. If d ≤ g + r for a

general C ∈ W (d, g, r) we have h0(C,OC(1)) = r + 1.

Theorem 3.1. Fix integers g, k, x, r with x > 0, k ≥ 2 + x and

r ≥ 3; assume either d ≥ g + r or the existence of an integer t > 0

and an integer e ≥ 3x such that d = r + 2 + e + t(r − 2) and g =

r + 2 + e − 3x + t(r − 1). Let Y be a general k-gonal nodal curve of

genus g and type (x, x). Then there exists a very ample L ∈ Picd(Y )

with h0(Y, L) ≥ r + 1 and such that for a general embedding j : Y → Pr

associated to L we have j(Y ) ∈ W (d, g, r).

Proof. The (omitted) case x = 0 is [4], part (a) of Theorem 0.1.

The case d ≥ g + r is trival, taking non special embeddings. Hence from

now on we will assume d < g + r. We will modify the proof of [4],

Theorem 0.1, to obtain 3.1. For all integers d′, g′, x′ with 0 ≤ x′ ≤ k− 2

and d′ = r+2+ e′ + t′(r−2), g′ = e′−3x′ + t′(r−1) (as in the statement

of 3.1) call A(d′, g′, x′) the following assertion:

Assertion A(d′, g′, x′): there is a pair (C, T ) with the following properties:

(i) C ∈ W (d′, g′, r) and C satisfies the thesis of 3.1 for the parameters r,

k, d′, g′, x′ and h1(C,NC,r⊗IZ) = 0, where Z is the first infinitesimal

neighborhood of Sing(C) in C;
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(ii) T is a subset of Creg contained in a positive divisor, D, of the degree

k−x′ pencil of C with card(T ) = r+2 and such that T is in linearly

general position, i.e. such that every proper subset T ′ of T spans a

linear subspace 〈T ′〉 of Pr with dim(〈T ′〉) = card(T ′) − 1.

Notice that Z in condition (i) of A(d′, g′, r) is an effective Weil di-

visor of degree 3(card(Sing(C)). Assume A(d′, g′, x′) and take C, D, T

satisfying it. Fix an integer t with 0 ≤ t ≤ r + 1. We want to prove

A(d′ + r, g′ + t, x′). Since any r + 3 points of Pr in lineraly general posi-

tion are contained in a unique rational normal curve, it is easy to check

the existence of a rational normal curve D with D intersecting quasi-

transversally C, D ∩ C ⊂ T and card(D ∩ C) = t + 1. Set W := C ∪ E.

By [16], proof of Theorem 5.2, (or [12] and a dimensional count, or [5])

and [5], 2.3 and 3.1, we have h1(W,NW,r) = 0, W ∈ W (d′ + r, g′ + t, r)reg
and the nodal curve W is smoothable. If t ≥ 2 the nodal curve W is

stable, while if 0 ≤ t ≤ 1 it is only semistable. Fix a subset A of E with

A ∩ C = ∅ and card(A) = t + 1. Let V be the pencil of divisors on E

generated by D ∩ C and A. Using Knudsen - Harris - Mumford theory

of admissible coverings ([13], Section 4) we get that the stable reduction

of W in the moduli scheme M−
g′+t of stable curves of genus g′ + t of the

variety of smooth (k−x′)-gonal curves. We may even assume for general

C that W has no non-trivial automorphism, i.e. we may even assume that

M−
g′+t is smooth at the point corresponding to the stable reduction of W .

By [5], Theorem 3.1, or the proof of [16], 5.2, the rational map τ from

Hilb(Pr) to M−
g′+t is dominant. A dimensional count shows that near

W the fiber of τ over τ(W ) has the smallest a priori possible dimension.

Thus τ is flat at W and hence open at W . The proof of [5], Lemma 1.2,

gives also h1(W,NW,r ⊗ IZ) = 0 and this means that we may do the pre-

vious limit without smoothing the nodes in C, i.e. that W is a flat limit

inside Hilb(Pr) of a family of nodal gonal curves of type (x′, x′). Taking

A general, we see how to obtain the last condition of A(d′ + r, g′ + t, x′).

Hence we may continue and cover all triples (d, g, x′) claimed by 3.1 if we

may start the induction with some k-gonal curve of type (x′, x′). How-

ever, at the beginning we only know the case x′ = 0 (for instance from

part (a) of [4], Theorem 0.1). To start this procedure for the first x steps

we will increase by one the integer x′, i.e. we will pass from x′ to x′ + 1.

This is possible without modifying the proof of [5], Lemma 1.2, only if
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t ≤ r − 2. For simplicity we will use it and hence in the first x steps

will loose 3x in the upper bound of the genus with respect to the degree.

This explains the the term “−3x” in the expression of g in the statement

of 3.1. We fix P ∈ C ∩E and call B the union of Z and the first infinites-

imal neighborhood of P in W . Thus deg(B) = 3 + deg(Z) = 3 + 3x′.

As in [5], Lemma 2.1, using a Mayer - Vietoris exact sequence and the

description of NW,r we obtain h1(W,NW,r ⊗ IB) = 0. Then we may apply

a partial smoothing in which we may preserve x′ + 1 nodes (the ones of

Sing(C) ∪ {P}), obtaing the case x′ + 1 needed.

Remark 3.2. In the proof of 3.1 if d ≤ g + r, then we found L with

h0(Y, L) = r + 1.

Proposition 3.3. Fix integers g, x, k and d with k ≥ 2+x, x > 0,

g ≥ 2k+2x+1 and 2d ≥ 2g+6. There is a nodal k-gonal curve Y of genus

g and type (x, x) with as normalization a general (k−x)-gonal curve, X,

of genus g − x and with the following property. There is R ∈ Picd(Y )

with h0(Y,R) = 3, R spanned and such that the associated morphism

hR : Y → P2 is étale at every point of Sing(Y ), it is birational and the

curve h(Y ) has only ordinary nodes as singularities except one point, P ;

P is an ordinary point of multiplicity deg(R) − k, h−1
R (P ) ∩ Sing(Y ) = ∅

and the degree k − x pencil on X is induced by the pencil of lines in P2

passing through P .

Proof. Let X be a general smooth k-gonal curve of genus g − x.

Call M ∈ Pick−x(X) the degree k−x pencil. By [15] (or see [8], theorem

in part 2 of the introduction, or, for its statement, the introduction of [1]

or [7], 2.2) there is an irreducible component W of W 2
d (X) with W �= ∅,

dim(W ) = ρ(g−x, d, 2) such that a general N ∈ W is spanned, h0(X,N⊗
M∗) = 1, the corresponding morphism is birational, and its image, C,

with only ordinary nodes except one point, P , which is an ordinary point

of multiplicity d−k+x. Furthermore, M is induced by the pencil of lines

through P . Fix x of the singular points, say B1, . . . , Bx, of C and let Y

be the partial normalization of C in which we normalize all nodes except

the ones corresponding to the points B1, . . . , Bx. Y solves our problem.

Definition 3.4 Let Y be an integral projective curve. Set LS(Y ) :=

{d ∈ Z: there is a spanned line bundle L on Y with deg(L) = d} and
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LS(Y )′ := {d ∈ Z: there is a spanned rank 1 torsion free sheaf F on

Y with deg(F ) = d}. LS(Y ) will be called the Lüroth semigroup of Y .

LS(Y ) is a semigroup of the set, N, of non-negative integers. LS(Y )′

will be called the singular Lüroth set of Y . It is very easy to find a

nodal curve Y such that LS(Y )′ is not a semigroup (see the proof of

Example 2.6 and 1.2 for x = y = 1 � k � g).

Proposition 3.5. Fix integers g, k and x with x > 0, k ≥ 2 + x

and g ≥ 2k − x + 3. Let Y be a general k-gonal nodal curve of genus

g with type (x, x). Then the singular Lüroth set LS(Y )′ of Y contains

the integers t(k − x) + x for 1 ≤ t ≤ min{x, [(g − x)/(k − x)]}, t(k − x)

for min{x + 1, [(g − x)/(k − x)]} < t ≤ [(g − x)/(k − x)] and all integers

β ≥ [(g − x + 3)/2] + x.

Proof. Let π : X → Y be the normalization map. Thus X is a

general smooth (k−x)-gonal curve of genus g−x. Let M ∈ Pick−x(X) be

the degree k − x pencil. By [3] and [6], Theorem 2.2 (see the discussion

in [6], 0.2), the Lüroth semigroup LS(X) of X contains the integers

t(k−x) (induced by M⊗t) and all the integers α with [(g−x+3)/2] ≤ α ≤
g − x. If A ∈ Pic(X), then deg(π∗(A)) = deg(A) + x and h0(Y, π∗(A)) =

h0(X,A). Hence to show that t(k−x)+x ∈ LS(Y )′ it is sufficient to show

that π∗(M
⊗t) is spanned, while to show that [(g − x + 3)/2] + x + e ∈

LS(Y )′ it is sufficient to find A ∈ Pic[(g−x+3)/2]+e(X), A spanned with

π∗(A) spanned, i.e. with π∗(A) spanned at each point of Sing(Y ). Move

Y keeping fixed X, i.e. move the 2x points π−1(Sing(Y )). Since any

symmetric product of X is irreducible and the type is (x, x), for a general

Y we obtain that either π∗(M
⊗t) is spanned or it is not spanned at

each point of Sing(Y ). Assume that the second possibility occurs and

call B the subsheaf of π∗(M
⊗t) spanned by H0(Y, π∗(M

⊗t)). We may

even assume that t is the first integer for which this possibility occurs.

Again, by the irreducibility of the symmetric product we obtain that

π∗(M
⊗t)/B has the same length, v, at each point of Sing(Y ). By [3] we

have h0(X,M⊗t) = t+ 1 for t ≤ [(g− x)/(k−x)]. First assume t < x. X

and hence M are fixed. By Remark 2.10 for general Y there is no spanned

R ∈ Pic(Y ) with M⊗t ∼= π∗(R). If t ≥ x + 1 we have h0(X,M⊗t) ≥
x+2 and hence applying x times Proposition 2.7 we obtain the existence

of a spanned R ∈ Pic(Y ) with M⊗t ∼= π∗(R). Now take A ∈ Pic(X)
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computing one of the integers α of LS(X) with [(g−x+3)/2] ≤ α ≤ g−x

and A general. By [6], Theorem 2.2, and the generality of A we have

h0(X,A) = 2. Thus using Remark 2.10 we obtain easily that for general

Y and general A the corresponding sheaf π∗(A) has no subsheaf B with

length (π∗(A)/B) ≥ x and h0(Y,B) = 2, i.e. we obtain the spannedness

of π∗(A). Every integer u ≥ g+1 may be realized as an element of LS(Y )

and hence of LS(Y )′ just taking a general non-special R ∈ Picu(Y ).

Proposition 3.6. Fix integers g, k, x, y and t with x > 0, x ≥
y ≥ 0, k ≥ 2 + x and g ≥ 2k − x + 3 and t < (g − x)/2 + 1. Let Y be a

general k-gonal nodal curve of genus g with type (x, y). If t �= a(k − y)

for all integers a, then t /∈ LS(Y ). If t = a(k− y) for some integer a and

y > a, then t /∈ LS(Y ).

Proof. Let π : X → Y be the normalization map. Thus X is a

general smooth (k − y)-gonal curve of genus g − x. Let M ∈ Pick−y(X)

be the degree k − y pencil. By [1], Theorem 0.1, there is no L ∈ Pict(X)

with L spanned, unless t = a(k − y) for some integer a and in this case

we have L ∼= M⊗a. Hence t /∈ LS(Y ) if t �= a(k − y) for every integer

a. Assume t = a(k − y). By [3] we have h0(X,M⊗a) = a + 1. Apply

Remark 2.10 and the assuption y > a.

Lemma 3.7. Fix integers g, k and x with x ≥ 0 and g ≥ 2k+x+3.

Let Y be a general k-gonal nodal curve of type (x, 0) and M ∈ Pick(Y )

the degree k spanned line bundle on Y . Then for all integers t with

0 ≤ t ≤ [g/(k − 1)] we have h0(Y,M⊗t) = t + 1T .

Proof. Let π : X → Y be the normalization. Since h0(Y,M) ≥ 2

the value for h0(Y,M⊗t) is the minimal a priori possible and hence we

may use semicontinuity. By definition of general nodal curve of type

(x, 0), X is a general smooth k-gonal curve of type (x, 0). By [3] we

have h0(X,π∗(M⊗t)) = t + 1 for t ≤ [(g − x)/(k − 1)]. Thus we may

assume [(g − x)/(k − 1)] < t ≤ [g/(k − 1)]. We modify the proof of [3].

We need to find an integral nodal curve, T , of type (k, a) (some a) on

P1 × P1 with normalization of genus g − x, at least x nodes and such

that a subset, S, of Sing(T ) with card(S) = card(Sing(T ))− x satisfies a

certain cohomological condition (say h1(P1 × P1, IS(k − 2, b)) = 0 for a
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suitable b). The existence of an integral nodal curve in P1×P1 with that

numerical invariants follows from [1], Proposition 3.7 and Proposition 4.1.

By semicontinuity we may even choose as x “omitted” nodes for the

cohomological condition is any subset of Sing(T ) we prefer and hence it is

sufficient to have h1(P1×P1,ISing(T )(k−2,b)) ≤ x. This is even easier than

in [3] (case x = 0 with cardinality of the singular set card(Sing(T ))− x).

Proposition 3.8. Fix integers g, k and x with x ≥ 0 and g ≥
2k + x + 3. Let Y be a general k-gonal nodal curve of type (x, 0) and

M ∈ Pick(Y ) the degree k spanned line bundle on Y . For any integer z

with 1 ≤ z < (g − x + 3)/2 the following conditions are equivalent:

(i) z = tk for some integer t;

(ii) z ∈ LS(Y );

Furthermore, if z = tk < (g − x + 3)/2 the only rank 1 spanned line

bundle, L, with deg(L) = z is M⊗t.

Proof. Since M is spanned, tk ∈ LS(Y ) for every integer t. Thus

it is sufficient to show that every spanned line bundle L with deg(L) ≤
(g − x + 3)/2 is of the form M⊗t. Let π : X → Y be the normalization.

Since π∗(M) is a spanned line bundle on the general k-gonal curve X,

this is [1], Theorem 2.6.

4 – Seminormal singularities

In this section we will consider seminormal curves in the sense of [17]

and [9], i.e. curves with the simplest singularities compatible with their

number of branches: if the singularity has r branches, then it is formally

equivalent to the germ at 0 ∈ Kr of the union of the r coordinate axis.

A seminormal curve singularity is Gorenstein if and only if it is an ordi-

nary double point. The conductor of a seminormal one-dimensional local

ring R is the maximal ideal of R.

Definition 4.1. Let Y be a projective seminormal curve and π :

X → Y its normalization. Set g := pa(Y ) and q := pa(X). For every

P ∈ Sing(Y ), set s(P ) := card(π−1(P )). We may order the integers

s(P ), P ∈ Sing(Y ) in non-decreasing order, allowing repetitions. If K =

C the topological type of Y (C) is unique determined by the integers
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(g, q; card(Sing(Y ); s(P )P∈Sing(Y )). Notice that g = q+
∑

P∈Sing(Y ) s(P )−
card(Sing(Y )). We call this set the numerical data. The weight weight(τ)

of the numerical data τ or of the curve Y is the maximum of the integers

s(P ), P ∈ Sing(Y ). We will say that Y is general or that it is general

for a prescribed numerical data if X is a general smooth curve of genus q

and the set π−1(Sing(Y )) is general in X. We will say that Y is general

for the fixed normalization X if π−1(Sing(Y )) is general in X.

Remark 4.2. Let Y be a seminormal curve and π : X → Y its

normalization. Fix L ∈ Pic(Y ). For every f ∈ H0(Y, L) and P ∈ Sing(Y )

with f vanishing at P the section π∗(f) of π∗(L) vanishes at each point

of π−1(Sing(P )). Fix h ∈ H0(X,π∗(L)) and assume that for every P ∈
Sing(Y ) h has the same value for a fixed trivialization of L near P and

hence of π∗(L) around π−1(P ) at each point of π−1(P ). Then h is of the

form π∗(f) for some f ∈ H0(Y, L) because conductor of a seminormal

one-dimensional local ring R is the maximal ideal of R.

Remark 4.3. Let Z be an integral projective curve, L ∈ Pic(Z),

V ⊆ H0(Z,L) a linear subspace with dim(V ) ≥ 2. Then for every P ∈ Z

there is subspace V (P ) of V with dim(V (P )) ≥ dim(V )−1 and such that

every f ∈ V (P ) vanishes at P .

Remarks 4.2 and 4.3 and the definition of general seminormal curve

with fixed normalization give at once the following result.

Lemma 4.4. Let X be a smooth projective curve of genus q ≥ 0.

Fix an integer d and let x be the maximal dimension of an irreducible

component of Gr
d(X). Fix a type τ for seminormal curves with normal-

ization of genus q and weight(τ) > x. Let Y be the general seminormal

curve of type τ with X as normalization. Then for every L ∈ Pic(Y ) with

deg(L) ≤ d we have h0(Y, L) ≤ r.

Remark 4.5. Use the notation of Lemma 4.4. Notice that for a

fixed q and any genus q curve we may find a type τ with weight(τ) > d

but d < g. In this sense there is no hope just using the Brill - Noether

numbers ρ(g, r, d) to have on general seminormal curves the usual Brill -

Noether theory using line bundles, even if we do not require that the line

bundles considered are spanned.

The proof of Remark 2.4 and Remark 2.5 give the following result.
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Proposition 4.6. Fix integers g, q, d and e with 0 < e ≤ g − q.

Let X be a smooth curve of genus q and assume the existence of an

irreducible component, T, of G1
d(X) with dim(T ) ≥ g − q + e and such

that for a general pair (R, V ) ∈ T the line bundle R is spanned by V . Fix

a type τ for seminormal curves with genus g, normalization of genus q

and e singular points. Let Y be a general seminormal curve with Y as

normalization and type τ . Then there is a spanned line bundle of degree d

on Y .
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