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Nodal curves and Brill - Noether theory

E. BALLICO

ABSTRACT: Here we prove some existence theorems for special spanned line bundles
on the general nodal curve of genus g > 2. We give counterexamples to similar questions
for curves with seminormal singularities.

1 — Introduction

In the first 3 sections of this paper we study the Brill - Noether
theory of special divisors on the general k-gonal curve with only ordi-
nary nodes as singularities. On an integral projective curve, Y, there
are at least 4 quite different Brill - Noether theories: one can study
spanned line bundles, line bundles, spanned rank 1 torsion free sheaves or
rank 1 torsion free sheaves. The Brill - Noether theory of rank 1 torsion
free sheaves is the only one in which the set of the solutions is always
a complete scheme. Passing to the spanned subsheaf, one can reduce
the Brill - Noether theory of rank 1 torsion free sheaves to the one for
spanned torsion free sheaves. The Brill - Noether theory of line bun-
dles is interesting because it concerns important closed subschemes of
the non-complete scheme Pic?(Y). For the relations between the last two
theories for curves with only ordinary nodes or ordinary cusps as sin-
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gularities, see 2.3. The Brill - Noether theory of spanned line bundles
is the more important one because it concerns the morphisms Y — P7.
But we have an additional problem because we are interested in k-gonal
curves and their Brill - Noether theories depend very much on the sin-
gularities of the degree k pencil. For any rank1 torsion free sheaf F'
on Y, set Sing(F) := {P € Y : F isnot locally free at P}. Thus
Sing(F') C Sing(Y'). We introduce the following definition.

DEFINITION 1.1. Fix integers ¢, z, k and y with k£ > 2, ¢ > 2k +
r—y+2, g>x>y>0and x > 0. Let X be a general smooth
(k —y)-gonal curve of genus g — z. Call M € Pic* (X)) the degree k —y
spanned line bundle on X and h,; : X — P! the associated morphism
with deg(hy) = k —y. Take x + y general points P;, 1 <i <z —y, A;,
1<j<y,and B;,1<j<y,onY. Fix points @;, 1 <7 <z —y, with
har(P;) = ha(Q;) for every i. Let m: X — Y be the birational morphism
obtained gluing together the points P; and Q; for 1 <1i < x — y, and the
points A; and B; for 1 < j < y. Hence Y is a nodal curve with p,(Y) =g
and x nodes. Set F' := m,(M). Thus F is a rank 1 torsion free sheaf on YV’
with deg(F) = k, Sing(F) = {n(4;),... ,7(A,)} and h°(Y, F) = 2. We
will say that Y or the pair (Y, F) is the general k-gonal curve of genus
g with x nodes and a pencil with y singularities or just a gemeral nodal
k-gonal curve of genus g with type (x,vy).

We work over an algebraically closed field K with char(K) = 0. As a
sample of our results we state here the following one which will be proved
in Section 2.

THEOREM 1.2. Fiz integers g, x, y, k and d with k > 2 + y,
r>y>0,2>0,9>2k+2cx+1 and 2d > g+ 2. Let Y be the general
k-gonal nodal curve of genus g with type (x,y) and F the degree k pencil
with card (Sing(F)) = y. Then there is an irreducible locally closed subset
Z of Pic'(Y) with Z # 0, dim(Z) = p(g—z+y,d,1)—z := 2d—g+x—2—y
such that every R € Z is spanned. Ifd < g—x+y—1, then we may find
Z such that h°(Y,Hom(F, R)) = 0 for every R € Z.

The case y = x is the easier one. If y = x we obtain an existence
result for embeddings of Y into P”, r > 3 (see Theorem 3.1).

In the last section we will consider seminormal curves in the sense
of [17] and [9], i.e. curves with the simplest singularities compatible
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with their number of branches: if the singularity has r branches, then
it is formally equivalent to the germ at 0 € K" of the union of the r
coordinate axis. We will show that for non-nodal seminormal curves
the usual existence theorem for special line bundles (even non spanned
ones) are not always true if one uses only the Brill - Noether number
p(g,r,d) :=g—(r+1)(g+r—d) in its statement as in the case of smooth
curves ([14] or [2]).

2 — Proof of 1.2

In the first part of this section we give several preliminary results
needed for the proof of 1.2 and of other related results. Let Y be an
integral projective curve, m : X — Y its normalization and F' a rank1
torsion free sheaf on Y. The sheaf G := 7*(F')/ Tors(n*(F')) has rank 1
and no torsion. Hence G € Pic(X). We claim that the natural map
a : H'(Y,F) — H°X,Q) is injective; set  := h°(Y,F) and take x
general points Py,..., P, of X; there is f € H*(Y, F) with f(7x(P;)) =0
fori < xz and f(w(P,)) # 0; hence a(f)(P;) = 0 for i < 2 and a(f)(P,) #
0, proving the claim.We will call the integer § — deg(F') := deg(G) the
0-degree of F. By [10], Lemma 1, we have deg(F) + p,(X) — p.(Y) <
d —deg(F) < deg(F) and ¢ —deg(F) = deg(F) if and only if F' € Pic(Y').
Furthermore, deg(F) — § — deg(F) > card(Sing(F)). If F is spanned,
then 7*(F) is spanned and hence G is spanned.

(2.1) Let R be the one-dimensional complete semilocal ring which is ei-
ther the completion of an ordinary node or an ordinary cusp. Let m
be the maximal ideal of R (cusp case) or the intersection of the two
maximal ideals (nodal case). Let M be a torsion free finitely gener-
ated R-module with rank(M) = 1; here we assume that if R is the
completion of an ordinary node, then M has constant rank on each
of the two branches of R. Since char(K) = 0, there is a complete
classification of all such M: there are uniquely determined integers
a, bwith a >0,b >0, a+b=rank(M) such that M = R?* ¢ m®
[11]. We will need only the case rank(M) = 1.

(2.2) Let Y be an integral projective curve with only ordinary nodes
and ordinary cusps as singularities, 7 : X — Y its normalization
and F a rank1 torsion free sheaf on Y. If P € Sing(F’), then the
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completion of F' at P is isomorphic either to the maximal ideal
(the cusp case) or the intersection of the two maximal ideals of the
completion of Oy p (the nodal case). Thus deg(F) — 0 — deg(F) =
card(Sing(F')). Let Y be an integral projective curve with only ordi-
nary nodes and only ordinary cusps as singularities. The following
remark shows the relations between the Brill - Noether theory of
(not necessarly spanned) line bundles on Y and the Brill - Noether
theory of spanned rank 1 torsion free sheaves on Y.

REMARK 2.3. Let Y be an integral projective curve and F' a rank 1
torsion free sheaf such that for every P € Sing(F') the curve has at P
either an ordinary node or an ordinary cusp. By 2.1 for every P € Sing(F)
the completion of the stalk of ' at P is isomorphic to the maximal ideal of
the competion of the local ring Oy p. Thus there is a unique L € Pic(Y')
with F' C L, deg(L/F) = card(Sing(F')) and Supp(L/F) = Sing(F'). We
have h°(Y, F) < h°(Y,L) < h°(Y, F) + card(Sing(F')). Furthermore, the
integer h°(Y,L) — h°(Y, F) is the number of points of Sing(F') at which
L is spanned.

REMARK 2.4. Let X be a smooth projective curve of genus q and h :
X — P!, f: X — P! non-constant morphisms such that the associated
morphism j := (h, f) : X — P! x P! is birational. Set a := deg(h),
b := deg(f) and assume ¢ < ab—a — b+ 1. By the genus formula for
a divisor of type (a,b) on P* x P! the curve j(X) is singular. Assume
that j(X) has only nodal singularities; by [1], Proposition 2.4 and its
proof, this is the case if X is a general a-gonal curve and f is general
in the set of all degree b pencils on X not composed with h. Assume
that the monodromy group of a generic fiber of h is the full symmetric
group; since char(K) = 0 this is the case if the reduction of a fiber of
X has exactly a — 1 elements; this condition is always satisfied if X
is a general a-gonal curve and h is the associated degree a pencil. Set
z:=ab—a—b+1—¢q. By our assumptions there is a non-empty set of 2z-
ples (P, Q1,...,P.,Q.) € X* with P, # Q, and j(P;) = j(Q;) for every
i, 1.e. h(P;) = h(Q;) and f(P;) = f(Q;) for every i. Take 3 general points
of P! say B;, By and Bj and fix A; € X with j(A;) = B;, 1 <14 < 3. Fix
an integer w with 0 < w < z. Assume the existence of a quasi-projective
integral subvariety 7" of the scheme Hom”(X,P') of degree b morphisms
sending each A; onto B;, 1 < i < 3, with dim(7T") = w, j € T and such
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that for every t € T the pair j; := (h, f;) associated to the corresponding
morphism f; : X — P! satisfies the previous conditions. We claim that
for a general (Py,...,P,) € X" thereis t € T and (Q1,...,Qu) € XV
such that P; # Q; for every i and j,(P;) = j,(Q;) for every i. Consider
the following statement T'(k), 0 < i < w.

Statement T'(k): for a general (P, ..., P,) € X* there are a (w — k)-
dimensional irreducible subvariety T'(Py,...,P;) € T and (Q1,-..,Qk)
€ X" with P, # @Q; for every ¢ with 1 < i < k such that for every
t € T(Py,...,P) we have j,(P;) = j,(Q;) for every i with 1 < i < k.
Furthermore, the set of all ¢ € T satisfying this condition has codimen-
sion k in T'.

The first assertion of Statement T'(w) is the claim we want to prove.
Statement 7°(0) is empty: just take T'(@) := T. Assume proved T'(k) for
some integer k£ with £ < w and take the corresponding points @1, ... , Q.
Set J:={(P,Q,t) € X>XT(Py,...,P,) with P£Q, f(P)¢{f:(P),...,
fi(Pr), By, B2, Bs}, fi(P) = fi(Q) and ji(F;) = ji(Q;) for every i}. Call
m:J—=Xand w3 : JJ = T(Py,...,P) the projections on the first and
third factor. Since w < z each fiber of 73 is finite and non-empty. Thus
every irreducible component of J has dimension w — k > 0. If J contains
a slice {P} x X x {t}, then f,(X) = f;(P) and hence f; is constant; this
is impossible because deg(j;) = b by assumption. Since J is not union of
slices {P} x X x T(Py,...,P), m is dominant. By the assumption on
the monodromy group of the generic fiber of h, for any fixed ¢t € T" and
for general P € X either h=*(h(P)) N £, ' (f:(P)) = {P} or h~}(h(P)) is
contained in f; '(f;(P)), i.e. h = f,. We apply this observation to the
general element of T'(P,. .., P;) to obtain the first assertion of T'(k + 1)
and to the general elements of similar codimension k irreducible com-
ponent of T' to obtain the last assertion of T'(k + 1). Hence we obtain
dim(T(Py, ..., Py, Poy1)) < dim(T(P, ..., By)) for general P4, i.e. we
obtain the last assertion of T'(k + 1). We have T(Py, ..., Pyy1) #— for
general P, ; because of 7; is dominant. Thus T(k + 1) holds. By induc-
tion we obtain T'(w), proving the claim.

REMARK 2.5. Let X be a smooth projective curve of genus ¢ and h :
X — P!, f: X — P! non-constant morphisms such that the associated
morphism j := (h, f) : X — P* x P! is birational. Set a := deg(h), b :=
deg(f) and assume g < ab—a — b+ 1. Assume that j(X) has only nodal
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singularities and that the monodromy group of a generic fiber of h is the
full symmetric group. By our assumptions there is a non-empty set of 2z-
ples (P, Q1,...,P.,Q.) € X* with P, # Q, and j(P;) = j(Q;) for every
i, i.e. h(P;) = h(Q,) and f(P;) = f(Q;) for every i. Take 3 general points
of P!, say B;, By and Bj and fix A; € X with j(A;) = B;, 1 <1i < 3. Fix
an integer w with 0 < w < z and an integer o > w. Assume the existence
a quasi-projective integral subvariety T of the scheme Hom’(X,P') of
degree b morphisms sending each A; onto B;, 1 < i < 3, with dim(T") = w,
j € T and such that for every ¢ € T the pair j; := (h, f;) associated to the
corresponding morphism f; : X — P! satisfies the previous conditions.
By Remark 2.5 for a general (Py,...,P,) € X¥ there is t € T and
(Q1,...,Qyw) € X" such that P; # Q; for every i and j,(P;) = j,(Q;) for
every i. Take a general element (P, 41, Qa—wi1y--- » Pay Qo) of X272,
Let Y be the nodal curve obtained from X gluing together each pair
(P;,Q.), 1 <i < a. By construction Y is a nodal curve with a nodes and
with a degree b pencil of type (o, @ — w).

EXAMPLE 2.6. Fix an even integer g = 2b > 6 and let X be a general
smooth curve of genus g —1. Thus X has no spanned line bundle, L, with
1 <deg(L) < [(g—143)/2] = b and a finite set, S, of line bundles, R, with
deg(R) = b+ 1 and h°(X, R) = 2. Furthermore, every R € S is spanned
and card(S) = (2b)!/(b — 1)Ib!) # 0 ([2], p. 211) . Fix P, @ € X such
that for every R € S the morphism hr : X — P! has hg(P) # hz(Q).
Let Y be the curve obtained from X gluing P and ). Thus Y is a curve
with p,(Y) = g, a unique ordinary node as singularities and with X as
normalization. Call 7 : X — Y the normalization. Thus 7(P) = 7(Q) is
the singular point. For every R € S the rank1 torsion free sheaf 7,.(R)
has degree b+2 and h°(Y, m.(R)) = h°(X, R) = 2. The condition hp(P) #
hr(Q) is equivalent to the fact that R is not the pull-back of a spanned
line bundle on Y. Thus the condition hr(P) # hr(Q) is equivalent to
the spannedness of 7.(R). We claim that there is no M € Pic(Y') with
1 <deg(M) <b+1and h°(Y, M) > 2. Assume the existence of such M.
Thus A°(X,7*(M)) > R°(Y, M) > 2. If deg(M) < b this is impossible
because Y is general. Assume deg(M) = b+1. Then 7*(M) € S. We just
saw that this is impossible by the choice of the pair { P, Q}. Notice that if
we choose {P, @} general the curve Y is the general nodal curve of genus
g with exactly one node. However, if we fix X general of genus g —1 = 2b
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and take as Y’ the curve obtained from X gluing together two points in
the same fiber of one of the morphisms, then we obtain a nodal curve Y’
with one node, normalization with general moduli and L € Pic(Y’) with
deg(L) = b+1 and L spanned, while p(g,b+1,1) = —1 < 0. Take a rank 1
torsion free sheaf F' on Y with deg(F) < b+ 2 and h°(Y, F) > 2. Since
F is not locally free, we have deg(n*(F")/ Tors(n*(F))) < deg(F) and
indeed deg(m*(F)/ Tors(nw*(F))) = deg(F) — 1 ([10], Lemma 1). Since
7*(F)/ Tors(7*(F)) € Pic(X) and h°(X,7*(F)/ Tors(w*(F))) > 2, we
obtain 7*(F)/ Tors(n*(F)) € S. Thus deg(F) = b+ 2 and there is a
natural bijection between S and the set of all such sheaves F'.

ExaMpPLE 2.7. Take b, g, X and S as in Example 2.6. Fix a point
A € X such that for every R € S the morphism hp is étale at A. Let
7’ X — Y’ the birational and bijective morphism with p,(Y’) = g, Y’
with 7/(A) as unique singular point and an ordinary cusp at 7'(A4). By
the choice of A we may apply the proof of Example 2.6 in our situation
just with notational modifications. Since as A we may take a general
point of X, this description of the rank1 torsion free sheaves of degree
at most b + 2 is the description of such sheaves for the general cuspidal
curve of genus g with a unique singular point.

Examples 2.6 and 2.7 may be generalized in the following way. We
omit the easy proof.

PrRoOPOSITION 2.8. Let X be a smooth projective curve. Fix pos-
itive integers v and d such that for every integer z < d — 2 and every
L € Pic*(X) we have h°(X, L) < r, while the set S := {R € Pic(X) :
deg(R) = d—1 and h°(X,R) = r + 1} is finite. Fiz P, Q € X such
that for every R € S the morphism hp : X — P7 has hg(P) # hr(Q).
Let Y be the curve obtained from X gluing P and Q. Then there is
no M € Pic(Y) with 1 < deg(M) < d and h°(Y,M) > r + 1. Fur-
thermore, every rank 1 torsion free sheaf F on'Y with deg(F) < d and
R°(Y,F) > r+1 has deg(F) =d and h°(Y, F) = r+1 and there is R € S
such that F = m,(R).

PROPOSITION 2.9.  Let X be a smooth projective curve. Fix pos-
itive integers r and d such that for every integer z < d — 2 and every
L € Pic*(X) we have h°(X,L) < r, while the set S := {R € Pic(X) :
deg(R) =d—1 and h°(X, R) = r + 1} is finite. Fiz A € X such that for
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every R € S the morphism hr : X — P7 is étale at A. LetY be the curve
withm: X — 'Y as normalization map, p.(Y) = po(X)+1 and 7(A) as an
ordinary cusp. Then there is no M € Pic(Y) with 1 < deg(M) < d and
hO(Y,M) > r + 1. Furthermore, every rank 1 torsion free sheaf F on'Y
with deg(F) < d and h°(Y, F) > r+1 has deg(F) = d and h°(Y, F) = r+1
and there is R € S such that F = m,(R).

REMARK 2.10. Fix an integer y > 0. Let X’ be an integral projective
curve and L € Pic(X’) with h°(Y, L) < y. Let a: X’ — Y be a birational
morphism with Y obtained from X’ creating y new nodes gluing together
y general pairs of points of X’. The proof of 2.6 and 2.7 shows that there
is no R € Pic(Y) with o*(R) =2 L and R spanned.

REMARK 2.11. Let X be a smooth curve and R € Pic(X) with R
spanned and h°(X,L) =r+1 > 3. Let hi : X — P" be the morphism
induced by R. Fix P, Q € X such that hr(P) # hr(Q), i.e. such that
Rh°(X,R(—P — Q)) = r — 1; this condition is satisfied for a general pair
(P,Q) € X x X. Let Y be the curve obtained gluing together P and @,
i.e. let Y be the curve with 7 : X — Y as normalization map, p,(Y) =
pa(X) + 1 and 7(P) = m(Q) as an ordinary node. Take a linear space V'
with H*(X,R(—P — Q)) c V C H*(X,R), dim(V) = r and V spanning
R; since r —1 > 0, R(—P — Q) has at most finitely many base points and
hence we may take as V a general linear subspace of H°(X, R) containing
H°(X,R(—P — Q)) and different from H°(X, R(—P — Q)); in particular
the set of all such linear spaces V' is parametrized by an irreducible one-
dimensional variety. The morphism hy associated to V factors through
7 and hence there is Ry € Pic(Y) with 7*(Ry) = R, h°(Y,Ry) =r, Ry
spanned and 7*(H°(Y, R)) = V. Hence if V # V', then Ry and Ry are
not isomorphic.

REMARK 2.12. Let X be a smooth curve and R € Pic(X) with R
spanned and h°(X,L) =r+1 > 3. Let hg : X — P” be the morphism
induced by R. Fix A € X such that hp is étale at P, i.e. such that
h°(X, R(—2P)) = r — 1; since char(K) = 0 this condition is satisfied by
a general A € X. Let Y be the curve with 7 : X — Y as normalization
map, p,(Y) = p.(X) + 1 and m(A) as an ordinary cusp. Take a linear
space V with H(X, R(—2A)) C V € H°(X,R), dim(V) = r and V span-
ning R; since r — 1 > 0, R(—2A) has at most finitely many base points
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and hence we may take as V a general linear subspace of H(X, R) con-
taining H°(X, R(—2A)) and different from H°(X, R(—2A)); in particular
the set of all such linear spaces V' is parametrized by an irreducible one-
dimensional variety. The morphism hy associated to V factors through
7 and hence there is Ry € Pic(Y) with 7*(Ry) = R, h°(Y,Ry) =r, Ry
spanned and 7*(H°(Y, R)) = V. Hence if V # V', then Ry and Ry are
not isomorphic.

From Remarks 2.11 and 2.12 and the existence part of Brill - Noether
theory on smooth curves we obtaing at once the following result.

COROLLARY 2.13. Let Y be an integral projective curve with only
ordinary nodes and only ordinary cusps as singularities. Set g := p,(X)
and z = card(Sing(Y")). Fiz integers v, d with r > 2 and p(g — x,r +
x,d) > 0. Then there exists an integer b < d and L € Pic(Y) with
deg(L) = b, h°(Y,L) > r+ 1 and L spanned.

PROOF OF THEOREM 1.2. Let X be a general smooth (k — y)-gonal
curve of genus g — x. Call M € Pic" ¥(X) the degree k — y pencil. First
assume d < g—x+y— 1. We apply [8], part (2) of Cor. 1 of Section 1, to
X with respect to the following data: ¢’ :=g—a, k' ==k —y,r=f =1,
d=deg(F)=y,v=g¢+1. Since (9—x+y+2)/2<d<g—x+y—1, we
obtain the existence of a spanned 7' € W, (X) with h°(X,T @ M*) = 0.
Alternatively, we could quote here [6], Theorem 2.2.2. Thus there is an
irreducible component W of W} (X) with W # 0, dim(W) > p(g—=x,1,d)
and such that a general N € W is spanned and with h°(X, N @ M*) = 0.
By our numerical assumptions we have p(g — x,1,d) > x. We claim that
for a general ordered set of  +y points (P, ..., P,—y, A1,... , B,) there
is (Q1,...,Qu—y) € X% with Q; # P, for every i and a locally closed
irreducible subset Z of W with Z # (), dim(Z) = dim(W) — z and such
that for every R € Z we have hr(P;) = hgr(Q;) for every i < x — y.
The claim and 1.2 in this range follow from Remark 2.10, the proof of
Remark 2.4 (see in particular Statement T'(k) and Remark 2.5. Now
assume g —x+y <d < g—xz+y+k—3. Weapply [8], part (2) of Cor. 1
of Section 1, k — 4 times with respect to the integers ¢’ := g — x + v,
r=fwith2< f<k-3,v=¢g+r=g—ax+y+f, d=deg(F)
and conclude in the same way. Now assume d > g — x. By assumption
we have  — y < ¢/2 and hence dim(Pic*(X)) > x —y. For a general
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R € Pic*(X) we have h'(X,R) = 0 and R is spanned. We apply the
previous proof taking as Z a non-empty open subset of Picd(X ).

3 — Embeddings in P” and the Liiroth semigroup

By [5], Section 1, 2 and 3, for all integers d, g and r with » > 3 and
either d > g+rord—r <g<d—r+|[(d—r—2)/(r—2)] there is an irre-
ducible component W (d, g, r) of the Hilbert scheme Hilb(P") of degree d
curves of P” with arithmetic genus g such that a general C' € W(d, g, r) is
smooth, connected and non-degenerate and with h'(C, N¢,.) = 0, where
Ne¢, is the normal bundle of C' in P". In particular W (d, g, r) is generi-
cally smooth and of dimension h’(C, N¢,.) = (r+1)d— (r —3)(g — 1). If
p(g,r,d) > 0, then W(d, g, r) contains smooth curves with general moduli
([5], Proposition 3.1). If d > g + r for a general C € W(d, g,r) we have
h'(C,0¢(1)) = 0 and hence h°(C,0c(1)) =d+1—g. if d < g+ for a
general C' € W (d, g,r) we have h°(C,0s(1)) = r + 1.

THEOREM 3.1. Fix integers g, k, , r with x > 0, k > 24z and
r > 3; assume either d > g+ r or the existence of an integer t > 0
and an integer e > 3x such that d = r+2+e+t(r—2) and g =
r+2+e—3x+t(r—1). LetY be a general k-gonal nodal curve of
genus g and type (x,z). Then there erists a very ample L € Picd(Y)
with h°(Y, L) > r + 1 and such that for a general embedding j : Y — P"
associated to L we have j(Y) € W(d,g,r).

PROOF. The (omitted) case = 0 is [4], part (a) of Theorem 0.1.
The case d > g + r is trival, taking non special embeddings. Hence from
now on we will assume d < g 4+ r. We will modify the proof of [4],
Theorem 0.1, to obtain 3.1. For all integers d’, ¢/, ' with 0 <z’ <k —2
and d' =r+2+4¢ +t'(r—2), ¢ = ¢ —32"+¢'(r—1) (as in the statement
of 3.1) call A(d',¢’, ') the following assertion:

Assertion A(d', g’,x): there is a pair (C,T) with the following properties:

(i) C e W(d',g',r) and C satisfies the thesis of 3.1 for the parameters r,
k,d, ¢,z and h'(C, Nc,®1z) = 0, where Z is the first infinitesimal
neighborhood of Sing(C) in C;
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(ii) T is a subset of C\e, contained in a positive divisor, D, of the degree
k — 2’ pencil of C' with card(T) = r + 2 and such that T is in linearly
general position, i.e. such that every proper subset 7" of T" spans a
linear subspace (T") of P” with dim((T")) = card(T") — 1.

Notice that Z in condition (i) of A(d’,¢’,r) is an effective Weil di-
visor of degree 3(card(Sing(C)). Assume A(d',g’,2’) and take C, D, T
satisfying it. Fix an integer ¢ with 0 < ¢ < r + 1. We want to prove
A(d +r, g +t,2’). Since any r 4+ 3 points of P” in lineraly general posi-
tion are contained in a unique rational normal curve, it is easy to check
the existence of a rational normal curve D with D intersecting quasi-
transversally C, DNC C T and card(DNC) =t+ 1. Set W :=CUE.
By [16], proof of Theorem 5.2, (or [12] and a dimensional count, or [5])
and [5], 2.3 and 3.1, we have h' (W, Nw.,.) =0, W € W(d' + 7,9 +t,7)req
and the nodal curve W is smoothable. If £ > 2 the nodal curve W is
stable, while if 0 < ¢ <1 it is only semistable. Fix a subset A of E with
ANC = and card(A) = t + 1. Let V be the pencil of divisors on E
generated by D N C and A. Using Knudsen - Harris - Mumford theory
of admissible coverings ([13], Section 4) we get that the stable reduction
of W in the moduli scheme M, , of stable curves of genus g+t of the
variety of smooth (k — z')-gonal curves. We may even assume for general
C that W has no non-trivial automorphism, i.e. we may even assume that
M, ., is smooth at the point corresponding to the stable reduction of W.
By [5], Theorem 3.1, or the proof of [16], 5.2, the rational map 7 from
Hilb(P") to M,
W the fiber of 7 over 7(WW) has the smallest a priori possible dimension.
Thus 7 is flat at W and hence open at W. The proof of [5], Lemma 1.2,
gives also h' (W, Nw.,. ® I7) = 0 and this means that we may do the pre-
vious limit without smoothing the nodes in C, i.e. that W is a flat limit
inside Hilb(P") of a family of nodal gonal curves of type (2’,2). Taking
A general, we see how to obtain the last condition of A(d' +r, ¢ +t,2').
Hence we may continue and cover all triples (d, g, z’) claimed by 3.1 if we
may start the induction with some k-gonal curve of type (2/,2"). How-
ever, at the beginning we only know the case 2’ = 0 (for instance from
part (a) of [4], Theorem 0.1). To start this procedure for the first = steps
we will increase by one the integer 2/, i.e. we will pass from 2’ to a2’ + 1.
This is possible without modifying the proof of [5], Lemma 1.2, only if

is dominant. A dimensional count shows that near
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t < r — 2. For simplicity we will use it and hence in the first = steps
will loose 3x in the upper bound of the genus with respect to the degree.
This explains the the term “—3x” in the expression of ¢ in the statement
of 3.1. We fix P € CNE and call B the union of Z and the first infinites-
imal neighborhood of P in W. Thus deg(B) = 3 + deg(Z) = 3 + 3z'.
As in [5], Lemma 2.1, using a Mayer - Vietoris exact sequence and the
description of Ny, we obtain h*(W, Ny, ® Ig) = 0. Then we may apply
a partial smoothing in which we may preserve 2’ + 1 nodes (the ones of
Sing(C') U{P}), obtaing the case 2’ + 1 needed.

REMARK 3.2. In the proof of 3.1 if d < g + r, then we found L with
RY(Y,L) =r+ 1.

ProrosiTION 3.3. Fix integers g, x, k and d with k > 2+x, x > 0,
g > 2k+2x+1 and 2d > 2g+6. There is a nodal k-gonal curve Y of genus
g and type (x,x) with as normalization a general (k — x)-gonal curve, X,
of genus g — x and with the following property. There is R € Picd(Y)
with h°(Y,R) = 3, R spanned and such that the associated morphism
hr 1Y — P? is étale at every point of Sing(Y), it is birational and the
curve h(Y') has only ordinary nodes as singularities except one point, P;
P is an ordinary point of multiplicity deg(R) — k, hp'(P) N Sing(Y) = ()
and the degree k — x pencil on X is induced by the pencil of lines in P2
passing through P.

PrOOF. Let X be a general smooth k-gonal curve of genus g — z.
Call M € Pic" *(X) the degree k — 2 pencil. By [15] (or see [8], theorem
in part 2 of the introduction, or, for its statement, the introduction of [1]
or [7], 2.2) there is an irreducible component W of W27 (X) with W # (),
dim(W) = p(g—=,d, 2) such that a general N € W is spanned, h°(X, N®
M*) = 1, the corresponding morphism is birational, and its image, C,
with only ordinary nodes except one point, P, which is an ordinary point
of multiplicity d — k +z. Furthermore, M is induced by the pencil of lines
through P. Fix x of the singular points, say By, ..., B,, of C' and let Y
be the partial normalization of C' in which we normalize all nodes except
the ones corresponding to the points By,... ,B,. Y solves our problem.

DEFINITION 3.4 Let Y be an integral projective curve. Set LS(Y) :=
{d € Z: there is a spanned line bundle L on Y with deg(L) = d} and
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LS(Y) := {d € Z: there is a spanned rank 1 torsion free sheaf F' on
Y with deg(F) = d}. LS(Y) will be called the Liroth semigroup of Y.
LS(Y) is a semigroup of the set, N, of non-negative integers. LS(Y)’
will be called the singular Liroth set of Y. It is very easy to find a
nodal curve Y such that LS(Y) is not a semigroup (see the proof of
Example 2.6 and 1.2 forz =y =1 < k < g).

ProprosITION 3.5.  Fiz integers g, k and v with x > 0, k > 2+«
and g > 2k —x + 3. LetY be a general k-gonal nodal curve of genus
g with type (xz,x). Then the singular Liiroth set LS(Y) of Y contains
the integers t(k — z) +x for 1 <t < min{z, [(g — z)/(k — )]}, t(k — x)
formin{z + 1,[(g —z)/(k —2)]} <t < [(g —x)/(k — z)] and all integers
B>[(g—z+3)/2] +a.

PROOF. Let m : X — Y be the normalization map. Thus X is a
general smooth (k—z)-gonal curve of genus g—x. Let M € Pic" (X)) be
the degree k — x pencil. By [3] and [6], Theorem 2.2 (see the discussion
in [6], 0.2), the Liiroth semigroup LS(X) of X contains the integers
t(k—z) (induced by M®*) and all the integers a with [(g—z+3)/2] < a <
g—xz. If A€ Pic(X), then deg(r.(4)) = deg(A) + x and h°(Y, m.(4)) =
h°(X, A). Hence to show that t(k—x)+x € LS(Y)' it is sufficient to show
that 7, (M®") is spanned, while to show that [(¢ — 2 +3)/2] +x + e €
LS(Y) it is sufficient to find A € Picl@~"/2¢(X) A spanned with
7.(A) spanned, i.e. with m,(A) spanned at each point of Sing(Y"). Move
Y keeping fixed X, i.e. move the 2z points 7 !(Sing(Y")). Since any
symmetric product of X is irreducible and the type is (x, ), for a general
Y we obtain that either w,(M®") is spanned or it is not spanned at
each point of Sing(Y). Assume that the second possibility occurs and
call B the subsheaf of m,(M®") spanned by H°(Y,m,(M®")). We may
even assume that t is the first integer for which this possibility occurs.
Again, by the irreducibility of the symmetric product we obtain that
m.(M®")/B has the same length, v, at each point of Sing(Y). By [3] we
have h(X, M®") =t+1fort < [(g—x)/(k—x)|. First assume t < z. X
and hence M are fixed. By Remark 2.10 for general Y there is no spanned
R € Pic(Y) with M® = 7*(R). If t > = + 1 we have h°(X, M®") >
x4 2 and hence applying = times Proposition 2.7 we obtain the existence
of a spanned R € Pic(Y) with M®" = 7*(R). Now take A € Pic(X)
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computing one of the integers o of LS(X) with [(9—z+3)/2] <a<g—=x
and A general. By [6], Theorem 2.2, and the generality of A we have
h°(X,A) = 2. Thus using Remark 2.10 we obtain easily that for general
Y and general A the corresponding sheaf 7, (A) has no subsheaf B with
length (7,.(A)/B) > x and h°(Y, B) = 2, i.e. we obtain the spannedness
of m,(A). Every integer u > g+ 1 may be realized as an element of LS(Y)
and hence of LS(Y) just taking a general non-special R € Pic"(Y').

ProroSITION 3.6.  Fizx integers g, k, x, y and t with x > 0, © >
y>0,k>24zandg>2k—x+3 andt <(g—x)/2+1. LetY be a
general k-gonal nodal curve of genus g with type (x,y). If t # a(k — y)
for all integers a, then t ¢ LS(Y'). Ift = a(k —y) for some integer a and
y > a, thent ¢ LS(Y).

PROOF. Let m : X — Y be the normalization map. Thus X is a
general smooth (k — y)-gonal curve of genus g — z. Let M € Pic* ¥(X)
be the degree k — y pencil. By [1], Theorem 0.1, there is no L € Pic’(X)
with L spanned, unless t = a(k — y) for some integer a and in this case
we have L =2 M®* Hence t ¢ LS(Y) if t # a(k — y) for every integer
a. Assume t = a(k — y). By [3] we have h’(X, M®*) = a + 1. Apply
Remark 2.10 and the assuption y > a.

LEMMA 3.7. Fix integers g, k and x with x > 0 and g > 2k +x + 3.
Let Y be a general k-gonal nodal curve of type (x,0) and M € Pic"(Y)
the degree k spanned line bundle on Y. Then for all integers t with
0<t<lg/(k—1)] we have h°(Y, M®") =t + 1T.

PROOF. Let 7 : X — Y be the normalization. Since h°(Y,M) > 2
the value for h°(Y, M®") is the minimal a priori possible and hence we
may use semicontinuity. By definition of general nodal curve of type
(z,0), X is a general smooth k-gonal curve of type (x,0). By [3] we
have hO(X,n*(M®")) =t +1 for t < [(¢9 — x)/(k — 1)]. Thus we may
assume [(g —z)/(k —1)] <t < [g/(k —1)]. We modify the proof of [3].
We need to find an integral nodal curve, T, of type (k,a) (some a) on
P! x P! with normalization of genus g — x, at least & nodes and such
that a subset, S, of Sing(7") with card(S) = card(Sing(T")) — = satisfies a
certain cohomological condition (say h'(P' x P! Ig(k —2,b)) = 0 for a
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suitable b). The existence of an integral nodal curve in P! x P! with that
numerical invariants follows from [1], Proposition 3.7 and Proposition 4.1.
By semicontinuity we may even choose as x “omitted” nodes for the
cohomological condition is any subset of Sing(7") we prefer and hence it is
sufficient to have h' (P! X P! Iging(r)(k—2,b)) < x. This is even easier than
in [3] (case z = 0 with cardinality of the singular set card(Sing(7T")) — ).

PROPOSITION 3.8.  Fix integers g, k and x with x > 0 and g >
2k +x + 3. Let Y be a general k-gonal nodal curve of type (x,0) and
M e Pick(Y) the degree k spanned line bundle on Y. For any integer z
with 1 < z < (9 — x + 3)/2 the following conditions are equivalent:

(i) z =tk for some integer t;
(i) z € LS(Y);

Furthermore, if z =tk < (g — x + 3)/2 the only rank 1 spanned line
bundle, L, with deg(L) = z is M®".

PROOF. Since M is spanned, tk € LS(Y) for every integer ¢. Thus
it is sufficient to show that every spanned line bundle L with deg(L) <
(g —x +3)/2 is of the form M®'. Let 7 : X — Y be the normalization.
Since 7*(M) is a spanned line bundle on the general k-gonal curve X,
this is [1], Theorem 2.6.

4 — Seminormal singularities

In this section we will consider seminormal curves in the sense of [17]
and [9], i.e. curves with the simplest singularities compatible with their
number of branches: if the singularity has r branches, then it is formally
equivalent to the germ at 0 € K" of the union of the r coordinate axis.
A seminormal curve singularity is Gorenstein if and only if it is an ordi-
nary double point. The conductor of a seminormal one-dimensional local
ring R is the maximal ideal of R.

DEFINITION 4.1. Let Y be a projective seminormal curve and 7 :
X — Y its normalization. Set g := p,(Y) and ¢q := p,(X). For every
P e Sing(Y), set s(P) := card(m~*(P)). We may order the integers
s(P), P € Sing(Y) in non-decreasing order, allowing repetitions. If K =
C the topological type of Y(C) is unique determined by the integers
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(9, q; card(Sing(Y); s(P) pesing(v))- Notice that g = g+ X pegingv) 5(P) —
card(Sing(Y")). We call this set the numerical data. The weight weight(7)
of the numerical data 7 or of the curve Y is the maximum of the integers
s(P), P € Sing(Y). We will say that Y is general or that it is general
for a prescribed numerical data if X is a general smooth curve of genus ¢
and the set 77*(Sing(Y)) is general in X. We will say that Y is general
for the fized normalization X if 7= (Sing(Y")) is general in X.

REMARK 4.2. Let Y be a seminormal curve and 7 : X — Y its
normalization. Fix L € Pic(Y). For every f € H°(Y, L) and P € Sing(Y)
with f vanishing at P the section 7*(f) of 7*(L) vanishes at each point
of #71(Sing(P)). Fix h € H*(X,7*(L)) and assume that for every P €
Sing(Y") h has the same value for a fixed trivialization of L near P and
hence of 7*(L) around 7~ !(P) at each point of 7#=!(P). Then h is of the
form 7*(f) for some f € H°(Y,L) because conductor of a seminormal
one-dimensional local ring R is the maximal ideal of R.

REMARK 4.3. Let Z be an integral projective curve, L € Pic(Z),
V C H°(Z, L) a linear subspace with dim(V) > 2. Then for every P € Z
there is subspace V(P) of V with dim(V (P)) > dim(V) —1 and such that
every f € V(P) vanishes at P.

Remarks 4.2 and 4.3 and the definition of general seminormal curve
with fixed normalization give at once the following result.

LEMMA 4.4. Let X be a smooth projective curve of genus q > 0.
Fiz an integer d and let x be the mazximal dimension of an irreducible
component of G(X). Fix a type T for seminormal curves with normal-
ization of genus q and weight(7) > x. Let Y be the general seminormal
curve of type T with X as normalization. Then for every L € Pic(Y") with
deg(L) < d we have h°(Y,L) <.

REMARK 4.5. Use the notation of Lemma 4.4. Notice that for a
fixed ¢ and any genus g curve we may find a type 7 with weight(7) > d
but d < g. In this sense there is no hope just using the Brill - Noether
numbers p(g,r,d) to have on general seminormal curves the usual Brill -
Noether theory using line bundles, even if we do not require that the line
bundles considered are spanned.

The proof of Remark 2.4 and Remark 2.5 give the following result.
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PROPOSITION 4.6.  Fix integers g, q, d and e with 0 < e < g — q.
Let X be a smooth curve of genus q and assume the existence of an
irreducible component, T, of GL(X) with dim(T) > g — q + e and such
that for a general pair (R, V') € T the line bundle R is spanned by V. Fiz
a type T for seminormal curves with genus g, normalization of genus q
and e singular points. Let Y be a general seminormal curve with Y as
normalization and type 7. Then there is a spanned line bundle of degree d
onY.
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