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Einstein’s field equations in the light

of constrained hyperbolic systems

F. BORGHERO – S. PENNISI

Abstract: Results previously known in the literature, on the hyperbolicity of Ein-
stein’s equations, are here quoted and improved. This aim is reached by applying recent
techniques on constrained hyperbolic systems. The symmetric hyperbolic form is ob-
tained, also in the four-dimensional formalism using harmonic coordinates. The case
of sources due to the presence of matter is also considered, in particular from the view
point of Extended Thermodynamics

1 – Introduction

The importance of Einstein’s equations is outstanding and needs no

comments. The study of their hyperbolicity presents also some interesting

aspects. Obviously, we don’t have here the presumption to diminish

previously results obtained on this subject by authoritative experts. We

want only to show how a recent general theory on hyperbolic systems,

with differential and algebraic constraints, can be successfully applied also

to this important problem; indeed, the validity of the general theory is

strengthened because our results are comparable with those obtained in

other ways by the above mentioned experts.
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Let us start noticing that in [1] Strumia has shown how Einstein’s equa-

tions can be reduced to a first order system of partial differential equa-

tions, but one of the hyperbolicity conditions according to Friedrichs

(see ref. [2], [3]) seems to fail, the one referring to the possibility, roughly

speaking, to obtain the time derivatives as functions of the other quan-

tities; see also [4] for other details. Although apparently strange, this

result is just what we would expect from the covariance property; in fact,

if the metric tensor gµν is a solution of Einstein’s equations, then so is

gµ′ν′ = gαβ[x
ρ(xλ′

)]∂µ′xα∂ν′x
β i.e. the expression determined from gµν by

a general coordinate transformation x → x′. This consideration can be

found in papers such as [5]-[7].

In [8] this failure of Einstein’s equations to determine gµν uniquely is

compared to the failure of Maxwell’s equations to determine the vector

potential uniquely. Here we propose another comparison which will be

the thread of our subsequent arguments, i.e., the problem of determining

the geodesic curves of a surface Σ; for the sake of simplicity, we shall

consider Σ belonging to a 3-dimensional euclidean space. If P = P (u, v)

are the parametric equations of Σ and P (λ) = P [u(λ), v(λ)] the equations

of a geodesic curve γ, then
P ′(λ)

|P ′(λ)|
is the tangent unit vector and one has

d

dλ

[
P ′(λ)

|P ′(λ)|

]
=

1

ρ
n

ds

dλ
,

where ρ is the radius of curvature, n is the normal unit vector and s is its

arc-length parameter; therefore, the equations of γ can be obtained from

the system

(1.1)





∂P

∂u
· d

dλ

[
P ′(λ)

|P ′(λ)|

]
= 0,

∂P

∂v
· d

dλ

[
P ′(λ)

|P ′(λ)|

]
= 0.

These equations don’t determine u(λ), v(λ), because their linear com-

bination, through the coefficients u′ and v′, is an identity; as Einstein’s
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equations don’t determine gµν due to the arbitrariness of the coordinates

transformation, so the equations (1.1) fail to determine u and v because

the parameter λ is arbitrary. One may proceed in one of the following

ways:

1. Require |P ′(λ)| = 1, in addition to equations (1.1); in other words,

we require that λ is the arc-length parameter.

2. Require d|P ′(λ)|/dλ = 0, |P ′(λ0)| = 1, with λ0 initial value of λ.

Note that these conditions, together with (1.1), are equivalent to





∂P

∂u
· P ′′(λ) = 0,

∂P

∂v
· P ′′(λ) = 0,

|P ′(λ0)| = 1.

This last condition may also be omitted, being content with a λ which

is a linear function of the arc-length parameter, without assuming

λ = s.

In the same manner we will investigate the hyperbolicity of Einstein’s

equations in one of the following ways:

1. Require that the coordinates xα aren’t the most general ones, but

the harmonic coordinates defined by Γα = 0 (for the expression of Γα

see the equation (1.2)6 below). In this way, the Einstein’s equations

become equations with differential and algebraic constraints. In this

framework they will be studied in Section 2, by applying the gen-

eral methods outlined in ref. [4], where they have been successfully

applied to the equations of relativistic fluid dynamics. See also refs.

[9]-[13] for other examples of physical application, such as the rel-

ativistic magneto-fluid dynamics, the Maxwell electrodynamics, the

equations of the superfluid and those of ultra relativistic gases.

In ref. [4] it is shown also a method to eliminate the algebraic con-

straints, in a manner which corresponds to the following method (2).

2. Require ∂tΓα = 0, (Γα)Σ = 0, where (Γα)Σ is the value of Γα cal-

culated in the initial manifold Σ. This approach will be followed in

Section 3. We will see that these further assumptions are equivalent
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to ∂(βΓα) = 0, (Γα)Σ = 0, which have the advantage to be written in

4-dimensional notation.

Following the general methods of paper [4], we obtain the equations

found in [5]-[7] in another way; in ref. [5], Fischer and Marsden have

transformed these equations in the symmetric hyperbolic form, but

in 3-dimensional notation. Here we reach the same result, but in 4-

dimensional notation.

A third approach, which is present in literature, will be exploited in

Section 4.

The case of sources due to the presence of matter will be consid-

ered in Section 5, showing how the symmetric hyperbolic form can be

obtained also in this case, and also with the equations of relativistic

extended thermodynamics and similar [14]-[16].

We conclude this section reporting the Einstein’s equations.

(1.2) Gµν = χTµν ,

with χ the einsteinian gravitational constant, Tµν the energy tensor,

Gµν = Rµν −
1

2
gµνR (Einstein tensor),

R = gαβRαβ (scalar curvature),

Rµν =
1

2
gαβ[−∂2

αβgµν − ∂2
µνgαβ + ∂2

ανgµβ + ∂2
βµgνα]+

− gρσΓ
ρ
µνΓ

σ
αβg

αβ + gαβgρσΓ
ρ
µαΓσ

νβ =

= ∂αΓα
µν − ∂νΓ

α
αµ + Γα

µνΓ
β
αβ − Γα

µβΓ
β
να (Ricci tensor),

Γµ
αβ =

1

2
gµλ (∂βgλα + ∂αgλβ − ∂λgαβ) (Christoffel symbols),

Γµ = Γµ
αβg

αβ (Lanczos symbols).

Obviously the Einstein’s equation (1.2) can also be written in the form

(1.3) Rµν = χ

(
Tµν −

1

2
Tαβg

αβgµν

)
.
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When sources are not present, i.e. Tµν = 0, we have the so called “exterior

case” and equation (1.3) reduce to

(1.4) Rµν = 0.

2 – The Einstein’s equations in harmonic coordinates

The transformation equations of the contracted Christoffel symbols

Γµ, introduced by Lanczos, are

(Γ′)λ = Γρ∂ρ(x
′)λ − gρσ∂2

ρσ(x
′)λ .

Hence we can always find a coordinate system (x′)λ where (Γ′)λ vanishes;

such coordinates are called harmonic coordinates.

From now on, in this section, we will impose to be already in harmonic

coordinates, so that we have Γµ = 0. The Einstein’s equation (1.4)

in the exterior case can be reduced to a first order system by setting

∂αgµν = ωαµν ; one obtains

(2.1)





∂αgµν = ωαµν ,

1

2
gαβ[−∂αωβµν − ∂(µων)αβ + ∂αωνµβ + ∂βωµνα] = Fµν(gαβ, ωαβγ),

∂[βωα]µν = 0,

1

2
gαβ (2ωαβλ − ωλαβ) = 0 (i.e. Γλ = 0).

Equations (2.1)1-3 constitute a system of 110 equations in the 50 un-

knowns gµν, ωαµν, restricted by the four algebraic constraints (2.1)4, so

that we have only 46 independent variables; obviously, in the system

(2.1)1-3 there are also 66 differential constraints.

Now a general method to study the hyperbolicity of systems with

algebraic and differential constraints has been proposed in ref. [4] and

already applied with success to important physical problems.

Here we find another interesting example of physical application. In a

few words the method, applied to the present case, consists in multiplying

the system (2.1)1-3 on the left by a suitable matrix of rank 46 so that the
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resulting system is hyperbolic in the time direction defined by tα, with

tαt
α = −1.

Alternatively, this result may be obtained by taking suitable linear

combinations of the equations (2.1)1-3. A possible choice is to consider

the system

(2.2)





tα∂αgµν = tαωαµν ,

hµν
γδ

1

2
gαβ[−∂αωβµν − ∂(µων)αβ + ∂αωνµβ + ∂βωµνα] =

= hµν
γδFµν(gαβ, ωαβε),

tαhµν
γδ [∂[βωα]µν ] = 0,

1

2
gαβ(2ωαβλ − ωλαβ) = 0,

with

(2.3) hµν
γδ = g(µ

γ g
ν)
δ − 1

4
gµνgγδ .

We prove now that the system (2.2)1-3 is hyperbolic. Firstly, we con-

sider the system

(2.4)





tαtαdgµν = 0,

hµν
γδ

1

2
gαβ[−tαdωβµν − t(µdων)αβ + tαdωνµβ + tβdωµνα] = 0,

tαhµν
γδ [t[βdωα]µν ] = 0,

d

[
1

2
gαβ (2ωαβλ − ωλαβ)

]
= 0,

in the unknowns dgµν , dωαβγ . It is easy to see that this system has

only the solution dgµν = 0, dωαβγ = 0. In fact, equations (2.4)1,3 yield

dgµν = 0,

(2.5) dωβµν = −tβt
δdωδµν + Xβgµν ,

for every Xβ such that

(2.6) Xβt
β = 0.
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After that, equation (2.4)4 gives

Xλ = −tβtδdωδβλ +
1

2
gαβtλt

δdωδαβ.

By substituting in (2.5), (2.6), we obtain

(2.7) gαβtδdωδαβ = −2tδtβtλdωδβλ

and

dωβµν = −tβt
δdωδµν − gµνt

δtρdωδργ(g
γ
β + tβt

γ).

At last, equation (2.4)2 yields hγδ
µνt

βdωβµν = 0 from which and (2.7) the

relation dωβµν = 0 follows. This result proves that, from the system (2.2),

the time derivatives can be obtained as functions of the other quantities.

To prove the hyperbolicity of the system (2.2) it suffices now to see

that the following system

(2.8)





tαϕαdgµν = 0,

hµν
γδ

1

2
gαβ[−ϕαdωβµν − ϕ(µdων)αβ + ϕαdωνµβ + ϕβdωµνα] = 0,

tαhµν
γδ [ϕ[βdωα]µν ] = 0,

d

[
1

2
gαβ (2ωαβλ − ωλαβ)

]
= 0,

with ϕα = nα − λtα, has real eigenvalues λ and 46 linearly independent

(l.i.) eigenvectors dgµν , dωβµν , for every nα such that nαt
α = 0, nαn

α = 1.

Also this condition is satisfied: in fact in correspondence to the eigen-

value λ = 0, equation (2.8)1 is an identity, while equation (2.8)3 is equiva-

lent to tαhµν
γδdωαµν = 0. Therefore, we have 22 equations for 50 unknowns

and, consequently, 28 l.i. eigenvectors.

In correspondence to λ = ±1 (from which ϕβϕ
β = 0, λ �= 0) we

obtain the eigenvectors

dgµν = 0, dωβµν =
1

λ
(ϕβy<µν> + ϕδy<δβ>gµν),

where y<µν> is an arbitrary symmetric traceless tensor; therefore there

are 2 × 9 l.i. eigenvectors corresponding to λ = ±1. In this way, the

hyperbolicity of system (2.2) has been proved.
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In ref. [4] we find also a method to get rid of the algebraic constraints;

its application to our case leads, as a first step, to the system

(2.9)





tα∂αgµν = tαωαµν ,

hµν
γδ

1

2
gαβ[−∂αωβµν − ∂(µων)αβ + ∂αωνµβ + ∂βωµνα]+

+gµνgγδt
α∂αωµν = hµν

γδFµν ,

tαhµν
γδ (∂[βωα]µν) + tαhµν

γδ tβ∂αωµν + gγδt
α∂αψβ = 0,

for the determination of the variables gµν , ωβµν , ωµν = ωνµ, ψβ, con-

strained by (2.1)4. This system is also hyperbolic and has the advantage

to have an equal number of equations and of independent variables; when

ωµν = 0, ψβ = 0 it reduces to the system (2.2) and, moreover, if ωµν = 0,

ψβ = 0 on an initial hypersurface Σ, then ωµν = 0, ψβ = 0 will propagate

also off Σ.

The system (2.9) has been obtained from (2.2) by considering more

equations and more independent variables, an idea somehow similar to

that conceived in Extended Thermodynamics.

The second, and last, step leads to the system

(2.10)





tα∂αgµν = tαωαµν ,

hµν
γδ

1

2
gαβ[−∂αωβµν − ∂(µων)αβ + ∂αωνµβ + ∂βωµνα]+

+gµνgγδt
α∂αωµν = hµν

γδFµν ,

tαhµν
γδ (∂[βωα]µν) + tαhµν

γδ tβ∂αωµν+

+gγδt
α∂α

[
1

2
gµν(2ωµνβ − ωβµν)

]
= 0,

in the independent variables gµν , ωβµν , ωµν ; in this way all the constraints,

both differential and algebraic, have been eliminated still maintaining the

property to be hyperbolic and to have an equal number of equations and of

independent variables. Obviously, by setting ωµν = 0 in equations (2.10),

the differential constraints arising are only identity and one obtains a sys-

tem in the “old variables” but without algebraic constraints; this system

is hyperbolic and, moreover, if (2.1)4 holds on an initial hypersurface Σ,

then it will be satisfied also off Σ.

Another method to obtain this result is exposed in the next section.
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3 – The Einstein’s equations with the further condition

∂(αΓβ) = 0

We can easily see that the following relations hold

(3.1) Γβ = 0 ⇔
{

∂0Γβ = 0

(Γβ)Σ = 0
⇔

{
∂(αΓβ) = 0

(Γβ)Σ = 0,

where (Γβ)Σ is the value of Γβ on an initial space-like hypersurface Σ.

The first equivalence in (3.1) is trivial; the second one is based on the

fact that ∂0Γβ = 0, (Γβ)Σ = 0 implies ∂0(∂iΓβ) = 0, (∂iΓβ)Σ = 0, from

which ∂iΓβ = 0 follows. Vice versa, if the equations in the right hand

side of (3.1) hold, then we have

{
∂0Γ0 = 0 ⇒ ∂0 (∂iΓ0) = 0,

(∂iΓ0)Σ = 0,

and, consequently, ∂iΓ0 = 0; this result allows to obtain, from ∂(αΓβ) = 0,

for α, β = 0, . . . , i, that ∂0Γi = 0. In this way the second equivalence

in (3.1) has been proved.

This suggest to consider the equations

(3.2) ∂αgµν = ωαµν , Rµν = 0, ∂[βωα]µν = 0, ∂[µΓν] = 0.

This system has more differential constraints than the system (2.1), but

has no algebraic constraints because (2.1)4 has to be imposed only on the

initial manifold. The method in ref. [4] already applied in Section 2 to

equations (2.1), can now be applied to the system (3.2). One obtains

(3.3)
tα∂αgµν = tαωαµν , Rµν − ∂(µΓν) − 2gαβgγ(µg

δ
ν)∂[βωγ]δα = 0,

tα
(
∂[βωα]µν

)
= 0,

which is the new counterpart of system (2.2).

We note that the equations (3.3)2 substantially coincide with those

proposed by Fourès-Bruhat, Fischer and Marsden in refs. [5], [7], i.e.,

Rµν − gα(µ∂ν)Γ
α − 2gαβgγ(µg

δ
ν)∂[βωγ]δα = 0
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or, equivalently,

Rµν − ∂(µΓν) − 2gαβgγ(µg
δ
ν)∂[βωγ]δα + Γαω(νµ)α = 0;

the only difference is in the last term which doesn’t involve the derivatives

of the variables and, therefore, does not affect the study of hyperbolicity.

We retain very interesting to see how a general method such that of

ref. [4] leads to equations obtained in other ways in literature. These

equations (3.3)2 writes explicitly

(3.4) −1

2
gαβ∂αωβµν = Fµν −

1

2
gγ(µg

δ
ν)ω

αβ
γ (2ωαβδ − ωδαβ),

where we have used the relation ∂γg
ψη = −ω ψη

γ which comes from gψθ

contracted with the derivative with respect to xγ of the relation

gθδg
δη = δηθ .

To prove the hyperbolicity of the system (3.3) is now an easy task because

the system

−dgµν = 0, −1

2
tβdωβµν = 0, tαt[βdωα]µν = 0,

imply dgµν = 0, dωβµν = 0, while the system

λdgµν = 0, −1

2
ϕβdωβµν = 0, tαϕ[βdωα]µν = 0,

has 50 l.i. eigenvectors, i.e.

• the 30 l.i. solutions of tβdωβµν = 0, nβdωβµν = 0, corresponding to

the real eigenvalue λ = 0,

• the 20 l.i. solutions of dgµν = 0, dωβµν = xµνϕβ, (with xµν an

arbitrary symmetric tensor) corresponding to the real eigenvalues

λ = ±1 (i.e., ϕβϕ
β = 0).

But a more interesting aspect is that the system (3.3) can be put in the

symmetric form; this result has been obtained by Fischer and Marsden

for their system of equations, but in 3-dimensional formalism. Here we
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obtain in 4-dimensional notation the same result for our system (3.3). In

fact, it is equivalent to

(3.5)





tα∂αgµν = tαωαµν ,

tτ

(
−1

2
gαβ∂αωβµν

)
− tα∂[τωα]µν = tτKµν ,

where we have used the expression (3.4) for the equations (3.3)2 and we

have called Kµν the second member of (3.4).(1)

The system (3.5) is symmetric; in fact, if we take a linear combination

of its left-hand sides through the coefficients λµν , λτµν and substitute ∂α

with δ, we obtain(2)

tα
(
λµνδgµν +

1

2
λτµνδωτµν

)
+

− 1

2

(
tβgαβ

′
λβ′µ′ν′δωβµν + tτλτµ′ν′g

αβδωβµν

)
gµ

′µgν
′ν .

This expression doesn’t change if we exchange λµν with δgµν and λτµν

with δωτµν , thus proving the symmetric form of (3.5).

The result of this section has been achieved at the cost of dealing

with modified Einstein’s equations, i.e., (3.3)2. A more elegant result will

be obtained in the next section by introducing suitable equations for Γα.

4 – The unmodified Einstein’s equations

In ref. [7], Fischer et al. obtain equations involving Γα, drawing it

from a consequence of Bianchi identities, i.e., ∇αG
αβ = 0 (where ∇ is the

operator of covariant derivation) or, in other words, from

(4.1) ∂µG
µν + GρνΓµ

ρµ + GµρΓν
ρµ = 0.

It seems strange that an equation may be obtained from an identity!

(1)Note that (3.5)2 contracted with tτ gives (3.3)2 and, after that, it remains (3.3)3.
(2)Note that

tαλτµν∂τωαµν = tτλαµν∂αωτµν ⇒ tτλαµνδωτµν .
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The reason of this apparent paradox is that (4.1) is an identity when

applied to the whole Einstein tensor Gµν , while Fischer et al. apply it to

Gµν =

(
gµ(βgγ)ν − 1

2
gµνgβγ

)
gαβ∂γΓ

α,

i.e. the expression of Gµν calculated on a solution of Rµν−gα(µ∂ν)Γ
α = 0.

In this way they obtain a system of the form

(4.2)
1

2
gβν∂2

βνΓ
µ + Aβµ

α (gγδ, ∂λgγδ)∂βΓ
α = 0.

Therefore (4.2) is not a consequence of Einstein’s equations, but of their

“modified” expressions which are equivalent to them only under the fur-

ther assumption of harmonic coordinates; in this case, it is obvious that

also (4.2) is an identity! On the other hand, one may consider (4.2)

as further equations to consider jointly with Einstein’s ones, disregarding

their origin; assuming the validity of (4.2) is less restrictive than assuming

harmonic coordinates.

So, let us consider the system

(4.3)





Rµν = 0 (Einstein’s equations),

1

2
gβν∂2

βνΓ
µ = −Aβµ

α (gγδ, ∂λgγδ)∂βΓ
α (Fischer’s equations).

It is expressed in terms of gµν and of its first, second and third derivatives;

obviously, it can be reduced to a first order system considering gµν , ∂αgµν ,

∂2
αβgµν as independent variables.

But the third derivatives of gµν intervene only through the second

derivatives of Γµ; therefore, one can consider gµν , ∂αgµν , Γµ, ∂αΓµ as

independent variables except for the algebraic constraints

(4.4) Γµ =
1

2
gµλgαβ (2∂αgλβ − ∂λgαβ) .
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The system (4.3) can now be reduced to a first order one by defining

ωαβγ = ∂αgβγ , S
µ
β = ∂βΓ

µ, i.e.

(4.5)





∂αgµν = ωαµν ,

−1

2
gαβ∂αωβµν = Fµν(gγδ, ωλγδ)+

−1

2
gγ(µg

δ
ν)ω

αβ
γ (2ωαβδ − ωδαβ) − Sµν ,

∂[βωα]µν = 0,

∂αΓµ = Sµ
α,

1

2
gαβ∂αS

µ
β = −Aβµ

α (gγν , ωλγν)S
α
β ,

∂[βS
µ
α] = 0,

where we have used the identity

Rµν = Rµν − ∂(µΓν) − 2gαβgγ(µg
δ
ν)∂[βωγ]δα + Sµν + 2gαβgγ(µg

δ
ν)∂[βωγ]δα,

transformed by the expression (3.4) for Rµν − ∂(µΓν) − 2gαβgγ(µg
δ
ν)∂[βωγ]δα

and by the (4.5) for ∂[βωγ]δα. Moreover (4.5)6 is the integrability condition

on (4.5)4 such as (4.5)3 is the integrability condition on (4.5)1.

Now it can be easily seen that the system (4.5) is hyperbolic, without

considering the constraints (4.4); therefore, it is sufficient to impose (4.4)

only on the initial manifold Σ and then it will propagate off Σ. Also (4.5)

can be written in a symmetric form, i.e.,

(4.6)





tα∂αgµν = tαωαµν ,

tτ

(
−1

2
gαβ∂αωβµν

)
− tα∂[τωα]µν =

= tτ

[
Fµν −

1

2
gγ(µg

δ
ν)ω

αβ
γ (2ωαβδ − ωδαβ) − Sµν

]
,

tα∂αΓµ = tαSµ
α,

tτ

(
1

2
gαβ∂αS

µ
β

)
+ tα∂[τS

µ
α] = −tτA

βµ
α Sα

β .
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Obviously, the system

− dgµν = 0, − tτ
1

2
tβdωβµν − tαt[τdωα]µν = 0,

− dΓµ = 0, tτ
1

2
tβdSµ

β + tαt[τdS
µ
α] = 0,

has only the solution dgµν = 0, dωαµν = 0, dΓµ = 0, dSµ
α = 0. Moreover,

the eigenvectors are the solutions of the system

λdgµν = 0, − tτ
1

2
ϕβdωβµν − tαϕ[τdωα]µν = 0,

λdΓµ = 0, tτ
1

2
ϕβdSµ

β + tαϕ[τdS
µ
α] = 0;

one obtains the eigenvalues

• λ = 0, to which correspond, as eigenvectors, the 42 l.i. solutions of

tβdωβµν = 0, nβdωβµν = 0, tβdSµ
β = 0, nβdSµ

β = 0;

• λ = ±1, and the corresponding 28 l.i. eigenvectors dgµν = 0, dωβµν =

xµνϕβ, dΓµ = 0, dSµ
α = Xµϕα, with xµν an arbitrary symmetric

tensor, and Xµ an arbitrary 4-vector.

In the next section will be considered the case where we have sources

due to the presence of matter.

5 – The case of interaction with matter

Let us consider now the expression (1.3) with χ �= 0, for Einstein’s

equations. Thanks to the identity ∇αG
αβ = 0 and to (1.2)1, it yields

(5.1) ∇αT
αβ = 0.

Usually, this equation doesn’t suffice to include the contribution of matter

and we have more equations; they can be written in the form

(5.2) ∇αT
αA = PA, for A = 1, . . . , N.

Obviously, for some values of A the equation (5.2) coincide with (5.1);

TαA and PA are functions of the independent variables. In particular, in

Extended Thermodynamics (see for example, refs. [14]-[16]), the equa-
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tions (5.2) assume the symmetric hyperbolic form by taking suitable in-

dependent variables λA which define the so called “mean field”; more

clearly, the equations (5.2) become

(5.3)
∂TαA

∂λB

∇αλβ = PA,

with ∂TαA

∂λB
= ∂TαB

∂λA
, ∂TαA

∂λB
uα being a convex functions of λB.

But this result is achieved by considering constant the metric tensor

gµν ; if we avoid this assumption, let us see how the equations (5.3) mod-

ify. The equations (5.2) by taking λB and gµν as independent variables,

become

(5.4)
∂TαA

∂λB

∇αλβ = PA − ∂TαA

∂gµν
ωαµν .

Therefore, the only difference is in the second members which don’t in-

volve the derivatives of the field. We can now consider the system con-

stituted by (3.5) with tα = uα and by (5.4)(or, alternatively, by (4.6)

with tα = uα and by (5.4)) and see that it is symmetric hyperbolic in the

time direction uα; moreover, the characteristic velocities don’t exceed the

speed of light and therefore, for Strumia’s Lemma [1], they are hyperbolic

in any other time direction.

For the sake of simplicity, let us consider only the example given by

the equations of fluid dynamics

(5.5) ∇α(ρuα) = 0, ∇α[(e + p)uαuβ + pgαβ] = 0.

Here ρ, e, p can be considered functions of the entropy density s and of

the temperature T and they satisfy the Gibbs relation

(5.6) T ds =
1

ρ
de + (e + p) d

(
1

ρ

)
.

If we take λ = −s + e+p
ρT

, λα = uα

T
as independent variables, the Gibbs

relation gives dλ from which one obtains

(5.7)
∂p

∂λ
= ρT,

∂p

∂T
=

e + p

T
,

∂(ρT )

∂T
=

∂

∂λ

(
e + p

T

)
,

the last of which is the integrability condition on (5.7)1,2.
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Moreover, the above mentioned functions ρ, e, p satisfy the physical

conditions

(5.8)

∂ρ

∂λ
> 0,

∣∣∣∣∣∣∣∣

∂ρ

∂λ
T

∂ρ

∂T

T
∂ρ

∂T
T

∂

∂T

(
e + p

T

)

∣∣∣∣∣∣∣∣
> 0,

∣∣∣∣∣∣∣∣∣∣∣∣

∂ρ

∂λ
T

∂ρ

∂T
ρ

T
∂ρ

∂T
T

∂

∂T

(
e + p

T

)
e + p

T

ρ
e + p

T

e + p

T

∣∣∣∣∣∣∣∣∣∣∣∣

≥ 0.

The system (5.4), for this case, reads

(5.9)

∂ρ

∂λ
λα∂αλ +

(
ρgαδ + T 2∂(ρT )

∂T
λαλδ

)
∂αλδ =

= P (λ, λγ , gµν , ωδµν),

(
ρgαβ + T 2∂(ρT )

∂T
λαλβ

)
∂αλ+

+

[
3(e + p)Tλ(αgβδ) + T 2∂[(e + p)T 2]

∂T
λαλβλδ

]
∂αλδ =

= P β(λ, λγ , gµν , ωδµν),

which is manifestly symmetric.

Coupling it with (3.5) or with (4.6), one obtains the whole system of

equations, which is also symmetric and hyperbolic.

Obviously, many other situations may be considered, but here we are

satisfied with this one.
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