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Stability and controllability of an abstract evolution

equation of hyperbolic type and concrete applications

S. NICAISE

Abstract: We consider the stability of an abstract evolution equation using Liu’s
principle based on the exponential stability of the inverse problem with a linear feedback
and on an integral inequality. Russell’s principle also yields some exact controllability
results. Some concrete examples with new stability and controllability results illustrate
the interest of our approach.

1 – Introduction

Stability of different systems of partial differential equations of hyper-

bolic type with linear or nonlinear feedbacks has been recently the object

of several works. Let us quote the stability of the wave equation [18],

[19], [20], [23], [22], [43], [26], [10] and the references cited there, of the

Petrovsky system [11], [13], [15], [1], [4], of the elastodynamic system [1],

[4], [13], of Mawxell’s system [3], [21], [39], [7], [36] or combination of

them [17], [37]. We actually remark that the approach of recent works
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cited above has a similar structure, namely the use of Liu’s principle and

of some integral inequalities. Liu’s principle consists in estimating the

energy of the direct system by some terms related to the feedbacks using

a retrograde system with final data equal to the final data of the direct

system. These terms are then estimated using the exponential stabil-

ity of the inverse (retrograde) problem with a linear feedback (based on

Russell’s principle) and an appropriated integral inequality. Therefore

our goal is to present an abstract setting leading to the stability and

controllability (via Russell’s principle) of the abstract system, setting as

large as possible to include all examples of the aforementioned papers

and allowing even new applications.

More precisely we first present an abstract setting of hyperbolic type

and including the above systems. General assumptions guarantee exis-

tence results as well as dissipativeness of the system. In a second step we

show that the exponential decay of the energy of the solution is equiva-

lent to the validity of a stability estimate, estimate that can be checked in

some particular cases. In a third step we use the so-called Russell’s prin-

ciple “controllability via stability” to obtain controllability results for the

abstract system. Finally using Liu’s principle [28] and a new integral in-

equality from [7] we give sufficient conditions on a class of (quite general)

feedbacks which lead to an explicit decay rate of the energy. The strength

of our approach lies in the fact that the controllability and stability results

(with general feedbacks) are only based on the stability estimate with a

linear feedback, estimate that may be checked for an explicit problem

by different techniques, like the multiplier method, microlocal analysis or

any method entering in a linear framework (like nonharmonic analysis for

instance). This approach was successfully initiated in [36] for Maxwell’s

system and is here extended to an abstract system. We further illustrate

our approach by considering different examples for which new stability

and controllability results are even obtained.

The schedule of the paper is the following one: the abstract setting

and its well-posedness are analysed in Section 2. Section 3 is devoted to

the equivalence between the exponential stability and the stability esti-

mate. In Section 4 exact controllability results are deduced from Russell’s

principle. Section 5 is devoted to the stability results for a class of non-

linear feedbacks using Liu’s principle. Some applications are presented in

the last section.
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2 – Abstract setting

In this section we describe a general abstract setting of hyperbolic

type that will be used later on. It is motivated by the examples (and

other ones) given in Section 6 which all enter in this setting.

Let us fix two real separable Hilbert spaces H, V with respective

inner products (., .)H, (., .)V and such that V is densely and continuously

embedded into H. Identifying H with its dual H′ we have the standard

diagram:

V ↪→ H = H′ ↪→ V ′.

We suppose given a bounded linear operator A1 from V into V ′ and a

(nonlinear) mapping B from V into V ′. We now define two (nonlinear)

operators A+ and A− as follows

D(A±) = {v ∈ V|(±A1 + B)v ∈ H},(1)

A± = (±A1 + B)v,∀v ∈ D(A±).(2)

For shortness we often drop the superscript + at A+.

Motivated by the examples we introduce the following assumptions:

A+ is maximal monotone,(3)

A− is maximal monotone,(4)

D(A+) is dense in H,(5)

D(A−) is dense in H,(6)

〈A1u, u〉 = 0,∀u ∈ V,(7)

〈Bu, u〉 ≥ 0,∀u ∈ V,(8)

where hereabove and below 〈., .〉 means the duality pairing between V ′

and V.

Lemma 2.1. Under the assumptions (3), (5), (7) and (8), the

evolution equation

(9)





∂u

∂t
+ A1u + Bu = 0 in H, t ≥ 0,

u(0) = u0,
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admits a unique (weak) solution u ∈ C(IR+,H) for any u0 ∈ H. If

moreover u0 ∈ D(A), the problem (9) admits a unique (strong) solution

u ∈ W 1,∞(IR+,H) ∩ L∞(IR+, D(A)) and such that u(t) ∈ D(A), for all

t ≥ 0.

This system is dissipative since its energy

E(t) =
1

2
||u(t)||2H,

is non-increasing. Moreover for u0 ∈ D(A), we have

E(S) − E(T ) =

∫ T

S

〈Bu(t), u(t)〉 dt, ∀0 ≤ S < T < ∞,(11)

d

dt
E(t) = −〈Bu(t), u(t)〉,∀t ≥ 0.(12)

Under the assumptions (4), (6), (7) and (8), the same results hold for

A− (with the same expression for the energy and the same identities (11)

and (12) for u0 ∈ D(A−)).

Proof. The first assertions follow from nonlinear semigroup the-

ory [42]. For the second assertions it suffices to show (12) since D(A) is

dense in H. For u0 ∈ D(A), we have

d

dt
E(t) =

(
∂u

∂t
(t), u(t)

)

H
= −(Au(t), u(t))H,

by (9). From the definition of A and the fact that u(t) ∈ V, for all t ≥ 0,

we get
d

dt
E(t) = −〈A1u(t), u(t)〉 − 〈Bu(t), u(t)〉.

This yields (12) owing to (7).

Remark 2.2. The identity (11) remains valid for u0 ∈ H indeed for

a sequence u0n ∈ D(A) such that u0n → u0 in H, let un be the solution

of (9) with initial datum u0n, then they fulfill

En(S) − En(T ) =

∫ T

S

〈Bun(t), un(t)〉 dt.
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Since the left-hand side tends to E(S)−E(T )(because un→u inC(IR+,H)),

the right-hand side admits also a limit that we denote by
∫ T

S 〈Bu(t), u(t)〉dt.
This is the so-called hidden regularity of u.

3 – Exponential stability

In this section we find a necessary and sufficient condition which

guarantees the exponential stability of (9). This condition is the validity

of a stabilility estimate that will be checked in some particular cases in

Section 6. We closely follow the arguments of the beginning of Section 3

of [36] given in the case of Mawxell’s system and that can be easily

extended to our abstract setting. The proofs are nevertheless given for

the sake of completeness.

In the whole section we suppose that (3), (5), (7) and (8) hold.

We start with the following definition.

Definition 3.1. We say that the pair (A1, B) satisfies the stabilility

estimate if there exist T > 0 and two non negative constants C1, C2

(which may depend on T ) with C1 < T such that

(13)

∫ T

0

E(t) dt ≤ C1E(0) + C2

∫ T

0

〈Bu(t), u(t)〉 dt,

for all solution u of (9).

That property admits the following equivalent formulation:

Lemma 3.2. The pair (A1, B) satisfies the stabilility estimate if and

only if there exist T > 0 and a positive constant C (which may depend

on T ) such that

(14) E(T ) ≤ C

∫ T

0

〈Bu(t), u(t)〉 dt,

for all solution u of (9).
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Proof.

⇒: Since E(t) is non-increasing, the estimate (13) implies that

TE(T ) ≤ C1E(0) + C2

∫ T

0

〈Bu(t), u(t)〉 dt.

By Lemma 2.1 we get

TE(T ) ≤ C1E(T ) + (C1 + C2)

∫ T

0

〈Bu(t), u(t)〉 dt.

This yields (14) with C = C1+C2
T−C1

.

⇐: From the monotonicity of E we may write

∫ T

0

E(t) dt ≤ TE(0).

Again Lemma 2.1 yields

∫ T

0

E(t) dt ≤ T

2
E(0) +

T

2

(
E(T ) +

∫ T

0

〈Bu(t), u(t)〉 dt
)
.

Using the assumption (14) we obtain

∫ T

0

E(t) dt ≤ T

2
E(0) +

T

2
(1 + C)

∫ T

0

〈Bu(t), u(t)〉 dt,

which is nothing else than (13).

Examples of pairs (A1, B) satisfying the stabilility estimate may be

found in Section 6 below (see also Section 3 of [36]).

We now show that the stabilility estimate is equivalent to the expo-

nential stability of (9).

Theorem 3.3. The pair (A1, B) satisfies the stabilility estimate if

and only if there exist two positive constants M and ω such that

(15) E(t) ≤ Me−ωtE(0),

for all solution u of (9).
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Proof. Assume that the stabilility estimate holds, i.e., by the pre-

vious Lemma, (14) equivalently holds. The identity (11) of Lemma 2.1

then yields

E(T ) ≤ C(E(0) − E(T )).

This estimate is equivalent to

E(T ) ≤ γE(0),

with γ = C
1+C

which is < 1.

Applying this argument on [(m− 1)T,mT ], for m = 1, 2, · · · (which

is valid since our system is invariant by a translation in time), we will get

E(mT ) ≤ γE((m− 1)T ) ≤ · · · ≤ γmE(0),m = 1, 2, · · ·

Therefore we have

E(mT ) ≤ e−ωmTE(0),m = 1, 2, · · ·

with ω = 1
T

ln 1
γ
> 0. For an arbitrary positive t, there exists m = 1, 2, · · ·

such that (m − 1)T < t ≤ mT and by the nonincreasing property of E ,

we conclude

E(t) ≤ E((m− 1)T ) ≤ e−ω(m−1)TE(0) ≤ 1

γ
e−ωtE(0).

Let us now show the converse implication: from Lemma 2.1, for any

T > 0, we may write

∫ T

0

〈Bu(t), u(t)〉 dt = E(0) − E(T ).

With the help of (15), we get

(16)

∫ T

0

〈Bu(t), u(t)〉 dt ≥ E(0)(1 −Me−ωT ).

The exponential decay (15) also implies

∫ T

0

E(t)dt ≤ ME(0)
1 − e−ωT

ω
.
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Consequently for all C1 > 0, we may write

(17)

∫ T

0

E(t)dt ≤ C1E(0) +

(
M(1 − e−ωT )

ω
− C1

)
E(0).

Choosing T large enough so that 1−Me−ωT>0 and C1<min{M(1−e−ωT )

ω
, T},

(16) and (17) yield (13) with

C2 =

(
M(1 − e−ωT )

ω
− C1

)
(1 −Me−ωT )−1.

4 – Exact controllability results

Using the results of the previous section and Russell’s principle we

deduce exact controllability results for the evolution equation associated

with the operator −A1 with controls in L2(]0, T [;U), the control space U

being a given real Hilbert space such that V is continuously embedded

into U . We then denote by IU the embedding from V into U and IU the

mapping identifying U as a subspace of V ′, i.e.,

〈IUu, v〉 := (IUu, IUv)U ,∀u, v ∈ V.

The exact controllability problem may be formulated as follows: for all

u0 ∈ H, we are looking for a time T > 0 and a control J ∈ L2(]0, T [;U)

such that the solution u of

(18)





∂u

∂t
−A1u = J in V ′, t ≥ 0,

u(0) = u0,

satisfies

(19) u(T ) = 0.

Theorem 4.1. If the assumptions (3) to (8) hold for the pair

(A1, IU) and if the pair (A1, IU) satisfies the stabilility estimate, then

for T > 0 sufficiently large, for all u0 ∈ H there exist a control J ∈
L2(]0, T [;U) such that the solution u ∈ C([0, T ],H) of (18) is at rest a

time T, i.e., satisfies (19).
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Proof. For concrete problems the proof is quite standard. We adapt

it to our abstract setting as follows. For further purposes we prefer to

solve the inverse problem (so that the asumption “(A1, IU) satisfies the

stabilility estimate” is replaced by “(−A1, IU) satisfies the stabilility es-

timate”): Given p0 ∈ H, we are looking for K ∈ L2(]0, T [;U) such that

the solution p ∈ C([0, T ],H) of

(20)





∂p

∂t
+ A1p = K in V ′, t ≥ 0,

p(T ) = p0,

satisfies

(21) p(0) = 0.

Indeed if the above problem has a solution the conclusion follows by

setting

u(t) = −p(T − t).

We solve problem (20) and (21), using a backward and an inward system

with linear boundary feedbacks IU : First given f0 in H, we consider

f ∈ C([0, T ],H) the unique solution of

(22)





∂f

∂t
+ A1f − IUf = 0 in H, t ≥ 0,

f(T ) = f0.

Its existence following from Lemma 2.1 by setting ũ(t) = f(T − t). More-

over applying Theorem 3.3 to ũ(t) we get

(23) E(f(t)) ≤ Me−ω(T−t)E(f0).

Second we consider g ∈ C([0, T ],H) the unique solution of (whose exis-

tence and uniqueness still follow from Lemma 2.1)

(24)





∂g

∂t
+ A1g + IUg = 0 in H, t ≥ 0,

g(0) = f(0).
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We now take p = g − f . From (22) and (24), p satisfies (20) with

(25) K = −IUg − IUf.

Let us further consider the mapping Λ from H to H defined by

Λ(f0) = g(T ).

We show that for T > 0 such that d := Me−ωT < 1, the mapping Λ − I

is invertible by proving that ‖Λ‖
L(H,H) =
√
d. Indeed using successively

the definition of Λ, Lemma 2.1, the initial condition of problem (24) and

the estimate (23) we have

‖Λf0‖2
H = 2E(g(T )) ≤ 2E(g(0)) ≤
≤ 2E(f(0)) ≤ 2Me−ωTE(f0) = d‖f0‖2

H.

Since Λ − I is invertible for any p0 ∈ H, there exists a unique f0 ∈ H
such that

(26) p0 = p(T ) = g(T ) − f(T ) = (Λ − I)f0.

The proof will be complete if we can show that K ∈ L2(]0, T [;U). For

that purpose, we remark that Lemma 2.1 (identity (11) applied to ũ and

g which has a meaning thanks to the hidden regularity) yields

E(f(T )) − E(f(0)) =

∫ T

0

‖IUf(t)‖2
U dt,

E(g(0)) − E(g(T )) =

∫ T

0

‖IUg(t)‖2
U dt.

Summing these two identities and using the initial condition of prob-

lem (24), the final condition of (22) and the definition of Λ, we obtain

∫ T

0

(‖IUf(t)‖2
U + ‖IUg(t)‖2

U) dt = E(f(T )) − E(g(T )) ≤ 1

2
‖f0‖2

H.

Using the identity (26) and the boundedness of (I−Λ)−1 we finally arrive

at the estimate

(27)

∫ T

0

(‖IUf(t)‖2
U+‖IUg(t)‖2

U)dt≤ 1

2
‖(I−Λ)−1p0‖2

H ≤ 1

2(1 −
√
d)2

‖p0‖2
H.

This proves that K given by (25) belongs to L2(]0, T [;U).
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Remark 4.2. Thanks to the assumptions (5) and (6) the (weak) solu-

tion p ∈ C([0, T ];H) of (20) and (21) can be approximated (inC([0, T ];H))

by a sequence pε ∈ W 1,∞(IR+,H)∩L∞(IR+,V), ε > 0, of (strong) solution

of (20) with Kε ∈ L2(]0, T [;U) and p0ε ∈ V such that

Kε → K in L2(]0, T [;U) as ε → 0,(28)

IUpε → IUp in L2(]0, T [;U) as ε → 0.(29)

Indeed as f0 = (Λ − I)−1p0, by (5), there exists f0ε ∈ D(A) such that

(30) ‖f0 − f0ε‖H ≤ ε.

Consider fε the strong solution of (22) with final datum f0ε. By the

dissipativeness of the energy, we get

(31) ‖f(t) − fε(t)‖H ≤ ‖f0 − f0ε‖H ≤ ε,∀t ∈ [0, T ].

Similarly since fε(0) belongs to H, by (6), there exists g0ε ∈ D(A−) such

that

(32) ‖g0ε − fε(0)‖H ≤ ε.

We then consider gε the strong solution of (24) with initial datum g0ε.

The dissipativeness of the energy yields

‖g(t) − gε(t)‖H ≤ ‖g(0) − g0ε‖H ≤
≤ ‖f(0) − fε(0)‖H + ‖fε(0) − g0ε‖H ≤ 2ε,∀t ∈ [0, T ],

by (31) and (32).

The estimates (31) and (33) show that pε := gε−fε tends to p = g−f

in C([0, T ];H) as ε goes to 0. Finally by Lemma 2.1 we may write

∫ T

0

‖IU(f(t) − fε(t))‖2
U dt ≤ 2‖f0 − f0ε‖2

H
∫ T

0

‖IU(g(t) − gε(t))‖2
U dt ≤ 2‖g(0) − gε(0)‖2

H.

These two estimates, the estimates (30), (33) and the definitions of Kε :=

−IUgε − IUfε, of pε, K and p lead to the properties (28) and (29).
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5 – Stability in the nonlinear case

Here we use Liu’s principle [28] and an integral inequality from [7] to

deduce decay rates of the energy using appropriate nonlinear feedbacks.

In view of the examples below we assume that the control space U is of

the form

(34) U =
J∏

j=1

Uj,

where for all j = 1, · · · , J ∈ IN� := IN \ {0}, Uj is a closed subspace of

L2(Xj, µj)
Nj , when (Xj, �Aj, µj) is a measure space such that µj(Xj) <

∞ and Nj ∈ IN�. For all j = 1, · · · , J , we suppose given a mapping

gj : IRNj → IRNj such that

(gj(x) − gj(y)) · (x− y) ≥ 0,∀x, y ∈ IRNj (monotonicity),(35)

gj(0) = 0,(36)

|gj(x)| ≤ M(1 + |x|),∀x ∈ IR3,(37)

for some positive constant M . We finally suppose that B is given by

(38) 〈Bu, v〉 =
J∑

j=1

∫

Xj

gj((IUu)j(xj)) · (IUv)j(xj) dµj(xj),

where we recall that IU is the embeding from V to U and therefore (IUu)j
is the jth component of IUu.

Remark that the conditions (35) and (36) guarantee the assump-

tion (8) on B, while (37) guarantees that B is well defined. In most

examples these conditions guarantee that the assumptions (3) and (4)

hold (see Section 6 for some illustrations). We further remark that these

conditions always hold for gj(x) = x, corresponding to linear controls,

i.e., B = IU .

We now recall the integral inequality obtained in [7] (compare with

Theorem 9.1 of [22] or its extension by P. Martinez [31], [32]).

Theorem 5.1. Let E : [0,+∞) → [0,+∞) be a non-increasing

mapping satisfying

(39)

∫ ∞

S

φ(E(t)) dt ≤ TE(S),∀S ≥ 0,
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for some T > 0 and some strictly increasing convex mapping φ from

[0,+∞) to [0,+∞) such that φ(0) = 0. Then there exist t1 > 0 and c1

depending on T and E(0) such that

(40) E(t) ≤ φ−1

(
ψ−1(c1t)

c1Tt

)
,∀t ≥ t1,

where ψ is defined by

(41) ψ(t) =

∫ 1

t

1

φ(s)
ds,∀t > 0.

Remark 5.2. Theorem 5.1 yields exactly the same decay rate as

in Theorem 9.1 of [22] when φ(t) = t1+α for some α > 0 (case leading

to polynomial decay). Note furthermore that the integral inequality of

P. Martinez [31], [32] is different from our integral inequality but gives

similar asymptotic behaviour for the energy.

We now give the consequence of this result to our system (9).

Theorem 5.3. Assume that the assumptions (3) to (8) hold for the

pairs (A1, B) and (A1, IU). Let gj, j = 1, · · · , J satisfy (35) to (37) as

well as

gj(x) · x ≥ m|x|2,∀x ∈ IRNj : |x| ≥ 1,(42)

|x|2 + |gj(x)|2 ≤ G(gj(x) · x),∀x ∈ IRNj : |x| ≤ 1,(43)

for some positive constant m and a concave strictly increasing function

G : [0,∞) → [0,∞) such that G(0) = 0. If the pair (−A1, IU) satisfies

the stabilility estimate, then there exist c2, c3 > 0 and T1 > 0 (depending

on T , E(0), µj(Xj), j = 1, · · · , J) such that

(44) E(t) ≤ c3G

(
ψ−1(c2t)

c2Tt

)
,∀t ≥ T1,

for all solution u of (9), where ψ is given by (41) for φ defined by

(45) φ(s) = TµG−1

(
s

c3

)
,

where µ = minj=1,··· ,J µj(Xj).
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Proof. By the density of D(A) into H, it suffices to prove (44)

for data in D(A). In that case let u be the (strong) solution of (9)

and consider p the solution of problem (20) and (21) with p0 = u(T ) ∈
D(A) with T > 0 sufficiently large (whose existence was established in

Theorem 4.1). Consider further a sequence pε of strong solution of (20)

with final data p0ε tending to p in C([0, T ],H) as ε goes to zero and

satisfying (28) and (29) (see Remark 4.2).

By (9) and (20) we may write

〈∂tu + A1u + Bu, pε〉V′,V + 〈∂tpε + A1pε −Kε, u〉V′,V = 0.

This may be written equivalently

(∂tu, pε)H + (∂tpε, u)H + 〈A1u, pε〉V′,V + 〈A1pε, u〉V′,V+

+ 〈Bu, pε〉V′,V − 〈Kε, u〉V′,V = 0

As the assumption (7) yields

〈A1u, pε〉V′,V + 〈A1pε, u〉V′,V = 0,

the above identity reduces to

(∂tu, pε)H + (∂tpε, u)H + 〈Bu, pε〉V′,V − 〈Kε, u〉V′,V = 0

Integrating this identity for t ∈ (0, T ), we get

(u(T ), pε(T ))H − (u(0), pε(0))H +

∫ T

0

(〈Bu, pε〉V′,V − 〈Kε, u〉V′,V) dt = 0.

By the definitions of Kε and B we arrive at

(u(T ), pε(T ))H − (u(0), pε(0))H =

∫ T

0


(Kε, IUu)U +

−
J∑

j=1

∫

Xj

gj((IUu)j(xj)) · (IUpε)j(xj) dµj(xj)


 dt
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Passing to the limit in ε and using the initial and final conditions on p,

we have obtained

2E(T )=

∫ T

0


(K, IUu)U −

J∑

j=1

∫

Xj

gj((IUu)j(xj)) · (IUp)j(xj) dµj(xj)


 dt

Cauchy-Schwarz’s inequality leads finally to

(46)

2E(T ) ≤ ‖K‖L2(0,T ;U)‖IUu‖L2(0,T ;U)+

+ ‖IUp‖L2(0,T ;U)




J∑

j=1

∫ T

0

∫

Xj

|gj((IUu)j(xj))|2 dµj(xj)dt




1/2

.

Let us remark that the estimate (27) and the final conditions on p yield

∫ T

0

(‖IUf(t)‖2
U + ‖IUg(t)‖2

U) dt ≤ 1

(1 −
√
d)2

E(T ).

This estimate, the definition of K and p = g − f lead to

∫ T

0

‖K(t)‖2
U dt ≤ 2

(1 −
√
d)2

E(T )

∫ T

0

‖IUp(t)‖2
U dt ≤ 2

(1 −
√
d)2

E(T ).

Inserting these estimates in (46) we arrive at

(47)

E(T ) ≤ 1

(1 −
√
d)2

×

×



J∑

j=1

∫ T

0

∫

Xj

{|(IUu)j(xj)|2+|gj((IUu)j(xj))|2} dµj(xj)dt


 .

We now estimate the right-hand side of (47) as follows: For all j =

1, · · · , J introduce

Σ+
j = {(x, t) ∈ Xj × (0, T )||(IUu)j(x, t)| > 1},

Σ−
j = {(x, t) ∈ Xj × (0, T )||(IUu)j(x, t)| ≤ 1}.
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Let us split up

∫ T

0

∫

Xj

{|(IUu)j(xj)|2 + |gj((IUu)j(xj))|2} dµj(xj) dt = I+
j + I−j ,

where

I+
j :=

∫

Σ+
j

{|(IUu)j(xj)|2 + |gj((IUu)j(xj))|2} dµj(xj) dt,

I−j :=

∫

Σ−
j

{|(IUu)j(xj)|2 + |gj((IUu)j(xj))|2} dµj(xj) dt.

The assumptions (42) and (37) lead to

I+
j ≤ c4

∫

Σ+
j

(IUu)j(xj) · gj((IUu)j(xj)) dµj(xj)dt,

for some positive constant c4 (depending on m and M). By (11) and the

property

(48) gj(x) · x ≥ 0,∀x ∈ IRNj ,

following from (35) and (36) we arrive at

(49) I+
j ≤ c4(E(0) − E(T )).

Similarly by the assumption (43) and the monotonicity of G we have

I−j ≤
∫

Σ−
j

G((IUu)j(xj) · gj((IUu)j(xj))) dµj(xj)dt ≤

≤
∫ T

0

∫

Xj

G((IUu)j(xj) · gj((IUu)j(xj))) dµj(xj)dt.

Jensen’s inequality then yields

I−j ≤Tµj(Xj)G

(
1

Tµj(Xj)

∫ T

0

∫

Xj

(IUu)j(xj) · gj((IUu)j(xj))dµj(xj)dt

)
.
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By (11), we arrive at

(50) I−j ≤ Tµj(Xj)G

(E(0) − E(T )

Tµj(Xj)

)
.

The estimates (49) and (50) into the estimate (47) and the monotonicity

of G give

E(T ) ≤ c5

{
E(0) − E(T ) + G

(E(0) − E(T )

Tµ

)}
,

for some positive constant c5 (depending on T and maxj µj(Xj)), where

we recall that µ = minj µj(Xj). This finally leads to

E(0)=E(0)−E(T )+E(T )≤max{1, c5}
{
(E(0)− E(T ))+G

(E(0)− E(T )

Tµ

)}
.

As E(0)−E(T )

Tµ
≤ E(0)

Tµ
, the concavity of G yields a constant c6 (depending

continuously on T , E(0) and µ) such that

E(0) − E(T )

Tµ
≤ c6G

(E(0) − E(T )

Tµ

)
.

These two estimates lead to

E(0) ≤ c3G

(E(0) − E(T )

Tµ

)
,

for some c3 > 0 (depending on T , E(0), maxj µj(Xj), and minj µj(Xj)).

Using this argument in [t, t+T ] instead of [0, T ] we have shown that

(51) E(t) ≤ c3G

(E(t) − E(t + T )

Tµ

)
= φ−1(E(t) − E(t + T )),∀t ≥ 0,

when we recall that φ was defined by (45).

We conclude by Theorem 5.1 since Lemma 5.1 of [7] shows that the

estimate (51) guarantees that E actually satisfies (39).
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The assumption (42) forbids the use of bounded functions gj which

could be a drawback for some applications. Our next purpose is to obtain

a variant of the above result when some mappings gj do not satisfy (42)

adapting the arguments of Theorem 9.10 of [22]. The price to pay is to

assume some regularity results for elements of D(A).

Theorem 5.4. Assume that the assumptions (3) to (8) hold for the

pairs (A1, B) and (A1, IU). Let gj, j = 1, · · · , J satisfy (35) to (37) as well

as (43) for some concave strictly increasing function G : [0,∞) → [0,∞)

such that G(0) = 0. Assume further that J = J1 ∪ J2 with J1 ∩ J2 = ∅,
that for all j ∈ J1, gj satisfies (42) and there exists c7 > 0 and α > 2

such that for all j ∈ J2 and all u ∈ D(A), (IUu)j belongs to Lα(Xj, µj)

with the estimate

(52)

(∫

Xj

|(IUu)j(xj)|α dµj(xj)

)1/α

≤ c7‖u‖D(A),

where we recall that ‖u‖D(A) = ‖Au‖H + ‖u‖H. If the pair (−A1, IU)

satisfies the stabilility estimate, then for every u0 ∈ D(A), the solution u

of (9) satisfies

(53) E(t) ≤ c3G1

(
ψ−1

1 (c2t)

c2Tt

)
,∀t ≥ T1,

for some c2, c3 > 0 and T1 > 0 (depending on T , E(0), µj(Xj), j =

1, · · · , J , α and ‖u0‖D(A)), where ψ1 is given by (41) for φ1 defined by (45)

with G1 instead of G, the function G1 being defined by

G1(x) = G(x) + xs,∀x ≥ 0,

with s = α−2
α−1

∈ (0, 1).

Proof. We repeat the proof of Theorem 5.3 except for the estimation

of I+
j when j ∈ J2, where we now obtain the following estimation: First

by (37) we remark that

(54) I+
j ≤ (1 + 4M 2)J+

j .
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where

J+
j :=

∫

Σ+
j

|(IUu)j(xj)|2 dµj(xj).

So it remains to estimate J+
j . For that estimation we remark that the

assumption (43) yields

(55) gj(x) · x ≥ mj|x|,∀x ∈ IRNj : |x| ≥ 1,

for some positive constant mj. Indeed we notice that (43) and the prop-

erty G(0) = 0 directly imply that

gj(ξ) · ξ > 0,∀|ξ| = 1.

Denoting by mj = min|ξ|=1(gj(ξ) · ξ) we have already proved (55) for

|x| = 1. For |x| > 1 let ξ = x/|x|, then by the monotonicity of gj we have

(gj(x) − gj(ξ)) · (|x| − 1)ξ ≥ 0,

which implies

gj(x) · ξ ≥ gj(ξ) · ξ ≥ mj.

Multiplying this inequality by |x|, we arrive at (55).

Now using (55) we may write

J+
j ≤ m−s

j

∫

Σ+
j

|(IUu)j(xj)|2−s((IUu)j(xj) · gj((IUu)j(xj))
s dµj(xj).

By Hölder’s inequality we get

J+
j ≤ m−s

j

(∫

Σ+
j

|(IUu)j(xj)|
2−s
1−s dµj(xj)

)1−s

×

×
(∫

Σ+
j

(IUu)j(xj) · gj((IUu)j(xj)) dµj(xj)

)s

.

By (11) and the assumption (52) (since α = 2−s
1−s

) we conclude that

(56) J+
j ≤ c8(E(0) − E(T ))s,
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where c8 > 0 depends on T , α and ‖u0‖D(A) (since Komura-Kato’s theo-

rem (see for instance Proposition IV.3.1 of [42] and Lemma 2.1 guarantee

that ‖u(t)‖D(A) ≤ ‖u0‖D(A)).

As before the estimates (50), (54) and (56) into the estimate (47)

and the monotonicity of G give

E(T ) ≤ c9

{
E(0) − E(T ) + G

(E(0) − E(T )

Tµ

)
+ (E(0) − E(T ))s

}
,

for some positive constant c9 depending on T , µj(Xj), j = 1, · · · , J , α

and ‖u0‖D(A). The concavity of G and of the mapping x → xs yields

E(0) ≤ c3G1

(E(0) − E(T )

Tµ

)
.

The conclusion follows as previously.

Remark 5.5. In (42) (resp. (43)) the proviso |x| ≥ 1 (resp. |x| ≤ 1)

may be replaced by |x| ≥ η (resp. |x| ≤ η), for some η > 0 without

changing the conclusion of Theorem 5.3 or Theorem 5.4.

Examples of functions gj leading to an explicit decay rate (44) or (53)

are given in [7]. Let us give the following illustrations.

Example 5.6. Suppose that gj satisfies (35) to (37) and (42) as

well as

(57) x · gj(x) ≥ c0|x|p+1, |gj(x)| ≤ C0|x|α,∀|x| ≤ 1,

for some positive constants c0, C0, α ∈ (0, 1] and p ≥ α. Then gj satis-

fies (43) with G(x) = x
2

q+1 and q = p+1
α

− 1 (which is ≥ 1). If p = α = 1

(then q = 1) and under the other assumptions of Theorem 5.3 we get an

exponential decay (since ψ−1(t) = e−t). On the contrary if p + 1 > 2α

then we get the decay t−
2α

p+1−2α (since ψ−1(t) = t
2

1−q ). A function g

satisfying all these assumptions is given by

g(x) =

{
|x|α−1x if |x| ≤ 1,

x if |x| ≥ 1,

for some α ∈ (0, 1]. In that case (57) holds for p = α.
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In the setting of Theorem 5.4 it suffices to take gj satisfying (35) to

(37) and (57) to get the decay rate t
− 2

q′−1 with q′ = min{q, 2
s
− 1}. Such

a g is given by

g(x) =





|x|α−1x if |x| ≤ 1,
x

|x| if |x| ≥ 1,

for some α ∈ (0, 1], which satisfies (57) for p = α.

Example 5.6 (Logarithmic decay). Take gj(ξ) = exp(− 1

|ξ|2pj
) ξ
|ξ|2

for |ξ| small enough and for pj > 0. Then by Example 2.4 of [7] (43)

holds with

G(x) =
C

| log x| 1p

and p = maxj pj and some constant C > 0. In the setting of Theorem 5.3

or Theorem 5.4 we will get the decay

E(t) ≤ C

| log t| 1p
,

since ψ−1 is bounded from below.

Example 5.8 (Log-Log decay). Take gj(ξ) = exp(− exp(1/|ξ|2p)) ξ
|ξ|2

for |ξ| small enough and for p > 0. Then by Example 2.5 of [7] (43) holds

with

G(x) =
C

| log | log x|| 1p

and some constant C > 0. In the setting of Theorem 5.3 or Theorem 5.4

we will get the decay

E(t) ≤ C

| log | log t|| 1p
.

Note that combinations of the above examples give rise to the worse

decay rate.
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6 – Examples

6.1 – Second order evolution equations

Some examples given below enter in the following framework: Let H

and V be two real separable Hilbert spaces such that V is densely and

continuously embedded into H. Define the linear operator A2 from V

into V ′ by

(58) 〈A2u, v〉V ′−V = (u, v)V ,∀u, v ∈ V,

and suppose given a (nonlinear) mapping B2 from V into V ′.

Consider now the second order evolution equation




∂2u

∂t2
+ A2u + B2

∂u

∂t
= 0 in V ′, t ≥ 0,

u(0) = u0,
∂u

∂t
(0) = u1.

This system is reduced to the first order system (9) using the standard

argument of reduction of order: setting H = V × H, V = V × V with

natural inner products,

x = (u, z),

with z = ∂u
∂t

(from now on we use the letter x for generic elements of H
since the letter u is already used in (59) as usual) and introducing the

operators

A1x = (−z,A2u), Bx = (0, B2z).

Under appropriate assumptions on B2, we can prove the

Theorem 6.1. If B2 is monotone, hemicontinuous, bounded and

satisfies B20 = 0, then the assumptions (3) to (8) hold for the pair

(A1, B).

Proof. In the above setting we see that

D(A±) = {x = (u, z) ∈ V| ±A2u + B2z ∈ H}.

To check the assumptions (3) and (4), from the definitions of A1, A2 and

the inner product in H we easily verify that

(A±(u, z) −A±(u′, z′), (u, z) − (u′, z′))H = 〈B2z −B2z
′, z − z′〉V ′−V .

The monotonicity of A± then follows from the same property on B2.
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Let us pass to the maximality of A±: for all (f, g) ∈ H we are looking

for (u, z) ∈ D(A±) such that

u∓ z = f in V,

z ±A2u + B2z = g in H.

The first identity is equivalent to

u = ±z + f in V,

and eliminating u in the second identity we obtain

z + A2z + B2z = g ∓ f in V ′.

The solvability of this problem is equivalent to the surjectivity of the

operator

A : V → V ′ : z → z + A2z + B2z.

For that purpose we make use of Corollary 2.2 of [42] which proves that A

is surjective if A is monotone, hemicontinuous, bounded and coercive.

The first three properties easily follows from the same property of B2.

The coercivity also easily follows from the fact that

〈Az, z〉V ′−V = ‖z‖2
H + ‖z‖2

V + 〈B2z, z〉V ′−V ≥ ‖z‖2
V ,

this last inequality following from the property 〈B2z, z〉V ′−V ≥ 0 conse-

quence of the monotonicity of B2 and the property B20 = 0.

The assumptions (5) and (6) are reduced to the density of D(A) since

we easily check that (u, z) ∈ D(A) if and only if (−u, z) ∈ D(A−). Let

us now fix (u, z) in H, then let ũ ∈ V be the unique solution of

A2ũ = −B2z,

whose existence follows from Lax-Milgram’s lemma. Applying Theo-

rem III.2.B of [41] there exists a sequence of un ∈ D(A2) such that

un → u− ũ in V, as n → ∞,



106 S. NICAISE [24]

where A2 is the Friedrichs extension of A2. We conclude by remarking

that (ũ + un, z) belongs to D(A) and tends to (u, z) in H.

The assumption (7) follows from the identity

〈A1x, x〉 = −(z, u)V + 〈A2u, z〉V ′−V ,

and the definition of A2. Finally the assumption (8) follows from the

identity

〈Bx, x〉 = 〈B2z, z〉V ′−V ,

and the positiveness of B2.

In view of this theorem the assumptions (3) to (8) are reduced to the

verification of the above properties of B2 that we now check for different

systems.

In the rest of the section Ω is a bounded domain of IRn, n ≥ 2 with a

Lipschitz boundary Γ. Some restrictions will be specified later on when

they will be necessary. We further denote by ν the unit outward normal

vector along Γ.

6.2 – Nonlinear stabilization of the wave equation

Consider the wave equation

(60)





∂2
t u− ∆u + f(∂tu) = 0 in Q := Ω×]0,+∞[,

u = 0 on Σ0 := Γ0×]0,+∞[,

∂νu + au + g(∂tu) = 0 on Σ1 := Γ1×]0,+∞[,

u(0) = u0, ∂tu(0) = u1 in Ω,

where Γ0 is a open subset of Γ and Γ1 = Γ \ Γ̄0 is the remainder. The

functions f and g are two nondecreasing continuous functions from IR

into itself such that f(0) = g(0) = 0 and finally a is a nonnegative real

number. For the sake of simplicity we suppose that

(61) either Γ0 is not empty or a > 0,

and that

(62) Γ̄0 ∩ Γ̄1 = ∅.
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The stability of this problem was extensively studied in the litterature,

let us cite the papers [18], [19], [20], [23], [22], [43], [26], [10] and the

references cited there. Both papers are restricted to some particular

choices of Γ0, a, f and g leading to some exponential or polynomial decay

rates of the energy of the solution of (60). In [25], [29], [31], [32], [33],

[34], some arbitrary decay rates are obtained for different f and g (even

with degenerate or local dissipations). Using the results of the previous

sections, we also obtain arbitrary decay rates for a large class of f and g.

The first point is that problem (60) enters in the framework of prob-

lem (59) from Subsection 6.1 once we take:

H = L2(Ω),

V = {v ∈ H1(Ω)|v = 0 on Γ0},
(u, v)V =

∫

Ω

∇u · ∇v dx + a

∫

Γ1

u · v dσ,

〈B2u, v〉V ′−V =

∫

Ω

f(u)v dx +

∫

Γ1

g(u)v dσ, ∀u, v ∈ V.

Let us remark that the assumption (61) implies that the inner product

(·, ·)V induces a norm on V equivalent to the usual one. In order to give

a meaning to B2 we simply require

|f(x)| ≤ C(1 + |x|α),∀x ∈ IR,(63)

|g(x)| ≤ C(1 + |x|β),∀x ∈ IR,(64)

for some positive constant C, where α = n+2
n−2

and β = n
n−2

if n ≥ 3 and

α, β ≥ 1 if n = 2.

Now we readily check that these assumptions guarantee that B2 fulfils

all the assumptions of Theorem 6.1. Consequently the corresponding pair

(A1, B) satisfies the assumptions (3) to (8). In order to deduce stability

results for our system (60) we need to check that the pair (−A1, IU)

satisfies the stability estimate (note that we just check that the pair

(−A1, IU) satisfies the assumptions (3) to (8)), where the control space

U is clearly defined by

U = L2(Ω) × L2(Γ1).
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This stability estimate was proved in Theorem 1.2 of [10] under the as-

sumption that there exists x0 ∈ IRn such that

m · ν > 0 on Γ1,m · ν ≤ 0 on Γ0,(65)

1

R2
max{n− 2, n/3} ≤ a(m · ν) <

n

R2
on Γ1,(66)

where as usual m is the standard multiplier defined by

m(x) = x− x0,∀x ∈ IRn,

and R = maxx∈Ω |m(x)|. Under these assumptions, appropriated condi-

tions on f and g lead to exponential, polynomial, logarithmic or other

decays. Note that bounded feedbacks are allowed since D(A) ↪→ H1(Ω)×
H1(Ω) ↪→ Lα(Ω)×Lα(Γ1), for some α > 2 consequently Theorem 5.4 may

be applied.

For f = 0 or g = 0 similar results hold (changing the control space U)

with less restrictions on Γ0 and Γ1, using the exponential decay with linear

feedbacks established in [18], [19], [20], [23], [22], [43], [26].

6.3 – Nonlinear stabilization of the elastodynamic system

With the notation of the above subsection, we consider the following

elastodynamic system:

(67)





∂2
t u−∇σ(u) + F (∂tu) = 0 in Q,

u = 0 on Σ0,

σ(u) · ν + au + G(∂tu) = 0 on Σ1,

u(0) = u0, ∂tu(0) = u1 in Ω.

As usual u(x, t) is the displacement field at the point x ∈ Ω at time t and

σ(u) = (σij(u))3i,j=1 is the stress tensor given by (here and in the sequel

we shall use the summation convention for repeated indices)

σij(u) = aijklεkl(u),

where ε(u) = (εij(u))3i,j=1 is the strain tensor given by

εij(u) =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
,



[27] Stability and controllability of an abstract evolution etc. 109

and the tensor (aijkl)i,j,k,l=1,2,3 is made of W 1,∞(Ω) entries such that

aijkl = ajikl = aklij,

and satisfying the ellipticity condition

aijklεijεkl ≥ αεijεij,

for every symmetric tensor (εij) and some α > 0. Hereabove and below

∇σ(u) is the vector field defined by

∇σ(u) = (∂jσij(u))3i=1.

The mappings F and G from IRn into itself satisfy the assumptions (35)

to (37). Finally a is a nonnegative real number.

As before we suppose that (61) and (62) hold, but here we further

assume that

(68) F = 0 or G = 0.

This last assumption means that we stabilizate our system either by

boundary feedback or by internal feedback.

The stability of the system (67) was considered in [11], [13], [15], [1],

[4] under some particular hypotheses on Γ0, Γ1, a, F and G leading to

exponential or polynomial decay of the energy of the solution of (67).

As in the above subsection problem (67) may be expressed in the

form (59) from Subsection 6.1 with the choices:

H = L2(Ω)n,

V = {v ∈ H1(Ω)n|v = 0 on Γ0},
(u, v)V =

∫

Ω

∇u · ∇v dx + a

∫

Γ1

u · v dσ,

〈B2u, v〉V ′−V =

∫

Ω

F (u) · v dx +

∫

Γ1

G(u) · v dσ, ∀u, v ∈ V.

The assumptions made on F and G imply that B2 fulfils the assumptions

of Theorem 6.1, consequently the corresponding pair (A1, B) satisfies the
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assumptions (3) to (8). For the stability results we need to check that the

pair (−A1, IU) satisfies the stability estimate, where the control space U

is defined by
U = L2(Γ1)

n if F = 0,

U = L2(Ω)n if G = 0.

In the first case the stability estimate was proved in [4] under the as-

sumption (65) (a similar estimate was proved in [11], [1] under stronger

assumptions on Γ0 and Γ1). If the tensor (aijkl) corresponds to the Lamé

system, then the stability estimate was proved in Lemma 3.2 of [15] under

the weaker assumption

m · ν ≤ 0 on Γ0.

In the second case (i.e. G=0), the stability estimate for the pair (−A1, IU)

was proved in Lemma 3.6 of [13].

As in the previous subsection, these conditions (on Γ0, Γ1 and the

coefficients (aijkl)) and appropriated conditions on F and G lead to expo-

nential, polynomial, logarithmic or other decays. Bounded feedbacks are

also allowed due to the embedding H1(Ω) ×H1(Ω) ↪→ Lα(Ω) × Lα(Γ1),

for some α > 2.

6.4 – Nonlinear stabilization of a coupled system

We consider the following coupled system in a bounded domain Ω

with a C4-boundary:

(69)





∂2
t u1 + ∆2u1 + au2 + g1(∂tu1, ∂tu2) = 0 in Q,

∂2
t u2 − ∆u2 + au1 + g2(∂tu1, ∂tu2) = 0 in Q,

u1 = ∂νu1 = u2 = 0 on Σ = Γ×]0,∞[,

ui(0) = u0i, ∂tui(0) = u1i in Ω, i = 1, 2.

Here gi are mappings from IR2 into IR such that the mapping G from IR2

into IR2 defined by

G(x, y) = (g1(x, y), g2(x, y)),

satisfies the assumptions (35) to (37). Finally a is a scalar function that

we assume to be in L∞(Ω).
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The above system was considered in [14] when g1 (resp. g2) only

depends on ∂tu1 (resp. ∂tu2). In that case this author proves exponential

or polynomial decay rates under appropriated conditions on a, g1 and

g2. Let us notice that if a = 0 and if g1 (resp. g2) only depends on ∂tu1

(resp. ∂tu2), then the above system is splitted up into the wave equation

considered in Subsection 6.2 and the standard Petrovsky system studied

in [12]. Our subsequent analysis then covers the analysis of this last

Petrovsky system.

First problem (69) is in the form (59) with the definitions (see [14]):

H = L2(Ω)2,

V = H2
0 (Ω) ×H1

0 (Ω),

((u1, u2), (v1, v2))V =

∫

Ω

(∆u1∆u2 + ∇u2 · ∇v2) dx+

+

∫

Ω

a (u1v2 + u2v1) dσ,

〈B2(u1, u2), (v1, v2)〉V ′−V =

∫

Ω

(g1(u1, u2)v1 + g2(u1, u2)v2) dx,

∀(u1, u2), (v1, v2) ∈ V.

The assumptions made on g1 and g2 imply that B2 fulfils the assumptions

of Theorem 6.1, consequently the corresponding pair (A1, B) satisfies the

assumptions (3) to (8). For the stability results we need to check that the

pair (−A1, IU) satisfies the stability estimate when the control space U

is given by U = L2(Ω)2. This stability estimate was proved in Lemma 3.1

of [14] under the assumption

‖a‖L∞(Ω) <
1

c′c”
,

where c′, c” > 0 are the constants appearing in the above Poincaré type

inequalities:

‖u‖2
H2(Ω) ≤ c′

∫

Ω

(∆u)2 dx,∀u ∈ H2
0 (Ω),

‖u‖2
H1(Ω) ≤ c”

∫

Ω

|∇u|2 dx,∀u ∈ H1
0 (Ω).
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This condition and appropriated conditions on g1 and g2 lead to expo-

nential, polynomial, logarithmic or other decays. As before bounded

feedbacks are also allowed.

6.5 – Nonlinear stabilization of Maxwell’s equations

We consider Maxwell’s equations in Ω ⊂ IR3 with a smooth boundary

and a nonlinear internal feedback:

(70)





ε
∂E

∂t
− curlH + g(E) = 0 in Q := Γ×]0,+∞[,

µ
∂H

∂t
+ curlE = 0 in Q,

div(µH) = 0 in Q,

E × ν = 0, H · ν = 0 on Σ := Γ×]0,+∞[,

E(0) = E0, H(0) = H0 in Ω.

As usual ε and µ are real, positive functions of class C∞(Ω̄). The func-

tion g from IR3 into itself is assumed to satisfy the properties (35) to (37).

The stability of this system was studied in [39] with a linear feedback

g(E) = σE, with σ ≥ 0. In particular the exponential decay was shown

in that paper if σ ≥ σ0 > 0.

Contrary to the above examples this system is not a second order

system but (compare with [7]) it enters in the setting of (9) once we set

H = L2(Ω)3 × Ĵ(Ω, µ),

Ĵ(Ω, µ) = {H ∈ L2(Ω)3 :div(µH)=0 in Ω, H · ν = 0 on Γ},
((E,H), (E′, H ′))H =

∫

Ω

(εE · E′ + µH ·H ′) dx,

V = V × Ĵ(Ω, µ),

V = {E ∈ L2(Ω)3 : curlE ∈ L2(Ω)3, E × ν = 0 on Γ},
〈A1(E,H), (E′, H ′)〉 =

∫

Ω

(curlE ·H ′ −H · curlE′) dx,

〈B(E,H), (E′, H ′)〉 =

∫

Ω

g(E × ν) · (E′ × ν) dσ.

One readily checks (as in [7, Section 3]) that the assumptions (3) and (4)
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hold since the bilinear form
∫

Ω

(µ−1curlE · curlE′ + εE · E′) dx

is clearly coercive on V . Moreover Lemma 2.3 of [35] implies that (5)

and (6) hold. Finally from the definition of A1 (7) clearly holds, while

from the definition of B and the properties (35) and (36) satified by g, (8)

holds. As the results of Section 5 of [39] imply that the pair (−A1, IU)

satisfies the stability estimate when the control space U is given by U =

L2(Ω)3, we may conclude exponential, polynomial, logarithmic or other

decays under appropriated conditions on g. Here bounded feedbacks are

not allowed since V is not embedded into Lα(Ω)3 for some α > 2.

Let us finally notice that Maxwell’s equations with a nonlinear bound-

ary feedback

(71)





ε
∂E

∂t
− curlH = 0 in Q := Γ×]0,+∞[,

µ
∂H

∂t
+ curlE = 0 in Q,

div(εE) = div(µH) = 0 in Q,

H × ν + g(E × ν) × ν = 0 on Σ := Γ×]0,+∞[,

E(0) = E0, H(0) = H0 in Ω,

was studied in [3], [21], [39], [7], [36]. Different decay rates are avalaible

under different conditions on ε, µ and Γ and appropriated assumptions

on g. It was shown in [7] that (71) enters in the setting of (9), where the

assumptions (3) and (5) are also checked under some conditions on Ω, ε

and µ (similar arguments actually imply that (4) and (6) hold as well).

The stability analysis following the point of view of our paper is given

in [36]. We then refer to that paper for the details.
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