Stability and controllability of an abstract evolution equation of hyperbolic type and concrete applications

S. NICAISE

AbSTRACT: We consider the stability of an abstract evolution equation using Liu's principle based on the exponential stability of the inverse problem with a linear feedback and on an integral inequality. Russell's principle also yields some exact controllability results. Some concrete examples with new stability and controllability results illustrate the interest of our approach.

1 - Introduction

Stability of different systems of partial differential equations of hyperbolic type with linear or nonlinear feedbacks has been recently the object of several works. Let us quote the stability of the wave equation [18], [19], [20], [23], [22], [43], [26], [10] and the references cited there, of the Petrovsky system [11], [13], [15], [1], [4], of the elastodynamic system [1], [4], [13], of Mawxell's system [3], [21], [39], [7], [36] or combination of them [17], [37]. We actually remark that the approach of recent works

[^0]cited above has a similar structure, namely the use of Liu's principle and of some integral inequalities. Liu's principle consists in estimating the energy of the direct system by some terms related to the feedbacks using a retrograde system with final data equal to the final data of the direct system. These terms are then estimated using the exponential stability of the inverse (retrograde) problem with a linear feedback (based on Russell's principle) and an appropriated integral inequality. Therefore our goal is to present an abstract setting leading to the stability and controllability (via Russell's principle) of the abstract system, setting as large as possible to include all examples of the aforementioned papers and allowing even new applications.

More precisely we first present an abstract setting of hyperbolic type and including the above systems. General assumptions guarantee existence results as well as dissipativeness of the system. In a second step we show that the exponential decay of the energy of the solution is equivalent to the validity of a stability estimate, estimate that can be checked in some particular cases. In a third step we use the so-called Russell's principle "controllability via stability" to obtain controllability results for the abstract system. Finally using LiU's principle [28] and a new integral inequality from [7] we give sufficient conditions on a class of (quite general) feedbacks which lead to an explicit decay rate of the energy. The strength of our approach lies in the fact that the controllability and stability results (with general feedbacks) are only based on the stability estimate with a linear feedback, estimate that may be checked for an explicit problem by different techniques, like the multiplier method, microlocal analysis or any method entering in a linear framework (like nonharmonic analysis for instance). This approach was successfully initiated in [36] for Maxwell's system and is here extended to an abstract system. We further illustrate our approach by considering different examples for which new stability and controllability results are even obtained.

The schedule of the paper is the following one: the abstract setting and its well-posedness are analysed in Section 2. Section 3 is devoted to the equivalence between the exponential stability and the stability estimate. In Section 4 exact controllability results are deduced from Russell's principle. Section 5 is devoted to the stability results for a class of nonlinear feedbacks using Liu's principle. Some applications are presented in the last section.

2 - Abstract setting

In this section we describe a general abstract setting of hyperbolic type that will be used later on. It is motivated by the examples (and other ones) given in Section 6 which all enter in this setting.

Let us fix two real separable Hilbert spaces \mathcal{H}, \mathcal{V} with respective inner products $(., .)_{\mathcal{H}},(., .)_{\mathcal{V}}$ and such that \mathcal{V} is densely and continuously embedded into \mathcal{H}. Identifying \mathcal{H} with its dual \mathcal{H}^{\prime} we have the standard diagram:

$$
\mathcal{V} \hookrightarrow \mathcal{H}=\mathcal{H}^{\prime} \hookrightarrow \mathcal{V}^{\prime}
$$

We suppose given a bounded linear operator A_{1} from \mathcal{V} into \mathcal{V}^{\prime} and a (nonlinear) mapping B from \mathcal{V} into \mathcal{V}^{\prime}. We now define two (nonlinear) operators \mathcal{A}^{+}and \mathcal{A}^{-}as follows

$$
\begin{align*}
D\left(\mathcal{A}^{ \pm}\right) & =\left\{v \in \mathcal{V} \mid\left(\pm A_{1}+B\right) v \in \mathcal{H}\right\} \tag{1}\\
\mathcal{A}^{ \pm} & =\left(\pm A_{1}+B\right) v, \forall v \in D\left(\mathcal{A}^{ \pm}\right) \tag{2}
\end{align*}
$$

For shortness we often drop the superscript + at \mathcal{A}^{+}.
Motivated by the examples we introduce the following assumptions:
\mathcal{A}^{+}is maximal monotone,
\mathcal{A}^{-}is maximal monotone,
$D\left(\mathcal{A}^{+}\right)$is dense in \mathcal{H},
$D\left(\mathcal{A}^{-}\right)$is dense in \mathcal{H},
$\left\langle A_{1} u, u\right\rangle=0, \forall u \in \mathcal{V}$,
$\langle B u, u\rangle \geq 0, \forall u \in \mathcal{V}$,
where hereabove and below $\langle.,$.$\rangle means the duality pairing between \mathcal{V}^{\prime}$ and \mathcal{V}.

Lemma 2.1. Under the assumptions (3), (5), (7) and (8), the evolution equation

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}+A_{1} u+B u=0 \text { in } \mathcal{H}, t \geq 0 \tag{9}\\
u(0)=u_{0}
\end{array}\right.
$$

admits a unique (weak) solution $u \in C\left(\mathbb{R}_{+}, \mathcal{H}\right)$ for any $u_{0} \in \mathcal{H}$. If moreover $u_{0} \in D(\mathcal{A})$, the problem (9) admits a unique (strong) solution $u \in W^{1, \infty}\left(\mathbb{R}_{+}, \mathcal{H}\right) \cap L^{\infty}\left(\mathbb{R}_{+}, D(\mathcal{A})\right)$ and such that $u(t) \in D(\mathcal{A})$, for all $t \geq 0$.

This system is dissipative since its energy

$$
\mathcal{E}(t)=\frac{1}{2}\|u(t)\|_{\mathcal{H}}^{2}
$$

is non-increasing. Moreover for $u_{0} \in D(\mathcal{A})$, we have

$$
\begin{align*}
\mathcal{E}(S)-\mathcal{E}(T) & =\int_{S}^{T}\langle B u(t), u(t)\rangle d t, \forall 0 \leq S<T<\infty \tag{11}\\
\frac{d}{d t} \mathcal{E}(t) & =-\langle B u(t), u(t)\rangle, \forall t \geq 0 \tag{12}
\end{align*}
$$

Under the assumptions (4), (6), (7) and (8), the same results hold for \mathcal{A}^{-}(with the same expression for the energy and the same identities (11) and (12) for $\left.u_{0} \in D\left(\mathcal{A}^{-}\right)\right)$.

Proof. The first assertions follow from nonlinear semigroup theory [42]. For the second assertions it suffices to show (12) since $D(\mathcal{A})$ is dense in \mathcal{H}. For $u_{0} \in D(\mathcal{A})$, we have

$$
\frac{d}{d t} \mathcal{E}(t)=\left(\frac{\partial u}{\partial t}(t), u(t)\right)_{\mathcal{H}}=-(\mathcal{A} u(t), u(t))_{\mathcal{H}}
$$

by (9). From the definition of \mathcal{A} and the fact that $u(t) \in \mathcal{V}$, for all $t \geq 0$, we get

$$
\frac{d}{d t} \mathcal{E}(t)=-\left\langle A_{1} u(t), u(t)\right\rangle-\langle B u(t), u(t)\rangle
$$

This yields (12) owing to (7).
Remark 2.2. The identity (11) remains valid for $u_{0} \in \mathcal{H}$ indeed for a sequence $u_{0 n} \in D(\mathcal{A})$ such that $u_{0 n} \rightarrow u_{0}$ in \mathcal{H}, let u_{n} be the solution of (9) with initial datum $u_{0 n}$, then they fulfill

$$
\mathcal{E}_{n}(S)-\mathcal{E}_{n}(T)=\int_{S}^{T}\left\langle B u_{n}(t), u_{n}(t)\right\rangle d t
$$

Since the left-hand side tends to $\mathcal{E}(S)-\mathcal{E}(T)$ (because $u_{n} \rightarrow u$ in $C\left(\mathbb{R}_{+}, \mathcal{H}\right)$), the right-hand side admits also a limit that we denote by $\int_{S}^{T}\langle B u(t), u(t)\rangle d t$. This is the so-called hidden regularity of u.

3 - Exponential stability

In this section we find a necessary and sufficient condition which guarantees the exponential stability of (9). This condition is the validity of a stabilility estimate that will be checked in some particular cases in Section 6. We closely follow the arguments of the beginning of Section 3 of [36] given in the case of Mawxell's system and that can be easily extended to our abstract setting. The proofs are nevertheless given for the sake of completeness.

In the whole section we suppose that (3), (5), (7) and (8) hold.
We start with the following definition.
Definition 3.1. We say that the pair $\left(A_{1}, B\right)$ satisfies the stabilility estimate if there exist $T>0$ and two non negative constants C_{1}, C_{2} (which may depend on T) with $C_{1}<T$ such that

$$
\begin{equation*}
\int_{0}^{T} \mathcal{E}(t) d t \leq C_{1} \mathcal{E}(0)+C_{2} \int_{0}^{T}\langle B u(t), u(t)\rangle d t \tag{13}
\end{equation*}
$$

for all solution u of (9).
That property admits the following equivalent formulation:

Lemma 3.2. The pair $\left(A_{1}, B\right)$ satisfies the stabilility estimate if and only if there exist $T>0$ and a positive constant C (which may depend on T) such that

$$
\begin{equation*}
\mathcal{E}(T) \leq C \int_{0}^{T}\langle B u(t), u(t)\rangle d t \tag{14}
\end{equation*}
$$

for all solution u of (9).

Proof.

\Rightarrow : Since $\mathcal{E}(t)$ is non-increasing, the estimate (13) implies that

$$
T \mathcal{E}(T) \leq C_{1} \mathcal{E}(0)+C_{2} \int_{0}^{T}\langle B u(t), u(t)\rangle d t
$$

By Lemma 2.1 we get

$$
T \mathcal{E}(T) \leq C_{1} \mathcal{E}(T)+\left(C_{1}+C_{2}\right) \int_{0}^{T}\langle B u(t), u(t)\rangle d t
$$

This yields (14) with $C=\frac{C_{1}+C_{2}}{T-C_{1}}$.
\Leftarrow : From the monotonicity of \mathcal{E} we may write

$$
\int_{0}^{T} \mathcal{E}(t) d t \leq T \mathcal{E}(0)
$$

Again Lemma 2.1 yields

$$
\int_{0}^{T} \mathcal{E}(t) d t \leq \frac{T}{2} \mathcal{E}(0)+\frac{T}{2}\left(\mathcal{E}(T)+\int_{0}^{T}\langle B u(t), u(t)\rangle d t\right)
$$

Using the assumption (14) we obtain

$$
\int_{0}^{T} \mathcal{E}(t) d t \leq \frac{T}{2} \mathcal{E}(0)+\frac{T}{2}(1+C) \int_{0}^{T}\langle B u(t), u(t)\rangle d t
$$

which is nothing else than (13).
Examples of pairs $\left(A_{1}, B\right)$ satisfying the stabilility estimate may be found in Section 6 below (see also Section 3 of [36]).

We now show that the stabilility estimate is equivalent to the exponential stability of (9).

Theorem 3.3. The pair $\left(A_{1}, B\right)$ satisfies the stabilility estimate if and only if there exist two positive constants M and ω such that

$$
\begin{equation*}
\mathcal{E}(t) \leq M e^{-\omega t} \mathcal{E}(0) \tag{15}
\end{equation*}
$$

for all solution u of (9).

Proof. Assume that the stabilility estimate holds, i.e., by the previous Lemma, (14) equivalently holds. The identity (11) of Lemma 2.1 then yields

$$
\mathcal{E}(T) \leq C(\mathcal{E}(0)-\mathcal{E}(T))
$$

This estimate is equivalent to

$$
\mathcal{E}(T) \leq \gamma \mathcal{E}(0)
$$

with $\gamma=\frac{C}{1+C}$ which is <1.
Applying this argument on $[(m-1) T, m T]$, for $m=1,2, \cdots$ (which is valid since our system is invariant by a translation in time), we will get

$$
\mathcal{E}(m T) \leq \gamma \mathcal{E}((m-1) T) \leq \cdots \leq \gamma^{m} \mathcal{E}(0), m=1,2, \cdots
$$

Therefore we have

$$
\mathcal{E}(m T) \leq e^{-\omega m T} \mathcal{E}(0), m=1,2, \cdots
$$

with $\omega=\frac{1}{T} \ln \frac{1}{\gamma}>0$. For an arbitrary positive t, there exists $m=1,2, \cdots$ such that $(m-1) T<t \leq m T$ and by the nonincreasing property of \mathcal{E}, we conclude

$$
\mathcal{E}(t) \leq \mathcal{E}((m-1) T) \leq e^{-\omega(m-1) T} \mathcal{E}(0) \leq \frac{1}{\gamma} e^{-\omega t} \mathcal{E}(0)
$$

Let us now show the converse implication: from Lemma 2.1, for any $T>0$, we may write

$$
\int_{0}^{T}\langle B u(t), u(t)\rangle d t=\mathcal{E}(0)-\mathcal{E}(T)
$$

With the help of (15), we get

$$
\begin{equation*}
\int_{0}^{T}\langle B u(t), u(t)\rangle d t \geq \mathcal{E}(0)\left(1-M e^{-\omega T}\right) \tag{16}
\end{equation*}
$$

The exponential decay (15) also implies

$$
\int_{0}^{T} \mathcal{E}(t) d t \leq M \mathcal{E}(0) \frac{1-e^{-\omega T}}{\omega}
$$

Consequently for all $C_{1}>0$, we may write

$$
\begin{equation*}
\int_{0}^{T} \mathcal{E}(t) d t \leq C_{1} \mathcal{E}(0)+\left(\frac{M\left(1-e^{-\omega T}\right)}{\omega}-C_{1}\right) \mathcal{E}(0) \tag{17}
\end{equation*}
$$

Choosing T large enough so that $1-M e^{-\omega T}>0$ and $C_{1}<\min \left\{\frac{M\left(1-e^{-\omega T}\right)}{\omega}, T\right\}$, (16) and (17) yield (13) with

$$
C_{2}=\left(\frac{M\left(1-e^{-\omega T}\right)}{\omega}-C_{1}\right)\left(1-M e^{-\omega T}\right)^{-1}
$$

4 - Exact controllability results

Using the results of the previous section and Russell's principle we deduce exact controllability results for the evolution equation associated with the operator $-A_{1}$ with controls in $L^{2}(] 0, T[; U)$, the control space U being a given real Hilbert space such that \mathcal{V} is continuously embedded into U. We then denote by I_{U} the embedding from \mathcal{V} into U and \mathcal{I}_{U} the mapping identifying U as a subspace of \mathcal{V}^{\prime}, i.e.,

$$
\left\langle\mathcal{I}_{U} u, v\right\rangle:=\left(I_{U} u, I_{U} v\right)_{U}, \forall u, v \in \mathcal{V} .
$$

The exact controllability problem may be formulated as follows: for all $u_{0} \in \mathcal{H}$, we are looking for a time $T>0$ and a control $J \in L^{2}(] 0, T[; U)$ such that the solution u of

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}-A_{1} u=J \text { in } \mathcal{V}^{\prime}, t \geq 0 \tag{18}\\
u(0)=u_{0}
\end{array}\right.
$$

satisfies

$$
\begin{equation*}
u(T)=0 \tag{19}
\end{equation*}
$$

Theorem 4.1. If the assumptions (3) to (8) hold for the pair $\left(A_{1}, \mathcal{I}_{U}\right)$ and if the pair $\left(A_{1}, \mathcal{I}_{U}\right)$ satisfies the stabilility estimate, then for $T>0$ sufficiently large, for all $u_{0} \in \mathcal{H}$ there exist a control $J \in$ $L^{2}(] 0, T[; U)$ such that the solution $u \in C([0, T], \mathcal{H})$ of (18) is at rest a time T, i.e., satisfies (19).

Proof. For concrete problems the proof is quite standard. We adapt it to our abstract setting as follows. For further purposes we prefer to solve the inverse problem (so that the asumption " $\left(A_{1}, \mathcal{I}_{U}\right)$ satisfies the stabilility estimate" is replaced by " $\left(-A_{1}, \mathcal{I}_{U}\right)$ satisfies the stabilility estimate"): Given $p_{0} \in \mathcal{H}$, we are looking for $K \in L^{2}(] 0, T[; U)$ such that the solution $p \in C([0, T], \mathcal{H})$ of

$$
\left\{\begin{array}{l}
\frac{\partial p}{\partial t}+A_{1} p=K \quad \text { in } \quad \mathcal{V}^{\prime}, t \geq 0 \tag{20}\\
p(T)=p_{0}
\end{array}\right.
$$

satisfies

$$
\begin{equation*}
p(0)=0 \tag{21}
\end{equation*}
$$

Indeed if the above problem has a solution the conclusion follows by setting

$$
u(t)=-p(T-t)
$$

We solve problem (20) and (21), using a backward and an inward system with linear boundary feedbacks \mathcal{I}_{U} : First given f_{0} in \mathcal{H}, we consider $f \in C([0, T], \mathcal{H})$ the unique solution of

$$
\left\{\begin{array}{l}
\frac{\partial f}{\partial t}+A_{1} f-\mathcal{I}_{U} f=0 \text { in } \mathcal{H}, t \geq 0 \tag{22}\\
f(T)=f_{0}
\end{array}\right.
$$

Its existence following from Lemma 2.1 by setting $\tilde{u}(t)=f(T-t)$. Moreover applying Theorem 3.3 to $\tilde{u}(t)$ we get

$$
\begin{equation*}
\mathcal{E}(f(t)) \leq M e^{-\omega(T-t)} \mathcal{E}\left(f_{0}\right) \tag{23}
\end{equation*}
$$

Second we consider $g \in C([0, T], \mathcal{H})$ the unique solution of (whose existence and uniqueness still follow from Lemma 2.1)

$$
\left\{\begin{array}{l}
\frac{\partial g}{\partial t}+A_{1} g+\mathcal{I}_{U} g=0 \text { in } \mathcal{H}, t \geq 0 \tag{24}\\
g(0)=f(0)
\end{array}\right.
$$

We now take $p=g-f$. From (22) and (24), p satisfies (20) with

$$
\begin{equation*}
K=-\mathcal{I}_{U} g-\mathcal{I}_{U} f . \tag{25}
\end{equation*}
$$

Let us further consider the mapping Λ from \mathcal{H} to \mathcal{H} defined by

$$
\Lambda\left(f_{0}\right)=g(T)
$$

We show that for $T>0$ such that $d:=M e^{-\omega T}<1$, the mapping $\Lambda-I$ is invertible by proving that $\|\Lambda\|_{\uparrow L(\mathcal{H}, \mathcal{H})}=\sqrt{d}$. Indeed using successively the definition of Λ, Lemma 2.1, the initial condition of problem (24) and the estimate (23) we have

$$
\begin{aligned}
\left\|\Lambda f_{0}\right\|_{\mathcal{H}}^{2} & =2 \mathcal{E}(g(T)) \leq 2 \mathcal{E}(g(0)) \leq \\
& \leq 2 \mathcal{E}(f(0)) \leq 2 M e^{-\omega T} \mathcal{E}\left(f_{0}\right)=d\left\|f_{0}\right\|_{\mathcal{H}}^{2} .
\end{aligned}
$$

Since $\Lambda-I$ is invertible for any $p_{0} \in \mathcal{H}$, there exists a unique $f_{0} \in \mathcal{H}$ such that

$$
\begin{equation*}
p_{0}=p(T)=g(T)-f(T)=(\Lambda-I) f_{0} . \tag{26}
\end{equation*}
$$

The proof will be complete if we can show that $K \in L^{2}(] 0, T[; U)$. For that purpose, we remark that Lemma 2.1 (identity (11) applied to \tilde{u} and g which has a meaning thanks to the hidden regularity) yields

$$
\begin{aligned}
\mathcal{E}(f(T))-\mathcal{E}(f(0)) & =\int_{0}^{T}\left\|I_{U} f(t)\right\|_{U}^{2} d t \\
\mathcal{E}(g(0))-\mathcal{E}(g(T)) & =\int_{0}^{T}\left\|I_{U} g(t)\right\|_{U}^{2} d t
\end{aligned}
$$

Summing these two identities and using the initial condition of problem (24), the final condition of (22) and the definition of Λ, we obtain

$$
\int_{0}^{T}\left(\left\|I_{U} f(t)\right\|_{U}^{2}+\left\|I_{U} g(t)\right\|_{U}^{2}\right) d t=\mathcal{E}(f(T))-\mathcal{E}(g(T)) \leq \frac{1}{2}\left\|f_{0}\right\|_{\mathcal{H}}^{2}
$$

Using the identity (26) and the boundedness of $(I-\Lambda)^{-1}$ we finally arrive at the estimate

$$
\begin{equation*}
\int_{0}^{T}\left(\left\|I_{U} f(t)\right\|_{U}^{2}+\left\|I_{U} g(t)\right\|_{U}^{2}\right) d t \leq \frac{1}{2}\left\|(I-\Lambda)^{-1} p_{0}\right\|_{\mathcal{H}}^{2} \leq \frac{1}{2(1-\sqrt{d})^{2}}\left\|p_{0}\right\|_{\mathcal{H}}^{2} . \tag{27}
\end{equation*}
$$

This proves that K given by (25) belongs to $L^{2}(] 0, T[; U)$.

Remark 4.2. Thanks to the assumptions (5) and (6) the (weak) solution $p \in C([0, T] ; \mathcal{H})$ of (20) and (21) can be approximated (in $C([0, T] ; \mathcal{H}))$ by a sequence $p_{\epsilon} \in W^{1, \infty}\left(\mathbb{R}_{+}, \mathcal{H}\right) \cap L^{\infty}\left(\mathbb{R}_{+}, \mathcal{V}\right), \epsilon>0$, of (strong) solution of (20) with $K_{\epsilon} \in L^{2}(] 0, T[; U)$ and $p_{0 \epsilon} \in \mathcal{V}$ such that

$$
\begin{align*}
K_{\epsilon} & \rightarrow K \text { in } L^{2}(] 0, T[; U) \text { as } \epsilon \rightarrow 0, \tag{28}\\
I_{U} p_{\epsilon} & \rightarrow I_{U} p \text { in } L^{2}(] 0, T[; U) \text { as } \epsilon \rightarrow 0 . \tag{29}
\end{align*}
$$

Indeed as $f_{0}=(\Lambda-I)^{-1} p_{0}$, by (5), there exists $f_{0 \epsilon} \in D(\mathcal{A})$ such that

$$
\begin{equation*}
\left\|f_{0}-f_{0 \epsilon}\right\|_{\mathcal{H}} \leq \epsilon . \tag{30}
\end{equation*}
$$

Consider f_{ϵ} the strong solution of (22) with final datum $f_{0 \epsilon}$. By the dissipativeness of the energy, we get

$$
\begin{equation*}
\left\|f(t)-f_{\epsilon}(t)\right\|_{\mathcal{H}} \leq\left\|f_{0}-f_{0 \epsilon}\right\|_{\mathcal{H}} \leq \epsilon, \forall t \in[0, T] \tag{31}
\end{equation*}
$$

Similarly since $f_{\epsilon}(0)$ belongs to \mathcal{H}, by (6), there exists $g_{0 \epsilon} \in D\left(\mathcal{A}^{-}\right)$such that

$$
\begin{equation*}
\left\|g_{0 \epsilon}-f_{\epsilon}(0)\right\|_{\mathcal{H}} \leq \epsilon \tag{32}
\end{equation*}
$$

We then consider g_{ϵ} the strong solution of (24) with initial datum $g_{0 \epsilon}$. The dissipativeness of the energy yields

$$
\begin{aligned}
\left\|g(t)-g_{\epsilon}(t)\right\|_{\mathcal{H}} & \leq\left\|g(0)-g_{0 \epsilon}\right\|_{\mathcal{H}} \leq \\
& \leq\left\|f(0)-f_{\epsilon}(0)\right\|_{\mathcal{H}}+\left\|f_{\epsilon}(0)-g_{0 \epsilon}\right\|_{\mathcal{H}} \leq 2 \epsilon, \forall t \in[0, T]
\end{aligned}
$$

by (31) and (32).
The estimates (31) and (33) show that $p_{\epsilon}:=g_{\epsilon}-f_{\epsilon}$ tends to $p=g-f$ in $C([0, T] ; \mathcal{H})$ as ϵ goes to 0 . Finally by Lemma 2.1 we may write

$$
\begin{aligned}
& \int_{0}^{T}\left\|I_{U}\left(f(t)-f_{\epsilon}(t)\right)\right\|_{U}^{2} d t \leq 2\left\|f_{0}-f_{0 \epsilon}\right\|_{\mathcal{H}}^{2} \\
& \int_{0}^{T}\left\|I_{U}\left(g(t)-g_{\epsilon}(t)\right)\right\|_{U}^{2} d t \leq 2\left\|g(0)-g_{\epsilon}(0)\right\|_{\mathcal{H}}^{2}
\end{aligned}
$$

These two estimates, the estimates (30), (33) and the definitions of $K_{\epsilon}:=$ $-\mathcal{I}_{U} g_{\epsilon}-\mathcal{I}_{U} f_{\epsilon}$, of p_{ϵ}, K and p lead to the properties (28) and (29).

5 - Stability in the nonlinear case

Here we use Liu's principle [28] and an integral inequality from [7] to deduce decay rates of the energy using appropriate nonlinear feedbacks. In view of the examples below we assume that the control space U is of the form

$$
\begin{equation*}
U=\prod_{j=1}^{J} U_{j} \tag{34}
\end{equation*}
$$

where for all $j=1, \cdots, J \in \mathbb{N}^{\star}:=\mathbb{N} \backslash\{0\}, U_{j}$ is a closed subspace of $L^{2}\left(X_{j}, \mu_{j}\right)^{N_{j}}$, when $\left(X_{j}, \uparrow A_{j}, \mu_{j}\right)$ is a measure space such that $\mu_{j}\left(X_{j}\right)<$ ∞ and $N_{j} \in \mathbb{N}^{\star}$. For all $j=1, \cdots, J$, we suppose given a mapping $g_{j}: \mathbb{R}^{N_{j}} \rightarrow \mathbb{R}^{N_{j}}$ such that

$$
\begin{gather*}
\left(g_{j}(x)-g_{j}(y)\right) \cdot(x-y) \geq 0, \forall x, y \in \mathbb{R}^{N_{j}} \text { (monotonicity) } \tag{35}\\
g_{j}(0)=0 \tag{36}\\
\left|g_{j}(x)\right| \leq M(1+|x|), \forall x \in \mathbb{R}^{3} \tag{37}
\end{gather*}
$$

for some positive constant M. We finally suppose that B is given by

$$
\begin{equation*}
\langle B u, v\rangle=\sum_{j=1}^{J} \int_{X_{j}} g_{j}\left(\left(I_{U} u\right)_{j}\left(x_{j}\right)\right) \cdot\left(I_{U} v\right)_{j}\left(x_{j}\right) d \mu_{j}\left(x_{j}\right), \tag{38}
\end{equation*}
$$

where we recall that I_{U} is the embeding from \mathcal{V} to U and therefore $\left(I_{U} u\right)_{j}$ is the $j^{\text {th }}$ component of $I_{U} u$.

Remark that the conditions (35) and (36) guarantee the assumption (8) on B, while (37) guarantees that B is well defined. In most examples these conditions guarantee that the assumptions (3) and (4) hold (see Section 6 for some illustrations). We further remark that these conditions always hold for $g_{j}(x)=x$, corresponding to linear controls, i.e., $B=\mathcal{I}_{U}$.

We now recall the integral inequality obtained in [7] (compare with Theorem 9.1 of [22] or its extension by P. Martinez [31], [32]).

Theorem 5.1. Let $\mathcal{E}:[0,+\infty) \rightarrow[0,+\infty)$ be a non-increasing mapping satisfying

$$
\begin{equation*}
\int_{S}^{\infty} \phi(\mathcal{E}(t)) d t \leq T \mathcal{E}(S), \forall S \geq 0 \tag{39}
\end{equation*}
$$

for some $T>0$ and some strictly increasing convex mapping ϕ from $[0,+\infty)$ to $[0,+\infty)$ such that $\phi(0)=0$. Then there exist $t_{1}>0$ and c_{1} depending on T and $\mathcal{E}(0)$ such that

$$
\begin{equation*}
\mathcal{E}(t) \leq \phi^{-1}\left(\frac{\psi^{-1}\left(c_{1} t\right)}{c_{1} T t}\right), \forall t \geq t_{1} \tag{40}
\end{equation*}
$$

where ψ is defined by

$$
\begin{equation*}
\psi(t)=\int_{t}^{1} \frac{1}{\phi(s)} d s, \forall t>0 \tag{41}
\end{equation*}
$$

Remark 5.2. Theorem 5.1 yields exactly the same decay rate as in Theorem 9.1 of [22] when $\phi(t)=t^{1+\alpha}$ for some $\alpha>0$ (case leading to polynomial decay). Note furthermore that the integral inequality of P. Martinez [31], [32] is different from our integral inequality but gives similar asymptotic behaviour for the energy.

We now give the consequence of this result to our system (9).
Theorem 5.3. Assume that the assumptions (3) to (8) hold for the pairs $\left(A_{1}, B\right)$ and $\left(A_{1}, \mathcal{I}_{U}\right)$. Let $g_{j}, j=1, \cdots, J$ satisfy (35) to (37) as well as

$$
\begin{align*}
g_{j}(x) \cdot x & \geq m|x|^{2}, \forall x \in \mathbb{R}^{N_{j}}:|x| \geq 1 \tag{42}\\
|x|^{2}+\left|g_{j}(x)\right|^{2} & \leq G\left(g_{j}(x) \cdot x\right), \forall x \in \mathbb{R}^{N_{j}}:|x| \leq 1,
\end{align*}
$$

for some positive constant m and a concave strictly increasing function $G:[0, \infty) \rightarrow[0, \infty)$ such that $G(0)=0$. If the pair $\left(-A_{1}, \mathcal{I}_{U}\right)$ satisfies the stabilility estimate, then there exist $c_{2}, c_{3}>0$ and $T_{1}>0$ (depending on $\left.T, \mathcal{E}(0), \mu_{j}\left(X_{j}\right), j=1, \cdots, J\right)$ such that

$$
\begin{equation*}
\mathcal{E}(t) \leq c_{3} G\left(\frac{\psi^{-1}\left(c_{2} t\right)}{c_{2} T t}\right), \forall t \geq T_{1}, \tag{44}
\end{equation*}
$$

for all solution u of (9), where ψ is given by (41) for ϕ defined by

$$
\begin{equation*}
\phi(s)=T \mu G^{-1}\left(\frac{s}{c_{3}}\right) \tag{45}
\end{equation*}
$$

where $\mu=\min _{j=1, \cdots, J} \mu_{j}\left(X_{j}\right)$.

Proof. By the density of $D(\mathcal{A})$ into \mathcal{H}, it suffices to prove (44) for data in $D(\mathcal{A})$. In that case let u be the (strong) solution of (9) and consider p the solution of problem (20) and (21) with $p_{0}=u(T) \in$ $D(\mathcal{A})$ with $T>0$ sufficiently large (whose existence was established in Theorem 4.1). Consider further a sequence p_{ϵ} of strong solution of (20) with final data $p_{0 \epsilon}$ tending to p in $C([0, T], \mathcal{H})$ as ϵ goes to zero and satisfying (28) and (29) (see Remark 4.2).

By (9) and (20) we may write

$$
\left\langle\partial_{t} u+A_{1} u+B u, p_{\epsilon}\right\rangle_{\mathcal{V}^{\prime}, \mathcal{V}}+\left\langle\partial_{t} p_{\epsilon}+A_{1} p_{\epsilon}-K_{\epsilon}, u\right\rangle_{\mathcal{V}^{\prime}, \mathcal{V}}=0 .
$$

This may be written equivalently

$$
\begin{aligned}
\left(\partial_{t} u, p_{\epsilon}\right)_{\mathcal{H}} & +\left(\partial_{t} p_{\epsilon}, u\right)_{\mathcal{H}}+\left\langle A_{1} u, p_{\epsilon}\right\rangle_{\mathcal{V}^{\prime}, \mathcal{V}}+\left\langle A_{1} p_{\epsilon}, u\right\rangle_{\mathcal{V}^{\prime}, \mathcal{V}}+ \\
& +\left\langle B u, p_{\epsilon}\right\rangle_{\mathcal{V}^{\prime}, \mathcal{V}}-\left\langle K_{\epsilon}, u\right\rangle_{\mathcal{V}^{\prime}, \mathcal{V}}=0
\end{aligned}
$$

As the assumption (7) yields

$$
\left\langle A_{1} u, p_{\epsilon}\right\rangle_{\mathcal{V}^{\prime}, \mathcal{V}}+\left\langle A_{1} p_{\epsilon}, u\right\rangle_{\mathcal{V}^{\prime}, \mathcal{V}}=0
$$

the above identity reduces to

$$
\left(\partial_{t} u, p_{\epsilon}\right)_{\mathcal{H}}+\left(\partial_{t} p_{\epsilon}, u\right)_{\mathcal{H}}+\left\langle B u, p_{\epsilon}\right\rangle_{\mathcal{V}^{\prime}, \mathcal{V}}-\left\langle K_{\epsilon}, u\right\rangle_{\mathcal{V}^{\prime}, \mathcal{V}}=0
$$

Integrating this identity for $t \in(0, T)$, we get

$$
\left(u(T), p_{\epsilon}(T)\right)_{\mathcal{H}}-\left(u(0), p_{\epsilon}(0)\right)_{\mathcal{H}}+\int_{0}^{T}\left(\left\langle B u, p_{\epsilon}\right\rangle_{\mathcal{V}^{\prime}, \mathcal{V}}-\left\langle K_{\epsilon}, u\right\rangle_{\mathcal{V}^{\prime}, \mathcal{V}}\right) d t=0 .
$$

By the definitions of K_{ϵ} and B we arrive at

$$
\begin{aligned}
& \left(u(T), p_{\epsilon}(T)\right)_{\mathcal{H}}-\left(u(0), p_{\epsilon}(0)\right)_{\mathcal{H}}=\int_{0}^{T}\left(\left(K_{\epsilon}, I_{U} u\right)_{U}+\right. \\
& \left.\quad-\sum_{j=1}^{J} \int_{X_{j}} g_{j}\left(\left(I_{U} u\right)_{j}\left(x_{j}\right)\right) \cdot\left(I_{U} p_{\epsilon}\right)_{j}\left(x_{j}\right) d \mu_{j}\left(x_{j}\right)\right) d t
\end{aligned}
$$

Passing to the limit in ϵ and using the initial and final conditions on p, we have obtained

$$
2 \mathcal{E}(T)=\int_{0}^{T}\left(\left(K, I_{U} u\right)_{U}-\sum_{j=1}^{J} \int_{X_{j}} g_{j}\left(\left(I_{U} u\right)_{j}\left(x_{j}\right)\right) \cdot\left(I_{U} p\right)_{j}\left(x_{j}\right) d \mu_{j}\left(x_{j}\right)\right) d t
$$

Cauchy-Schwarz's inequality leads finally to

$$
\begin{align*}
2 \mathcal{E}(T) & \leq\|K\|_{L^{2}(0, T ; U)}\left\|I_{U} u\right\|_{L^{2}(0, T ; U)}+ \\
& +\left\|I_{U} p\right\|_{L^{2}(0, T ; U)}\left(\sum_{j=1}^{J} \int_{0}^{T} \int_{X_{j}}\left|g_{j}\left(\left(I_{U} u\right)_{j}\left(x_{j}\right)\right)\right|^{2} d \mu_{j}\left(x_{j}\right) d t\right)^{1 / 2} . \tag{46}
\end{align*}
$$

Let us remark that the estimate (27) and the final conditions on p yield

$$
\int_{0}^{T}\left(\left\|I_{U} f(t)\right\|_{U}^{2}+\left\|I_{U} g(t)\right\|_{U}^{2}\right) d t \leq \frac{1}{(1-\sqrt{d})^{2}} \mathcal{E}(T)
$$

This estimate, the definition of K and $p=g-f$ lead to

$$
\begin{aligned}
\int_{0}^{T}\|K(t)\|_{U}^{2} d t & \leq \frac{2}{(1-\sqrt{d})^{2}} \mathcal{E}(T) \\
\int_{0}^{T}\left\|I_{U} p(t)\right\|_{U}^{2} d t & \leq \frac{2}{(1-\sqrt{d})^{2}} \mathcal{E}(T)
\end{aligned}
$$

Inserting these estimates in (46) we arrive at

$$
\begin{align*}
\mathcal{E}(T) \leq & \frac{1}{(1-\sqrt{d})^{2}} \times \\
& \times\left(\sum_{j=1}^{J} \int_{0}^{T} \int_{X_{j}}\left\{\left|\left(I_{U} u\right)_{j}\left(x_{j}\right)\right|^{2}+\left|g_{j}\left(\left(I_{U} u\right)_{j}\left(x_{j}\right)\right)\right|^{2}\right\} d \mu_{j}\left(x_{j}\right) d t\right) . \tag{47}
\end{align*}
$$

We now estimate the right-hand side of (47) as follows: For all $j=$ $1, \cdots, J$ introduce

$$
\begin{aligned}
& \Sigma_{j}^{+}=\left\{(x, t) \in X_{j} \times(0, T) \|\left(I_{U} u\right)_{j}(x, t) \mid>1\right\}, \\
& \Sigma_{j}^{-}=\left\{(x, t) \in X_{j} \times(0, T) \|\left(I_{U} u\right)_{j}(x, t) \mid \leq 1\right\} .
\end{aligned}
$$

Let us split up

$$
\int_{0}^{T} \int_{X_{j}}\left\{\left|\left(I_{U} u\right)_{j}\left(x_{j}\right)\right|^{2}+\left|g_{j}\left(\left(I_{U} u\right)_{j}\left(x_{j}\right)\right)\right|^{2}\right\} d \mu_{j}\left(x_{j}\right) d t=I_{j}^{+}+I_{j}^{-}
$$

where

$$
\begin{aligned}
I_{j}^{+} & :=\int_{\Sigma_{j}^{+}}\left\{\left|\left(I_{U} u\right)_{j}\left(x_{j}\right)\right|^{2}+\left|g_{j}\left(\left(I_{U} u\right)_{j}\left(x_{j}\right)\right)\right|^{2}\right\} d \mu_{j}\left(x_{j}\right) d t \\
I_{j}^{-} & :=\int_{\Sigma_{j}^{-}}\left\{\left|\left(I_{U} u\right)_{j}\left(x_{j}\right)\right|^{2}+\left|g_{j}\left(\left(I_{U} u\right)_{j}\left(x_{j}\right)\right)\right|^{2}\right\} d \mu_{j}\left(x_{j}\right) d t
\end{aligned}
$$

The assumptions (42) and (37) lead to

$$
I_{j}^{+} \leq c_{4} \int_{\Sigma_{j}^{+}}\left(I_{U} u\right)_{j}\left(x_{j}\right) \cdot g_{j}\left(\left(I_{U} u\right)_{j}\left(x_{j}\right)\right) d \mu_{j}\left(x_{j}\right) d t
$$

for some positive constant c_{4} (depending on m and M). By (11) and the property

$$
\begin{equation*}
g_{j}(x) \cdot x \geq 0, \forall x \in \mathbb{R}^{N_{j}}, \tag{48}
\end{equation*}
$$

following from (35) and (36) we arrive at

$$
\begin{equation*}
I_{j}^{+} \leq c_{4}(\mathcal{E}(0)-\mathcal{E}(T)) \tag{49}
\end{equation*}
$$

Similarly by the assumption (43) and the monotonicity of G we have

$$
\begin{aligned}
I_{j}^{-} & \leq \int_{\Sigma_{j}^{-}} G\left(\left(I_{U} u\right)_{j}\left(x_{j}\right) \cdot g_{j}\left(\left(I_{U} u\right)_{j}\left(x_{j}\right)\right)\right) d \mu_{j}\left(x_{j}\right) d t \leq \\
& \leq \int_{0}^{T} \int_{X_{j}} G\left(\left(I_{U} u\right)_{j}\left(x_{j}\right) \cdot g_{j}\left(\left(I_{U} u\right)_{j}\left(x_{j}\right)\right)\right) d \mu_{j}\left(x_{j}\right) d t
\end{aligned}
$$

Jensen's inequality then yields

$$
I_{j}^{-} \leq T \mu_{j}\left(X_{j}\right) G\left(\frac{1}{T \mu_{j}\left(X_{j}\right)} \int_{0}^{T} \int_{X_{j}}\left(I_{U} u\right)_{j}\left(x_{j}\right) \cdot g_{j}\left(\left(I_{U} u\right)_{j}\left(x_{j}\right)\right) d \mu_{j}\left(x_{j}\right) d t\right)
$$

By (11), we arrive at

$$
\begin{equation*}
I_{j}^{-} \leq T \mu_{j}\left(X_{j}\right) G\left(\frac{\mathcal{E}(0)-\mathcal{E}(T)}{T \mu_{j}\left(X_{j}\right)}\right) \tag{50}
\end{equation*}
$$

The estimates (49) and (50) into the estimate (47) and the monotonicity of G give

$$
\mathcal{E}(T) \leq c_{5}\left\{\mathcal{E}(0)-\mathcal{E}(T)+G\left(\frac{\mathcal{E}(0)-\mathcal{E}(T)}{T \mu}\right)\right\}
$$

for some positive constant c_{5} (depending on T and $\max _{j} \mu_{j}\left(X_{j}\right)$), where we recall that $\mu=\min _{j} \mu_{j}\left(X_{j}\right)$. This finally leads to
$\mathcal{E}(0)=\mathcal{E}(0)-\mathcal{E}(T)+\mathcal{E}(T) \leq \max \left\{1, c_{5}\right\}\left\{(\mathcal{E}(0)-\mathcal{E}(T))+G\left(\frac{\mathcal{E}(0)-\mathcal{E}(T)}{T \mu}\right)\right\}$.
As $\frac{\mathcal{E}(0)-\mathcal{E}(T)}{T \mu} \leq \frac{\mathcal{E}(0)}{T \mu}$, the concavity of G yields a constant c_{6} (depending continuously on $T, \mathcal{E}(0)$ and μ) such that

$$
\frac{\mathcal{E}(0)-\mathcal{E}(T)}{T \mu} \leq c_{6} G\left(\frac{\mathcal{E}(0)-\mathcal{E}(T)}{T \mu}\right)
$$

These two estimates lead to

$$
\mathcal{E}(0) \leq c_{3} G\left(\frac{\mathcal{E}(0)-\mathcal{E}(T)}{T \mu}\right)
$$

for some $c_{3}>0$ (depending on $T, \mathcal{E}(0), \max _{j} \mu_{j}\left(X_{j}\right)$, and $\left.\min _{j} \mu_{j}\left(X_{j}\right)\right)$.
Using this argument in $[t, t+T]$ instead of $[0, T]$ we have shown that

$$
\begin{equation*}
\mathcal{E}(t) \leq c_{3} G\left(\frac{\mathcal{E}(t)-\mathcal{E}(t+T)}{T \mu}\right)=\phi^{-1}(\mathcal{E}(t)-\mathcal{E}(t+T)), \forall t \geq 0 \tag{51}
\end{equation*}
$$

when we recall that ϕ was defined by (45).
We conclude by Theorem 5.1 since Lemma 5.1 of [7] shows that the estimate (51) guarantees that \mathcal{E} actually satisfies (39).

The assumption (42) forbids the use of bounded functions g_{j} which could be a drawback for some applications. Our next purpose is to obtain a variant of the above result when some mappings g_{j} do not satisfy (42) adapting the arguments of Theorem 9.10 of [22]. The price to pay is to assume some regularity results for elements of $D(\mathcal{A})$.

Theorem 5.4. Assume that the assumptions (3) to (8) hold for the pairs $\left(A_{1}, B\right)$ and $\left(A_{1}, \mathcal{I}_{U}\right)$. Let $g_{j}, j=1, \cdots, J$ satisfy (35) to (37) as well as (43) for some concave strictly increasing function $G:[0, \infty) \rightarrow[0, \infty)$ such that $G(0)=0$. Assume further that $J=J_{1} \cup J_{2}$ with $J_{1} \cap J_{2}=\emptyset$, that for all $j \in J_{1}, g_{j}$ satisfies (42) and there exists $c_{7}>0$ and $\alpha>2$ such that for all $j \in J_{2}$ and all $u \in D(\mathcal{A}),\left(I_{U} u\right)_{j}$ belongs to $L^{\alpha}\left(X_{j}, \mu_{j}\right)$ with the estimate

$$
\begin{equation*}
\left(\int_{X_{j}}\left|\left(I_{U} u\right)_{j}\left(x_{j}\right)\right|^{\alpha} d \mu_{j}\left(x_{j}\right)\right)^{1 / \alpha} \leq c_{7}\|u\|_{D(\mathcal{A})} \tag{52}
\end{equation*}
$$

where we recall that $\|u\|_{D(\mathcal{A})}=\|\mathcal{A} u\|_{\mathcal{H}}+\|u\|_{\mathcal{H}}$. If the pair $\left(-A_{1}, \mathcal{I}_{U}\right)$ satisfies the stabilility estimate, then for every $u_{0} \in D(\mathcal{A})$, the solution u of (9) satisfies

$$
\begin{equation*}
\mathcal{E}(t) \leq c_{3} G_{1}\left(\frac{\psi_{1}^{-1}\left(c_{2} t\right)}{c_{2} T t}\right), \forall t \geq T_{1} \tag{53}
\end{equation*}
$$

for some $c_{2}, c_{3}>0$ and $T_{1}>0$ (depending on $T, \mathcal{E}(0), \mu_{j}\left(X_{j}\right), j=$ $1, \cdots, J, \alpha$ and $\left.\left\|u_{0}\right\|_{D(\mathcal{A})}\right)$, where ψ_{1} is given by (41) for ϕ_{1} defined by (45) with G_{1} instead of G, the function G_{1} being defined by

$$
G_{1}(x)=G(x)+x^{s}, \forall x \geq 0
$$

with $s=\frac{\alpha-2}{\alpha-1} \in(0,1)$.
Proof. We repeat the proof of Theorem 5.3 except for the estimation of I_{j}^{+}when $j \in J_{2}$, where we now obtain the following estimation: First by (37) we remark that

$$
\begin{equation*}
I_{j}^{+} \leq\left(1+4 M^{2}\right) J_{j}^{+} \tag{54}
\end{equation*}
$$

where

$$
J_{j}^{+}:=\int_{\Sigma_{j}^{+}}\left|\left(I_{U} u\right)_{j}\left(x_{j}\right)\right|^{2} d \mu_{j}\left(x_{j}\right)
$$

So it remains to estimate J_{j}^{+}. For that estimation we remark that the assumption (43) yields

$$
\begin{equation*}
g_{j}(x) \cdot x \geq m_{j}|x|, \forall x \in \mathbb{R}^{N_{j}}:|x| \geq 1 \tag{55}
\end{equation*}
$$

for some positive constant m_{j}. Indeed we notice that (43) and the property $G(0)=0$ directly imply that

$$
g_{j}(\xi) \cdot \xi>0, \forall|\xi|=1
$$

Denoting by $m_{j}=\min _{|\xi|=1}\left(g_{j}(\xi) \cdot \xi\right)$ we have already proved (55) for $|x|=1$. For $|x|>1$ let $\xi=x /|x|$, then by the monotonicity of g_{j} we have

$$
\left(g_{j}(x)-g_{j}(\xi)\right) \cdot(|x|-1) \xi \geq 0
$$

which implies

$$
g_{j}(x) \cdot \xi \geq g_{j}(\xi) \cdot \xi \geq m_{j} .
$$

Multiplying this inequality by $|x|$, we arrive at (55).
Now using (55) we may write

$$
J_{j}^{+} \leq m_{j}^{-s} \int_{\Sigma_{j}^{+}}\left|\left(I_{U} u\right)_{j}\left(x_{j}\right)\right|^{2-s}\left(\left(I_{U} u\right)_{j}\left(x_{j}\right) \cdot g_{j}\left(\left(I_{U} u\right)_{j}\left(x_{j}\right)\right)^{s} d \mu_{j}\left(x_{j}\right)\right.
$$

By Hölder's inequality we get

$$
\begin{aligned}
J_{j}^{+} \leq & m_{j}^{-s}\left(\int_{\Sigma_{j}^{+}}\left|\left(I_{U} u\right)_{j}\left(x_{j}\right)\right|^{\frac{2-s}{1-s}} d \mu_{j}\left(x_{j}\right)\right)^{1-s} \times \\
& \times\left(\int_{\Sigma_{j}^{+}}\left(I_{U} u\right)_{j}\left(x_{j}\right) \cdot g_{j}\left(\left(I_{U} u\right)_{j}\left(x_{j}\right)\right) d \mu_{j}\left(x_{j}\right)\right)^{s} .
\end{aligned}
$$

By (11) and the assumption (52) (since $\alpha=\frac{2-s}{1-s}$) we conclude that

$$
\begin{equation*}
J_{j}^{+} \leq c_{8}(\mathcal{E}(0)-\mathcal{E}(T))^{s}, \tag{56}
\end{equation*}
$$

where $c_{8}>0$ depends on T, α and $\left\|u_{0}\right\|_{D(\mathcal{A})}$ (since Komura-Kato's theorem (see for instance Proposition IV.3.1 of [42] and Lemma 2.1 guarantee that $\left.\|u(t)\|_{D(\mathcal{A})} \leq\left\|u_{0}\right\|_{D(\mathcal{A})}\right)$.

As before the estimates (50), (54) and (56) into the estimate (47) and the monotonicity of G give

$$
\mathcal{E}(T) \leq c_{9}\left\{\mathcal{E}(0)-\mathcal{E}(T)+G\left(\frac{\mathcal{E}(0)-\mathcal{E}(T)}{T \mu}\right)+(\mathcal{E}(0)-\mathcal{E}(T))^{s}\right\}
$$

for some positive constant c_{9} depending on $T, \mu_{j}\left(X_{j}\right), j=1, \cdots, J, \alpha$ and $\left\|u_{0}\right\|_{D(\mathcal{A})}$. The concavity of G and of the mapping $x \rightarrow x^{s}$ yields

$$
\mathcal{E}(0) \leq c_{3} G_{1}\left(\frac{\mathcal{E}(0)-\mathcal{E}(T)}{T \mu}\right)
$$

The conclusion follows as previously.
REmARK 5.5. In (42) (resp. (43)) the proviso $|x| \geq 1$ (resp. $|x| \leq 1$) may be replaced by $|x| \geq \eta$ (resp. $|x| \leq \eta$), for some $\eta>0$ without changing the conclusion of Theorem 5.3 or Theorem 5.4.

Examples of functions g_{j} leading to an explicit decay rate (44) or (53) are given in [7]. Let us give the following illustrations.

Example 5.6. Suppose that g_{j} satisfies (35) to (37) and (42) as well as

$$
\begin{equation*}
x \cdot g_{j}(x) \geq c_{0}|x|^{p+1},\left|g_{j}(x)\right| \leq C_{0}|x|^{\alpha}, \forall|x| \leq 1, \tag{57}
\end{equation*}
$$

for some positive constants $c_{0}, C_{0}, \alpha \in(0,1]$ and $p \geq \alpha$. Then g_{j} satisfies (43) with $G(x)=x^{\frac{2}{q+1}}$ and $q=\frac{p+1}{\alpha}-1$ (which is ≥ 1). If $p=\alpha=1$ (then $q=1$) and under the other assumptions of Theorem 5.3 we get an exponential decay (since $\psi^{-1}(t)=e^{-t}$). On the contrary if $p+1>2 \alpha$ then we get the decay $t^{-\frac{2 \alpha}{p+1-2 \alpha}}$ (since $\psi^{-1}(t)=t^{\frac{2}{1-q}}$. A function g satisfying all these assumptions is given by

$$
g(x)= \begin{cases}|x|^{\alpha-1} x & \text { if }|x| \leq 1 \\ x & \text { if }|x| \geq 1\end{cases}
$$

for some $\alpha \in(0,1]$. In that case (57) holds for $p=\alpha$.

In the setting of Theorem 5.4 it suffices to take g_{j} satisfying (35) to (37) and (57) to get the decay rate $t^{-\frac{2}{q^{\prime}-1}}$ with $q^{\prime}=\min \left\{q, \frac{2}{s}-1\right\}$. Such a g is given by

$$
g(x)= \begin{cases}|x|^{\alpha-1} x & \text { if }|x| \leq 1 \\ \frac{x}{|x|} & \text { if }|x| \geq 1\end{cases}
$$

for some $\alpha \in(0,1]$, which satisfies (57) for $p=\alpha$.
Example 5.6 (Logarithmic decay). Take $g_{j}(\xi)=\exp \left(-\frac{1}{|\xi|^{2 p_{j}}}\right) \frac{\xi}{|\xi|^{2}}$ for $|\xi|$ small enough and for $p_{j}>0$. Then by Example 2.4 of [7] (43) holds with

$$
G(x)=\frac{C}{|\log x|^{\frac{1}{p}}}
$$

and $p=\max _{j} p_{j}$ and some constant $C>0$. In the setting of Theorem 5.3 or Theorem 5.4 we will get the decay

$$
\mathcal{E}(t) \leq \frac{C}{|\log t|^{\frac{1}{p}}},
$$

since ψ^{-1} is bounded from below.
Example 5.8 (Log-Log decay). Take $g_{j}(\xi)=\exp \left(-\exp \left(1 /|\xi|^{2 p}\right)\right) \frac{\xi}{|\xi|^{2}}$ for $|\xi|$ small enough and for $p>0$. Then by Example 2.5 of [7] (43) holds with

$$
G(x)=\frac{C}{\left.|\log | \log x\right|^{\frac{1}{p}}}
$$

and some constant $C>0$. In the setting of Theorem 5.3 or Theorem 5.4 we will get the decay

$$
\mathcal{E}(t) \leq \frac{C}{\left.|\log | \log t\right|^{\frac{1}{p}}}
$$

Note that combinations of the above examples give rise to the worse decay rate.

6 - Examples

6.1 - Second order evolution equations

Some examples given below enter in the following framework: Let H and V be two real separable Hilbert spaces such that V is densely and continuously embedded into H. Define the linear operator A_{2} from V into V^{\prime} by

$$
\begin{equation*}
\left\langle A_{2} u, v\right\rangle_{V^{\prime}-V}=(u, v)_{V}, \forall u, v \in V \tag{58}
\end{equation*}
$$

and suppose given a (nonlinear) mapping B_{2} from V into V^{\prime}.
Consider now the second order evolution equation

$$
\left\{\begin{array}{l}
\frac{\partial^{2} u}{\partial t^{2}}+A_{2} u+B_{2} \frac{\partial u}{\partial t}=0 \text { in } V^{\prime}, t \geq 0 \\
u(0)=u_{0}, \frac{\partial u}{\partial t}(0)=u_{1}
\end{array}\right.
$$

This system is reduced to the first order system (9) using the standard argument of reduction of order: setting $\mathcal{H}=V \times H, \mathcal{V}=V \times V$ with natural inner products,

$$
x=(u, z),
$$

with $z=\frac{\partial u}{\partial t}$ (from now on we use the letter x for generic elements of \mathcal{H} since the letter u is already used in (59) as usual) and introducing the operators

$$
A_{1} x=\left(-z, A_{2} u\right), B x=\left(0, B_{2} z\right)
$$

Under appropriate assumptions on B_{2}, we can prove the
Theorem 6.1. If B_{2} is monotone, hemicontinuous, bounded and satisfies $B_{2} 0=0$, then the assumptions (3) to (8) hold for the pair $\left(A_{1}, B\right)$.

Proof. In the above setting we see that

$$
D\left(\mathcal{A}^{ \pm}\right)=\left\{x=(u, z) \in \mathcal{V} \mid \pm A_{2} u+B_{2} z \in H\right\}
$$

To check the assumptions (3) and (4), from the definitions of A_{1}, A_{2} and the inner product in \mathcal{H} we easily verify that

$$
\left(\mathcal{A}^{ \pm}(u, z)-\mathcal{A}^{ \pm}\left(u^{\prime}, z^{\prime}\right),(u, z)-\left(u^{\prime}, z^{\prime}\right)\right)_{\mathcal{H}}=\left\langle B_{2} z-B_{2} z^{\prime}, z-z^{\prime}\right\rangle_{V^{\prime}-V} .
$$

The monotonicity of $\mathcal{A}^{ \pm}$then follows from the same property on B_{2}.

Let us pass to the maximality of $\mathcal{A}^{ \pm}$: for all $(f, g) \in \mathcal{H}$ we are looking for $(u, z) \in D\left(\mathcal{A}^{ \pm}\right)$such that

$$
\begin{gathered}
u \mp z=f \text { in } V \\
z \pm A_{2} u+B_{2} z=g \text { in } H .
\end{gathered}
$$

The first identity is equivalent to

$$
u= \pm z+f \text { in } V
$$

and eliminating u in the second identity we obtain

$$
z+A_{2} z+B_{2} z=g \mp f \text { in } V^{\prime}
$$

The solvability of this problem is equivalent to the surjectivity of the operator

$$
A: V \rightarrow V^{\prime}: z \rightarrow z+A_{2} z+B_{2} z
$$

For that purpose we make use of Corollary 2.2 of [42] which proves that A is surjective if A is monotone, hemicontinuous, bounded and coercive. The first three properties easily follows from the same property of B_{2}. The coercivity also easily follows from the fact that

$$
\langle A z, z\rangle_{V^{\prime}-V}=\|z\|_{H}^{2}+\|z\|_{V}^{2}+\left\langle B_{2} z, z\right\rangle_{V^{\prime}-V} \geq\|z\|_{V}^{2}
$$

this last inequality following from the property $\left\langle B_{2} z, z\right\rangle_{V^{\prime}-V} \geq 0$ consequence of the monotonicity of B_{2} and the property $B_{2} 0=0$.

The assumptions (5) and (6) are reduced to the density of $D(\mathcal{A})$ since we easily check that $(u, z) \in D(\mathcal{A})$ if and only if $(-u, z) \in D\left(\mathcal{A}^{-}\right)$. Let us now fix (u, z) in \mathcal{H}, then let $\tilde{u} \in V$ be the unique solution of

$$
A_{2} \tilde{u}=-B_{2} z
$$

whose existence follows from Lax-Milgram's lemma. Applying Theorem III.2.B of [41] there exists a sequence of $u_{n} \in D\left(\mathcal{A}_{2}\right)$ such that

$$
u_{n} \rightarrow u-\tilde{u} \text { in } V, \text { as } n \rightarrow \infty
$$

where \mathcal{A}_{2} is the Friedrichs extension of A_{2}. We conclude by remarking that $\left(\tilde{u}+u_{n}, z\right)$ belongs to $D(\mathcal{A})$ and tends to (u, z) in \mathcal{H}.

The assumption (7) follows from the identity

$$
\left\langle A_{1} x, x\right\rangle=-(z, u)_{V}+\left\langle A_{2} u, z\right\rangle_{V^{\prime}-V}
$$

and the definition of A_{2}. Finally the assumption (8) follows from the identity

$$
\langle B x, x\rangle=\left\langle B_{2} z, z\right\rangle_{V^{\prime}-V}
$$

and the positiveness of B_{2}.
In view of this theorem the assumptions (3) to (8) are reduced to the verification of the above properties of B_{2} that we now check for different systems.

In the rest of the section Ω is a bounded domain of $\mathbb{R}^{n}, n \geq 2$ with a Lipschitz boundary Γ. Some restrictions will be specified later on when they will be necessary. We further denote by ν the unit outward normal vector along Γ.

6.2 - Nonlinear stabilization of the wave equation

Consider the wave equation

$$
\left\{\begin{array}{l}
\left.\partial_{t}^{2} u-\Delta u+f\left(\partial_{t} u\right)=0 \text { in } Q:=\Omega \times\right] 0,+\infty[\tag{60}\\
\left.u=0 \text { on } \Sigma_{0}:=\Gamma_{0} \times\right] 0,+\infty[, \\
\left.\partial_{\nu} u+a u+g\left(\partial_{t} u\right)=0 \text { on } \Sigma_{1}:=\Gamma_{1} \times\right] 0,+\infty[, \\
u(0)=u_{0}, \partial_{t} u(0)=u_{1} \text { in } \Omega,
\end{array}\right.
$$

where Γ_{0} is a open subset of Γ and $\Gamma_{1}=\Gamma \backslash \bar{\Gamma}_{0}$ is the remainder. The functions f and g are two nondecreasing continuous functions from \mathbb{R} into itself such that $f(0)=g(0)=0$ and finally a is a nonnegative real number. For the sake of simplicity we suppose that

$$
\begin{equation*}
\text { either } \Gamma_{0} \text { is not empty or } a>0, \tag{61}
\end{equation*}
$$

and that

$$
\begin{equation*}
\bar{\Gamma}_{0} \cap \bar{\Gamma}_{1}=\emptyset . \tag{62}
\end{equation*}
$$

The stability of this problem was extensively studied in the litterature, let us cite the papers [18], [19], [20], [23], [22], [43], [26], [10] and the references cited there. Both papers are restricted to some particular choices of Γ_{0}, a, f and g leading to some exponential or polynomial decay rates of the energy of the solution of (60). In [25], [29], [31], [32], [33], [34], some arbitrary decay rates are obtained for different f and g (even with degenerate or local dissipations). Using the results of the previous sections, we also obtain arbitrary decay rates for a large class of f and g.

The first point is that problem (60) enters in the framework of problem (59) from Subsection 6.1 once we take:

$$
\begin{aligned}
H & =L^{2}(\Omega), \\
V & =\left\{v \in H^{1}(\Omega) \mid v=0 \text { on } \Gamma_{0}\right\}, \\
(u, v)_{V} & =\int_{\Omega} \nabla u \cdot \nabla v d x+a \int_{\Gamma_{1}} u \cdot v d \sigma, \\
\left\langle B_{2} u, v\right\rangle_{V^{\prime}-V} & =\int_{\Omega} f(u) v d x+\int_{\Gamma_{1}} g(u) v d \sigma, \forall u, v \in V .
\end{aligned}
$$

Let us remark that the assumption (61) implies that the inner product $(\cdot, \cdot)_{V}$ induces a norm on V equivalent to the usual one. In order to give a meaning to B_{2} we simply require

$$
\begin{array}{r}
|f(x)| \leq C\left(1+|x|^{\alpha}\right), \forall x \in \mathbb{R}, \\
|g(x)| \leq C\left(1+|x|^{\beta}\right), \forall x \in \mathbb{R}, \tag{64}
\end{array}
$$

for some positive constant C, where $\alpha=\frac{n+2}{n-2}$ and $\beta=\frac{n}{n-2}$ if $n \geq 3$ and $\alpha, \beta \geq 1$ if $n=2$.

Now we readily check that these assumptions guarantee that B_{2} fulfils all the assumptions of Theorem 6.1. Consequently the corresponding pair $\left(A_{1}, B\right)$ satisfies the assumptions (3) to (8). In order to deduce stability results for our system (60) we need to check that the pair $\left(-A_{1}, \mathcal{I}_{U}\right)$ satisfies the stability estimate (note that we just check that the pair $\left(-A_{1}, \mathcal{I}_{U}\right)$ satisfies the assumptions (3) to (8)), where the control space U is clearly defined by

$$
U=L^{2}(\Omega) \times L^{2}\left(\Gamma_{1}\right)
$$

This stability estimate was proved in Theorem 1.2 of [10] under the assumption that there exists $x_{0} \in \mathbb{R}^{n}$ such that

$$
\begin{align*}
& m \cdot \nu>0 \text { on } \Gamma_{1}, m \cdot \nu \leq 0 \text { on } \Gamma_{0}, \tag{65}\\
& \frac{1}{R^{2}} \max \{n-2, n / 3\} \leq a(m \cdot \nu)<\frac{n}{R^{2}} \text { on } \Gamma_{1}, \tag{66}
\end{align*}
$$

where as usual m is the standard multiplier defined by

$$
m(x)=x-x_{0}, \forall x \in \mathbb{R}^{n},
$$

and $R=\max _{x \in \Omega}|m(x)|$. Under these assumptions, appropriated conditions on f and g lead to exponential, polynomial, logarithmic or other decays. Note that bounded feedbacks are allowed since $D(\mathcal{A}) \hookrightarrow H^{1}(\Omega) \times$ $H^{1}(\Omega) \hookrightarrow L^{\alpha}(\Omega) \times L^{\alpha}\left(\Gamma_{1}\right)$, for some $\alpha>2$ consequently Theorem 5.4 may be applied.

For $f=0$ or $g=0$ similar results hold (changing the control space U) with less restrictions on Γ_{0} and Γ_{1}, using the exponential decay with linear feedbacks established in [18], [19], [20], [23], [22], [43], [26].

6.3 - Nonlinear stabilization of the elastodynamic system

With the notation of the above subsection, we consider the following elastodynamic system:

$$
\left\{\begin{array}{l}
\partial_{t}^{2} u-\nabla \sigma(u)+F\left(\partial_{t} u\right)=0 \text { in } Q \tag{67}\\
u=0 \text { on } \Sigma_{0}, \\
\sigma(u) \cdot \nu+a u+G\left(\partial_{t} u\right)=0 \text { on } \Sigma_{1}, \\
u(0)=u_{0}, \partial_{t} u(0)=u_{1} \text { in } \Omega
\end{array}\right.
$$

As usual $u(x, t)$ is the displacement field at the point $x \in \Omega$ at time t and $\sigma(u)=\left(\sigma_{i j}(u)\right)_{i, j=1}^{3}$ is the stress tensor given by (here and in the sequel we shall use the summation convention for repeated indices)

$$
\sigma_{i j}(u)=a_{i j k l} \varepsilon_{k l}(u),
$$

where $\varepsilon(u)=\left(\varepsilon_{i j}(u)\right)_{i, j=1}^{3}$ is the strain tensor given by

$$
\varepsilon_{i j}(u)=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right),
$$

and the tensor $\left(a_{i j k l}\right)_{i, j, k, l=1,2,3}$ is made of $W^{1, \infty}(\Omega)$ entries such that

$$
a_{i j k l}=a_{j i k l}=a_{k l i j},
$$

and satisfying the ellipticity condition

$$
a_{i j k l} \varepsilon_{i j} \varepsilon_{k l} \geq \alpha \varepsilon_{i j} \varepsilon_{i j}
$$

for every symmetric tensor $\left(\varepsilon_{i j}\right)$ and some $\alpha>0$. Hereabove and below $\nabla \sigma(u)$ is the vector field defined by

$$
\nabla \sigma(u)=\left(\partial_{j} \sigma_{i j}(u)\right)_{i=1}^{3} .
$$

The mappings F and G from \mathbb{R}^{n} into itself satisfy the assumptions (35) to (37). Finally a is a nonnegative real number.

As before we suppose that (61) and (62) hold, but here we further assume that

$$
\begin{equation*}
F=0 \text { or } G=0 . \tag{68}
\end{equation*}
$$

This last assumption means that we stabilizate our system either by boundary feedback or by internal feedback.

The stability of the system (67) was considered in [11], [13], [15], [1], [4] under some particular hypotheses on $\Gamma_{0}, \Gamma_{1}, a, F$ and G leading to exponential or polynomial decay of the energy of the solution of (67).

As in the above subsection problem (67) may be expressed in the form (59) from Subsection 6.1 with the choices:

$$
\begin{aligned}
H & =L^{2}(\Omega)^{n} \\
V & =\left\{v \in H^{1}(\Omega)^{n} \mid v=0 \text { on } \Gamma_{0}\right\}, \\
(u, v)_{V} & =\int_{\Omega} \nabla u \cdot \nabla v d x+a \int_{\Gamma_{1}} u \cdot v d \sigma, \\
\left\langle B_{2} u, v\right\rangle_{V^{\prime}-V} & =\int_{\Omega} F(u) \cdot v d x+\int_{\Gamma_{1}} G(u) \cdot v d \sigma, \forall u, v \in V .
\end{aligned}
$$

The assumptions made on F and G imply that B_{2} fulfils the assumptions of Theorem 6.1, consequently the corresponding pair $\left(A_{1}, B\right)$ satisfies the
assumptions (3) to (8). For the stability results we need to check that the pair $\left(-A_{1}, \mathcal{I}_{U}\right)$ satisfies the stability estimate, where the control space U is defined by

$$
\begin{aligned}
& U=L^{2}\left(\Gamma_{1}\right)^{n} \text { if } F=0 \\
& U=L^{2}(\Omega)^{n} \text { if } G=0
\end{aligned}
$$

In the first case the stability estimate was proved in [4] under the assumption (65) (a similar estimate was proved in [11], [1] under stronger assumptions on Γ_{0} and Γ_{1}). If the tensor ($a_{i j k l}$) corresponds to the Lamé system, then the stability estimate was proved in Lemma 3.2 of [15] under the weaker assumption

$$
m \cdot \nu \leq 0 \text { on } \Gamma_{0}
$$

In the second case (i.e. $G=0$), the stability estimate for the pair $\left(-A_{1}, \mathcal{I}_{U}\right)$ was proved in Lemma 3.6 of [13].

As in the previous subsection, these conditions (on Γ_{0}, Γ_{1} and the coefficients $\left.\left(a_{i j k l}\right)\right)$ and appropriated conditions on F and G lead to exponential, polynomial, logarithmic or other decays. Bounded feedbacks are also allowed due to the embedding $H^{1}(\Omega) \times H^{1}(\Omega) \hookrightarrow L^{\alpha}(\Omega) \times L^{\alpha}\left(\Gamma_{1}\right)$, for some $\alpha>2$.

6.4 - Nonlinear stabilization of a coupled system

We consider the following coupled system in a bounded domain Ω with a C^{4}-boundary:

$$
\left\{\begin{array}{l}
\partial_{t}^{2} u_{1}+\Delta^{2} u_{1}+a u_{2}+g_{1}\left(\partial_{t} u_{1}, \partial_{t} u_{2}\right)=0 \text { in } Q \tag{69}\\
\partial_{t}^{2} u_{2}-\Delta u_{2}+a u_{1}+g_{2}\left(\partial_{t} u_{1}, \partial_{t} u_{2}\right)=0 \text { in } Q \\
\left.u_{1}=\partial_{\nu} u_{1}=u_{2}=0 \text { on } \Sigma=\Gamma \times\right] 0, \infty[\\
u_{i}(0)=u_{0 i}, \partial_{t} u_{i}(0)=u_{1 i} \text { in } \Omega, i=1,2
\end{array}\right.
$$

Here g_{i} are mappings from \mathbb{R}^{2} into \mathbb{R} such that the mapping G from \mathbb{R}^{2} into \mathbb{R}^{2} defined by

$$
G(x, y)=\left(g_{1}(x, y), g_{2}(x, y)\right)
$$

satisfies the assumptions (35) to (37). Finally a is a scalar function that we assume to be in $L^{\infty}(\Omega)$.

The above system was considered in [14] when g_{1} (resp. g_{2}) only depends on $\partial_{t} u_{1}$ (resp. $\partial_{t} u_{2}$). In that case this author proves exponential or polynomial decay rates under appropriated conditions on a, g_{1} and g_{2}. Let us notice that if $a=0$ and if g_{1} (resp. g_{2}) only depends on $\partial_{t} u_{1}$ (resp. $\partial_{t} u_{2}$), then the above system is splitted up into the wave equation considered in Subsection 6.2 and the standard Petrovsky system studied in [12]. Our subsequent analysis then covers the analysis of this last Petrovsky system.

First problem (69) is in the form (59) with the definitions (see [14]):

$$
\begin{aligned}
& H= L^{2}(\Omega)^{2}, \\
& V= H_{0}^{2}(\Omega) \times H_{0}^{1}(\Omega), \\
&\left(\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right)_{V}= \int_{\Omega}\left(\Delta u_{1} \Delta u_{2}+\nabla u_{2} \cdot \nabla v_{2}\right) d x+ \\
&+\int_{\Omega} a\left(u_{1} v_{2}+u_{2} v_{1}\right) d \sigma \\
&\left\langle B_{2}\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right\rangle_{V^{\prime}-V}= \int_{\Omega}\left(g_{1}\left(u_{1}, u_{2}\right) v_{1}+g_{2}\left(u_{1}, u_{2}\right) v_{2}\right) d x \\
& \forall\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right) \in V .
\end{aligned}
$$

The assumptions made on g_{1} and g_{2} imply that B_{2} fulfils the assumptions of Theorem 6.1, consequently the corresponding pair $\left(A_{1}, B\right)$ satisfies the assumptions (3) to (8). For the stability results we need to check that the pair $\left(-A_{1}, \mathcal{I}_{U}\right)$ satisfies the stability estimate when the control space U is given by $U=L^{2}(\Omega)^{2}$. This stability estimate was proved in Lemma 3.1 of [14] under the assumption

$$
\|a\|_{L^{\infty}(\Omega)}<\frac{1}{c^{\prime} c^{" 1}},
$$

where $c^{\prime}, c^{">}>0$ are the constants appearing in the above Poincaré type inequalities:

$$
\begin{aligned}
& \|u\|_{H^{2}(\Omega)}^{2} \leq c^{\prime} \int_{\Omega}(\Delta u)^{2} d x, \forall u \in H_{0}^{2}(\Omega) \\
& \|u\|_{H^{1}(\Omega)}^{2} \leq c^{\prime \prime} \int_{\Omega}|\nabla u|^{2} d x, \forall u \in H_{0}^{1}(\Omega) .
\end{aligned}
$$

This condition and appropriated conditions on g_{1} and g_{2} lead to exponential, polynomial, logarithmic or other decays. As before bounded feedbacks are also allowed.

6.5 - Nonlinear stabilization of Maxwell's equations

We consider Maxwell's equations in $\Omega \subset \mathbb{R}^{3}$ with a smooth boundary and a nonlinear internal feedback:

$$
\left\{\begin{array}{l}
\left.\varepsilon \frac{\partial E}{\partial t}-\operatorname{curl} H+g(E)=0 \text { in } Q:=\Gamma \times\right] 0,+\infty[, \tag{70}\\
\mu \frac{\partial H}{\partial t}+\operatorname{curl} E=0 \text { in } Q \\
\operatorname{div}(\mu H)=0 \text { in } Q \\
E \times \nu=0, H \cdot \nu=0 \text { on } \Sigma:=\Gamma \times] 0,+\infty[\\
E(0)=E_{0}, H(0)=H_{0} \text { in } \Omega
\end{array}\right.
$$

As usual ε and μ are real, positive functions of class $C^{\infty}(\bar{\Omega})$. The function g from \mathbb{R}^{3} into itself is assumed to satisfy the properties (35) to (37).

The stability of this system was studied in [39] with a linear feedback $g(E)=\sigma E$, with $\sigma \geq 0$. In particular the exponential decay was shown in that paper if $\sigma \geq \sigma_{0}>0$.

Contrary to the above examples this system is not a second order system but (compare with [7]) it enters in the setting of (9) once we set

$$
\begin{aligned}
\mathcal{H} & =L^{2}(\Omega)^{3} \times \hat{J}(\Omega, \mu), \\
\hat{J}(\Omega, \mu) & =\left\{H \in L^{2}(\Omega)^{3}: \operatorname{div}(\mu H)=0 \text { in } \Omega, H \cdot \nu=0 \text { on } \Gamma\right\}, \\
\left((E, H),\left(E^{\prime}, H^{\prime}\right)\right)_{\mathcal{H}} & =\int_{\Omega}\left(\epsilon E \cdot E^{\prime}+\mu H \cdot H^{\prime}\right) d x \\
\mathcal{V} & =V \times \hat{J}(\Omega, \mu), \\
V & =\left\{E \in L^{2}(\Omega)^{3}: \operatorname{curl} E \in L^{2}(\Omega)^{3}, E \times \nu=0 \text { on } \Gamma\right\}, \\
\left\langle A_{1}(E, H),\left(E^{\prime}, H^{\prime}\right)\right\rangle & =\int_{\Omega}\left(\operatorname{curl} E \cdot H^{\prime}-H \cdot \operatorname{curl} E^{\prime}\right) d x \\
\left\langle B(E, H),\left(E^{\prime}, H^{\prime}\right)\right\rangle & =\int_{\Omega} g(E \times \nu) \cdot\left(E^{\prime} \times \nu\right) d \sigma .
\end{aligned}
$$

One readily checks (as in [7, Section 3]) that the assumptions (3) and (4)
hold since the bilinear form

$$
\int_{\Omega}\left(\mu^{-1} \operatorname{curl} E \cdot \operatorname{curl} E^{\prime}+\epsilon E \cdot E^{\prime}\right) d x
$$

is clearly coercive on V. Moreover Lemma 2.3 of [35] implies that (5) and (6) hold. Finally from the definition of $A_{1}(7)$ clearly holds, while from the definition of B and the properties (35) and (36) satified by g, (8) holds. As the results of Section 5 of [39] imply that the pair $\left(-A_{1}, \mathcal{I}_{U}\right)$ satisfies the stability estimate when the control space U is given by $U=$ $L^{2}(\Omega)^{3}$, we may conclude exponential, polynomial, logarithmic or other decays under appropriated conditions on g. Here bounded feedbacks are not allowed since V is not embedded into $L^{\alpha}(\Omega)^{3}$ for some $\alpha>2$.

Let us finally notice that Maxwell's equations with a nonlinear boundary feedback

$$
\left\{\begin{array}{l}
\left.\varepsilon \frac{\partial E}{\partial t}-\operatorname{curl} H=0 \text { in } Q:=\Gamma \times\right] 0,+\infty[\tag{71}\\
\mu \frac{\partial H}{\partial t}+\operatorname{curl} E=0 \text { in } Q \\
\operatorname{div}(\varepsilon E)=\operatorname{div}(\mu H)=0 \text { in } Q, \\
H \times \nu+g(E \times \nu) \times \nu=0 \text { on } \Sigma:=\Gamma \times] 0,+\infty[, \\
E(0)=E_{0}, H(0)=H_{0} \text { in } \Omega,
\end{array}\right.
$$

was studied in [3], [21], [39], [7], [36]. Different decay rates are avalaible under different conditions on ϵ, μ and Γ and appropriated assumptions on g. It was shown in [7] that (71) enters in the setting of (9), where the assumptions (3) and (5) are also checked under some conditions on Ω, ϵ and μ (similar arguments actually imply that (4) and (6) hold as well). The stability analysis following the point of view of our paper is given in [36]. We then refer to that paper for the details.

REFERENCES

[1] F. Alabau - V. Komornik: Boundary observability, controllability and stabilization of linear elastodynamic systems, SIAM J. Control Optim., 37 (1999), 521-542.
[2] C. Amrouche - C. Bernardi - M. Dauge - V. Girault: Vector potentials in three-dimensional nonsmooth domains, Math. Meth. Applied Sc., 21 (1998), 823-864.
[3] H. Barucq - B. Hanouzet: Étude asymptotique du système de Maxwell avec la condition aux limites absorbante de Silver-Müller, II, C. R. Acad. Sci. Paris, Série I, 316 (1993), 1019-1024.
[4] R. Bey - A. Heminna - J.-P. Lohéac: A new approach for boundary stabilisation of the linear elastodynamic system, Revista Matematica de la Universidad Complutense de Madrid, submitted.
[5] F. Conrad - B. RaO: Decay of solutions of wave equations in a star-shaped domain with nonlinear feedback, Asymptotic Analysis, 7 (1993), 159-177.
[6] G. Duvaut - J.-L. Lions: Les inéquations en mécanique et en physique, Dunod, Paris, 1972.
[7] M. Eller - J. E. Lagnese - S. Nicaise: Decay rates for solutions of a Maxwell system with nonlinear boundary damping, Comp. and Apppl. Math., 21 (2002), 135-165.
[8] V. Girault - P.-A. Raviart: Finite element methods for Navier-Stokes equations, Springer Series in Comp. Math., 5 Springer-Verlag, 1986.
[9] P. Grisvard: Elliptic problems in nonsmooth Domains, Monographs and Studies in Mathematics, 21 Pitman, Boston, 1985.
[10] A. Guesmia: On the nonlinear stabilization of the wave equation, Annales Polonici Mathematici, 68 (1998), 191-198.
[11] A. Guesmia: Existence globale et stabilisation interne non linéaire d'un système d'élasticité, Portugaliae Mathematica, 55 (1998), 333-347.
[12] A. Guesmia: Existence globale et stabilisation interne non linéaire d'un système de Petrovsky, Bull. Belg. Math. Soc. S. Stevin, 5 (1998), 583-594.
[13] A. Guesmia: Existence globale et stabilisation frontière non linéaire d'un système d'élasticité, Portugaliae Mathematica, 56 (1999), 361-379.
[14] A. Guesmia: Energy decay for a damped nonlinear coupled system, J. Math. Analysis Appl., 239 (1999), 38-48.
[15] M. A. Horn: Implications of sharp trace regularity results on boundary stabilization of the system of linear elasticity, J. Math. Analysis Appl., 223 (1998), 126-150.
[16] B. V. Kapitanov: Stabilization and exact boundary controllability for Maxwell's equations, SIAM J. Control Optim., 32 (1994), 408-420.
[17] B. V. Kapitanov - M. A. Raupp: Exact boundary controllability in problems of transmission for the system of electromagneto-elasticity, Math. Meth. Appl. Sci., 24 (2001), 193-207.
[18] V. Komornik: Rapid boundary stabilization of the wave equation, SIAM J. Control Optim., 29 (1991), 197-208.
[19] V. Komornik: Decay estimates for the wave equation with internal damping, in: Proc. Conf. Control Theory, Vorau, 1993, Int. Ser. Numer. Anal., 118 (1994), 253-266.
[20] V. Komornik: On the nonlinear boundary stabilization of the wave equation, Chinese Ann. Math. Ser. B, 14 (1993), 153-164.
[21] V. Komornik: Boundary stabilization, observation and control of Maxwell's equations, PanAm. Math. J., 4 (1994), 47-61.
[22] V. Komornik: Exact controllability and stabilization, the multiplier method,RMA 36, Masson, Paris, 1994.
[23] V. Komornik - E. Zuazua: A direct method for the boundary stabilization of the wave equation, J. Math. Pures Appl., 69 (1990), 33-54.
[24] J. E. Lagnese: Exact controllability of Maxwell's equations in a general region, SIAM J. Control Optim., 27 (1989), 374-388.
[25] I. Lasiecka - D. Tataru: Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping, J. Diff. Integr. Eq., 6 (1993), 507533.
[26] I. Lasiecka - R. Triggiani: Uniform stabilization of the wave equation with Dirichlet or Neumann feedback control without geometrical conditions, Appl. Math. Optim., 25 (1992), 189-224.
[27] J.-L. Lions: Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués, tome 1, RMA 8 Masson, Paris, 1988.
[28] W. J. Liu: Partial exact controllability and exponential stability of higher dimensional linear thermoelasticity, ESAIM: COCV, 3 (1998), 23-48.
[29] W. J. Liu - E. Zuazua: Decay rates for dissipative wave equations, Ric. Mat., 48 Suppl. (1999), 61-75.
[30] P. Martinez: Uniform stabilization of the wave equation in almost star-shaped domains, SIAM J. Control and Opt., 37 (1999), 673-694.
[31] P. Martinez: A new method to obtain decay rate estimates for dissipative systems, ESAIM: COCV, 4 (1999), 419-444.
[32] P. Martinez: A new method to obtain decay rate estimates for dissipative systems with localized damping, Rev. Mat. Complut., 12 (1999), 251-283.
[33] P. Martinez: Decay of solutions of the wave equation with a local highly degenerate dissipation, Asymptot. Anal., 19 (1999), 1-17.
[34] P. Martinez: Precise decay rate estimates for time-dependent dissipative systems, Israel J. Math., 119 (2000), 291-324.
[35] S. Nicaise: Exact boundary controllability of Maxwell's equations in heteregeneous media and an application to an inverse source problem, SIAM J. Control and Opt., 38 (2000), 1145-1170.
[36] S. Nicaise - M. Eller - J. E. Lagnese: Stabilization of heteregeneous Maxwell's equations by nonlinear boundary feedbacks, EJDE, 21 (2002), 1-26.
[37] S. Nicaise: Stability and controllability of the electromagneto-elastic system, Portugaliae Mathematica, 60 (2003), 37-70.
[38] C. Pignotti: Observavility and controllability of Maxwell's equations, Rendiconti di Mat., 19 (1999), 523-546.
[39] K. D. Phung: Contrôle et stabilisation d'ondes électromagnétiques, ESAIM: COCV, 5 (2000), 87-137.
[40] D. L. Russell: The Dirichlet-Neumann boundary control problem associated with Maxwell's equations in a cylindrical region, SIAM J. Control Optim., 24 (1986), 199-229.
[41] R. E. Showalter: Hilbert space methods for partial differential equations, Math. and Studies in Math., 1 Pitman, 1977.
[42] R. E. Showalter: Monotone operators in Banach space and nonlinear partial differential equations, Math. Surveys and Monographs, 49 AMS, 1997.
[43] E. ZuAZuA: Uniform stabilization of the wave equation by nonlinear boundary feedback, SIAM J. Control Optim., 28 (1990), 466-477.

Lavoro pervenuto alla redazione il 23 maggio 2002 ed accettato per la pubblicazione il 16 gennaio 2003. Bozze licenziate il 4 settembre 2003

INDIRIZZO DELL'AUTORE:

S. Nicaise - Université de Valenciennes et du Hainaut Cambrésis - MACS - Institut des Sciences et Techniques de Valenciennes - F-59313 - Valenciennes Cedex 9 (France)
E-mail: snicaise@univ-valenciennes.fr

[^0]: Key Words and Phrases: Stability of partial differential equations of hyperbolic type - Integral inequality - Evolution equations - Liu principle.
 A.M.S. Classification: 37D35-35L10

