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On the Dirichlet problem

for degenerate monotone operators

N. D’AURIA – O. FIODO

Abstract: We prove an existence theorem for the Dirichlet problem in divergence
form for degenerate monotone operators (also multivalued) with growth coefficients in
BMO. We consider these problems in an open cube of IRn, n ≥ 2, and in Sobolev spaces
with exponent 2 ≤ p < +∞.

1 – Introduction

The aim of this paper is to study the Dirichlet problem on W 1,p
0 (Ω)

for non linear monotone operators of the form

(1.1) Au = −div a(x,∇u)

where Ω is an open cube of IRn and 2 ≤ p < +∞.

We assume that the (possibly multivalued) map a : Ω × IRn → IRn

which occurs in (1.1) is measurable on Ω × IRn, maximal monotone on

IRn for almost every x ∈ Ω and satisfies the following conditions:

i) |η|q ≤ m1(x) + K(x)(η, ξ) q = p(p− 1)−1
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ii) |ξ|p ≤ m2(x) + K(x)(η, ξ)

iii) 0 ∈ a(x, 0)

for a.e. x ∈ Ω, for every ξ ∈ IRn and η ∈ a(x, ξ).

The non negative functions m1(x) and m2(x) are integrable on Ω and

K = K(x) ≥ 1 is in BMO(Ω) with

(1.2) ‖K‖BMO(Ω) ≤ cγ−1

where c = c(n) is the Coifman-Rochberg constant (see [8]) and γ =

γ(n) sufficiently large. The class of all these maps will be denoted by

MK,Ω(IRn).

The main examples have the form

a(x, ξ) = ∂ξψ(x, ξ)

where ∂ξ denotes the subdifferential with respect to ξ and ψ : Ω× IRn →
[0,+∞) is measurable in (x, ξ), convex in ξ and satisfies the inequality

|ξ|p + |η|q ≤ (K(x) + K−1(x))(ψ(x, ξ) + ψ∗(x, η))

where ψ∗(x, η) is the Young conjugate of ψ(x, ·) (see [15]).

In this case the operator (1.1) is the subdifferential of the functional

Ψ(u) =

∫

Ω

ψ(x,∇u)dx .

The main result of this paper is the following

Theorem A. Under the above assumptions there exists a constant

γ = γ(n) > 0 such that, if γ > γ, for every function f , for which Kf ∈
(Lq(Ω))n, the problem

(1.3)

{
−div f ∈ −div a(x,∇u) on Ω

u ∈ W 1,p
0 (Ω)

admits a solution, or equivalently, there exists a function u∈ W 1,p
0 (Ω) and

a vector- valued function g(x) ∈ a(x,∇u(x)) for a. e. x ∈ Ω and

(1.4) div(g − f) = 0 .
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Our result is strictly related with the theory of Quasiharmonic fields

introduced in [11]. In fact there are two vector fields associated with a

solution of problem (1.3): the first one E = ∇u is curl free, the second

B = g − f is divergence free.

Moreover inequalities i), ii) imply

|E|p + |B|q ≤ c(K〈B,E〉 + θ)

where θ = θ(x) = m1(x)+m2(x)+|K(x)f(x)|q and c = c(q) is a constant.

As consequence of Theorem A we have an existence and uniqueness

result for the degenerate p-laplacian.

Let us emphasize explicetly that we are dealing here with genuine

non isotropic degenerate operators.

The main tool in the proof of Theorem A is an a-priori estimate for

a solution of problem (1.3) (see Section 3). Moreover, it is very useful an

existence result for problem (1.3), proved in [6] when K(x) is bounded.

Many different situations have been studied in linear and nonlinear

theory of elliptic PDE’s with BMO coefficients (see [3], [4], [11], [12]).

2 – Preliminary results

Let X and Y be two sets. A multivalued function F from X to Y is

a map that associates with any x ∈ X a subset Fx of Y . The subsets Fx

are called the images or values of F .

The sets

D(F ) = {x ∈ X : Fx �= ∅} G(F ) = {[x, y] ∈ X × Y : y ∈ Fx}

are called the domain and the graph of F respectively.

The inverse F−1 of F is the multivalued map from Y to X defined

by x ∈ F−1y if and only if y ∈ Fx.

Let (X, T ) be a measurable space and let F : X → IRn be a mul-

tivalued function. For every B ⊆ IRn the inverse image of B under F is

denoted by

F−1(B) = {x ∈ X : B ∩ Fx �= ∅}
Let B(IRn) be the σ-field of all Borel subsets of IRn, we say that a mul-

tivalued function F : X → IRn is measurable (with respect to T and

B(IRn)) if F−1(C) ∈ T for every closed set C ⊂ IRn.
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In the following we assume that G(F ) ∈ T × B(IRn) because we

define a complete σ-finite measure on T .

It is usefull to recall the following theorem:

Projection Theorem. Let (X, T , µ) be a measurable space, where

µ is a complete σ-finite measure defined on T . If G belongs to T ⊗ B(IRn),

then the projection prxG belongs to T .

For the proof of this theorem and properties of measurable multival-

ued functions we remaind to [5] (Theorem III.23).

Let F : X → Y be a multivalued function, a function σ : X → Y is

a selection of F if σ(x) ∈ Fx for every x.

Let us give a general theorem for the existence of measurable selection

of a multivalued function due to Aumann and von Neumann (see [5]

Theorem III.22).

Theorem 2.1. Let (X, T ) be a measurable space and let F be a

multivalued function from X to IRn with non-empty values. If the graph

G(F ) belongs to T ⊗ B(IRn) and exists a complete σ-finite measure de-

fined on T , then F has a measurable selection.

Now, let X be a real Banach space and let X∗ its dual space. By 〈, 〉
we denote the duality pairing between X∗ and X. A set M ⊆ X ×X∗ is

monotone if

〈y1 − y2, x1 − x2〉 � 0 ∀[x1, y1], [x2, y2] ∈ M .

A monotone set M is maximal monotone if it is not a proper subset of a

monotone set in X ×X∗ i.e. [x, y] ∈ X ×X∗ such that

〈y − η, x− ξ〉 � 0 ∀[ξ, η] ∈ M

then [x, y] ∈ M .

A multivalued operator F : X → X∗ is maximal monotone if its

graph is maximal monotone.

We recall some properties of maximal monotone mappings that are

very usefull in the following (see [9], [2]). If F : X → X∗ is a maximal

monotone mapping, then

Theorem 2.2. For every λ > 0, λF is maximal monotone mapping.
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Theorem 2.3. For any x ∈ D(F ) the image Fx is closed convex

subset of X∗.

Theorem 2.4. If X is a reflexive Banach space, then F is surjective

if and only if F−1 is locally bounded on X∗.

Theorem 2.5. If 0 ∈ IntD(F ), F is quasi-bounded.

Theorem 2.6. If F1 and F2 are two maximal monotone mappings

with 0 ∈ D(F1)∩D(F2) and F1 is quasi-bounded, we have F1+F2 maximal

monotone.

Theorem 2.7. If ϕ : X → R is a proper convex lower semi-

continuous function, then the multivalued operator (subdifferential of ϕ)

∂ϕ : X → X∗ is a maximal monotone mapping.

Now we introduce a class of multivalued monotone operators on

Sobolev spaces of the type −div(a(x,∇u)). Let 2 ≤ p < +∞, we de-

note by q the dual exponent of p, p−1 + q−1 = 1. We fix an open cube

Ω ⊂ IRn (n ≥ 2), two non negative functions m1,m2 ∈ L1(Ω) and a

function K(x), K(x) ≥ 1 a.e. in Ω. We denote by L(Ω) the σ-field of all

Lebesgue measurable subsets of Ω; if E ∈ L(Ω), |E| denotes the measure

of E.

The Euclidean norm and the scalar product in IRn are denoted by | · |
and (·, ·) respectively.

Definition 2.8. MK,Ω(IRn) is the class of all multivalued functions

a : Ω× IRn → IRn with closed values, measurable with respect to L(Ω)⊗
B(IRn) and B(IRn) such that are maximal monotone with respect to ξ ∈
IRn and satisfying

i) |η|q ≤ m1(x) + K(x)(η, ξ)

ii) |ξ|p ≤ m2(x) + K(x)(η, ξ)

for a.e. x ∈ Ω , ∀ξ ∈ IRn, η ∈ a(x, ξ),

iii) 0 ∈ a(x, 0) for a.e. x ∈ Ω.
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Remark 2.9. For 2.3 the set a(x, ξ) is closed and convex for a.e.

x ∈ Ω and ∀ξ ∈ IRn. For Theorem 2.1 the graph of a(x, ξ) belongs to

L(Ω) ⊗ B(IRn) ⊗ B(IRn). By i) we have that there is a non negative

function m3(x) ∈ Lq(Ω) such that

(2.1) |η| ≤ m3(x) + Kp−1(x)|ξ|p−1 for a.e. x ∈ Ω .

By (2.1) for a.e. x ∈ Ω the maximal monotone operator a(x, ξ) is locally

bounded, hence by 2.4 a−1(x, ·) is suriective. This implies a(x, ξ) �= ∅ for

a.e. x ∈ Ω and ∀ξ ∈ IRn.

Let K(x) ∈ L∞(Ω) and a ∈ MK,Ω(IRn), we consider the Dirichlet

boundary value problem

(2.2)

{
−div f ∈ −div a(x,∇u) on Ω, f ∈ (Lq(Ω))n

u ∈ W 1,p
0 (Ω). p ≥ 2

We say that u ∈ W 1,p
0 (Ω) is a solution of problem (2.2) (as well as (1.3))

if

(2.3)
∃ g ∈ (Lq(Ω))n such that g(x) ∈ a(x,∇u(x)) and∫

Ω

g(x)∇ϕ(x)dx =

∫

Ω

f(x)∇ϕ(x)dx ∀ϕ ∈ C∞
0 (Ω)

By using the same arguments of [6] it is easy to verify that

Theorem 2.10. If K(x) ∈ L∞(Ω) and a ∈ MK,Ω(IRn) the Dirichlet

problem (2.2) has a solution.

3 – A priori estimates for the solution of problem (1.3)

If Ω is an open cube of IRn, by H1(Ω) and BMO(Ω) we denote the

Hardy space and the space of all functions of bounded mean oscillation

respectively, we have see [7], [10], [13], [14], [16], [17]):

Proposition 3.1. Let E ∈ (Lp(Ω))n and B ∈ (Lq(Ω))n be two

vector fields such that divB = 0 and curlE = O, where p and q are
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conjugate. Then their scalar product (E,B) belongs to H1(Ω) and there

is a constant c = c(n) such that

‖(E,B)‖H1(Ω) ≤ c‖E‖Lp(Ω)‖B‖Lq(Ω) .

Lemma 3.2. (Div-Curl) Suppose the vector fields Ek, Bk respectively

in (Lp(Ω))n, (Lq(Ω))n(1 < p < ∞, n ≥ 2) verify divBk = 0 curlEk = O

and Ek, Bk converge weakly respectively in (Lp(Ω))n, (Lq(Ω))n to some

E, B then

(Ek, Bk) ⇀ (E,B) in D′(Ω) .

Theorem 3.3. For every K ∈ BMO(Ω) there exists a unique

T ∈ (H1(Ω))∗ such that

(3.1) T (h) =

∫

Ω

h(x)K(x)dx ∀ h ∈ H1(Ω) .

Conversely, for every T ∈ (H1(Ω))∗ there exists a unique g ∈ BMO(Ω)

which satisfies (3.1). The corrispondence T −→ g determined by (3.1) is

a Banach space isomorphism between (H1(Ω))∗ and BMO(Ω).

Now let K ∈ BMO(Ω), K(x) ≥ 1 a.e. in Ω, we prove the following

Lemma 3.4. Let u ∈ W 1,p
o (Ω) a solution of the problem (1.3) with

Kf ∈ (Lq(Ω))n. There exists γo such that whenever K satisfies (1.2) with

γ > γo, we have

(3.2)

∫

Ω

|∇u|p + |g|qdx ≤ c(‖m1‖L1 + ‖m2‖L1 + ‖Kf‖qLq)

where c = c(n) > 0
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Proof. From i) and ii)

∫

Ω

|∇u(x)|p + |g(x)|qdx ≤ ‖m1‖L1 + ‖m2‖L1+

+ 2
∣∣∣
∫

Ω

K(x)(g(x) − f(x),∇u(x)) dx
∣∣∣+ 2

∣∣∣
∫

Ω

K(x)(f(x),∇u(x))dx
∣∣∣

so, by Theorem 3.3 there exists a positive constant c1 independent of

‖K‖BMO such that

∫

Ω

|∇u|p + |g|q dx ≤‖m1‖L1 +‖m2‖L1 + 2c1‖K‖BMO‖(g − f,∇u)‖H1(Ω)+

+ 2
∣∣∣
∫

Ω

K(x)(f(x),∇u(x))dx
∣∣∣ .

By Proposition 3.1, applying Hölder and Young inequalities we have, for

every ε > 0,

(3.3)

‖∇u‖pLp + ‖g‖qLq ≤ ‖m1‖L1 + ‖m2‖L1+

+ 4c1c(n)‖K‖BMO(‖∇u‖pLp + ‖g‖qLq)+

+ ε(‖∇u‖pLp + ‖g‖qLq) + 2 c1c(n)‖K‖BMO‖f‖qLq + cε‖Kf‖qLq

where cε is independent of ‖K‖BMO.

Now, for all K ∈ BMO(Ω) such that 4c1c(n)‖K‖BMO ≤ ρ with 0 <

ρ < 1, we have that, for every fixed 0 < ε < 1 − ρ, there is a costant c

independent of ‖K‖BMO such that

‖∇u‖pLp + ‖g‖qLq ≤ c(‖m1‖L1 + ‖m2‖L1 + ‖Kf‖qLq) .

Applying condition(1.2), the Lemma is proved provided γ0>4c1c c(n).

4 – Proof of Theorem A

In order to prove Theorem A, for every ε ∈]0, 1] we consider the

multivalued function aε(x, ξ) : Ω × IRn −→ IRn

(4.1) aε(x, ξ) =
a(x, ξ) + εKp−1(x)|ξ|p−2ξ

1 + εKp−1(x)

where a(x, ξ) ∈ MK,Ω(IRn) and K(x) ∈ BMO(Ω), K(x) ≥ 1.
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The multivalued function aε(x, ξ) with closed values is measurable

with respect to L(Ω) ⊗ B(IRn) and B(IRn). Moreover, by properties 2.2,

2.5-2.7, it is maximal monotone with respect to ξ a.e. x ∈ Ω. From (4.1),

using (2.1) we have

|ηε| ≤ m3(x) +
Kp−1(x)(1 + ε)

1 + εKp−1(x)
|ξ|p−1 a.e. x ∈ Ω

while using ii)

|ξ|p ≤ m2(x) +
Kp(x)(1 + ε)

1 + εKp(x)
(ηε, ξ) a.e. x ∈ Ω

for every ε ∈]0, 1], ∀ξ ∈ IRn and ηε ∈ aε(x, ξ).

We can easily verify that the following lemmas yeld

Lemma 4.1. Let be p ≥ 2. For every ε ∈]0, 1] the map aε(x, ξ) ∈
M( 2

ε )q+3 ,Ω (IRn).

Lemma 4.2. Let be p ≥ 2. For every ε ∈]0, 1] the map aε(x, ξ) ∈
M4K,Ω(IRn).

Now we are in position to prove the main result

Proof of Theorem A. For every ε ∈]0, 1], let us consider the

problem

(4.2)

{
−div f ∈ −div aε(x,∇u) on Ω

u ∈ W 1,p
o (Ω) (p ≥ 2)

with data f such that Kf ∈ (Lq(Ω))n. From Lemma 4.1 and Theo-

rem 2.10 it follows that problem (4.2) admits at least a solution uε ∈
W 1,p

o (Ω).

From Lemmas 4.2 and 3.4, if K verifies (1.2) with γ > 4γ0, the pair

[∇uε, gε] satisfy the estimate (3.2) uniformely with respect to ε ∈]0, 1].

So we can construct two subsequences again denoted by {uε} and {gε}
such that as ε → 0+

uε → u weakly in W 1,p
o (Ω), ,(4.3)

gε → g weakly in (Lq(Ω))n ,(4.4)
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and

(4.5)

∫

Ω

gε∇ϕdx =

∫

Ω

f∇ϕdx ∀ϕ ∈ C∞
o (Ω) .

The equality in (2.3) is obtained by passing to limit as ε → 0+ in (4.5).

To conclude the proof we show that g(x) ∈ a(x,∇u(x)) for a.e. in Ω.

Put

M = {x ∈ Ω : ∃ ξ ∈ IRn ∃ η ∈ a(x, ξ) : (g(x) − η,∇u(x) − ξ) < 0} ,

according to the maximal monotonicity of the map a it is enough to show

that |M | = 0. To prove that let us write M = {x ∈ Ω : Gx �= ∅} where

Gx = {[ξ, η] ∈ IRn × IRn : η ∈ a(x, ξ) and (g(x) − η,∇u(x) − ξ) < 0} .

By Remark 2.9 the graph of G belongs to L(Ω) ⊗ B(IRn) ⊗ B(IRn) thus

M ∈ L(Ω) by the projection Theorem.

The Theorem 2.1 assures that there is a measurable selection

[ξ(x), η(x)] of G defined on M , then η(x) ∈ a(x, ξ(x)) and

(g(x) − η(x),∇u(x) − ξ(x)) < 0 ∀x ∈ M .

If |M | > 0, there are two measurable subset M ′, M ′′ of M , M ′′ ⊂ M ′′ ⊂
M ′, with 0 < |M ′′| < |M ′| < +∞ such that [ξ(x), η(x)] is bounded on

M ′. Now, for every ε ∈]0, 1] and x ∈ M ′ we consider

ηε(x) =
η(x) + εKp−1(x)|ξ(x)|p−2ξ(x)

1 + εKp−1(x)
.

The sequence {ηε(x)} is bounded on M ′ and converges to η(x) a.e. in

M ′. Since |M ′| < +∞, the sequence {ηε(x)} converges in measure to

η(x), hence

(4.6) ηε(x) −→ η(x) in (Lq(M ′))n .

Since ηε(x) ∈ aε(x, ξ(x)) we have

(gε(x) − ηε(x),∇uε(x) − ξ(x)) ≥ 0 ∀x ∈ M ′ .
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Moreover, if φ ∈ C∞
o (M ′), φ(x) > 0 ∀x ∈ M ′′ and φ(x) ≥ 0 ∀x ∈

M ′ −M ′′, we have

(4.7)

0 ≤
∫

M ′′
(gε(x) − ηε(x),∇uε(x) − ξ(x))φ(x)dx ≤

≤
∫

M ′
(gε(x) − f(x),∇uε(x))φ(x)dx+

+

∫

M ′
(gε(x) − f(x),−ξ(x))φ(x)dx+

+

∫

M ′
(f(x) − ηε(x),∇uε(x) − ξ(x))φ(x)dx = I1

ε + I2
ε + I3

ε .

By Lemma 3.2 , I1
ε → ∫

M ′(g(x)−f(x),∇u(x))φ(x) dx. Moreover by (4.4),

(4.6) and (4.3) we get

I2
ε →

∫

M ′
(g(x) − f(x),−ξ(x))φ(x)dx ,

I3
ε →

∫

M ′
(f(x) − η(x),∇u(x) − ξ(x))φ(x)dx .

So, by passing to limit as ε −→ 0+ in (4.7) we have

(4.8)

∫

M ′
(g(x) − η(x),∇u(x) − ξ(x)) φ(x) dx ≥ 0 .

Since |M ′| > 0, (4.8) contradicts the definition of M . Therefore we

conclude that |M | = 0. This completes the proof of Theorem A with

γ = 4γ0.

Now, we consider the class, SK , of all single-valued maps a ∈ MK,Ω(IRn),

such that

iv) |a(x, ξ1) − a(x, ξ2)| ≤ Kp−1 (x) |ξ1 − ξ2|(|ξ1|p−2 + |ξ2|p−2),

v) K(x)−1|ξ1 − ξ2|p ≤ (a(x, ξ1) − a(x, ξ2), ξ1 − ξ2)

for a.e. x ∈ Ω, ∀ξ1, ξ2 ∈ IRn.

By Theorem A and condictions iv), v) we have
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Corollary 4.3. Let p � 2. There is a positive constant γ such

that if a ∈ SK and K satisfies (1.2) with γ > γ, the problem

{
−div f = −div a(x,∇u) on Ω Kf ∈ (Lq(Ω))n

u ∈ W 1,p
o (Ω)

an unique solution.
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