On the Dirichlet problem
for degenerate monotone operators

N. D'AURIA – O. FIODO

Abstract: We prove an existence theorem for the Dirichlet problem in divergence form for degenerate monotone operators (also multivalued) with growth coefficients in BMO. We consider these problems in an open cube of \mathbb{R}^n, $n \geq 2$, and in Sobolev spaces with exponent $2 \leq p < +\infty$.

1 – Introduction

The aim of this paper is to study the Dirichlet problem on $W^{1,p}_0(\Omega)$ for non linear monotone operators of the form

\begin{equation}
Au = - \text{div } a(x, \nabla u)
\end{equation}

where Ω is an open cube of \mathbb{R}^n and $2 \leq p < +\infty$.

We assume that the (possibly multivalued) map $a : \Omega \times \mathbb{R}^n \to \mathbb{R}^n$ which occurs in (1.1) is measurable on $\Omega \times \mathbb{R}^n$, maximal monotone on \mathbb{R}^n for almost every $x \in \Omega$ and satisfies the following conditions:

1) $|\eta|^q \leq m_1(x) + K(x)(\eta, \xi)$ \hspace{1cm} $q = p(p - 1)^{-1}$

A.M.S. Classification: 35J70 – 47H05
ii) $|\xi|^p \leq m_2(x) + K(x)(\eta, \xi)$

iii) $0 \in a(x, 0)$

for a.e. $x \in \Omega$, for every $\xi \in \mathbb{R}^n$ and $\eta \in a(x, \xi)$.

The non negative functions $m_1(x)$ and $m_2(x)$ are integrable on Ω and $K = K(x) \geq 1$ is in $\text{BMO}(\Omega)$ with

\[(1.2) \quad \|K\|_{\text{BMO}(\Omega)} \leq c\gamma^{-1}\]

where $c = c(n)$ is the Coifman-Rochberg constant (see [8]) and $\gamma = \gamma(n)$ sufficiently large. The class of all these maps will be denoted by $M_{K,\Omega}(\mathbb{R}^n)$.

The main examples have the form

$$a(x, \xi) = \partial_\xi \psi(x, \xi)$$

where ∂_ξ denotes the subdifferential with respect to ξ and $\psi : \Omega \times \mathbb{R}^n \to [0, +\infty)$ is measurable in (x, ξ), convex in ξ and satisfies the inequality

$$|\xi|^p + |\eta|^q \leq (K(x) + K^{-1}(x))(\psi(x, \xi) + \psi^*(x, \eta))$$

where $\psi^*(x, \eta)$ is the Young conjugate of $\psi(x, \cdot)$ (see [15]).

In this case the operator (1.1) is the subdifferential of the functional

$$\Psi(u) = \int_\Omega \psi(x, \nabla u) \, dx.$$

The main result of this paper is the following

Theorem A. Under the above assumptions there exists a constant $\overline{\gamma} = \overline{\gamma}(n) > 0$ such that, if $\gamma > \overline{\gamma}$, for every function f, for which $Kf \in (L^q(\Omega))^n$, the problem

\[(1.3) \quad \begin{cases}
-\text{div} \ f \in \text{div} \ a(x, \nabla u) \text{ on } \Omega \\
u \in W^{1,p}_0(\Omega)
\end{cases}\]

admits a solution, or equivalently, there exists a function $u \in W^{1,p}_0(\Omega)$ and a vector-valued function $g(x) \in a(x, \nabla u(x))$ for a.e. $x \in \Omega$ and

\[(1.4) \quad \text{div}(g - f) = 0.\]
Our result is strictly related with the theory of Quasiharmonic fields introduced in [11]. In fact there are two vector fields associated with a solution of problem (1.3): the first one \(E = \nabla u \) is curl free, the second \(B = g - f \) is divergence free.

Moreover inequalities \(i), ii \) imply

\[
|E|^p + |B|^q \leq c(K(B, E) + \theta)
\]

where \(\theta = \theta(x) = m_1(x) + m_2(x) + |K(x)f(x)|^q \) and \(c = c(q) \) is a constant.

As consequence of Theorem A we have an existence and uniqueness result for the degenerate p-laplacian.

Let us emphasize explicity that we are dealing here with genuine non isotropic degenerate operators.

The main tool in the proof of Theorem A is an a-priori estimate for a solution of problem (1.3) (see Section 3). Moreover, it is very useful an existence result for problem (1.3), proved in [6] when \(K(x) \) is bounded.

Many different situations have been studied in linear and nonlinear theory of elliptic PDE’s with BMO coefficients (see [3], [4], [11], [12]).

2 – Preliminary results

Let \(X \) and \(Y \) be two sets. A multivalued function \(F \) from \(X \) to \(Y \) is a map that associates with any \(x \in X \) a subset \(Fx \) of \(Y \). The subsets \(Fx \) are called the images or values of \(F \).

The sets

\[
D(F) = \{ x \in X : Fx \neq \emptyset \} \quad G(F) = \{ [x, y] \in X \times Y : y \in Fx \}
\]

are called the domain and the graph of \(F \) respectively.

The inverse \(F^{-1} \) of \(F \) is the multivalued map from \(Y \) to \(X \) defined by \(x \in F^{-1}y \) if and only if \(y \in Fx \).

Let \((X, T) \) be a measurable space and let \(F : X \to \mathbb{R}^n \) be a multivalued function. For every \(B \subseteq \mathbb{R}^n \) the inverse image of \(B \) under \(F \) is denoted by

\[
F^{-1}(B) = \{ x \in X : B \cap Fx \neq \emptyset \}
\]

Let \(\mathcal{B}(\mathbb{R}^n) \) be the \(\sigma \)-field of all Borel subsets of \(\mathbb{R}^n \), we say that a multivalued function \(F : X \to \mathbb{R}^n \) is measurable (with respect to \(T \) and \(\mathcal{B}(\mathbb{R}^n) \)) if \(F^{-1}(C) \in T \) for every closed set \(C \subseteq \mathbb{R}^n \).
In the following we assume that $G(F) \in \mathcal{T} \times \mathcal{B}(\mathbb{R}^n)$ because we define a complete σ-finite measure on \mathcal{T}.

It is useful to recall the following theorem:

Projection Theorem. Let (X, \mathcal{T}, μ) be a measurable space, where μ is a complete σ-finite measure defined on \mathcal{T}. If G belongs to $\mathcal{T} \otimes \mathcal{B}(\mathbb{R}^n)$, then the projection $\text{pr}_x G$ belongs to \mathcal{T}.

For the proof of this theorem and properties of measurable multivalued functions we remain to [5] (Theorem III.23).

Let $F : X \to Y$ be a multivalued function, a function $\sigma : X \to Y$ is a *selection* of F if $\sigma(x) \in Fx$ for every x.

Let us give a general theorem for the existence of measurable selection of a multivalued function due to Aumann and von Neumann (see [5] Theorem III.22).

Theorem 2.1. Let (X, \mathcal{T}) be a measurable space and let F be a multivalued function from X to \mathbb{R}^n with non-empty values. If the graph $G(F)$ belongs to $\mathcal{T} \otimes \mathcal{B}(\mathbb{R}^n)$ and exists a complete σ-finite measure defined on \mathcal{T}, then F has a measurable selection.

Now, let X be a real Banach space and let X^* its dual space. By $\langle \cdot, \cdot \rangle$ we denote the duality pairing between X^* and X. A set $M \subseteq X \times X^*$ is monotone if

$$\langle y_1 - y_2, x_1 - x_2 \rangle \geq 0 \quad \forall [x_1, y_1], [x_2, y_2] \in M.$$

A monotone set M is *maximal monotone* if it is not a proper subset of a monotone set in $X \times X^*$ i.e. $[x, y] \in X \times X^*$ such that

$$\langle y - \eta, x - \xi \rangle \geq 0 \quad \forall [\xi, \eta] \in M$$

then $[x, y] \in M$.

A multivalued operator $F : X \to X^*$ is maximal monotone if its graph is maximal monotone.

We recall some properties of maximal monotone mappings that are very useful in the following (see [9], [2]). If $F : X \to X^*$ is a maximal monotone mapping, then

Theorem 2.2. For every $\lambda > 0$, λF is maximal monotone mapping.
Theorem 2.3. For any $x \in D(F)$ the image Fx is closed convex subset of X^*.

Theorem 2.4. If X is a reflexive Banach space, then F is surjective if and only if F^{-1} is locally bounded on X^*.

Theorem 2.5. If $0 \in \text{Int } D(F)$, F is quasi-bounded.

Theorem 2.6. If F_1 and F_2 are two maximal monotone mappings with $0 \in D(F_1) \cap D(F_2)$ and F_1 is quasi-bounded, we have $F_1 + F_2$ maximal monotone.

Theorem 2.7. If $\varphi : X \rightarrow \mathbb{R}$ is a proper convex lower semi-continuous function, then the multivalued operator (subdifferential of φ) $\partial \varphi : X \rightarrow X^*$ is a maximal monotone mapping.

Now we introduce a class of multivalued monotone operators on Sobolev spaces of the type $-\text{div}(a(x, \nabla u))$. Let $2 \leq p < +\infty$, we denote by q the dual exponent of p, $p^{-1} + q^{-1} = 1$. We fix an open cube $\Omega \subset \mathbb{R}^n$ ($n \geq 2$), two non negative functions $m_1, m_2 \in L^1(\Omega)$ and a function $K(x), K'(x) \geq 1$ a.e. in Ω. We denote by $\mathcal{L}(\Omega)$ the σ-field of all Lebesgue measurable subsets of Ω; if $E \in \mathcal{L}(\Omega)$, $|E|$ denotes the measure of E.

The Euclidean norm and the scalar product in \mathbb{R}^n are denoted by $|\cdot|$ and (\cdot, \cdot) respectively.

Definition 2.8. $M_{K, \Omega}(\mathbb{R}^n)$ is the class of all multivalued functions $a : \Omega \times \mathbb{R}^n \rightarrow \mathbb{R}^n$ with closed values, measurable with respect to $\mathcal{L}(\Omega) \otimes \mathcal{B}(\mathbb{R}^n)$ and $\mathcal{B}(\mathbb{R}^n)$ such that are maximal monotone with respect to $\xi \in \mathbb{R}^n$ and satisfying

\begin{itemize}
 \item[i)] $|\eta|^q \leq m_1(x) + K(x)(\eta, \xi)$
 \item[ii)] $|\xi|^p \leq m_2(x) + K(x)(\eta, \xi)$
 \item[iii)] $0 \in a(x, 0)$ for a.e. $x \in \Omega$.
\end{itemize}
Remark 2.9. For 2.3 the set \(a(x, \xi) \) is closed and convex for a.e. \(x \in \Omega \) and \(\forall \xi \in \mathbb{R}^n \). For Theorem 2.1 the graph of \(a(x, \xi) \) belongs to \(\mathcal{L}(\Omega) \otimes \mathcal{B}(\mathbb{R}^n) \otimes \mathcal{B}(\mathbb{R}^n) \). By \(i \) we have that there is a non negative function \(m_3(x) \in L^q(\Omega) \) such that

\[
|\eta| \leq m_3(x) + K^{p-1}(x)|\xi|^{p-1} \quad \text{for a.e. } x \in \Omega.
\]

By (2.1) for a.e. \(x \in \Omega \) the maximal monotone operator \(a(x, \xi) \) is locally bounded, hence by 2.4 \(a^{-1}(x, \cdot) \) is surjective. This implies \(a(x, \xi) \neq \emptyset \) for a.e. \(x \in \Omega \) and \(\forall \xi \in \mathbb{R}^n \).

Let \(K(x) \in L^\infty(\Omega) \) and \(a \in M_{K, \Omega}(\mathbb{R}^n) \), we consider the Dirichlet boundary value problem

\[
\begin{aligned}
&-\operatorname{div} f \in -\operatorname{div} a(x, \nabla u) \quad \text{on } \Omega, \ f \in (L^q(\Omega))^n \\
u &\in W^{1,p}_0(\Omega). \quad p \geq 2
\end{aligned}
\]

We say that \(u \in W^{1,p}_0(\Omega) \) is a solution of problem (2.2) (as well as (1.3)) if

\[
\exists g \in (L^q(\Omega))^n \text{ such that } g(x) \in a(x, \nabla u(x)) \text{ and } \int_\Omega g(x) \nabla \varphi(x) dx = \int_\Omega f(x) \nabla \varphi(x) dx \quad \forall \varphi \in C_0^\infty(\Omega)
\]

By using the same arguments of [6] it is easy to verify that

Theorem 2.10. If \(K(x) \in L^\infty(\Omega) \) and \(a \in M_{K, \Omega}(\mathbb{R}^n) \) the Dirichlet problem (2.2) has a solution.

3 – A priori estimates for the solution of problem (1.3)

If \(\Omega \) is an open cube of \(\mathbb{R}^n \), by \(H^1(\Omega) \) and \(\text{BMO}(\Omega) \) we denote the Hardy space and the space of all functions of bounded mean oscillation respectively, we have see [7], [10], [13], [14], [16], [17]):

Proposition 3.1. Let \(E \in (L^p(\Omega))^n \) and \(B \in (L^q(\Omega))^n \) be two vector fields such that \(\operatorname{div} B = 0 \) and \(\operatorname{curl} E = 0 \), where \(p \) and \(q \) are
conjugate. Then their scalar product \((E, B)\) belongs to \(H^1(\Omega)\) and there is a constant \(c = c(n)\) such that

\[
\|(E, B)\|_{H^1(\Omega)} \leq c \|E\|_{L^p(\Omega)} \|B\|_{L^q(\Omega)}.
\]

Lemma 3.2. (Div-Curl) Suppose the vector fields \(E_k, B_k\) respectively in \((L^p(\Omega))^n, (L^q(\Omega))^n\) \((1 < p < \infty, n \geq 2)\) verify \(\text{div} \ B_k = 0\) \(\text{curl} \ E_k = 0\) and \(E_k, B_k\) converge weakly respectively in \((L^p(\Omega))^n, (L^q(\Omega))^n\) to some \(E, B\) then

\[
(E_k, B_k) \rightharpoonup (E, B) \quad \text{in} \ D'(\Omega).
\]

Theorem 3.3. For every \(K \in \text{BMO}(\Omega)\) there exists a unique \(T \in (H^1(\Omega))^*\) such that

\[
(3.1) \quad T(h) = \int_{\Omega} h(x)K(x)dx \quad \forall \ h \in H^1(\Omega).
\]

Conversely, for every \(T \in (H^1(\Omega))^*\) there exists a unique \(g \in \text{BMO}(\Omega)\) which satisfies (3.1). The correspondence \(T \longrightarrow g\) determined by (3.1) is a Banach space isomorphism between \((H^1(\Omega))^*\) and \(\text{BMO}(\Omega)\).

Now let \(K \in \text{BMO}(\Omega), K(x) \geq 1\) a.e. in \(\Omega\), we prove the following

Lemma 3.4. Let \(u \in W^{1,p}_o(\Omega)\) a solution of the problem (1.3) with \(Kf \in (L^q(\Omega))^n\). There exists \(\gamma_o\) such that whenever \(K\) satisfies (1.2) with \(\gamma > \gamma_o\), we have

\[
(3.2) \quad \int_{\Omega} |\nabla u|^p + |g|^q dx \leq c(\|m_1\|_{L^1} + \|m_2\|_{L^1} + \|Kf\|_{L^q})
\]

where \(c = c(n) > 0\)
Proof. From i) and ii)

$$
\begin{align*}
\int_\Omega |\nabla u(x)|^p + |g(x)|^q dx & \leq \|m_1\|_{L^1} + \|m_2\|_{L^1} + \\
+ 2 \int_\Omega K(x)(g(x) - f(x), \nabla u(x)) dx & + 2 \int_\Omega K(x)(f(x), \nabla u(x)) dx
\end{align*}
$$

so, by Theorem 3.3 there exists a positive constant c_1 independent of $\|K\|_{\text{BMO}}$ such that

$$
\int_\Omega |\nabla u|^p + |g|^q dx \leq \|m_1\|_{L^1} + \|m_2\|_{L^1} + 2c_1\|K\|_{\text{BMO}}\|g - f, \nabla u\|_{H^1(\Omega)} + \\
+ 2 \int_\Omega K(x)(f(x), \nabla u(x)) dx.
$$

By Proposition 3.1, applying Hölder and Young inequalities we have, for every $\varepsilon > 0$,

$$
\begin{align*}
\|\nabla u\|_{L^p}^p + \|g\|_{L^q}^q & \leq \|m_1\|_{L^1} + \|m_2\|_{L^1} + \\
+ 4c_1c(n)\|K|_{\text{BMO}}(\|\nabla u\|_{L^p}^p + \|g\|_{L^q}^q) + \\
+ \varepsilon(\|\nabla u\|_{L^p}^p + \|g\|_{L^q}^q) + 2c_1c(n)\|K\|_{\text{BMO}}\|f\|_{L^q}^q + c_\varepsilon\|Kf\|_{L^q}^q
\end{align*}
$$

(3.3)

where c_ε is independent of $\|K\|_{\text{BMO}}$.

Now, for all $K \in \text{BMO}(\Omega)$ such that $4c_1c(n)\|K\|_{\text{BMO}} \leq \rho$ with $0 < \rho < 1$, we have that, for every fixed $0 < \varepsilon < 1 - \rho$, there is a constant c independent of $\|K\|_{\text{BMO}}$ such that

$$
\|\nabla u\|_{L^p}^p + \|g\|_{L^q}^q \leq c(\|m_1\|_{L^1} + \|m_2\|_{L^1} + \|Kf\|_{L^q}^q).
$$

Applying condition (1.2), the Lemma is proved provided $\gamma_0 > 4c_1c(n)$. \hfill \Box

4 – Proof of Theorem A

In order to prove Theorem A, for every $\varepsilon \in [0,1]$ we consider the multivalued function $a_\varepsilon(x, \xi) : \Omega \times \mathbb{R}^n \rightarrow \mathbb{R}^n$

$$
a_\varepsilon(x, \xi) = \frac{a(x, \xi) + \varepsilon K^{p-1}(x)|\xi|^{p-2}\xi}{1 + \varepsilon K^{p-1}(x)}
$$

(4.1)

where $a(x, \xi) \in M_{K,\Omega}(\mathbb{R}^n)$ and $K(x) \in \text{BMO}(\Omega)$, $K(x) \geq 1$.

The multivalued function \(a_\varepsilon(x, \xi) \) with closed values is measurable with respect to \(L(\Omega) \otimes B(\mathbb{R}^n) \) and \(B(\mathbb{R}^n) \). Moreover, by properties 2.2, 2.5-2.7, it is maximal monotone with respect to \(\xi \) a.e. \(x \in \Omega \). From (4.1), using (2.1) we have
\[
|\eta_\varepsilon| \leq m_3(x) + \frac{K^{p-1}(x)(1 + \varepsilon)}{1 + \varepsilon K^{p-1}(x)} |\xi|^{p-1} \quad \text{a.e. } x \in \Omega
\]
while using \(ii) \)
\[
|\xi|^p \leq m_2(x) + \frac{K^n(x)(1 + \varepsilon)}{1 + \varepsilon K^p(x)} (\eta_\varepsilon, \xi) \quad \text{a.e. } x \in \Omega
\]
for every \(\varepsilon \in]0, 1[\), \(\forall \xi \in \mathbb{R}^n \) and \(\eta_\varepsilon \in a_\varepsilon(x, \xi) \).

We can easily verify that the following lemmas yield

Lemma 4.1. Let be \(p \geq 2 \). For every \(\varepsilon \in]0, 1[\) the map \(a_\varepsilon(x, \xi) \in M_{\frac{2}{\varepsilon}q+3, \Omega}(\mathbb{R}^n) \).

Lemma 4.2. Let be \(p \geq 2 \). For every \(\varepsilon \in]0, 1[\) the map \(a_\varepsilon(x, \xi) \in M_{4K, \Omega}(\mathbb{R}^n) \).

Now we are in position to prove the main result

Proof of Theorem A. For every \(\varepsilon \in]0, 1[\), let us consider the problem
\[
(4.2) \begin{cases}
- \text{div } f \in - \text{div } a_\varepsilon(x, \nabla u) & \text{on } \Omega \\
u \in W^{1,p}_0(\Omega) & (p \geq 2)
\end{cases}
\]
with data \(f \) such that \(Kf \in (L^q(\Omega))^n \). From Lemma 4.1 and Theorem 2.10 it follows that problem (4.2) admits at least a solution \(u_\varepsilon \in W^{1,p}_0(\Omega) \).

From Lemmas 4.2 and 3.4, if \(K \) verifies (1.2) with \(\gamma > 4\gamma_0 \), the pair \([\nabla u_\varepsilon, g_\varepsilon] \) satisfy the estimate (3.2) uniformly with respect to \(\varepsilon \in]0, 1[\).

So we can construct two subsequences again denoted by \(\{u_\varepsilon\} \) and \(\{g_\varepsilon\} \) such that as \(\varepsilon \to 0^+ \)
\[
(4.3) \quad u_\varepsilon \to u \text{ weakly in } W^{1,p}_0(\Omega),
(4.4) \quad g_\varepsilon \to g \text{ weakly in } (L^q(\Omega))^n,
\]
and

\[(4.5) \quad \int_{\Omega} g_{\varepsilon} \nabla \varphi dx = \int_{\Omega} f \nabla \varphi dx \quad \forall \varphi \in C_0^\infty(\Omega).\]

The equality in (2.3) is obtained by passing to limit as \(\varepsilon \to 0^+\) in (4.5).

To conclude the proof we show that \(g(x) \in a(x, \nabla u(x))\) for a.e. in \(\Omega\). Put

\[M = \{x \in \Omega : \exists \xi \in \mathbb{R}^n \exists \eta \in a(x, \xi) : (g(x) - \eta, \nabla u(x) - \xi) < 0\},\]

according to the maximal monotonicity of the map \(a\) it is enough to show that \(|M| = 0\). To prove that let us write \(M = \{x \in \Omega : Gx \neq \emptyset\}\) where

\[Gx = \{[\xi, \eta] \in \mathbb{R}^n \times \mathbb{R}^n : \eta \in a(x, \xi) \text{ and } (g(x) - \eta, \nabla u(x) - \xi) < 0\}.\]

By Remark 2.9 the graph of \(G\) belongs to \(L(\Omega) \otimes B(\mathbb{R}^n) \otimes B(\mathbb{R}^n)\) thus \(M \in L(\Omega)\) by the projection Theorem.

The Theorem 2.1 assures that there is a measurable selection \([\xi(x), \eta(x)]\) of \(G\) defined on \(M\), then \(\eta(x) \in a(x, \xi(x))\) and

\[(g(x) - \eta(x), \nabla u(x) - \xi(x)) < 0 \quad \forall x \in M.\]

If \(|M| > 0\), there are two measurable subset \(M'\), \(M''\) of \(M\), \(M'' \subset M'\), with \(0 < |M''| < |M'| < +\infty\) such that \([\xi(x), \eta(x)]\) is bounded on \(M'\). Now, for every \(\varepsilon \in]0, 1]\) and \(x \in M'\) we consider

\[\eta_\varepsilon(x) = \frac{\eta(x) + \varepsilon K^{p-1}(x)|\xi(x)|^{p-2}\xi(x)}{1 + \varepsilon K^{p-1}(x)}.\]

The sequence \(\{\eta_\varepsilon(x)\}\) is bounded on \(M'\) and converges to \(\eta(x)\) a.e. in \(M'\). Since \(|M'| < +\infty\), the sequence \(\{\eta_\varepsilon(x)\}\) converges in measure to \(\eta(x)\), hence

\[(4.6) \quad \eta_\varepsilon(x) \longrightarrow \eta(x) \quad \text{in} \quad (L^q(M'))^n.\]

Since \(\eta_\varepsilon(x) \in a_\varepsilon(x, \xi(x))\) we have

\[(g_\varepsilon(x) - \eta_\varepsilon(x), \nabla u_\varepsilon(x) - \xi(x)) \geq 0 \quad \forall x \in M'.\]
Moreover, if $\phi \in C^\infty_c(M')$, $\phi(x) > 0 \ \forall x \in M''$ and $\phi(x) \geq 0 \ \forall x \in M' - M''$, we have

$$0 \leq \int_{M''} (g_\varepsilon(x) - \eta_\varepsilon(x), \nabla u_\varepsilon(x) - \xi(x))\phi(x)dx \leq$$

$$\leq \int_{M'} (g_\varepsilon(x) - f(x), \nabla u_\varepsilon(x))\phi(x)dx +$$

$$+ \int_{M'} (g_\varepsilon(x) - f(x), -\xi(x))\phi(x)dx +$$

$$+ \int_{M'} (f(x) - \eta_\varepsilon(x), \nabla u_\varepsilon(x) - \xi(x))\phi(x)dx = I^1_\varepsilon + I^2_\varepsilon + I^3_\varepsilon. \tag{4.7}$$

By Lemma 3.2, $I^1_\varepsilon \rightarrow \int_{M'} (g(x) - f(x), \nabla u(x))\phi(x)dx$. Moreover by (4.4), (4.6) and (4.3) we get

$$I^2_\varepsilon \rightarrow \int_{M'} (g(x) - f(x), -\xi(x))\phi(x)dx,$$

$$I^3_\varepsilon \rightarrow \int_{M'} (f(x) - \eta(x), \nabla u(x) - \xi(x))\phi(x)dx.$$

So, by passing to limit as $\varepsilon \rightarrow 0^+$ in (4.7) we have

$$\int_{M'} (g(x) - \eta(x), \nabla u(x) - \xi(x))\phi(x)dx \geq 0. \tag{4.8}$$

Since $|M'| > 0$, (4.8) contradicts the definition of M. Therefore we conclude that $|M| = 0$. This completes the proof of Theorem A with $\gamma = 4\gamma_0$. \hfill \Box

Now, we consider the class, S_K, of all single-valued maps $a \in M_K, \Omega(\mathbb{R}^n)$, such that

iv) $|a(x, \xi_1) - a(x, \xi_2)| \leq K^{p-1} (x) \ |\xi_1 - \xi_2|(|\xi_1|^{p-2} + |\xi_2|^{p-2}),$

v) $K(x)^{-1}|\xi_1 - \xi_2|^p \leq (a(x, \xi_1) - a(x, \xi_2), \ \xi_1 - \xi_2)$

for a.e. $x \in \Omega, \ \forall \xi_1, \xi_2 \in \mathbb{R}^n$.

By Theorem A and conditions iv), v) we have
Corollary 4.3. Let $p \geq 2$. There is a positive constant γ such that if $a \in S_K$ and K satisfies (1.2) with $\gamma > \gamma$, the problem

$$\begin{cases}
- \text{div } f = - \text{div } a(x, \nabla u) & \text{on } \Omega \\
u \in W^{1,p}_0(\Omega)
\end{cases}$$

has a unique solution.

REFERENCES

Lavoro pervenuto alla redazione il 26 febbraio 2002
ed accettato per la pubblicazione il 16 gennaio 2003.
Bozze licenziate il 29 gennaio 2004

INDIRIZZO DEGLI AUTORI:

Nunzia D’auria – Ornella Fiodo – Dipartimento di Matematica e Applicazioni “R. Caccioppoli” – Università degli Studi di Napoli “Federico II” – Complesso Universitario Monte S. Angelo – Via Cintia – 80126 Napoli (Italia)
E-mail: dauria@matna2.dma.unina.it fiodo@matna2.dma.unina.it