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An efficient version of the direct method

for planar grid generation

N. EGIDI – P. MAPONI

Abstract: We consider the problem of the grid generation for a generic compact
connected domain Ω of the two-dimensional real Euclidean space. This problem can be
seen as a finite dimensional version of the extension of a given parameterization of the
boundary of Ω to a parameterization of the whole domain Ω. We describe the direct
method, where the grid generation problem is reformulated as an optimization problem,
and two different modifications of this method. We present a large number of numerical
results on standard test problems. From these results we can see that the new version
has higher accuracy and lower computational cost than the usual version of the direct
method for the grid generation problem.

1 – Introduction

Grid generation is a basic ingredient for a large number of very impor-

tant problems, such as for example the numerical solution of partial dif-

ferential equation with finite difference methods or finite element methods

(see [9], [15], [16], [20]). In the scientific literature many grid generation

methods has been proposed (see [11], [12], [14], [17]); in particular Knupp

and Steinberg in [11] introduced methods that use length, area and or-

thogonality continuous functionals, Castillo in [4] introduced methods
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that use length, area and orthogonality discrete functionals. This last

approach is developed in [1], [2], [5], [6].

We begin fixing some notations. Let N, R be the sets of natural

and real numbers, respectively. Let N ∈ N, we denote with RN the

N -dimensional real Euclidean space. Let x = (x1, x2, . . . , xN)t ∈ RN

be a generic vector, where the superscript t denotes the transposition

operation. Let 1 ≤ p < ∞, we denote with ‖x‖p = (|x1|p + |x2|p + . . . +

|xn|p)
1
p the usual p-norm in RN . Let A ⊂ RN be a subset of RN , we

denote with ∂A the boundary of A.

Let R = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} be the unit square,

N, M ∈ N and

(1) I = {(i, j), i = 0, 1, . . . , N, j = 0, 1, . . . ,M}

be a set of multi-indices for (N + 1)(M + 1) different points of R, that is

for each (i, j) ∈ I we define p
i,j

the point of R having coordinates ( i
N
, j
M

).

Moreover we define the following sets of multi-indices:

I1 = {(i, j), i = 0, 1, . . . , N − 1, j = 0, 1, . . . ,M} ,(2)

I2 = {(i, j), i = 0, 1, . . . , N, j = 0, 1, . . . ,M − 1} ,(3)

∂I = {(i, j) ∈ I : p
i,j

∈ ∂R} .(4)

We note that points p
i,j

, (i, j) ∈ I can be seen as the vertices of the

N ×M uniform rectangular grid P of R, where the edges of P are given

by the horizontal segments joining p
i,j

and p
i+1,j

, (i, j) ∈ I1, and by the

vertical segments joining p
i,j

and p
i,j+1

, (i, j) ∈ I2. The faces of P are the

rectangles of the partition of R defined by the edges of P, see Figure 1.
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Fig. 1: An example of the N × M uniform rectangular grid P of R, where N = 5, M = 7.
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The grid generation problem considered in this paper is roughly

speaking a finite dimensional version of the following problem: find a

bijective map u from R to a given domain Ω, such that the image of P

through u is a grid Q of Ω having nice properties. More precisely, let

Ω ⊂ R2 be a two-dimensional compact and connected domain, we con-

sider the following problem: from the knowledge of a parameterization

(5) u∂ = (x∂ , y∂)
t : ∂R → ∂Ω ,

of the boundary ∂Ω of Ω, we want to compute a parameterization of Ω

(6) u = (x, y)t : R → Ω ,

such that

(7) u(p) = u∂(p), p ∈ ∂R .

Let Q be the grid of Ω obtained as image of P through the param-

eterization u. In particular we have that vertices, edges and faces of Q

can be defined as the images of vertices, edges and faces of P. We note

that there exists an infinite number of ways to solve the above mentioned

problem, so that we can try to use these degrees of freedom to require

suitable properties for the grid Q. The quality of the grid Q can be de-

fined according to some simple geometric properties of its edges and its

faces. These properties are straightforward generalizations of the ones

that hold for grid P, that is:

• convexity of quadrilaterals,

• uniformity of the edges length,

• uniformity of the faces area,

• uniformity of the angles between edges having a common vertex.

In general the edges of Q are curvilinear segments, so that the faces

of Q are not rectangles and they are neither polygons. We consider the

approximation of Q obtained substituting these curvilinear edges with

the line segments having the same ends. In the sequel we denote with Q

this approximate grid, where we can easily express the length of edges

of Q, the area of faces of Q and the angle between edges of Q in terms

of the coordinates of the vertices of Q. Let ui,j = u(p
i,j

) = (xi,j, yi,j)
t,
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(i, j) ∈ I be the vertices of Q. We denote with x, y ∈ R(N+1)(M+1) the

vectors having components xi,j, (i, j) ∈ I, and yi,j, (i, j) ∈ I, respectively.

Let FL(x, y), FA(x, y), FO(x, y), x, y ∈ R(N+1)(M+1) be the total length

of edges of Q, the total area of faces of Q, and the sum of the angles

between edges of Q, respectively.

The direct method formulates the grid generation problem as an opti-

mization problem where the independent variables are x, y∈R(N+1)(M+1),

and the objective function is given by a suitable linear combination of the

functions FL, FA, FO. We note that this is an elegant and easy formula-

tion of the grid generation problem. However the main drawback of this

method is that the quality of the computed grid Q usually depends very

much on the value of the coefficients used, in the objective function, for

the linear combination of FL, FA and FO. Note that the right value of

such coefficients usually must be chosen according to the particular shape

of Ω and the number N , M of subdivisions considered. On the contrary

when these coefficients are not right we obtain low quality grids Q or even

strange structures Q that are not really grids of Ω, that is grids having

vertices outside Ω or folded grids.

The authors (see [8]) have proposed a new optimization problem for

the formulation of the grid generation problem. This optimization prob-

lem differs from the usual formulation for the following two reasons: the

use of non-Euclidean norms in the objective functions and the use of

different variables. In particular the use of p-norm, with p ≥ 2, is an at-

tempt to impose a strong requirement for the uniformity properties of the

grid Q, so that we expect an improvement of the quality of the computed

grid as consequence of such a modification. Moreover the new variables

used in the proposed formulation can be seen as suitable differences of

vertices coordinates of Q. These variables give some simplifications in the

expression of FL, FA and FO, so that we expect an improvement in the

computational cost of the method as consequence of such a modification.

We present some numerical results obtained for various planar re-

gions. These planar regions are proposed in a classical set of test prob-

lems, which is called Rogue’s Gallery of Grids, see [11]. From these

numerical results we can see that the new formulation improves the usual

formulation of the direct method for the grid generation problem; in

particular this improvement is relative to the computational cost of the

method and to the grid quality.
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In Section 2 we describe the direct method for the grid generation

problem and the corresponding generalizations. In Section 3 we present

some numerical results obtained with the usual formulation and the new

formulation of the direct method for the grid generation problem. In

Section 4 we conclude giving the possible future developments of this

paper.

2 – The Direct Method For The Grid Generation Problem

We describe the various addenda of the objective function in the

direct method for the grid generation problem. We begin by defining

new variables that are useful to express these addenda. Let

ξ1,i,j = xi+1,j − xi,j, η1,i,j = yi+1,j − yi,j (i, j) ∈ I1 ,(8)

ξ2,i,j = xi,j+1 − xi,j, η2,i,j = yi,j+1 − yi,j (i, j) ∈ I2 .(9)

Let ξ
1
, η

1
∈ RN(M+1), ξ

2
, η

2
∈ R(N+1)M , be the vectors having compo-

nents ξν,i,j, (i, j) ∈ Iν , and ην,i,j, (i, j) ∈ Iν , ν = 1, 2, respectively.

We note that ξν,i,j, (i, j) ∈ Iν , ν = 1, 2 are the discrete derivatives of

the discrete function xi,j, (i, j) ∈ I, and ην,i,j, (i, j) ∈ Iν , ν = 1, 2 are the

discrete derivatives of the discrete function yi,j, (i, j) ∈ I. The discrete

vector field (ξ1,i,j, ξ2,i,j)
t, (i, j) ∈ I1∩I2 can be seen as the discrete gradient

of xi,j, (i, j) ∈ I, and the discrete vector field (η1,i,j, η2,i,j)
t, (i, j) ∈ I1∩ I2

can be seen as the discrete gradient of yi,j, (i, j) ∈ I. As a consequence

they must satisfy the irrotational property:

ξ2,i+1,j − ξ2,i,j = ξ1,i,j+1 − ξ1,i,j, (i, j) ∈ I1 ∩ I2 ,(10)

η2,i+1,j − η2,i,j = η1,i,j+1 − η1,i,j, (i, j) ∈ I1 ∩ I2 .(11)

On the other hand if ξν,i,j and ην,i,j, (i, j) ∈ Iν , ν = 1, 2 are discrete

functions satisfying (10), (11), then they are the discrete derivatives of

some functions xi,j and yi,j, (i, j) ∈ I. These functions are univocally de-

termined by their value on a point of I and by the corresponding discrete

gradient. Moreover, as in the classical theory of first order differential

forms, we can explicitly compute the discrete function. Let us suppose,



240 N. EGIDI – P. MAPONI [6]

for example, to know x0,0, and ξ
ν
, ν = 1, 2, we have:

(12) xi,j = x0,0 +
i−1∑

s=0

ξ1,s,0 +
j−1∑

t=0

ξ2,i,t, (i, j) ∈ I ,

where the first sum is equal to zero when i = 0 and the second sum is

equal to zero when j = 0. An analogous formula is valid for yi,j, (i, j) ∈ I.

The direct method formulates the grid generation problem as an op-

timization problem. In particular we describe each addendum of the

objective function of this optimization problem, that is the addendum

corresponding to the length of edges of Q, the addendum corresponding

to the area of faces of Q and the addendum corresponding to the angle

between the edges of Q. Each addendum is given in terms of variables

xi,j, yi,j, (i, j) ∈ I and in terms of ξν,i,j, ην,i,j, (i, j) ∈ Iν , ν = 1, 2.

Let pL, pA, pO ∈ N, with pL, pA, pO ≥ 2, be the parameters that define

the norms used.

Let us consider the pL-norm for the length of the edges of Q. Thus

the length of the edge of Q joining the vertices ui,j and ui+1,j is given by:

(13)
LpL

1,i,j(xi,j, xi+1,j, yi,j, yi+1,j) =

= |xi+1,j − xi,j|pL + |yi+1,j − yi,j|pL , (i, j) ∈ I1 ,

when we consider variables x, y, and is given by:

(14) LpL
1,i,j(ξ1,i,j, η1,i,j) = |ξ1,i,j|pL + |η1,i,j|pL , (i, j) ∈ I1 ,

when we consider variables ξ
ν
, η

ν
, ν = 1, 2. The length of the edge joining

the vertices ui,j and ui,j+1 is given by:

(15)
LpL

2,i,j(xi,j, xi,j+1, yi,j, yi,j+1) =

= |xi,j+1 − xi,j|pL + |yi,j+1 − yi,j|pL , (i, j) ∈ I2 ,

when we consider variables x, y, and is given by:

(16) LpL
2,i,j(ξ2,i,j, η2,i,j) = |ξ2,i,j|pL + |η2,i,j|pL , (i, j) ∈ I2 ,

when we consider variables ξ
ν
, η

ν
, ν = 1, 2. We note that (13)-(16) really

give the power pL-th of the length of the corresponding edge. So that
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the sum of these quantities gives an estimation of the total length of the

edges of Q; this estimation can be seen as a function of x and y:

(17)

FL(x, y) =
∑

(i,j)∈I1

LpL
1,i,j(xi,j, xi+1,j, yi,j, yi+1,j)+

+
∑

(i,j)∈I2

LpL
2,i,j(xi,j, xi,j+1, yi,j, yi,j+1) ,

or equivalently as a function of ξ
1
, ξ

2
, η

1
and η

2
:

(18) ΦL(ξ
1
, ξ

2
, η

1
, η

2
)=

∑

(i,j)∈I1

LpL
1,i,j(ξ1,i,j, η1,i,j)+

∑

(i,j)∈I2

LpL
2,i,j(ξ2,i,j, η2,i,j) .

Let us consider the pA-norm for the area of the faces of Q. The area

of the quadrilateral of Q having vertices ui,j, ui,j+1, ui+1,j+1, ui+1,j, is

given by:

(19)

Ai,j(xi,j, xi,j+1, xi+1,j+1, xi+1,j, yi,j, yi,j+1, yi+1,j+1, yi+1,j) =

=
1

2
|(xi,j − xi+1,j+1)(yi+1,j − yi,j+1)+

− (yi,j − yi+1,j+1)(xi+1,j − xi,j+1)|, (i, j) ∈ I1 ∩ I2 ,

when we consider variables x, y, and is given by:

(20)

Ai,j(ξ1,i,j, ξ1,i,j+1, ξ2,i,j, η1,i,j, η1,i,j+1, η2,i,j) =

=
1

2
|(ξ2,i,j + ξ1,i,j+1)(η2,i,j − η1,i,j)+

− (η2,i,j + η1,i,j+1)(ξ2,i,j − ξ1,i,j)|, (i, j) ∈ I1 ∩ I2 ,

when we consider variables ξ
ν
, η

ν
, ν = 1, 2; we note that (19) follows

from simple geometric arguments and (20) is obtained from simple ma-

nipulations before substituting (8), (9) in (19). So that the power pA-th

of the pA-norm for the area of the quadrilaterals of Q is given by

(21)

FA(x, y) =

=
∑

(i,j)∈I1∩I2

ApA
i,j (xi,j, xi,j+1, xi+1,j+1, xi+1,j, yi,j, yi,j+1, yi+1,j+1, yi+1,j) ,
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when we consider variables x, y and it is given by:

(22)

ΦA(ξ
1
, ξ

2
, η

1
, η

2
) =

=
∑

(i,j)∈I1∩I2

ApA
i,j (ξ1,i,j, ξ1,i,j+1, ξ2,i,j, η1,i,j, η1,i,j+1, η2,i,j) ,

when we consider variables ξ
1
, ξ

2
, η

1
, η

2
.

Let us consider the pO-norm to measure the angles between edges

of Q. For (i, j) ∈ I1 ∩ I2, in the quadrilateral having vertices ui,j, ui,j+1,

ui+1,j+1, ui+1,j we can give a measure of each interior angle. This measure

is represented by the absolute value of the cosine of the angle multiplied

by the lengths of the adjacent edges. In particular for the interior angle

corresponding to the vertex ui,j we consider:

O1,i,j(xi,j, xi,j+1, xi+1,j, yi,j, yi,j+1, yi+1,j) =

= |(xi+1,j − xi,j)(xi,j+1 − xi,j) + (yi+1,j − yi,j)(yi,j+1 − yi,j)| ,(23)

O1,i,j(ξ1,i,j, ξ2,i,j, η1,i,j, η2,i,j) = |ξ1,i,jξ2,i,j + η1,i,jη2,i,j| ,(24)

for the interior angle corresponding to the vertex ui,j+1 we consider:

O2,i,j(xi,j, xi,j+1, xi+1,j+1, yi,j, yi,j+1, yi+1,j+1) =

= |(xi,j − xi,j+1)(xi+1,j+1 − xi,j+1)+

+(yi,j − yi,j+1)(yi+1,j+1 − yi,j+1)| ,
(25)

O2,i,j(ξ1,i,j+1, ξ2,i,j, η1,i,j+1, η2,i,j) = |ξ2,i,jξ1,i,j+1 + η2,i,jη1,i,j+1| ,(26)

for the interior angle corresponding to the vertex ui+1,j+1 we consider:

O3,i,j(xi,j+1, xi+1,j+1, xi+1,j, yi,j+1, yi+1,j+1, yi+1,j) =

= |(xi,j+1 − xi+1,j+1)(xi+1,j − xi+1,j+1)+

+(yi,j+1 − yi+1,j+1)(yi+1,j − yi+1,j+1)| ,
(27)

O3,i,j(ξ1,i,j+1, ξ2,i+1,j, η1,i,j+1, η2,i+1,j) =

= |ξ1,i,j+1ξ2,i+1,j + η1,i,j+1η2,i+1,j| ,(28)

and for the interior angle corresponding to the vertex ui+1,j we consider:

O4,i,j(xi,j, xi+1,j+1, xi+1,j, yi,j, yi+1,j+1, yi+1,j) =

= |(xi+1,j+1−xi+1,j)(xi,j−xi+1,j)+(yi+1,j+1−yi+1,j)(yi,j−yi+1,j)| ,(29)

O4,i,j(ξ1,i,j, ξ2,i+1,j, η1,i,j, η2,i+1,j) = |ξ2,i+1,jξ1,i,j + η2,i+1,jη1,i,j| ,(30)
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we note that (23), (25), (27), (29) follow from simple geometric arguments

and formulas (24), (26), (28), (30) are obtained substituting (8), (9)

in (23), (25), (27), (29), respectively. Thus taking the power pO-th of the

pO-norm of the quantities (23), (25), (27), (29) we define the following

orthogonality function:

(31)

FO(x, y) =
∑

(i,j)∈I1∩I2

(OpO
1,i,j(xi,j, xi,j+1, xi+1,j, yi,j, yi,j+1, yi+1,j)+

+ OpO
2,i,j(xi,j, xi+1,j+1, xi+1,j, yi,j, yi+1,j+1, yi+1,j)+

+ OpO
3,i,j(xi,j+1, xi+1,j+1, xi+1,j, yi,j+1, yi+1,j+1, yi+1,j)+

+ OpO
4,i,j(xi,j, xi,j+1, xi+1,j+1, yi,j, yi,j+1, yi+1,j+1)) ,

when we consider variables x, y or:

(32)

ΦO(ξ
1
, ξ

2
, η

1
, η

2
) =

∑

(i,j)∈I1∩I2

(OpO
1,i,j(ξ1,i,j, ξ2,i,j, η1,i,j, η2,i,j)+

+ OpO
2,i,j(ξ1,i,j, ξ2,i+1,j, η1,i,j, η2,i+1,j)+

+ OpO
3,i,j(ξ1,i,j+1, ξ2,i+1,j, η1,i,j+1, η2,i+1,j)+

+ OpO
4,i,j(ξ1,i,j+1, ξ2,i,j, η1,i,j+1, η2,i,j)) ,

when we consider variables ξ
1
, ξ

2
, η

1
, η

2
.

Functions FL, FA and FO are usually called functional of length,

functional of area and functional of orthogonality, respectively. We use

the same name for the corresponding function of variables ξ
ν
, η

ν
, ν = 1, 2,

i.e. ΦL, ΦA and ΦO.

We consider the following problem:

min
x,y∈R(N+1)(M+1)

{wLFL(x, y) + wAFA(x, y) + wOFO(x, y)} ,(33)

(xi,0, yi,0)
t =

(
x∂

( i

N
, 0
)
, y∂
( i

N
, 0
))t

, i = 0, 1, . . . , N ,

(xi,M , y,i,M)t =
(
x∂

( i

N
, 1
)
, y∂
( i

N
, 1
))t

, i = 0, 1, . . . , N ,

(xN,j, yN,j)
t =

(
x∂

(
1,

j

M

)
, y∂
(
1,

j

M

))t
, j = 1, 2, . . . ,M − 1 ,

(x0,j, y0,j)
t =

(
x∂

(
0,

j

M

)
, y∂
(
0,

j

M

))t
, j = 1, 2, . . . ,M − 1 ,

(34)
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where wL, wA and wO are weights for the functionals FL, FA and FO,

respectively. The minimum x∗, y∗ ∈ R(N+1)(M+1) of problem (33)-(34)

defines the vertices of the computed grids.

We note that the constraints (34) require that condition (7) holds.

Problem (33)-(34) is a generalization of the direct method for the grid

generation problem. This generalization reduces to the usual formulation

when pL = pA = pO = 2 is chosen. In the next section we see that this

generalization improves the quality of grids generated by the method. We

expect such an improvement since the norms defined by parameters pL,

pA, pO, with pL, pA, pO ≥ 2, can be seen as approximations of the uni-

formity norm. So that, according to the discussion given in the previous

section, we expect that the resulting grid has higher quality than the one

obtained using pL = pA = pO = 2.

Furthermore in problem (33)-(34) we can consider variables ξ
ν
, η

ν
,

ν = 1, 2 in place of variables x, y. Performing this change of variables we

obtain:

(35)

min
ξ
1
,η

1
∈RN(M+1)

ξ
2
,η

2
∈R(N+1)M

{
wLΦL(ξ

1
, ξ

2
, η

1
, η

2
)+

+ wAΦA(ξ
1
, ξ

2
, η

1
, η

2
) + wOΦO(ξ

1
, ξ

2
, η

1
, η

2
)
}
,

(36)

(ξ1,i,0, η1,i,0)
t=
(
x∂

( i+1

N
, 0
)
−x∂

( i

N
, 0
)
, y∂
( i+1

N
, 0
)
−y∂

( i

N
, 0
))t

,

i = 0, 1, . . . , N − 1 ,

(ξ1,i,M , η1,i,M)t=
(
x∂

( i+1

N
,1
)
−x∂

( i

N
,1
)
, y∂
( i+1

N
,1
)
−y∂

( i

N
, 1
))t

,

i = 0, 1, . . . , N − 1 ,

(ξ2,N,j, η2,N,j)
t=
(
x∂

(
1,

j+1

M

)
−x∂

(
1,

j

M

)
, y∂
(
1,

j+1

M

)
−y∂

(
1,

j

M

))t
,

j = 0, 1, . . . ,M − 1 ,

(ξ2,0,j, η2,0,j)
t=
(
x∂

(
0,

j+1

M

)
−x∂

(
0,

j

M

)
, y∂
(
0,

j+1

M

)
−y∂

(
0,

j

M

))t
,

j = 0, 1, . . . ,M − 1 ,

(37)
ξ2,i+1,j − ξ2,i,j − ξ1,i,j+1 + ξ1,i,j = 0, (i, j) ∈ I1 ∩ I2 ,

η2,i+1,j − η2,i,j − η1,i,j+1 + η1,i,j = 0, (i, j) ∈ I1 ∩ I2 ,
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where the objective function follows from the equivalence of formulas (17),

(21), (31) and formulas (18), (22), (32), respectively. The constraints (36)

require that condition (7) holds. Moreover constraints (37) are conse-

quences of the irrotational conditions (10), (11), they state that variables

ξ
ν
, η

ν
, ν = 1, 2 are discrete gradients of unknown discrete functions.

Let ξ∗
ν
, η∗

ν
, ν = 1, 2 be the minimizer of problem (35)-(37), the vertices

coordinates x∗, y∗ of the computed grid are obtained from formula (12).

Fig. 2: Graph related to the minimum cost flow problem (35)-(37), where variables ζν,i,j ,
(i, j) ∈ Iν , ν = 1, 2 are generic variables to represent either variables ξν,i,j , (i, j) ∈ Iν , ν = 1,
2 or variables ην,i,j , (i, j) ∈ Iν , ν = 1, 2.

We note that the constraints (34) in problem (33)-(34) and the con-

straints (36) in problem (35)-(37) are easy to treat, in fact these con-

straints fix to a given value some variables of the corresponding problem.

At a first glance it seems that problem (35)-(37) is more complicated than

problem (33)-(34), as consequence of the presence of constraints (37),

nevertheless these constraints are the flow conservation conditions on the

nodes of a particular graph, see Figure 2. Problem (35)-(37) is usually

called minimum cost flow problem; we note that there exist very efficient
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methods for the solution of such networks problems, see [3], [7] for a

detailed discussion. Note that the objective functions of problem (33)-

(34) and of problem (35)-(37) are given by the sum of several addenda.

These addenda are functions of a limited number of variables, however

from formulas (13)-(16), (19), (20), (23)-(30) it can be easily seen that

the use of variables ξ
ν
, η

ν
, ν = 1, 2 reduces the number of the variables

in each addendum. This yields a remarkable gain in the computational

cost of the method used to solve the optimization problem. In particular

we expect that this benefit is predominant with respect to the disadvan-

tages of the introduction of these new variables, i.e. flow conservation

conditions (37). This expectation is confirmed by the numerical results

presented in the next section.

3 – The Numerical Experience

In the numerical experience we consider the planar regions proposed

in the Rogue’s Gallery of Grids, see [11] for details. Note that this is a

classical set of test problems.

In particular, we use the following examples:

Ω1 - Annulus;

Ω2 - Airfoil;

Ω3 - Backstep;

Ω4 - Swan;

Ω5 - Valley;

Ω6 - C;

Ω7 - Chevron;

Ω8 - Horseshoe;

Ω9 - Dome;

Ω10 - S.

The boundary of such regions are reported in Figure 3, for a de-

tailed description of the equation of u∂ see [11]. We note that only the

domain Ω10 is not present in the Rogue’s Gallery of Grids, but it is pro-

posed in [6]. We have considered also this region since it seems to be a

difficult region to grid.
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Ω1 Ω2 Ω3 Ω4 Ω5

Ω6 Ω7 Ω8 Ω9 Ω10

Fig. 3: The boundary ∂Ω of regions used for the test.

We propose the results obtained using two different implementations

of the direct method for the grid generation problem:

I1- Language code: FORTRAN90; solution of the nonlinear minimiza-

tion problem (35)-(37): the software package LSNNO (see [18], [19]),

I2- Language code: FORTRAN90; solution of the nonlinear minimum

cost flow problem (33)-(34): routine E04HEF of the NAG software

library (see [13]).

The numerical experience is given by two different parts. The for-

mer has the purpose to show the improvement from the point of view of

the computational cost given by formulation (35)-(37); as explained in

the previous section we expect such an improvement as consequence of

the introduction of variables (8), (9). The second part of the numerical

experience has the purpose to show the improvement in the quality of

the computed grid given by formulation (35)-(37), or equivalently formu-

lation (33)-(34), with respect to the classical formulation of the direct

method; we expect such an improvement as consequence of the introduc-

tion of the non-Euclidean norms defined by pL, pA, pO.
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3.1 – The computational cost

We consider the computational cost of the direct method. In par-

ticular, we want to emphasize the improvement due to the introduction

of variables ξ
ν
, η

ν
, ν = 1, 2 in the corresponding optimization problem;

so that we compare the computation cost of the method given by for-

mulation (33)-(34) and the computation cost of the method given by

formulation (35)-(37). This comparison is made on the ground of explicit

computations with implementation I1 and I2.

In Table 1, we report the elapsed times tI1
, tI2

for grid computa-

tion on the planar regions from Ω1 to Ω10 using the implementations I1

and I2, respectively. Moreover we denote EF = |F ∗ − Φ∗|, where F ∗

and Φ∗ denote the computed optimal value of the objective function of

problem (33)-(34) and problem (35)-(37), respectively. We denote with

Eu the 2-norm of the difference between the coordinates of the vertices

computed by the two implementations I1 and I2. In these experiments

we have fixed the other previously defined parameters as follows: pL = 2,

pA = 2, pO = 2, wL = 1, wA = 1, wO = 1.

Table 1 shows very convincing results about the improvements due

to the introduction of variables ξ
ν
, η

ν
, ν = 1, 2; in fact we note that

from the values of EF and Eu we can state that the obtained results are

approximately the same, but we usually have tI1
smaller than tI2

and

the difference between such values increases as N and M increase. We

note that planar region S requires M quite larger than N ; however the

choice N = M generates unstability in problem (33)-(34) as well as in

problem (35)-(37) having two set of edges with very different lengths;

the quite large values for EF and Eu in Table 1 are consequence of this

unstability.

3.2 – The quality of the computed grid

We consider the quality of the grids obtained by the direct method.

In particular, we want to emphasize the improvements due to the intro-

duction, in problems (33)-(34) or equivalently in problems (35)-(37), of

the non-Euclidean norms defined by parameters pL, pA, pO. Thus we

compare the quality of the grids obtained using pL = pA = pO = 2 and

using a different choice for pL, pA, pO, that is pL = 8, pA = pO = 2. This
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Table 1: The comparison of the efficiency of method (33)-(34) and method (35)-(37);
for each planar region and for each choice of parameters N , M it is reported: the elapsed
times tI1 and tI2 for the various grid computations with implementation I1 and I2,
respectively; EF , i.e. the absolute value of the difference between optimal values of
problem (33)-(34) and of problem (35)-(37); Eu the 2-norm of the difference between
the coordinates of vertices of the two grids computed by I1 and by I2.

Example M = N EF Eu tI1 tI2

Annulus 5 0.8988E-12 0.9550E-07 2.132 0.1820

10 0.3201E-11 0.8669E-07 10.56 11.53

15 0.1300E-11 0.3780E-07 63.82 189.9

Airfoil 5 0.1531E-10 0.4844E-06 0.1190 0.1890

10 0.6540E-10 0.5039E-06 9.458 14.06

15 0.1010E-10 0.2306E-06 48.58 165.0

Backstep 5 0.2380E-10 0.4744E-06 0.1000 0.1390

10 0.9699E-11 0.1482E-06 2.4820 8.300

15 0.4015E-12 0.2168E-07 2.3190 133.0

Swan 5 0.4820E-11 0.2221E-06 0.0670 0.1270

10 0.8602E-12 0.4715E-07 0.2620 7.694

15 0.6297E-12 0.2685E-07 1.121 122.4

Valley 5 0.3170E-11 0.1922E-06 0.0840 0.1060

10 0.7100E-11 0.1373E-06 0.1970 7.687

15 0.2195E-10 0.1602E-06 0.6010 121.9

C 5 0.2100E-11 0.1470E-06 0.1440 0.1300

10 0.1243E-10 0.1753E-06 2.1120 7.676

15 0.5110E-11 0.7479E-07 1.543 122.3

Chevron 5 0.1998E-13 0.1093E-07 0.0920 0.1310

10 0.2529E-10 0.2557E-06 0.2650 7.430

15 0.1399E-12 0.1273E-07 1.028 122.2

Horseshoe 5 0.7760E-09 0.2079E-05 2.071 0.1850

10 0.1228E-08 0.1487E-05 1.587 20.49

15 0.6112E-08 0.2531E-05 16.74 389.9

Dome 5 0.5540E-11 0.1713E-06 0.1320 0.1050

10 0.3569E-11 0.6730E-07 0.6640 7.934

15 0.5979E-11 0.5801E-07 1.014 122.1

S 5 0.9424E-07 0.1050E-04 3.457 0.6090

10 0.1028E-07 0.4988E-05 20.67 11.69

15 0.4010E-01 0.7537E-02 35.69 467.2
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comparison is made on the ground of explicit computations using imple-

mentation on the previously defined planar regions. We describe briefly

the performances indices used in Table 2. For the computed grids these

indices give an information on the uniformity of edges length and on the

angle between edges. In particular we consider the following performance

indices:

rh =
min(i,j)∈I1{

√
ξ2
1,i,j + η2

1,i,j}
max(i,j)∈I1{

√
ξ2
1,i,j + η2

1,i,j}
,(38)

rv =
min(i,j)∈I2{

√
ξ2
2,i,j + η2

2,i,j}
max(i,j)∈I2{

√
ξ2
2,i,j + η2

2,i,j}
.(39)

We note that rh and rv give a measure of the uniformity of the edges

length corresponding to horizontal edges of P and to vertical edges of P,

respectively. We can easily see that these indices are real numbers be-

tween 0 and 1; moreover for high quality grids we expect to have rh
and rv close to 1 and for low quality grids we expect to have rh and rv
close to 0.

Let us consider the set Θ given by all the quadrilaterals angles of the

computed grid. We define the following performance index:

(40) θmin = min Θ ,

that gives a measure of the uniformity of the angle between the edges

of the computed grid. We note that θmin is always between 0◦ and 90◦,

so that for high quality grids we expect to have θmin close to 90◦ and

for low quality grids we expect to have θmin close to 0◦. In Table 2 we

report the performance indices rh, rv, θmin obtained considering, for the

planar regions from Ω1 to Ω10, the parameters N ×M = 5 × 10, 5 × 15,

10 × 20, 10 × 30, and the parameters pL = pA = pO = 2 and pL = 8,

pA = pO = 2.

Moreover, for the weights of problem (35)-(37), we have considered

the simplest possible choice, that is wL = wA = wO = 1.
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Table 2: The comparison of the grids obtained by the direct method; for each choice of
the planar regions from Ω1 to Ω10, and for each choice of the parameters N×M = 5×10,
5×15, 10×20, 10×30, and pL = pA = pO = 2, pL = 8, pA = pO = 2, the performance
indices rh, rv, θmin defined in (38), (39), (40), respectively, are reported. We note that
the superscript of N ×M shows the number of the corresponding figure.

pL = pA = pO = 2 pL = 8, pA = pO = 2

Region N ×M rh rv θmin rh rv θmin

Annulus 5 × 10 — — — 0.6599 0.5839 70◦30′

5 × 15 0.6339 0.2886 68◦30′ 0.6569 0.5867 71◦24′

10 × 20 — — — 0.5646 0.5408 70◦42′

10 × 30 0.5622 0.2285 68◦30′ 0.5620 0.5411 70◦48′

Airfoil 5 × 10 — — — 0.3539 0.0962 40◦48′

5 × 154 — — — 0.3433 0.2212 42◦48′

10 × 20 — — — 0.2065 0.1598 43◦18′

10 × 30 — — — 0.1901 0.2004 44◦30′

Backstep 5 × 105 — — — — — —

5 × 15 — — — 0.3418 0.1213 4◦12′

10 × 20 — — — 0.2606 0.0628 16◦12′

10 × 30 — — — 0.1968 0.0813 17◦42′

Swan 5 × 10 0.3190 0.2254 28◦ 0.2492 0.1458 29◦6′

5 × 15 0.2393 0.3086 28◦12′ 0.2349 0.1515 28◦12′

10 × 206 0.2778 0.1539 26◦30′ 0.1888 0.0963 27◦48′

10 × 30 0.2046 0.2365 26◦30′ 0.1491 0.1068 27◦24′

Valley 5 × 10 0.7348 0.1750 35◦36′ 0.3382 0.2728 51◦48′

5 × 15 0.6951 0.3153 34◦18′ 0.2656 0.2835 51◦30′

10 × 206 0.6470 0.0892 33◦48′ 0.2697 0.2301 52◦6′

10 × 30 0.6213 0.2665 33◦24′ 0.2230 0.2198 49◦6′

C 5 × 10 — — — 0.3324 0.2651 39◦48′

5 × 157 0.3237 0.1446 30◦36′ 0.2941 0.2714 34◦54′

10 × 20 — — — 0.1969 0.2047 24◦

10 × 30 0.2740 0.0864 7◦24′ 0.1549 0.2095 22◦12′

Chevron 5 × 10 0.7459 0.2211 45◦ 0.2563 0.0780 45◦

5 × 15 0.7079 0.5063 45◦ 0.1833 0.1379 45◦

10 × 20 0.7221 0.0789 44◦54′ 0.1741 0.0722 42◦6′

10 × 30 0.7132 0.2721 45◦ 0.1439 0.0479 32◦48′

Horseshoe 5 × 10 — — — 0.1202 0.1029 23◦42′

5 × 15 0.1620 0.1322 25◦12′ 0.0869 0.1107 24◦42′

10 × 20 — — — 0.0580 0.0960 22◦48′

10 × 30 0.1452 0.1115 26◦24′ 0.0358 0.0843 22◦54′
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Table 2 (continued )

pL = pA = pO = 2 pL = 8, pA = pO = 2
Region N ×M rh rv θmin rh rv θmin

S 5 × 10 — — — 0.5672 0.6698 59o12′

5 × 15 — — — 0.5365 0.6641 19o24′

10 × 204 — — — 0.1501 0.4967 42o12′

10 × 30 — — — — — —

Dome 5 × 10 0.4781 0.3544 19◦16′ 0.1481 0.2574 27◦54′

5 × 15 0.4311 0.3817 18◦36′ 0.1140 0.2320 28◦12′

10 × 20 0.3905 0.2627 18◦18′ 0.1171 0.1383 25◦12′

10 × 30 0.3674 0.3392 18◦12′ 0.0872 0.1051 21◦48′

Table 2 shows very interesting results, in fact we can note that the

choice pL = pA = pO = 2 sometimes produces folded grids, see Figure 4;

on the contrary the choice pL = 8, pA = pO = 2 produces only two folded

grids: Backstep with N ×M = 5 × 10 and S with N ×M = 10 × 30.

(a) (b)

(c) (d)

Fig. 4: The grids generated for region S with N × M = 10 × 20 and for region Airfoil with
N × M = 5 × 15: folded grids (a), (c) are obtained using pL = pA = pO = 2, unfolded grids
(b), (d) are obtained using pL = 8, pA = pO = 2.
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(a) (b)

Fig. 5: The grid generated for region Backstep with N = 5 and M = 10: (a) grid obtained
with parameters pL = pA = pO = 2, (b) grid obtained with parameters pL = 8, pA = pO = 2.
In both cases we have folded grids but in (a) the folding is more severe than in (b).

However when both choices of parameters pL, pA, pO produce folded

grids we can observe a more sever folding in the grid obtained with pL =

pA = pO = 2 with respect to the one obtained with pL = 8, pA = pO = 2,

see Figure 5. When these two choices of parameters pL, pA, pO give

unfolded grids we have that these grids are quite similar, see Figure 6. In

particular we note that parameters pL = 8, pA = pO = 2 give often index

θmin better than the one given by parameter pL = pA = pO = 2. We

can also note that parameters pL = pA = pO = 2 give sometimes indices

rh, rv better than the ones given by parameters pL = 8, pA = pO = 2,

nevertheless in Figure 6 and in Figure 7, area of the faces in the grid

computed using pL = 8, pA = pO = 2 seems to be more uniform with

respect to the one computed using pL = pA = pO = 2.

(a) (b)

(c) (d)

Fig. 6: The grids generated for region Swan with N×M = 10× 20 and for region Valley with
N × M = 10 × 20: (a), (c) are obtained using pL = pA = pO = 2, (b), (d) are obtained using
pL = 8, pA = pO = 2. We note that edges length of grids (a), (c) is more uniform than the
one of grids (b), (d), but these last grids have more uniform faces area with respect to (a), (c).
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(a) (b)

Fig. 7: The grid generated for region C with N = 5 and M = 15: (a) the grid obtained with
parameters pL = pA = pO = 2, (b) the grid obtained with parameters pL = 8, pA = pO = 2.
In both cases we have unfolded grids but grid (b) is more uniform than grid (a).

4 – Conclusions

We consider the direct method for the grid generation problem and

we describe some simple, but efficient modifications of this method. From

various numerical experiments on a classical set of test problems we have

shown the improvements due to such modifications in the quality of the

computed grids as well as in the computational cost of the method.

The possible future developments of this work are various. For exam-

ple, from the point of view of the computational cost of the method we

have that formulation (35)-(37) seems to be an improvement with respect

to formulation (33)-(34), but problem (35)-(37) is a minimum cost flow

problem on a very particular graph, see Figure 2, so that we can take ad-

vantage on this fact to obtain further improvement of the computational

cost of the method. This can be achieved specializing the usual algo-

rithms for minimum cost flow problems to the particular graphs shown

in Figure 2. Another important question is of course the quality of the

computed grid, that is strictly related to the parameters chosen in the

method. In particular the quality of the grids generated by the direct

method is quite sensitive to the objective function of the corresponding

optimization problem, and a very interesting question is to find an objec-

tive function that works well with a large number of domains. It seems

that the use of non-Euclidean norms in the direct method goes in such a

direction, so that a promising attempt is the use of the maximum norm

in place of the usual Euclidean norm.
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Some experiences on orthogonal grid generation, Applied Numerical Mathematics,
40 (2002), 179-190.

[3] D. P. Bertsekas: Linear Network Optimization, MIT Press, Cambridge (Ma),
1991.

[4] J. E. Castillo: Mathematical Aspect of Numerical Grid Generation I , in: “Nu-
merical Grid Generation in Computational Fluid Dynamics”, J. Hauser, C. Taylor
(eds.), Pineridge Press, Swansea, UK, 1986, 35-43.

[5] J. E. Castillo – J. S. Otto: A Generalized Length Strategy for Direct Opti-
mization in Planar Grid Generation, Mathematics and Computers in Simulation,
44 (1997), 441-456.

[6] J. E. Castillo – J. S. Otto: A Practical Guide to Direct Optimization for Pla-
nar Grid-Generation, Computers and Mathematics with Applications, 37 (1999),
123-156.

[7] W. J. Cook – W. H. Cunningham – W. R. Pulleyblank – A. Schrijver:
Combinatorial Optimization, John Wiley & Sons, New York, 1998.

[8] N. Egidi – P. Maponi: A class of network optimization methods for planar grid
generation, Submitted for publication on “Applied Numerical Mathematics”.

[9] P. J. Frey – P. L. George: Mesh generation. Application to finite elements,
Hermes Science Publishing, Oxford, 2000.

[10] P. E. Gill – W. Murray – M. H. Wright: Practical Optimization, Academic
Press, London, 1981.

[11] P. M. Knupp – S. Steinberg: Fundamentals of Grid Generation, CRC Press,
Boca Raton, Florida, 1994.

[12] P. M. Knupp – N. Robidoux: A framework for variational grid generation:
conditioning the Jacobian matrix with matrix norms, SIAM Journal on Scientific
Computing, 21 (2000), 2029-2047.

[13] NAG Fortran Library , (Mark 18) NAG, Oxford, 1997.

[14] B. K. Soni: Grid generation: Past, present, and future, Applied Numerical Math-
ematics, 32 (2000), 361-369.

[15] R. M. Spitaleri: Full-FAS multigrid grid generation algorithms, Applied Nu-
merical Mathematics, 32 (2000), 483-494.

[16] R. M. Spitaleri (ed.): Numerical grid generation-technologies for advanced sim-
ulations, Applied Numerical Mathematics, 32 (2000), 359-494.



256 N. EGIDI – P. MAPONI [22]

[17] J. F. Thompson – B. K. Soni – N. P. Weatherill (eds.): Handbook of grid
generation, CRC Press, Boca Raton, Florida, 1999.

[18] Ph. L. Toint – D. Tuyttens: On large-scale nonlinear network optimization,
Mathematical Programming B, 48 (1990), 125-159.

[19] Ph. L. Toint – D. Tuyttens: LSNNO: A Fortran subroutine for solving large-
scale nonlinear network optimization problems, ACM Transactions on Mathemat-
ical Software, 18 (1992), 308-328.

[20] B. H. V. Topping – J. Muylle – R. Putanowicz – B. Cheng: Finite Element
Mesh Generation, Saxe-Coburg Publications, Edinburgh, 2000.

Lavoro pervenuto alla redazione il 15 febbraio 2003
ed accettato per la pubblicazione il 13 ottobre 2003.

Bozze licenziate il 29 gennaio 2004

INDIRIZZO DEGLI AUTORI:
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Pierluigi Maponi – Università di Camerino – Dipartimento di Matematica e Informatica –
62032 Camerino (MC) (Italy)
E-mail: pierluigi.maponi@unicam.it


