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Two step Runge-Kutta-Nyström methods

based on algebraic polynomials

B. PATERNOSTER

Abstract: We consider the new family of two step Runge-Kutta-Nyström methods
for the numerical integration of y′′ = f(x, y). We derive the conditions to obtain two
step Runge-Kutta-Nyström methods which integrate algebraic polynomials exactly and
analyze the one-stage case.

1 – Introduction

We are concerned with second order Ordinary Differential Equations,

in which the first derivative does not appear explicitly,

(1.1) y′′(t) = f(t, y(t)), y(t0) = y0, y′(t0) = y′
0, y(t), f(t, y) ∈ Rn ,

having a periodic or an oscillatory solution. These initial value problems

often arise in applications of molecular dynamics, orbital mechanics, seis-

mology, and they are usually considered as a difficult integration problem.

Indeed standard numerical methods can require a huge number of time-

steps to track the oscillations. In many situations, when the problem has

a large dimension, or the evaluation of the right-hand side function is
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very costly, or the response time is extremely important, for example in

simulation processes, there is the need of obtaining an accurate solution

in a reasonable time frame. Therefore there is a great demand of efficient

methods for problem (1.1).

Although the system (1.1) may be reduced into a first order system,

the development of numerical methods for its direct integration seems

more natural. Many methods with constant coefficients have already been

derived for second order ODEs (1.1) with periodic or oscillatory solutions.

Linear multistep methods, hybrid and one step methods appeared in the

literature: see for example [5], [6], [10], [13] for an extensive bibliography.

In [12] we introduced the two step Runge-Kutta-Nyström (TSRKN)

methods

(1.2)

Y j
i−1 =yi−1 + hcjy

′
i−1 + h2

m∑

s=1

ajsf(xi−1 + csh, Y
s
i−1), j = 1, . . . ,m

Y j
i = yi + hcjy

′
i + h2

m∑

s=1

ajsf(xi + csh, Y
s
i ), j = 1, . . . ,m ,

yi+1 = (1 − θ)yi + θyi−1 + h
m∑

j=1

vjy
′
i−1 + h

m∑

j=1

wjy
′
i+

+ h2
m∑

j=1

(v̄jf(xi−1 + cjh, Y
j
i−1) + w̄jf(xi + cjh, Y

j
i )) ,

y′
i+1 = (1 − θ)y′

i + θy′
i−1 + h

m∑

j=1

(vjf(xi−1 + cjh, Y
j
i−1)+

+ wjf(xi + cjh, Y
j
i )) ,

for the direct numerical integration of (1.1). θ, vj, wj, vj, wj, ajs, bjs,

j, s,= 1, . . . ,m are the coefficients of the methods, which can be repre-

sented by the following array:

(1.3)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c A

v

θ
w

v

w .



[3] Two step Runge-Kutta-Nyström methods etc. 279

For an m-stage TSRKN method, A is a m×m real matrix; c, v, w, v and

w are real vectors of length m.

In [12] the TSRKN method was derived as an indirect method from

the two step Runge-Kutta methods introduced in [7]. The reason of

interest in methods TSRKN (1.2) lies in the fact that, advancing from

xi to xi+1 we only have to compute Yi, because Yi−1 has alreay been

evaluated in the previous step. Therefore the computational cost of the

method depends on the matrix A, while the vectors v and v add extra

degrees of freedom.

Our aim is to analyze two step implicit methods of type (1.2) which

integrate algebraic polynomials exactly. The main motivation for the

development of implicit methods (1.2), as those considered in the present

paper, is their property of having a high stage order which make them

suitable for stiff systems, also because their implicitness. Collocation–

based methods also belong to this class.

In Section 2 we extend Albrecht’s approach [1], [2] to the family (1.2),

with the aim to derive the conditions for TSRKN methods to integrate

algebraic polynomials exactly.

In Section 3 we perform the linear stability analysis. In Section 4 we

consider the case of one stage methods.

2 – TSRKN methods based on algebraic polynomials

Let us consider the TSRKN methods (1.2). It is known that the

method (1.2) is zero-stable if [12]

(2.1) −1 < θ ≤ 1 .

We treat formulas (1.2) by extending Albrecht’s technique [1], [2] to

the numerical method in concern, as we already done in [9] for Runge-

Kutta-Nyström methods, and in [11] for two step Runge-Kutta meth-

ods. According to this approach, we regard the two step Runge-Kutta-

Nyström method (1.2) as a composite linear multistep scheme, but on a

not equidistant grid.

Adopting the m + 1 linear stage representation, which is used in Al-

brecht’s theory for Runge-Kutta, we slightly modify the notation of (1.2)
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in the following way:

(2.2)

yi−1+cj = yi−1 + hcjy
′
i−1 + h2

m∑

s=1

ajsf(xi−1 + csh, yi−1+cs) ,

j = 1, . . . ,m

yi+cj = yi + hcjy
′
i + h2

m∑

s=1

ajsf(xi + csh, yi+cs), j = 1, . . . ,m ,

yi+1 = (1 − θ)yi + θyi−1 + h
m∑

j=1

vjy
′
i−1 + h

m∑

j=1

wjy
′
i+

+ h2
m∑

j=1

(v̄jf(xi−1 + cjh, yi−1+cj ) + w̄jf(xi + cjh, yi+cj ) ,

y′
i+1 = (1 − θ)y′

i + θy′
i−1 + h

m∑

j=1

(vjf(xi−1 + cjh, yi−1+cj+

+ wjf(xi + cjh, yi+cj ) ,

yi−1+cj and yi+cj in (2.2) are the internal stages; yi+1 and y′
i+1 are the final

stages, which give the approximation of the solution and of the derivative

of the solution in the step point xi.

We associate a linear difference operator with each stage, in the fol-

lowing way:

(2.3) Lj[z(x);h] = z(x+ cjh)− z(x)− hcjz
′(x)− h2

m∑

s=1

(ajsz
′′(x+ csh) ,

for j = 1, . . . ,m is associated with the internal stage yi+cj of (2.2);

(2.4)

L[z(x);h]=z(x+h)−(1−θ)z(x)−θz(x−h)−h
( m∑

j=1

vjz
′(x−h)+

+
m∑

j=1

wjz
′(x)
)
−h2

m∑

j=1

(vjz
′′(x+(cj−1)h)+wjz

′′(x+cjh)),

is associated with the stage yi+1 in (2.2).

(2.5)

L′
[z(x);h] = z′(x + h) − (1 − θ)z′(x) − θz′(x− h)+

− h
m∑

j=1

(vjz
′′(x + (cj − 1)h) + wjz

′′(x + cjh)),
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is associated with the final stage y′
i+1 in (2.3).

It results:

Lj[1;h] = Lj[x;h] = 0, j = 1, . . . ,m ,

L[1;h] = L′
[1;h] = L′

[x;h] = 0, j = 1, . . . ,m .

If we annihilate (2.4) on the function z(x) = x, then from L[x;h] = 0, it

follows that

(2.6)
m∑

j=1

(vj + wj) = 1 + θ

which represents the consistency condition already derived in [7].

The condition (2.6) implies that the method (1.2) is consistent [7]

and, together with (2.1), it ensures that the TSRKN is convergent with

order at least one.

If (2.3) is identically equal to zero when z(x) = xp, i.e. if Lj[x
p;h] =

0, then it results:

(2.7)
m∑

s=1

ajsc
p−2
s =

cpj
p(p− 1)

, j = 1, . . . ,m .

Moreover, if (2.4) results equal to zero when z(x) = xp, i.e. L[xp;h] = 0,

then

(2.8)
m∑

j=1

(v̄j(cj − 1)p−2 + w̄jc
p−2
j ) =

1 − (−1)pθ

p(p− 1)
− (−1)p−1

p− 1

m∑

j=1

vj .

Finally, if we annihilate (2.5) on the function z(x) = xp, then from

L′
[xp;h] = 0, it follows that

(2.9)
m∑

j=1

(vj(cj − 1)p−2 + wjc
p−2
j ) =

1 − (−1)p−1θ

(p− 1)
.

We can now give the following definitions:

Definition 1. An m-stage TSRKN method is said to satisfy the

simplifying conditions C2(p) if its parameters satisfy

m∑

s=1

ajsc
k−2
s =

ckj
k(k − 1)

, j = 1, . . . ,m, k = 1, . . . , p .
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Definition 2. An m-stage TSRKN method is said to satisfy the

simplifying conditions B2(p) if its parameters satisfy

m∑

j=1

(v̄j(cj − 1)k−2 + w̄jc
k−2
j ) =

1 − (−1)kθ

k(k − 1)
− (−1)k−1

k − 1

m∑

j=1

vj ,

j = 1, . . . ,m, k = 1, . . . , p .

Definition 3. An m-stage TSRKN method is said to satisfy the

simplifying conditions B′
2(p) if its parameters satisfy

m∑

j=1

(vj(cj − 1)k−2 + wjc
k−2
j ) =

1 − (−1)k−1θ

(k − 1)
, k = 1, . . . , p .

C2(p), B2(p) and B′
2(p) not only allow the reduction of order conditions

of trees in the theory of two step RKN methods, which is under devel-

opment by the author of this paper, but they also mean that all the

quadrature formulas represented by the TSRKN method have order at

least p, similarly as it happens in the theory of Runge-Kutta methods [3].

Now we prove the following theorem by using Albrecht’s theory[1],[2]:

Theorem 1. If C2(p), B2(p) and B′
2(p) hold, then the m-stage

TSRKN method (1.2) has order of convergence p.

Proof. C2(p), B2(p) and B′
2(p) imply that all the stages of the

method have order p or, in Albrecht’s terminology, that each stage in (2.2)

has order of consistency p, so that the method has order of consistency p.

In this case the method converges with order at least p.

It is worth mentioning that the conditions C2(p), B2(p) and B′
2(p)

are only sufficient conditions for the TSRKN method to have order p.

Indeed the final stage must certainly have order of consistency p, which

is the condition B′
2(p), but it is not necessary that also the internal stages

have order of consistency p. Therefore C2(p) and B2(p) are not necessary

conditions for the method to have order p.

If all the stages have order of consistency p, then all the stages are

exact on any linear combination of the power set {1, x, x2, . . . , xp}, and

this implies that the TSRKN method results exact on algebraic polyno-

mials. Moreover the simplifying conditions C2(p), B2(p) and B′
2(p) are
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a constructive help for the derivation of new numerical methods within

the family of TSRKN methods.

3 – Linear stability analysis

The linear stability analysis for numerical methods for second order

ODEs (1.1) is performed by applying the method to the linear homoge-

neous test equation [12]

(3.1) y′′ = −ω2y, ω ∈ R .

The following recursion results for methods (1.2):

(3.2)




yi

yi+1

h y′
i

h y′
i+1




= M(z2)




yi−1

yi
h y′

i−1

h y′
i




with

(3.3) M(z2)=




0 1 0 0

θ − z2v̄TN−1e 1 − θ− vTe− wTe−
z2w̄TN−1e z2v̄TN−1c z2w̄TN−1c

0 0 0 1

−z2vTN−1e −z2wTN−1e θ− 1 − θ−
z2vTN−1c z2wTN−1c




,

where z = ωh, e = (1, . . . , 1)T , N = I + z2A.

M(z2) in (3.2)-(3.3) is the stability or amplification matrix for the

two-step RKN methods (1.2). The stability properties of the method

depend on the eigenvalues of the amplification matrix, i.e. they depend

on the roots of the stability polynomial,

(3.4) π(λ) = det(M(z2) − λI) ,
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whose coefficients are rational functions of the parameters of the method.

For the sake of completeness, we recall now the following two definitions.

Definition 4. (0, H2
0 ) is interval of periodicity for the two step

RKN method if, ∀z2 ∈ (0, H2
0 ), the roots of the stability polynomial π(λ)

satisfy:

r1 = eiφ(z), r2 = e−iφ(z), |r3,4| ≤ 1

with φ(z) real.

Definition 5. The two step RKN method is P -stable if its interval

of periodicity is (0,+∞).

For an A-stable method the eigenvalues of the amplification matrix

are within the unit circle for all stepsizes and any choice of frequency in

the test equations, and this ensures that the amplitude of the numerical

solution of the test equation does not increase with time. If, what’s more,

there isn’t numerical dissipation, that is if the principal eigenvalues of

the amplification matrix lie on the unit circle, then the method is P -

stable [12].

4 – One stage TSRKN method

Let us consider now the one stage TSRKN method (1.2) represented

by the following Butcher array

(4.1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c a

v

θ
w

v

w .

The method (4.1) has all the stages of order 2 if C2(2), B2(2) and

B′
2(2) hold, that is if the parameters in (4.1) satisfy

(4.2) a =
1

2
c2, v + w = 1 + θ, v + w − v =

1 − θ

2
.
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Solving(4.2) leaving c, θ, w, v as free parameters, the resulting method

has all the stages of order 2 if

(4.3) a =
1

2
c2, w = 1 + θ − v, v̄ =

1 − θ

2
− w + v .

A necessary condition to obtain a method with a not-empy interval of

perioditicy is that the characteristic polynomial (3.4) of the method (4.1),

with parameters given by (4.3), is symmetric. In this case, if λ is an

eigenvalue of M(z2), then also 1
λ

is eigenvalue and any stability interval

is also an interval of periodicity.

The analytical study shows that for no values of the free parameters

the characteristic polynomial (3.4) can be symmetric. This implies that

the one-stage TSRKN method (4.1), having all stages of order 2, does

not posses interval of periodicity. An exstensive numerical search proved

that there exist methods with large interval of stability. The interval

of stability is defined in a natural way to be the interval (0, Z2), where

the roots of the stability polynomial π(λ) are in modulus less than unity

∀z2 ∈ (0, Z2). The values of the free parameters which maximize the

interval of stability can be determined by using the symbolic package

which is described in [4], that analyzes the stability properties of a large

variety of numerical methods for ODEs by considering the associated

stability functions.

An alternative approach to maximize the interval of stability (0, Z2),

consists in analyzing for which values of the free parameters the charac-

teristic polynomial (3.4) results to be a Schur polynomial, according to

the definition given in [8], that is for which values for c, θ, v, w in (4.3)

the roots of (3.4) result to lie within the unit circle. For this analysis we

solved the set of inequalities produced by the Routh-Hurwitz criterion [8],

which is known to be a criterion for the roots of a polynomials to lie in

the left half-plane.

The characteristic polynomial (3.4) has the following form for the

one stage method (4.1)-(4.3):

(4.4) π(λ) =
P0(z

2) + P1(z
2)λ + P2(z

2)λ2 + P3(z
2)λ3 + P4(z

2)λ4

2 + c2z2
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with

P0(z
2) = 2v2z2 − θ(1 + 2(1 + c)v − 2w̄)z2 + θ2(2 + z2 + c2z2) ,

P1(z
2) = (−1 − 2(−1 + c)v − 4v2 + 2w̄)z2 − θ2(4 + z2 + 2cz2+

+ 2c2z2) + 2θ(2 + (1 − c + c2 + 3v + 2cv − 2w̄)z2) ,

P2(z
2) = 2 + (3 − 2c + c2 − 2v + 4cv + 2v2 − 4w̄)z2 + θ2(2+

+ (2 + 2c + c2)z2) − θ(8 + (−3 + 4c2 + 4v + 2cv − 2w̄)z2) ,

P3(z
2) = 2(−2 − c2z2 + w̄z2 + θ(2 + cz2 + c2z2) + c(z2 − vz2)) ,

P4(z
2) = 2 + c2z2 .

Following [8], we perform the transformation

(4.5) λ =
1 + r

1 − r

which maps the interior of the circle |λ| = 1 onto the left half–plane

Re r < 0. The following polynomial

Q(r) = a0r
4 + a1r

3 + a2r
2 + a3r + a4

arises from (4.4) after the transformation (4.5). Then the necessary and

sufficient conditions for π(λ) in (4.4) to be a Schur polynomial, are that

the principal minors of the following 4 × 4 matrix

K =




a1 a3 0 0

a0 a2 a4 0

0 a1 a3 0

0 a0 a2 a4




be positive. By omitting the details, a set of inequalities follows which we

solved numerically, finding many methods with large intervals of stability.

Some of the largest intervals are found, for instance, with the following

values of the free parameters:

θ = −1

2
, c = 1, v = −1, w̄ =

1

2
, (0, Z2) = (0, 16)

θ = −1

2
, c =

7

8
, v = −3

4
, w̄ = −1

2
, (0, Z2) = (0, 10) .
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Of course all the free parameters have influence on the amplitude of

the interval of stability; but in particular, for the one-stage method (4.1),

the intervals of stability are going to become larger when the c-value goes

towards 1.

5 – Conclusions

We have considered the family of TSRKN methods for y′′ = f(x, y)

which integrate algebraic polynomials exactly. Within this family we do

not find methods possessing interval of periodicity, but methods with

large interval of stability, which can be used in the numerical treatment

of stiff systems. The work containing the derivation of the Butcher arrays

for methods up to three stages is forthcoming. It is worth mentoning that,

if we let down the request of obtaining an high stage order, we can find

zero-dissipative stable two step Runge-Kutta Nyström methods; indeed

the existence of P -stable methods within family (1.2) has been proved

in [12].

Following the procedure showed in this paper, that is annihilat-

ing the linear difference operators (2.3)-(2.5) on different basis of func-

tions, it is possible to derive TSRKN methods for ODEs having solu-

tions with an already known behaviour. For example, it is worth con-

sidering TSRKN methods for ODEs (1.1) having periodic or oscillatory

solution, for which the dominant frequency ω is known in advance; in

this case a proper set of functions is the basis for trigonometric polyno-

mial {1, cosωx, sinωx, cos 2ωx, sin 2ωx, . . . }, as already considered in [9],

[11] for Runge-Kutta-Nyström and two step Runge-Kutta methods. The

technique used in this paper can also be applied for the construction of

collocation methods within family (1.2).
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