On the coefficients of entire harmonic functions

R. CHANKANYAL - S. K. VAISH

Abstract

A function which is harmonic in a neighbourhood of the origin in R^{3} has there an expansion in spherical harmonics. For entire harmonic function H, measures of growth such as (p, q)-order, (p, q)-type, lower (p, q)-order and lower (p, q)-type are obtained in terms of the coefficients of spherical harmonic expansions. Alternative characterizations for (p, q)-order, (p, q)-type, lower (p, q)-order and lower (p, q)-type are also obtained in terms of the ratios of these successive coefficients. Some results obtained earlier by Srivastava become the particular cases of the results obtained in this paper.

1 - Introduction

A function which is harmonic in a neighbourhood of origin in R^{3} has there an expansion in spherical harmonics. Thus, if H is a function which is harmonic in a neighbourhood of origin in R^{3} then H has the following expansion in spherical harmonic:

$$
\begin{equation*}
H(r, \theta, \varphi)=\sum_{n=0}^{\infty} \sum_{m=0}^{n}\left\{a_{n m}^{(1)} \cos m \varphi+a_{n m}^{(2)} \sin n \varphi\right\} r^{n} P_{n}^{m}(\operatorname{Cos} \theta) \tag{1.1}
\end{equation*}
$$

The series converges absolutely and uniformly on compact sets of the largest open ball centered at the origin which omits singularities of H [3].

[^0]Here $x=r \cos \theta, y=r \sin \theta \cos \phi$ and $z=r \sin \theta \sin \phi . P_{n}^{m}(x)$ are associated Legendre functions of the first kind, $n^{\text {th }}$ degree and order m.

For H entire, we define

$$
\begin{equation*}
M(r) \equiv M(r, H)=\max _{\theta, \phi} H(r, \theta, \phi) . \tag{1.2}
\end{equation*}
$$

2 - Definitions and notations

Following the usual definitions of (p, q)-order, lower (p, q)-order, (p, q) type and lower (p, q)-type of an entire function of a complex variable z, we define:

Definition 1. The (p, q)-order $\rho(H)$ of H is defined as

$$
\begin{equation*}
\rho(H)=\underset{r \rightarrow \infty}{\limsup } \frac{\log ^{[p]} M(r, H)}{\log ^{[q]} r} \tag{2.1}
\end{equation*}
$$

where p and q are integers such that $p \geq q \geq 1, \log ^{[0]} x=x, \log ^{[m]} x=$ $\log \left(\log ^{[m-1]} x\right)$ for $0<\log ^{[m-1]} x<\infty$ and $m=1,2,3, \ldots$ Moreover $0 \leq \rho(H) \leq \infty$ if $p>q$ and $1 \leq \rho(H) \leq \infty$ if $p=q$.

Definition 2. An entire harmonic function H of index-pair (p, q) is said to be of lower (p, q)-order $\lambda(H)$ if

$$
\begin{equation*}
\liminf _{r \rightarrow \infty} \frac{\log ^{[p]} M(r, H)}{\log ^{[q]} r}=\lambda(H) . \tag{2.2}
\end{equation*}
$$

Definition 3. An entire harmonic function H having (p, q)-order $\rho(H)(b<\rho(H)<\infty)$ is said to be of (p, q)-type $T(H)$ and lower (p, q) type $t(H)$ if

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \sup _{\inf } \frac{\log ^{[p-1]} M(r, H)}{\left(\log ^{[q-1]} r\right)^{\rho(H)}}={ }_{t(H)}^{T(H)} \tag{2.3}
\end{equation*}
$$

where $b=1$ if $p=q$ and $b=0$ if $p>q$.
The following notations are frequently used in the sequel:

Notation 1.

$$
P(\alpha)=\left[\begin{array}{cc}
\alpha & \text { if } p>q \tag{2.4}\\
1+\alpha & \text { if } p=q=2 \\
1 & \text { if } 3 \leq p=q<\infty \\
\infty & \text { if } p=q=\infty
\end{array}\right.
$$

where $0 \leq \alpha \leq \infty$.
Notation 2.

$$
M(F)=\left[\begin{array}{cc}
(\rho(F)-1)^{(\rho(F)-1)} / \rho(F)^{\rho(F)} & \text { if }(p, q)=(2,2) \tag{2.5}\\
1 /(e \rho(F)) & \text { if }(p, q)=(2,1) \\
1 & \text { if } p \geq 3
\end{array}\right.
$$

Notation 3.

$$
X=\left[\begin{array}{cc}
1 / \rho & \text { if } p=2 \tag{2.6}\\
1 & \text { if } p \geq 3
\end{array}\right.
$$

Notation 4.

$$
A=\left[\begin{array}{cc}
1 & \text { if }(p, q)=(2,2) \tag{2.7}\\
0 & \text { if }(p, q) \neq(2,2)
\end{array}\right.
$$

To avoid unnecessary repetition, we shall denote throughout the paper:

$$
\begin{align*}
& \lim _{r \rightarrow \infty} \sup _{\text {inf }} \frac{\log ^{[p-1]} n}{\log ^{[q-1]}\left(n^{-1} \log \left|a_{n}\right|^{-1}\right)}={ }_{\psi(F)}^{L(F)}, \tag{2.8}\\
& \lim _{r \rightarrow \infty} \sup _{\text {inf }} \frac{\log ^{[p-2]} n}{\log ^{[q-1]}\left|a_{n} / a_{n+1}\right|^{\rho(F)-A}}=\underset{R(F)}{Q(F),} \tag{2.9}\\
& \lim _{r \rightarrow \infty} \sup _{\inf } \frac{\log ^{[p-2]} n}{\left(\log ^{[q-1]}\left|a_{n}\right|^{-1 / n}\right)^{\rho(F)-A}}={ }_{v(F)}^{V(F)}, \tag{2.10}
\end{align*}
$$

and

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \sup _{\inf } \frac{\log ^{[p-1]} n}{\log ^{[q]}\left(\left|a_{n} / a_{n+1}\right|\right)}={ }_{\psi^{*}(F)}^{L^{*}(F)}, \tag{2.11}
\end{equation*}
$$

for the entire function $F(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$.

In this paper we define (p, q)-order, (p, q)-type, lower (p, q)-order and lower (p, q)-type of an entire harmonic function H and obtain various characterizations in terms of $\left\{\alpha_{n}\right\}$ defined in equation (3.2). We also obtain alternative characterizations for (p, q)-order, (p, q)-type, lower (p, q) order and lower (p, q)-type in terms of the ratio $\left(\alpha_{n} / \alpha_{n+1}\right)$. Some results obtained earlier by Srivastava become the particular cases of the results obtained in this paper.

3 - Known results

We have the following lemmas:
Lemma 1 (Fryant, [2]). The harmonic function $H(r, \theta, \varphi)$ having expansion (1.1) is entire if and only if

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\alpha_{n}\right)^{1 / n}=0 \tag{3.1}
\end{equation*}
$$

where α_{n} is given by

$$
\begin{equation*}
\alpha_{n}=\max _{m, i}\left\{\frac{(n+m)!}{(n-m)!}\right\}^{1 / 2}\left|a_{n m}^{(i)}\right| . \tag{3.2}
\end{equation*}
$$

Lemma 2 (Fryant, [2]). If H is entire harmonic function then for all $r>0$ and for all n,

$$
\begin{equation*}
\left(2(1+2 n)^{1 / 2}\right)^{-1} \alpha_{n} r^{n} \leq M(r, H) \leq 2 \sum_{n=0}^{\infty}\left(1+n^{-1 / 2}\right)^{n} \alpha_{n} r^{n} \tag{3.3}
\end{equation*}
$$

Now, we define

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty}\left(1+n^{-1 / 2}\right)^{n} \alpha_{n} z^{n}=\sum_{n=0}^{\infty} \beta_{n} z^{n} \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
g(z)=\sum_{n=0}^{\infty}(1+2 n)^{-1 / 2} \alpha_{n} z^{n}=\sum_{n=0}^{\infty} \gamma_{n} z^{n} \tag{3.5}
\end{equation*}
$$

where α_{n} is given by (3.2).

On using (3.1), we obtain

$$
\lim _{n \rightarrow \infty}\left\{\left(1+n^{-1 / 2}\right)^{n} \alpha_{n}\right\}^{1 / n}=\lim _{n \rightarrow \infty}\left\{(1+2 n)^{-1 / 2} \alpha_{n}\right\}^{1 / n}=\lim _{n \rightarrow \infty} \alpha_{n}^{1 / n}=0
$$

Hence we get the following:
Lemma 3. If H is entire harmonic function then f and g are also entire functions of complex variable z. Further, if $m(r, g)=\max _{n}\{(1+$ $\left.2 n)^{-1 / 2} \alpha_{n} r^{n}\right\}$ and $M(r, f)=\max _{|z| \leq r}|f(z)|$ then from (3.3), we get

$$
\begin{equation*}
\frac{m(r, g)}{2} \leq M(r, H) \leq 2 M(r, f) \tag{3.6}
\end{equation*}
$$

Lemma 4. If $\alpha_{n} / \alpha_{n+1}$ forms a non-decreasing function of n for $n>n_{0}$ then β_{n} / β_{n+1} and $\gamma_{n} / \gamma_{n+1}$ also form a non-decreasing function of n for $n>n_{0}$, where $\beta_{n}=\left(1+n^{-1 / 2}\right)^{n} \alpha_{n}$ and $\gamma_{n}=(1+2 n)^{-1 / 2} \alpha_{n}$.

Proof. We have

$$
\frac{\beta_{n}}{\beta_{n+1}}=\frac{\left(1+n^{-1 / 2}\right)^{n}}{\left\{1+(n+1)^{-1 / 2}\right\}^{n+1}} \frac{\alpha_{n}}{\alpha_{n+1}}
$$

Let

$$
\eta(x)=\frac{\left(1+x^{-1 / 2}\right)^{x}}{\left\{1+(x+1)^{-1 / 2}\right\}^{x+1}}=\frac{G(x)}{G(x+1)}
$$

then we can easily prove that

$$
\frac{d}{d x}[\log G(x)]>\frac{d}{d x}[\log G(x+1)]
$$

so, $\frac{d \eta(x)}{d x}>0$ for $x>0$. Thus β_{n} / β_{n+1} is a non-decreasing function of n for $n>n_{0}$ if $\alpha_{n} / \alpha_{n+1}$ is a non-decreasing function of n for $n>n_{0}$. Similarly, we can prove for $\gamma_{n} / \gamma_{n+1}$.

Lemma 5. Let $f(z)=\sum_{n=0}^{\infty}\left(1+n^{-1 / 2}\right)^{n} \alpha_{n} z^{n}$ and $g(z)=\sum_{n=0}^{\infty}(1+$ $2 n)^{-1 / 2} \alpha_{n} z^{n}$ be two entire functions. Then for $p \geq 2, q \geq 1, p \geq q$, (p, q)-orders and (p, q)-types of $f(z)$ and $g(z)$ are equal.

Proof. Let $F(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ be an entire function of (p, q)-order $\rho(F)$ and (p, q)-type $T(F)$. Then for $p \geq 2, q \geq 1, p \geq q$, we have [4]

$$
\begin{equation*}
\rho(F)=P(L(F)) \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
T(F)=M(F) V(F) \tag{3.8}
\end{equation*}
$$

Now, for the function $f(z)$, we have

$$
\begin{align*}
L(f) & =\limsup _{n \rightarrow \infty} \frac{\log ^{[p-1]} n}{\log ^{[q-1]}\left\{n^{-1} \log \left(\left(1+n^{-1 / 2}\right)^{n} \alpha_{n}\right)^{-1}\right\}}= \\
& =\limsup _{n \rightarrow \infty} \frac{\log ^{[p-1]} n}{\log ^{[q-1]}\left\{n^{-1} \log \alpha_{n}^{-1}-\log \left(1+n^{-1 / 2}\right)\right\}}= \\
& =\limsup _{n \rightarrow \infty} \frac{\log ^{[p-1]} n}{\log ^{[q-1]}\left[\left(n^{-1} \log \alpha_{n}^{-1}\right)\left\{1-\frac{\log \left(1+n^{-1 / 2}\right)}{\log \left(\alpha_{n}^{-1 / n}\right)}\right\}\right]}= \tag{3.9}\\
& =\limsup _{n \rightarrow \infty} \frac{\log ^{[p-1]} n}{\log ^{[q-1]}\left\{n^{-1} \log \alpha_{n}^{-1}(1-o(1))\right\}}= \\
& =\limsup _{n \rightarrow \infty} \frac{\log ^{[p-1]} n}{\log ^{[q-1]}\left(n^{-1} \log \alpha_{n}^{-1}\right)} .
\end{align*}
$$

Similarly, for the function $g(z)$, we have

$$
\begin{align*}
L(g) & =\limsup _{n \rightarrow \infty} \frac{\log ^{[p-1]} n}{\log ^{[q-1]}\left[n^{-1} \log \left\{(1+2 n)^{-1 / 2} \alpha_{n}\right\}^{-1}\right]}= \\
& =\limsup _{n \rightarrow \infty} \frac{\log ^{[p-1]} n}{\log ^{[q-1]}\left[\left(n^{-1} \log \alpha_{n}^{-1}\right)\left\{1-\frac{\log (1+2 n)^{-1 / 2}}{\log \left(\alpha_{n}\right)^{-1}}\right\}\right]}= \tag{3.10}\\
& =\limsup _{n \rightarrow \infty} \frac{\log ^{[p-1]} n}{\log ^{[q-1]}\left(n^{-1} \log \alpha_{n}^{-1}\right)} .
\end{align*}
$$

(3.7), (3.9) and (3.10) give $\rho(f)=\rho(g)$. Since f and g have same order, using (2.10) and (3.8) we can easily prove that

$$
\begin{equation*}
T(f)=T(g) \tag{3.11}
\end{equation*}
$$

This completes the proof of Lemma 5.

4 - Theorems

In this section we shall prove the following theorems for $p \geq 2, q \geq 1$ and $p \geq q$:

Theorem 1. Let H be an entire harmonic function of (p, q) order $\rho(H)$, lower (p, q)-order $\lambda(H),(p, q)$-type $T(H)$ and lower (p, q) type $t(H)$. If f and g are two entire functions defined by (3.4) and (3.5) respectively, then

$$
\begin{align*}
\rho(f) & =\rho(g)=\rho(H) \tag{4.1}\\
T(f) & =T(g)=T(H) \tag{4.2}\\
\lambda(g) & \leq \lambda(H) \leq \lambda(f) \tag{4.3}\\
t(g) & \leq t(H) \leq t(f) \tag{4.4}
\end{align*}
$$

Proof. From (3.6), we have

$$
\begin{aligned}
\limsup _{r \rightarrow \infty}(\text { inf }) \frac{\log ^{[p]} m(r, g)}{\log ^{[q]} r} & \leq \limsup _{r \rightarrow \infty}(\text { inf }) \frac{\log ^{[p]} M(r, H)}{\log ^{[q]} r} \leq \\
& \leq \limsup _{r \rightarrow \infty}(\text { inf }) \frac{\log ^{[p]} M(r, f)}{\log ^{[q]} r}
\end{aligned}
$$

Also for an entire function ξ, we have [1]

$$
\log M(r, \xi) \approx \log m(r, \xi) \text { as } r \rightarrow \infty
$$

Hence,

$$
\rho(g) \leq \rho(H) \leq \rho(f)
$$

and

$$
\lambda(g) \leq \lambda(H) \leq \lambda(f)
$$

Since $\rho(g)=\rho(f)$, we thus obtain (4.1) and (4.3).
Let

$$
\rho(g)=\rho(H)=\rho(f)=\rho
$$

then from (3.6), we have

$$
\begin{align*}
\limsup _{r \rightarrow \infty} \frac{\log ^{[p-1]} m(r, g)}{\left(\log ^{[q-1]} r\right)^{\rho}} & \leq \limsup _{r \rightarrow \infty} \frac{\log ^{[p-1]} M(r, H)}{\left(\log ^{[q-1]} r\right)^{\rho}} \leq \\
& \leq \limsup _{r \rightarrow \infty} \frac{\log ^{[p-1]} M(r, f)}{\left(\log ^{[q-1]} r\right)^{\rho}} \tag{4.5}
\end{align*}
$$

(3.11) and (4.5) give (4.2). (4.4) follows in a similar manner.

Theorem 2. Let H be an entire harmonic function of (p, q)-order $\rho(H)(b<\rho(H)<\infty),(p, q)$-type $T(H)$ and lower (p, q)-type $t(H)$, then

$$
\begin{equation*}
X U \leq t(H) \leq T(H) \leq X W \tag{4.6}
\end{equation*}
$$

where

$$
\begin{aligned}
U & =\liminf _{n \rightarrow \infty} \frac{\log ^{[p-2]} n}{\left\{\log ^{[q-1]}\left(\alpha_{n} / \alpha_{n+1}\right)\right\}^{\rho(H)-A}}, \\
W & =\limsup _{n \rightarrow \infty} \frac{\log ^{[p-2]} n}{\left\{\log ^{[q-1]}\left(\alpha_{n} / \alpha_{n+1}\right)\right\}^{\rho(H)-A}}
\end{aligned}
$$

and $b=1$ if $p=q, b=0$ if $p>q . X$ and A are given by (2.6) and (2.7), respectively.

Proof. If $F(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ is entire function of (p, q)-order $\rho(F)(b<$ $\rho(F)<\infty),(p, q)$-type $T(F)$ and lower (p, q)-type $t(F)$, then, we have [5]

$$
\begin{equation*}
X R(F) \leq t(F) \leq T(F) \leq X Q(F) \tag{4.7}
\end{equation*}
$$

For the entire function $f(z)=\sum\left(1+n^{-1 / 2}\right)^{n} \alpha_{n} z^{n}$ we obtain

$$
Q(f)=\limsup _{n \rightarrow \infty} \frac{\log ^{[p-2]} n}{\left[\log ^{[q-1]}\left\{\frac{\left(1+n^{-1 / 2}\right)^{n}}{\left(1+(n+1)^{-1 / 2}\right)^{n+1}} \frac{\alpha_{n}}{\alpha_{n+1}}\right\}\right]^{\rho(f)-A}}
$$

Now, $\left\{\left(1+n^{-1 / 2}\right)^{n} /\left(1+(n+1)^{-1 / 2}\right)^{n+1}\right\} \rightarrow 1$ as $n \rightarrow \infty$ and $\rho(f)=\rho(H)$ by (4.1), so

$$
Q(f)=\limsup _{n \rightarrow \infty} \frac{\log ^{[p-2]} n}{\left\{\log ^{[q-1]}\left(\alpha_{n} / \alpha_{n+1}\right)\right\}^{\rho(H)-A}}=W .
$$

Since $T(f)=T(H)$, we get

$$
\begin{equation*}
T(H) \leq X W \tag{4.8}
\end{equation*}
$$

Similarly, for the entire function $g(z)=\sum_{n=0}^{\infty}(1+2 n)^{-1 / 2} \alpha_{n} z^{n}$ we find

$$
\begin{aligned}
R(g) & =\liminf _{n \rightarrow \infty} \frac{\log ^{[p-2]} n}{\left[\log ^{[q-1]}\left\{\frac{(1+2 n)^{-1 / 2}}{(1+2(n+1))^{-1 / 2}} \frac{\alpha_{n}}{\alpha_{n+1}}\right\}\right]^{\rho(g)-A}}= \\
& =\liminf _{n \rightarrow \infty} \frac{\log ^{[p-2]} n}{\left\{\log ^{[q-1]}\left(\alpha_{n} / \alpha_{n+1}\right)\right\}^{\rho(g)-A}}= \\
& =U .
\end{aligned}
$$

Using (4.4) and (4.7), we find

$$
X U \leq t(H)
$$

This completes the proof of Theorem 2.
Theorem 3. Let H be an entire harmonic function of (p, q)-order $\rho(H)(b<\rho(H)<\infty)$ and (p, q)-type $T(H)$. Further, if $\alpha_{n} / \alpha_{n+1}$ forms a non-decreasing function of n for $n>n_{0}$, then

$$
\begin{equation*}
T(H) \leq X W \leq X T(H) / M(H) \tag{4.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho(H)=P(E) \tag{4.10}
\end{equation*}
$$

where X and W are as in Theorem 2. $P(E)$ and $M(H)$ are given by (2.4) and (2.5) respectively and

$$
\begin{equation*}
E=\limsup _{n \rightarrow \infty} \frac{\log ^{[p-1]} n}{\log ^{[q]}\left(\alpha_{n} / \alpha_{n+1}\right)} \tag{4.11}
\end{equation*}
$$

Proof. Let $F(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ be an entire function of (p, q)-order $\rho(F)(b<\rho(F)<\infty)$ and (p, q)-type $T(F)$. If $\left|a_{n} / a_{n+1}\right|$ forms a nondecreasing function of n for $n>n_{0}$, then we know [5] that

$$
\begin{equation*}
T(F) \leq X Q(F) \leq X T(F) / M(F) \tag{4.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho(F)=P\left(L^{*}(F)\right) \tag{4.13}
\end{equation*}
$$

Applying (4.12) and (4.13) to $f(z)=\sum_{n=0}^{\infty} \beta_{n} z^{n}$, we obtain

$$
T(f) \leq X Q(f) \leq X T(f) / M(f) \quad \text { and } \quad \rho(f)=P\left(L^{*}(f)\right)
$$

but $\rho(f)=\rho(H), T(f)=T(H)$ and $M(f)=M(H)$, so

$$
\begin{equation*}
T(H) \leq X Q(f) \leq X T(H) / M(H) \tag{4.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho(H)=P\left(L^{*}(f)\right) \tag{4.15}
\end{equation*}
$$

Now, we have

$$
\begin{equation*}
Q(f)=W . \tag{4.16}
\end{equation*}
$$

Also,

$$
\begin{align*}
L^{*}(f) & =\limsup _{n \rightarrow \infty} \frac{\log ^{[p-1]} n}{\log ^{[q]}\left\{\frac{\left(1+n^{-1 / 2}\right)^{n}}{\left(1+(n+1)^{-1 / 2}\right)^{n+1}} \frac{\alpha_{n}}{\alpha_{n+1}}\right\}}= \tag{4.17}\\
& =\limsup _{n \rightarrow \infty} \frac{\log ^{[p-1]} n}{\log ^{[q]}\left(\alpha_{n} / \alpha_{n+1}\right)}= \\
& =E .
\end{align*}
$$

Using (4.16) in (4.14) and (4.17) in (4.15), we find the desired results.

We now state a theorem concerning lower (p, q)-order and lower (p, q) type of an entire harmonic function H :

THEOREM 4. Let H be an entire harmonic function of (p, q)-order $\rho(H)(b<\rho(H)<\infty)$, lower (p, q)-order $\lambda(H)$ and lower (p, q)-type $t(H)$. If $\alpha_{n} / \alpha_{n+1}$ forms a non-decreasing function of n for $n>n_{0}$, then

$$
\begin{equation*}
\lambda(H)=P(m)=P\left(m^{*}\right) \tag{4.18}
\end{equation*}
$$

and

$$
\begin{equation*}
t(H)=M(H) \liminf _{n \rightarrow \infty} \frac{\log ^{[p-2]} n}{\left\{\log ^{[q-1]}\left(\alpha_{n}^{-1 / n}\right)\right\}^{\rho(H)-A}} \tag{4.19}
\end{equation*}
$$

where

$$
\begin{aligned}
m & =\liminf _{n \rightarrow \infty} \frac{\log ^{[p-1]} n}{\left\{\log ^{[q-1]}\left(n^{-1} \log \alpha_{n}^{-1}\right)\right\}} \\
m^{*} & =\liminf _{n \rightarrow \infty} \frac{\log ^{[p-1]} n}{\log ^{[q]}\left(\alpha_{n} / \alpha_{n+1}\right)}
\end{aligned}
$$

$P(m), M(H)$ and A are defined by (2.4), (2.5) and (2.7), respectively.
Proof. Let $F(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ be an entire function of (p, q)-order $\rho(F)(b<\rho(F)<\infty)$, lower (p, q)-order $\lambda(F)$ and lower (p, q)-type $t(F)$ such that $\left|a_{n} / a_{n+1}\right|$ forms as non-decreasing function of n for $n>n_{0}$, then we have [4]

$$
\begin{equation*}
\lambda(F)=P(\psi(F))=P\left(\psi^{*}(F)\right) \tag{4.20}
\end{equation*}
$$

and [5]

$$
\begin{equation*}
t(F)=M(F) v(F) \tag{4.21}
\end{equation*}
$$

Applying (4.20) and Lemma 4 to the entire function $f(z)=\sum_{n=0}^{\infty}\left(1+n^{-1 / 2}\right)^{n}$, we find

$$
\begin{equation*}
\lambda(f)=P(\psi(f))=P\left(\psi^{*}(f)\right) \tag{4.22}
\end{equation*}
$$

Now,

$$
\begin{align*}
\psi(f) & =\liminf _{n \rightarrow \infty} \frac{\log ^{[p-1]} n}{\log ^{[q-1]}\left\{n^{-1} \log \left(\left(1+n^{-1 / 2}\right)^{n} \alpha_{n}\right)^{-1}\right\}}= \\
& =\liminf _{n \rightarrow \infty} \frac{\log ^{[p-1]} n}{\log ^{[q-1]}\left\{n^{-1} \log \alpha_{n}^{-1}(1-o(1))\right\}}= \tag{4.23}\\
& =\liminf _{n \rightarrow \infty} \frac{\log ^{[p-1]} n}{\log ^{[q-1]}\left(n^{-1} \log \alpha_{n}^{-1}\right)}=m
\end{align*}
$$

and

$$
\begin{align*}
\psi^{*}(f) & =\liminf _{n \rightarrow \infty} \frac{\log ^{[p-1]} n}{\log ^{[q]}\left\{\frac{\left(1+n^{-1 / 2}\right)^{n}}{\left(1+(n+1)^{-1 / 2}\right)^{n+1}} \frac{\alpha_{n}}{\alpha_{n+1}}\right\}}= \tag{4.24}\\
& =\liminf _{n \rightarrow \infty} \frac{\log ^{[p-1]} n}{\log ^{[q]}\left(\alpha_{n} / \alpha_{n+1}\right)}= \\
& =m^{*} .
\end{align*}
$$

Similarly, from Lemma 4 and (4.20), for the entire function $g(z)=$ $\sum_{n=0}^{\infty}(1+2 n)^{-1 / 2} \alpha_{n} z^{n}$, we have

$$
\begin{equation*}
\lambda(g)=P(\psi(g))=P\left(\psi^{*}(g)\right) \tag{4.25}
\end{equation*}
$$

Also, we can easily prove that

$$
\begin{equation*}
\psi(g)=m \text { and } \psi^{*}(g)=m^{*} \tag{4.26}
\end{equation*}
$$

The result (4.18) now follows in view of (4.3) and (4.22) to (4.26).
To prove (4.19) we apply Lemma 4 and (4.21) to the entire function $f(z)=\sum_{n=0}^{\infty} \beta_{n} z^{n}$ and $g(z)=\sum_{n=0}^{\infty} \gamma_{n} z^{n}$ and we obtain

$$
\begin{equation*}
t(f)=M(f) v(f) \text { and } t(g)=M(g) v(g) \tag{4.27}
\end{equation*}
$$

Now,

$$
\begin{equation*}
M(g)=M(f)=M(H) \tag{4.28}
\end{equation*}
$$

because $\rho(g)=\rho(f)=\rho(H)$ and we can easily show that

$$
\begin{equation*}
v(g)=v(f)=\liminf _{n \rightarrow \infty} \frac{\log ^{[p-2]} n}{\left\{\log ^{[q-1]}\left(\alpha_{n}^{-1 / n}\right)\right\}^{\rho(H)-A}} . \tag{4.29}
\end{equation*}
$$

(4.4), (4.27), (4.28) and (4.29) together establish (4.19) and the proof of the theorem is complete.

Remark. For $p=2, q=1$, the results in Theorem 1, Theorem 2 and Theorem 4 are due to Srivastava [6].

REFERENCES

[1] R. P. Boas: Entire Functions, Academic Press, 1954.
[2] A. J. Fryant: Spherical harmonic expansions, Pure Appl. Math. Sci., 22 (1-2) (1985), 25-31.
[3] E. Hobson: The theory of ellipsoidal and spherical harmonics, Cambridge University Press, 1931.
[4] O. P. Juneja - G. P. Kapoor - S. K. Bajpai: On the (p, q)-order and lower (p, q)-order of an entire function, J. reine angew. Math, 282 (1976), 53-67.
[5] O. P. Juneja - G. P. Kapoor - S. K. Bajpai: On the (p, q)-type and lower (p, q)-type of an entire function, J. reine angew. Math., 290 (1977), 180-190.
[6] G. S. Srivastava: On the coefficients of entire harmonic functions in R^{3}, Ganita, 51 (2) (2000), 169-178.

Lavoro pervenuto alla redazione il 13 maggio 2003 ed accettato per la pubblicazione il 11 novembre 2003.

Bozze licenziate il 29 gennaio 2004

[^0]: Key Words and Phrases: Entire harmonic function - (p, q)-order - (p, q)-type.
 A.M.S. Classification: 30D20

