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Projection methods for some constrained systems

PAULO PITANGA – PAULO R. RODRIGUES

Abstract: This article is concerned with a geometric tool given by a pair of
projector operators defined by almost product structures on finite dimensional manifolds,
polarized by a distribution of constant rank and also endowed with some geometric
structures (Riemann, resp. Poisson, resp. symplectic). The work is motivated by non-
holonomic and sub-Riemannian geometry of mechanical systems on finite dimensional
manifolds. Two examples are given.

1 – Introduction

In general, a classical constrained mechanical system consists in three

basic ingredients: an n-dimensional configuration manifold W , a polar-

ization D on W , which is to say a distribution D: z ∈ W → Dz ⊂ TzW

and an auxiliary geometric structure. D is hereafter supposed smooth,

of constant rank (dim Dz = constant, for all z), and the Lie algebra of

vector fields taken as sections of D over W span the tangent space of W

at each point (thus D is non-integrable, i.e. non-involutive in the Frobe-

nius sense). We recall that a curve ϕ(t) in W satisfies the constraints (is

polarized) if ϕ̇(t) ∈ Dϕ(t).

With these assumptions, we may outline some interesting directions

on polarized systems: suppose first that the auxiliary geometric struc-
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ture is given by a Riemannian metric tensor g such that TW splits as

TW = D ⊕D⊥, where D⊥ is the g-orthogonal complement of D in TW :

g(v, w) = 0, v ∈ Dz, w ∈ D⊥
z , for all z ∈ W (we use the same notation for

the distribution and the corresponding sub-bundle of TW ). Sometimes,

the polarization D is said horizontal, and Vaisman [45], [46], following

Reinhardt [40], coined the triple (W,D,g) a Riemannian almost foliated

manifold. If D is Frobenius integrable, (W,D,g) is said a Riemannian

foliated manifold.

In classical mechanics, the triple (W,D,g) defines two different im-

portant mathematical structures:

(1) Non-holonomic (NH) mechanics by assuming that the trajectories

satisfy D’Alembert’s principle of virtual work: the constraining force

must be perpendicular to the horizontal subspace, since it does not

produce work (see Subsection 4.1; see also ref. [21], p. 85 or ref. [34]).

(2) Vakonomic (VAK) mechanics by assuming that the trajectories do

not obey D’Alembert principle and satisfy a Lagrange variational

principle (see Arnol’d et al. [2] for further information).

Unless the distribution D is Frobenius integrable, VAK mechanics

gives different geodesic equations from NH mechanics, and the com-

parison between these structures was ellucidated in ref. [16] (previous

works on the subject are, for instance, references [12] and [17]). Re-

call from ref. [48] that VAK mechanics is related to the so called sub-

Riemannian (SR) or Carnot-Caratheodory geometry (see the book edited

by A. Belläıche and J-J. Risler [5], R. Montgomery [33], I. Kupka

[25] for further details in SR geometry, and Koiller et al. [24] for an

example in sub-Riemannian Lagrange mechanics).

Now, the splitting TW = D ⊕ D⊥ means that W admits an almost

product structure a.p.s., for brevity, i.e, W is endowed with a tensor

field ΓΓΓ of type (1, 1), taken as a vector valued one form on the tangent

bundle ΓΓΓ:TW → TW , of involutive character, i.e, such that ΓΓΓ2 = id

(Schouten [41], Nickerson-Spencer [35] and Walker [51]). In fact, there are

defined the following bundle maps: a D⊥-valued one form P:TW → D⊥,

(a tensor field of type (1, 1) on W ), such that P is a projection operator

onto D⊥: P ◦P = P2 = P, and a complementary Q = id−P:TW → D.

Then the pair (P,Q) defines ΓΓΓ = Q − P, with eigenvalues 1 and −1,

and associated eigenspaces D and D⊥, respectively. We remark that the
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interplay of a.p.s. with covariant derivatives is one of the themes of

Hermann’s book [21] (see also [29]).

On other hand, let us suppose that the polarized manifold (W,D,g)

is endowed with an a.p.s. ΓΓΓ, and in addition the eigenvector bundle

corresponding to the eigenvalue 1 is precisely Dz, at each point z of W .

Then we have the projectors

Q = (1/2)(id + ΓΓΓ),P = (1/2)(id −ΓΓΓ) ,

and TzW = Dz ⊕ Dc
z , ∀ z ∈ W , where Dc = imP, image of P in TW .

Therefore, an alternative case may be considered, where the subspaces

Dc
z ⊂ TzW are hereafter supposed of complementary constant dimension,

everywhere transversal to those of D, for all z ∈ W . For simplicity, we

shall call this decomposition by oblique.

One more polarized situation is illustrated by Poisson manifolds.

Consider the pair (W,Π), where Π is a twice contravariant skew-symmet-

ric tensor field, verifying [Π,Π] = 0, where [ , ] are the Schouten brackets

(see ref. [32], [44] for further details). The tensor Π is called Poisson’s

tensor field or Poisson structure, and (W,Π) a Poisson manifold. The

Poisson structure induces a bundle morphism � : T �W → TW such that

β � (α) = Π(α, β), where α and β are one forms on W . In particu-

lar, dg � (df) = Π(df, dg) = {f, g} is the well known Poisson bracket of

f, g ∈ C∞(W ), the space of C∞ functions on W .

Let us suppose that the Poisson bivectors are of constant rank < n.

Then the characteristic distribution S: z ∈ W �→ �z(T
�
z W ) is differentiable

and completely integrable, and defines a foliation of W such that each leaf

S is endowed with a unique symplectic structure and the tangent space

TzS through each point z is �z(T
�
z W ). Therefore, we may also consider

the case where the a.p.s. is defined by a polarization (W,S,Π), such

that TzW = TzS ⊕ Sc
z, with the second factor being a complementary

distribution of constant dimension. In fact, these comments motivate a

study of the inter-relation of almost product geometry with some fields

of classical mechanics.

Indeed, the purpose of this article is to retake this subject for the

cases where the projectors can be modeled by a Riemannian or a Pois-

son (resp. symplectic) structure on a finite dimensional manifold. This

means that we will be in the context of the determination of appropriate
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projectors defined by these geometric objects. We propose as a first task

to re-examine the relationship which exists between the almost product

geometry with a (non-degenerate) Riemannian structure. We adopt the

Pfaffian view point of ref. [33], and we assume that (W,g), endowed with a

set of n−m-linearly independent one-forms wα, such that wα = 0 defines

a non-involutive distribution of constant dimension, with a complemen-

tary integrable distribution, i.e, W is a foliated Riemannian manifold. We

shall express the metric in terms of a local coframe {dza, ωα} on the con-

figuration manifold. Therefore W admits an “oblique a.p.s.”. Naturally

we may orthogonalize the a.p.s., i.e, the a.p.s. is defined by a cobasis

of orthogonal covectors with respect to the given metric. However, as we

shall see in the examples, we may work directly with the oblique situation

to obtain the projected dynamical equations, avoiding the application of

the Gram-Schmidt procedure. This will be not only convenient for matrix

calculations, but also to set up other studies like the equivalence prob-

lem (ref. [33], [23]). Particular cases are the sub-Riemannian geodesic

problem and the Vakonomic variational approach.

Next, as a second task, we consider an involutive polarization on a

Poisson manifold, defined by its integrable symplectic foliation. We apply

the projector method to obtain the Poisson structure for the transverse

manifold of the symplectic leaves. This could be seen as an application of

the previous study in the sense that the metric is replaced by a Poisson

structure, and the integrable distribution is the characteristic distribu-

tion. We profit the occasion to give the Dirac formula for constraint

manifolds in the transverse situation (see ref. [32] for the symplectic sub-

manifold case; the technique used is the usual, but we have searched

the literature and have not found it for the transverse situation). The

reader will find more about Dirac mechanics in non-holonomic contexts

in references [8] and [9].

Finally, we would like to stress here that the projector method is

an adequate tool to treat some variational problems in which the ex-

tremal curves as well as the comparison curves (associated with a given

Lagrangian function) are required to fulfill conditional equations (the

constraints). As it is well known, the oldest problem of this type was

solved by Pappus in the third century A.D. These variational problems

are called The Problem of Lagrange, who first formulated the problem

clearly [11]. The projector method is based on the (orthogonal) decom-
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position of the virtual displacement, which make it right for dealing with

a generalized form of D’Alembert’s Principle from which the equation

of motion of mechanical systems are usually derived (see ref. [18] and

also the book of Arnol’d, ref. [1], p. 91-95). We remark that, when the

method is applied to the Problem of Lagrange, neither Lagrange’s multi-

pliers nor elimination of coordinates is required to obtain the equations

of motion. In this way, this approach, is appropriate to implement the

canonical quantization of constrained systems, because the ambiguities

introduced by the Lagrange’s multipliers are eliminated. It is also appro-

priate for setting up computer calculations for large multibody systems

which appears in control problem of mechanical systems and robotics (for

example, see ref. [43] for a computer use of IEEE Scheme Programming

in Mechanics).

This paper is structured in three sections. In Section 2 we examine

some intrinsic and local properties of the projector method on a Rie-

mannian manifold. We begin with some intrinsic considerations using

the so-called musical bundle morphisms �g, �g, induced by the Rieman-

nian metric g. Next we suppose that D is integrable, characterized by a

set of k-linearly independent one-forms. We express the pair of bundle

projectors in terms of this set, we obtain the local expressions for the

corresponding bundle projection morphisms, and then we give a local

description in terms of the Riemannian metric.

In Section 3, we replace the geometric structure g by Π, and we

study the role of the bundle projectors to obtain the Poisson structure

for the transverse manifold of the symplectic leaves. We shall return

to this situation in the second example of the last Section 4. Indeed,

this section is only devoted to applications of the method. We start

Subsection 4.1 with a brief review on D’Alembert’s Principle and then

we study the so-called Chaplygin-Caratheodory sleigh, a prototype of a

non-holonomic constrained system. Next, in Subsection 4.2, we examine a

system consisting of a free particle in IR3, subjected to the non-holonomic

contact form w = dz − ydx. From the projector’s viewpoint one obtains

a very well known non-holonomic Lie algebra, the Heisenberg algebra,

a fundamental example in sub-Riemannian geometry. We conclude the

example with a study of the motion of the particle in the phase space

using the underlying Poisson structure.
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The following convention will be adopted: capital roman letters I, J ,

K, etc. run from 1 to n. Lower case roman characters a, b, c run from 1

to m, representing the constraint distribution. Greek characters α, β, γ,

etc., run from 1 to n −m. Summation over repeated indices is assumed

unless otherwise stated. By a differentiable manifold, we shall mean C∞,

connected, separable and Hausdorff.

2 – Polarized Riemannian manifolds

2.1 – An intrinsic relation

Let (W,D,g) be a n-dimensional Riemannian manifold, supposed

endowed with an a.p.s. ΓΓΓ, compatible with D in the sense that the

eigenvector bundle corresponding to the eigenvalue − 1 is precisely Dz,

at each point z of W . Let us take the corresponding bundle projections

P, Q = id − P so that Q:TW → D projects onto D, and P:TW → Dc

projects onto a complementary distribution Dc.

Now, the tensor g defines a bundle isomorphism �g:T
�W → TW with

inverse denoted by �g:TW → T �W (the so-called musical morphisms),

defined respectively by

�g(φ) = g�(φ, •) def
= Zφ, �g(Z) = g�(•,Z)

def
= φZ .

As g is symmetric, one has �g = ��g, where ��g:T
�W → TW is the adjoint

operator ��g(φ) = φ ◦ �g. So, if we set �Q = Q ◦ �g, �P = P ◦ �g, then

�Q = Q ◦ �g = (Q�)� ◦ �g = �g ◦ Q� = ��Q

�P = P ◦ �g = (P�)� ◦ �g = �g ◦ P� = ��P ,

and it follows that

(1) g�(Q
�(φ), ψ)=ψ (�g ◦Q�)φ=ψ(Q ◦ �g)φ=Q�(ψ)�g φ=g�(φ,Q

�(ψ))

(2)
g�(Q

�(φ), ψ)=ψ (�g ◦ Q�)φ=ψ(�g ◦ (Q�)2)φ=ψ(Q ◦ �g ◦ Q�)φ =

=Q�(ψ) �gQ
�(φ) = g�(Q

�(φ),Q�(ψ)) .
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Also,

(3)

g�(P
�(φ),P�(ψ))=g�(I(φ)−Q�(φ), I(ψ) − Q�(φ))=

=g�(φ, ψ)−2g�(Q
�(φ), ψ) + g�(Q

�(φ),Q�(ψ))=

=g�(φ, ψ)−g�(Q
�(φ),Q�(ψ)) .

If we set

gQ = g�(Q
�(•),Q�(•)), gP = g�(P

�(•),P�(•))

then g� = gP + gQ, as it would be expected, i.e. the almost product

structure ΓΓΓ� = P� − Q� is such that g�(ΓΓΓ
�(φ),ΓΓΓ�(ψ)) = g�(φ, ψ) for all

φ, ψ. Obviously,

(4) �g = �Q + �P .

Remark 1. We observe that if we replace the tensor g by a Poisson

tensor Π or by a symplectic structure Ω then we have a similar result if

the above compatibility assumption on ΓΓΓ is assumed (see also p. 8).

2.2 – Local expressions for the case of a foliated manifold

Let us suppose now that D is a completely integrable distribution

on W , of constant rank n − m, and so (W,D,g,ΓΓΓ) is a Riemannian

foliated almost product manifold. The distribution defines a foliation

on W , denoted also by the same symbol D, to simplify things. The

tangent bundle TD is the vector sub-bundle of TW such that Dz = TzEz

for any leaf E of D and any z ∈ E .

Let us consider the splitting TzW = Dz ⊕ Dc
z , z ∈ W , where Dc

is a distribution of subspaces Dc
z ⊂ TzW , of complementary constant

dimension, everywhere transversal to those of D. To look for the local

expressions, let U be a neighborhood of z ∈ W , so that (due to the

integrability of D) the leaf is locally given by equations za ≡ 0. Thus we

write Dz = span{Yα = ∂/∂zα}. Let Ya be a set of linearly independent

vectors with Dc
z = span{Ya}. Furthermore, writing Ya = ΓI

a (∂/∂zI) in

the coordinate basis one obtains ∂/∂za − Γα
a ∂/∂z

α, as a new basis, for
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suitable functions Γα
a (z) on W . Then we define the projectors P:TzW →

Dc
z , Q = id − P:TzW → Dz:

(5) P(Z) = Za
( ∂

∂za
− Γα

a

∂

∂zα

)
, Q(Z) = (Zα + Γα

a Z
a)

∂

∂zα
,

with Z = Za(∂/∂za) + Zα(∂/∂zα). In matrix notation:

(6) P =

(
id 0

−Γα
a 0

)
, Q =

(
0 0

Γα
a id

)
.

To simplify the notation we set heretofore Xa = ∂/∂za −Γα
a ∂/∂z

α. The

following figure illustrates the situation:

�

�

�

z

Zz

Q (Zz)

Dz

P(Zz)

E

Dc
z

(Q−P) (Zz)

−P(Zz)

�

�

Let wα = dzα + Γα
a (z)dza be the set of independent 1-forms such

that {dza, wα} is the corresponding cobasis for the cotangent space T ∗
z W .

Then

T �
z W = (Dc

z)
� ⊕ (Dz)

� = span{dza} ⊕ span{wα} ,
and we may set

P = dza ⊗Xa, Q = wα ⊗ Yα .

We observe that locally (see (4) and (5)),

�P(φ) = P ◦ �g(φ) = Za
φ

( ∂

∂za
− Γα

a

∂

∂zα

)

�Q(φ) = Q ◦ �g(φ) = (Zα
φ + Γα

a Z
a
φ)

∂

∂zα
.
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Next we shall study these projectors in terms of the Riemann matric

g = gIJdz
I⊗dzJ . To do this we recall that g has the following expressions

(see ref. [45]): in the basis {dza, wα}

(7)

g� = (gab − 2 gaα Γα
b + gαβ Γα

a Γβ
b )dz

a ⊗ dzb+

+ 2 (gaα − gαβ Γβ
a) dz

a ⊗ wα + gαβ w
α ⊗ wβ def

=
def
= Fab dz

a ⊗ dzb + Faα dz
a ⊗ wα + Gαβ w

α ⊗ wβ

and in the basis {Xa, Yα},

g� = gab Xa ⊗Xb + 2 (gaα + gab Γα
b )Xa ⊗ Yα+

+ (gαβ + 2gaα Γβ
a + gab Γα

a Γβ
b )Yα ⊗ Yβ

def
=

def
= Gab Xa ⊗Xb + Gaα Xa ⊗ Yα + Gαβ Yα ⊗ Yβ .

Let ξα = g�(w
α, •). Then wβ(ξα) = g�(w

α, wβ) = Gαβ. As the matrix

with entries Gαβ is invertible, let Gαβ be the set of functions which are

the entries of the inverse. We define the tensor

(8) q = g�(•, ξα)Gαβ g�(w
β, •) .

Then one obtains

(9) q = Gαβ w
α ⊗ ξβ ,

and so q(ξβ) = (Gβα Gαγ) ξ
γ . As

q2 = [g�(•, ξα)Gαβ g�(w
β, •)] [g�(•, ξγ)Gγθ g�(w

θ, •)] =

= g�(•, ξα)Gαβ [g�(w
β, •)g�(•, ξγ)]Gγθ g�(w

θ, •) =

= g�(•, ξα)Gαβ G
βγ Gγθ g�(w

θ, •) = q ,

q is a projector onto the space spanned by the ξα’s, with complementary

projector p.

Let us suppose now that gaα − gαβ Γβ
a vanishes in (7). Then Dz

and Dc
z are g-orthogonal, Dc = D⊥, g�(Xa, Yα) = 0 and so g� admits the

following diagonal form with respect to {dzα, wa},

g� = Gab dz
a ⊗ dzb + Gαβ w

α ⊗ wβ, Gab = g�(Xa, Xb), Gαβ = g�(Yα, Yβ)
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(or g� = Gab Xa⊗Xb +Gαβ Yα⊗Yβ, where Gab, resp., Gαβ are the entries

of the inverse matrix of (Gab, resp., (Gαβ)). As ξα = g�(w
α, •) = Gαγ Yγ ,

then it is easily verified that

(10) q = wα ⊗ Yα = Q

and so Imq = span{Yα} (and obviously p = P), i.e, these projectors

have the same local matrix expression given by (6).

3 – Projectors and Transverse Poisson structures

In this section we first consider a polarization on a Poisson manifold,

defined by its integrable symplectic foliation, and the local expression

of the corresponding projectors in terms of the symplectic form. In the

second part we study the role of the bundle projector TW |M pTM→ TM ,

where M ⊂ W is a given transversal (holonomic) manifold of codimension

= dimension of the symplectic leaf (see the Introduction), in the process of

reduction of a Poisson manifold (W,ΠW ). We use the projector method to

obtain the local expression of the corresponding induced Poisson structure

(M,ΠM).

Throughout this section we follow the following convention: local

coordinates are now denoted by z = (za, zu), the characters a, b, c running

from 1 to m and u, v from 1 to n−m = k. Greek characters α, β, γ, etc.,

are used for differential forms on manifolds.

3.1 – Projectors for the symplectic foliation

We assume that the smooth manifold W is endowed with a Poisson

structure – hereafter denoted by ΠW – of constant rank m < n, which

induces a bundle morphism �:T �W → TW such that β � (α) = ΠW (α, β),

where α and β are one forms on W .

Let S be the unique symplectic leaf of the characteristic distribution

z �→ �z(T
�
z W ) going through z ∈ W . Thus S is obviously a Poisson

submanifold. Now, as the rank of ΠW is constant, the symplectic leaves

are of constant dimension = m, and we may choose a decomposition

TzW = TzS ⊕ Sc
z ,
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with TzS = span{Ya}, where Ya = ∂/∂za, and Sc
z = span{Xu = ∂/∂zu −∑k

a=1 Aa
u Ya}, for a local coordinate chart (U, (za, zu)). The Poisson bivec-

tor is locally ΠW = 1
2
πab Ya ∧ Yb.

So, from this local expression one obtains an almost symplectic form

Θ (see Vaisman [44], p. 37) expressed as Θ = 1
2
λab w

a∧wb, with wa being

the dual form of Ya, and πba λac = δbc (recall that πab = −λab). Therefore

one obtains the following projectors: the first, taking into account that

Θ(•, Y a) = λcb w
c(Ya)w

b = λcb δ
c
a w

b = λab w
b ,

is given by (compare with (9))

(11)

Θ(•, Y a)λab ΠW (wb, •) = Θ(•, Y a) λab ξ
b = Θ(•, Y a)λab π

bc Yc =

= Θ(•, Y a) δca Yc = Θ(•, Y a)Ya =

= λab w
b ⊗ Ya = Θ(•, Y a)λab ΠW (dzb, •),

and the second (compare with (10)),

(12)
Θ(•, ξa)λab ΠW (wb, •) = wa λab ξ

b = λab π
bc wa ⊗ Yc =

= wa ⊗ Ya = Θ(•, ξa)λab ΠW (dzb, •) .

3.2 – The transverse holonomic case

Let us suppose now that M is a submanifold of the polarized Poisson

manifold (W,S,ΠW ), and denote by

AnnTzM = {αz ∈ T �
z W ;αz(TzM) = 0} ,

the annihilator of TM ⊂ TW |M in T �W . Suppose that

(a) TzM ∩ �z AnnTzM = {0}, (b) ker �z ∩ AnnTzM = {0}, ∀z ∈ M

which are equivalent to the condition TzW ≡ TzM ⊕ �z AnnTzM (see

ref. [19], p. 126, for a proof). Then Weinstein ([52], p. 529) proved

that M is endowed with a Poisson structure ΠM , defined by the compo-

sition

(13) T �M
p�
TM−→ T �W |M �−→ TW |M pTM−→ TM
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where pTM is the bundle projection along �z(AnnTzM) onto TM and p�
TM

is its adjoint (Proposition 1.4 of ref. [52], p. 529-530). Now, it can be

shown that (see ref. [44], p. 39)

– the assumption (a) is equivalent to the statement that TzM ∩ TzS is

a symplectic subspace of TzS, and

– the assumption (b) is equivalent to the statement that M is transver-

sal to the symplectic leaf S passing through z.

Therefore TzW ≡ TzM + TzS, and:

– the Poisson tensor of W is the product of the Poisson tensor ΠS

by ΠM , the so-called transverse Poisson structure to S at z (ΠS is

induced by the symplectic structure of S),

– the transverse Poisson structure of M may be computed via the

Dirac’s bracket formula if further assumptions are made (see refs. [31],

[32], Proposition 8.5.1, p. 226, [36], Proposition 2, p. 88, [15] or even

ref. [38]). In such a case, one has the so-called Dirac’s theory of

second class constraints.

Let us compute the transverse Poisson structure from our viewpoint,

but supposing that the dimension of M , going through z, is the codimen-

sion in W of the corresponding symplectic leaf S of the foliation and so

TzW = TzM ⊕ TzS ,

(if M is transversal to S so that TzM ∩�z AnnTzM �= {0} is a distribution

of constant rank then we shall need more assumptions – see Vaisman [44],

for instance).

Consider the following composition map

�S ≡ � ◦ p�
TS:T �S → TW |S .

If p�
TM = I − p�

TS is the complementary projector and if we set

�M ≡ � ◦ p�
TM :T �M → TW |S ,

then obviously �S + �M = � and for all forms α, β one has

α�Sβ + α�Mβ = α�β = ΠW (α, β) .
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This expression suggests that α�Sβ (resp. α�Mβ) is a good candidate for

the Poisson tensor ΠS (resp. ΠM). In fact, if we suppose that � ◦ p�
TS =

pTS ◦ � then it is easy to show that wS (�S(α), �S(β)) = α�Sβ, where wS

is the symplectic structure on S, and so, from Proposition 3.2 of ref. [38],

one has ΠW (p�
TS (α),p�

TS (β)) = α�Sβ.

Let us set ΠS = pTS (ΠW ), that is,

ΠS(α, β) = ΠW (p�
TSα,p

�
TSβ) = α �S β .

Then

ΠM = pTM (ΠW ) = (I − pTS) (ΠW ) = ΠW − ΠS

gives the complementary relation ΠM(α, β) = α�Mβ.

The above tensor ΠM is a Poisson tensor, as a consequence of the

symplectic structure of S. So, let us see this in terms of local conditions

related to the symplectic manifold S: let z0 ∈ U , an open subset of W

and (x1, . . . , x2s) local coordinates for S, used to define

M ∩ U = {z ∈ U ⊂ W ;xa(z) = 0, a = 1, . . . , 2s} ,

transversal to S, through z0. Then,

(14) wS(Xa, Xb)=ΠS(dxa, dxb)={xa, xb}W =Xb(xa)=dxa(Xb)=λab .

Here Xa is the Hamiltonian vector field associated to dxa, by the bundle

homomorphism �S defined by wS. For what follows, we shall denote

by λab the entries of the inverse matrix of (λab).

Let f ∈ C∞(M) be such that {xa, f}W = Xa(f) = df(Xa) = 0 and

f ∈ C∞(W ) an extension of f to a neighborhood in W , written as

(15) f = f + ub x
b ,

so that the action of Xa on both sides of (15) gives ub = −Xa(f)λab,

and so

f = f + Xa(f)λabx
b = (I − xb λba X

a)f .

Now, the tensor field τ = (I − xb λba X
a) is a projector. To see this it

is sufficient to show that σ = xbλba X
a is the complementary projector.
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Indeed, σ(xc) = xc and as σ(g) = Xa(g)λab x
b then

σ2(g) = Xa(g)λab σ(xb) =

= Xa(g) [λab λ
bc λcd x

d] = Xa(g)λab δ
b
d x

d =

= X(g)λab x
b = σ(g) ,

and obviously τ(xa) = 0, τ ◦ σ = σ ◦ τ = 0. Thus the projector p�
TS =

T �S → T �W |M is taken as p�
TS = dxa λab X

b (or λab dx
a ⊗ Xb) and so

from (14) we have,

p�
TS (dxb) = dxb (Xa)λac dx

c = [λba λac] dx
c = dxb; p�

TS(df) = 0 ,

for the functions f ∈ C∞(M) such that Xa(f) = 0. The dual projector

pTS:TW |M → TS is then given by

(16) pTS = −Xa λbadx
b ,

as wS is skew-symmetric. Then it follows that

pTS(Xc) = −Xa λba dx
b (Xc) = Xc; pTS(Xf ) = 0 ,

and so the composition �S ≡ �p�
TS:T �S → TW |S gives �S(dxa) = Xa.

The Poisson structure ΠS on W is obtained from wS,

ΠS =
1

2
λab �S(dxa) ∧ �S(dxb) =

1

2
λab X

a ∧Xb ,

or directly from ΠW by projection:

ΠS(α, β) = pTS(ΠW )(α, β) = ΠW (p�
TS(α),p�

TS(β)) .

The complementary relation gives the transverse structure ΠM :

ΠM = ΠW − ΠS = ΠW − 1

2
λab X

a ∧Xb .

As

ΠS(df, dg) =
1

2
λab X

a ∧Xb (df, dg) = {f, xa}W λab {xb, g}W ,
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for extensions f, g, if we set,

{f, g}M = ΠW (df, dg) − ΠS(df, dg) ,

then it follows the well known Dirac’s bracket formula:

(17) {f, g}M = {f, g}W − {f, xa}W λab {xb, g}W .

Note that, if we take into account (14) and (16), then

wS(pTS(Xf ),pTS(Xg)) = dxc(Xf )λcd dx
a (Xg)λab wS (Xd, Xb) =

= {f, xc}W λca{xa, g}W ,

as (obviously) it would be expected.

4 – Examples

4.1 – The Chaplygin-Caratheodory’s sleigh

We first recall that the Euler-Lagrange equation for non-holonomic

mechanical systems, using the projector method, is implemented as fol-

lows.

Consider a mechanical system described by a Lagrangian L defined on

the bundle TW of an n-dimensional configuration manifold W,L(zI, vI, t)=

T (zI , vI , t) − V (zI , vI), where the zI ’s are the coordinates of W and vI ’s

are the velocities, submitted to non-holonomic constraints of the form

(18) Aa
I (z

I)vI + Ba(t) = 0, 1 ≤ a ≤ m.

The stationarity condition of the action takes the well-known form

(19)

∫ t2

t1

[ d
dt

( ∂L
∂vI

)
− ∂L

∂zI

]
δzIdt ≡

∫ t2

t1

EI δz
Idt = 0 .

From (18), it follows that the virtual displacements δzI are not all inde-

pendent, since they must satisfies m equations

(20) Aa
I (z

I) δzI = 0 ,
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such that all the

EI =
d

dt

( ∂L
∂vI

)
− ∂L

∂zI

cannot be set zero.

In order to set up the projector method it is more convenient to

express all the equations in the matricial form. Thus (19) and (20) are

respectivelly written as

∫ t2

t1

Et δz dt = 0(21)

A δz = 0(22)

where E, δz are n × 1 matrices, A is the m × n matrix (Aa
I ) and the

superscript t denotes transpose.

Next we shall assume that the Riemannian metric g is given by the

kinetic energy T = (1/2)((v1)2 . . . + (vn)2). We set v� = g�(•,v) for the

associated co-vector. The constraint equation at the right of (22) splits

the TW (with respect to g) such that TW = D⊕Dc, where D is the space

of all virtual displacements compatible with the constraints. If δ η is an

arbitrary (linearly independent) virtual displacement, then the virtual

displacement compatible with the constraints can be written as

(23) δz = Pt δ η

where P is the projector P:TW → D. Substituition of (23) in (21) gives

∫ t2

t1

Et Pt δη dt = 0 .

Now as δη are linearly independent, we have

(24) PE = 0 ,

that is, the equation of motion compatible with the constraints must

be such that, at each point, the Euler-Lagrange vector field is a vertical

vector, while the virtual displacement δq is a horizontal vector, according

to the D’Alembert Principle: Et δz = 0.
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The equation (24) can be re-written as

(25) E = QE ,

where Q:TW → Dc is the complementary projector, defined by

(26) Q = (A�)t G−1 A ,

where G = A (A�)t is a non-sigular matrix for all mechanical systems

known. Notice that the right-hand side of (25) gives the constraint forces.

To illustrate these features we apply the projector method to obtain

the equation of motion for the Chaplygin-Caratheodory’s sleigh, a me-

chanical example of the Lagrange’s Problem (we remit to Chaplygin,

ref. [14], Carathéodore [10], Neimark & Fufaev, ref. [34] and the pa-

per of Koiller, ref. [22], in particular Subsection 4.1, for further details;

for a general geometric setting on the subject see ref. [7]).

The sleigh consists of a rigid body supported on a horizontal plane,

by three points, two of which slide freely (without friction) and the

third which is a knife edge (or the edge of a cutting wheel) rigidly

fixed on the body. We will consider here the special case studied by

Caratheodory [10], [20], in which the center of mass (c.m) lies on the

straight line, �, passing through the point of support, p, of the knife edge.

The position of the body, in a fixed coordinate system in the horizontal

plane, is determined by the coordinates (x, y) ∈ IR2 of p, and the angle θ

between the line � and the x-axis (and so the configuration manifold is

W = IR2 ×S1). So, when the body slides, the velocity of p = p(t) can be

decomposed in a component along the line �

(27) u = ẋ cos θ + ẏ sin θ

and a component perpendicular to it

(28) v = −r θ̇ + ẏ cos θ − ẋ sin θ

where r is the distance from the c.m to the point p and ẋ, ẏ, θ̇ are the

velocity coordinates (the dot indicate differentiation with respect to t).

The non-holonomic constraint is given by the condition that the point p
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can move freely on the plane only in the direction along the line �, but

not in the direction perpendicular to it, that is

(29) v = −r θ̇ + ẏ cos θ − ẋ sin θ = 0 .

This condition is expressed, by the following restriction on the virtual

displacements:

(30) −r δθ + cos θ δy − sin θ δx = 0 .

In this case, we have

(31) A = (− sin θ, cos θ,−r) .

To symplify, we set the mass of the system equal to unity and also we

shall restrict the example to the simple case where no external forces or

torques exists: so

(32) L = T =
1

2
((ẋ)2 + (ẏ)2 + J θ̇2) ,

where J is the momentum of the inertia about the symmetry axis through

the c.m. Therefore, we obtain g in matrix notation,

(33)




1 0 0

0 1 0

0 0 J


 .

Using (29), (31) and (33) we obtain

Q =
J

J + r2




sin2 θ −cos θ sin θ r sin θ

−cos θ sin θ cos2 θ −r cos θ

J−1 r sin θ −J−1 r cos θ J−1 r2


 .

Remark 2. The action of the constraint form defined by (30),

α = −sin θ dx + cos θ dy − r dθ
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on the vector field

X = −sin θ
∂

∂x
+ cos θ

∂

∂y
− r

J

∂

∂θ

gives

α(X) =
J + r2

J

def
= G ,

and so Q = g� X ⊗ α. We notice also that ||X||2 = g�(X,X) = G.

To conclude this Lagrangian description, and to recover the equations

found by Chaplygin and Caratheodory ([10], [34], [22]) we first obtain

the projected equations of motion taking into account (25):

(34)



ẍ

ÿ

θ̈


 =

J

J + r2




sin2 θ −cos θ sin θ r sin θ

−cos θ sin θ cos2 θ −r cos θ

J−1 r sin θ −J−1 r cos θ J−1 r2





ẍ

ÿ

θ̈


 .

So, taking into account the constraint equation (30), its first derivative,

and the system (34), we obtain the Chaplygin-Caratheodory equations

(35) ω̇ = −
( r

J + r2

)
uω, u̇ = r ω2 ,

where ω = θ̇.

The Hamiltonization is straightforwardly obtained, since the fiber

derivative of L

LL:TW → T �W

is a diffeomorphism. Locally, LL(x, y, θ, ẋ, ẏ, θ̇) = (x, y, θ, px, py, pθ), pI =

(∂L/∂vI), where the v′s are the ẋ, ẏ, θ̇, and the p′s are (∂L/∂ẋ), etc.

Therefore, the constraint submanifold is defined by −sin θ p1 + cos θ p2 −
(r/J) pθ = 0 and the Hamiltonian is H = (1/2)(p2

x+p2
y+(1/J) p2

θ). Clearly,

we reproduce the same arguments as above to obtain the constrained

equations.

4.2 – A particle subjected to the constraint w = dz − ydx

Let us consider a free particle in M = IR3, with coordinates (x, y, z),

subjected to the non-holonomic contact form w = dz − ydx. The mo-

tion of the particle in the configuration space is given by the Lagrangian
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L = (1/2)((vx)2 + (vy)2 + (vz)2), where (vx, vy, vz) are the corresponding

coordinates on the fibers of TM , and the Riemannian metric g on M is

given by L. So g is the identity tensor dx⊗ dx + dy ⊗ dy + dz ⊗ dz, and

the metric expressed in the basis {dx, dy, w} is

g� = (1 + y2) dx⊗ dx + y dx⊗ w + dy ⊗ dy + y w ⊗ dx + w ⊗ w .

Notice that (see 7)

gaα − gαβ Γβ
a �= 0 .

With respect to the dual basis {X1 = ∂/∂x + y ∂/∂z,X2 = ∂/∂y, Y3 =

∂/∂z} one has, in matrix notation,

g� =




1 0 −y

0 1 0

−y 0 1 + y2




and G = (1 + y2) ∂/∂z ⊗ ∂/∂z implies G(w,w) = (1 + y2) �= 0. Now,

g�(w, •) = −y X1 + (1 + y2)
∂

∂z
=

∂

∂z
− y

∂

∂x
= ξ ,

and so (8) is given by

Q = g�(•, ξ) [G(w,w)]−1 g�(w, •) =

=
1

1 + y2
w ⊗ ξ =

=
1

1 + y2

[
y2 dx⊗ ∂

∂z
− y dx⊗ ∂

∂z
− y dz ⊗ ∂

∂x
+ dz ⊗ ∂

∂z

]

Therefore, in matrix notation, Q and P are

Q =
1

1 + y2




y2 0 −y

0 0 0

−y 0 1


 , P =




1

1 + y2
0

y

1 + y2

0 1 0

y

1 + y2
0

y2

1 + y2




The P-vectors are

XP
1 =

∂

∂x
+ y

∂

∂z
; XP

2 =
∂

∂y
,
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and the Q-vector XQ is ξ. Again, remark that ||XQ|| =
√

g�(XQ, XQ) =

(1 + y2) and so we may also write Q = (||XQ||)−1 g�(•, XQ)g�(w, •).
The relationship of the above Q with the orthogonal case, that is,

gaα − gαβ Γβ
a = 0 is the following. Let us denote by q the projector Q for

this new situation (see (10)). Then

q =




0 0 0

0 0 0

−y 0 1




As the P-vector fields are in the kernel of q, we deduce that Xq = ∂/∂z.

It is easy to verify that

[Xp
1 , X

p
2 ] = Xq; [Xp

1 , X
q] = 0; [Xp

2 , X
q] = 0 .

This is just the Heisenberg algebra, a very well known non-holonomic

Lie algebra (and a fundamental example in sub-Riemannian geometry).

Also,

U =




1 + y2 0 −y

0 1 0

0 0 1




is so that Q = U qU−1.

Let us now consider the following constraint equation

(36) f(vx, vy, vz) = vz − y vx = 0 .

for this problem. The use of (24),

(37)




1

1 + y2
0

y

1 + y2

0 1 0

y

1 + y2
0

y2

1 + y2







ẍ

ÿ

z̈


 =




0

0

0




gives
1

1 + y2
(ẍ + yz̈) = 0, ÿ = 0 .

Therefore,

(38) ẍ + y z̈ = 0, ÿ = 0 .
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Equation (38) is just the momentum equation of Bloch et al. [3](page 85).

We remark that from (36) one obtains z̈ = ẏẋ+yẍ and so, using this equa-

tion in (38) we obtain the Bates-Sniatycki motion’s equations (ref. [4])

ẍ +
y

1 + y2
ẋ ẏ = 0, ÿ = 0 .

The motion of the particle in the phase space (endowed with the natural

Poisson structure Π) is given by the Hamiltonian

H =
1

2
(p2

x + p2
y + p2

z) ,

restricted to the submanifold defined by the equation pz − ypx = 0. The

momenta, compatible with the constraint, can be written as p = Pp or

pi = Pj
ipj, where i, j = x, y, z. Thus,

(39)




px

py

pz


 =




1

1 + y2
0

y

1 + y2

0 1 0

y

1 + y2
0

y2

1 + y2







px

py

pz


 .

Note that pz = y
1+y2 (px + ypz) ≡ ypx. The application of the local

definition of the Poisson brackets on a regular Poisson manifold gives

{zi, zj} = 0; {zi, pj} = Pi
j; {pi, pj} =

(
Pk

j

∂Pl
i

∂zk
− Pk

i

∂Pl
j

∂zk

)
pl ,

and so, after using the constraint equation pz = ypx, we obtain the fol-

lowing pseudo-Poisson structure, that is, the Poisson bracket is skew-

symmetric, satisfies de Leibniz rule but it may not satisfy de Jacobi iden-

tity (see Marle [30], for further details)

(40) Π =




0 0 0
1

1 + y2
0

0 0 0 0 1

0 0 0
y

1 + y2
0

− 1

1 + y2
0 − y

1 + y2
0 − y px

1 + y2

0 −1 0
y px

1 + y2
0




.
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Finally, we would like to remark that there are many others non-

holonomic systems which admits a Poisson structure. The Chaplygin-

Caratheodory’s sleigh (Example 4.1) is the protoptype of such mechanical

system described by the Poisson geometry.

In fact, most of the non-holonomic mechanical systems are given by

completely non-integrable constraints which are linear in the velocities

(as in the Examples 4.1 and 4.2). In these cases, as we have shown in 4.2,

for instance, the induced Poisson structure is given by:

(41) Π =

(
0 P

−P D

)
,

where P is the n× n matrix-projector and D is the n× n matrix whose

elements are

Dij =
(
Pk

j

∂P�
i

∂zk
− Pk

i

∂P�
j

∂zk

)
p� .

Generally, the matrix Π, is singular, because the matrix P is generally

singular, that is detP = 0. We say generally because one could conceive

cases in which the system of constraints is completely non-integrable but

– nevertheless – admits a singular integral, and then reduces the system to

the integrable form. In this case, as in the holonomic case, Π, is invertible,

and so giving rise a symplectic structure. However, the authors do not

know any concrete example of non-holonomic mechanical system of this

kind.
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