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A method for global approximation

of the solution of second order IVPs

F. COSTABILE – A. NAPOLI

Abstract: For the numerical solution of the second order initial value problem,
a family of global methods is derived by finding Galerkin approximations on a given
interval. For each n ≥ 1 a method is defined that uses a particular inner product in the
Galerkin equation. The methods are symmetric collocation on the zeros of Chebyshev
polynomials of the second kind and are related to implicit Runge-Kutta-Nyström meth-
ods. Order, stability and error analysis are here studied. Numerical examples provide
favorable comparisons with other existing methods.

1 – Introduction

In this paper we will consider the initial value problem in ordinary differen-
tial equations

(1)





y′′ (x) = f (x, y (x)) x ∈ [x0, b]

y (x0) = y0

y′ (x0) = y′0 .

We suppose that f (x, y (x)) is a real function defined and continuous on the
strip S = [x0, b] × IR and a constant L exists so that the inequality

|f (x, y1) − f (x, y2) | ≤ L |y1 − y2|

Key Words and Phrases: Initial value problem – Chebyshev series.
A.M.S. Classification: 65L05 – 65L60
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holds over the strip S. Under these hypotheses the problem (1) has a unique
solution y (x).

Problems of this kind arise in a variety of physical contexts such as molec-
ular-dynamics calculations for liquid and gases, stellar mechanics, atomic and
nuclear scattering problems.

We assume that (1) represents a single scalar equation, but nearly all of
the numerical and theoretical considerations in this paper carry over systems of
second order equations, where (1) could be treated in vector form.

For higher order differential equations, one may solve them numerically by
first reducing them to systems of first order equations. However, for an equation
of the form (1), it is simpler to attack it directly and it is well known that several
advantages (substantial gain in efficiency, lower storage requirements, etc.) are
realized when the equations are treated in their original second-order form.

We develop a family of direct methods which produce smooth, global ap-
proximations to y (x) in the form of polynomial functions. The basic idea is to
approximate y′′(x) on [−1, 1] by a linear combination of Chebyshev polynomi-
als of second kind and then to require that it provides Galerkin approximation
(Section 2).

In Section 3 we show that these methods (GCM) are also collocation meth-
ods; we study the global approximation error in Section 4; then we propose two
algorithms to compute the numerical solution of (1) in the nodal points and
present some numerical examples in comparison with Dormand-Prince methods.

In Section 6 we illustrate the corresponding implicit Runge-Kutta-Nyström
form, we observe that these methods have even order and we compare them with
other Runge-Kutta-Nyström methods.

In Section 7 the study of stability of the method for n = 3 shows that it
compares quite favorably with other fourth-order methods.

Finally (Section 8), we show that GCM may be formulated as symmetric
hybrid two-step methods.

2 – Some polynomial Galerkin-type methods

We may approximate y′′ on [−1, 1] by an (n− 1)-th degree polynomial

(2) y′′n(x) =

n∑

k=1

ck−1Uk−1 (x) , x ∈ [−1, 1]

where Uk(x) is the k-th degree Chebyshev polynomial of second kind, which
satisfies:

(3) Uk−1(x) =
sin kt

sin t

with x = cos t.
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The coefficients ck, k = 0, . . . , n − 1, are determined by a polynomial
Galerkin-type method: we require the residual function y′′n − f to be orthog-
onal to all polynomials Uj−1, that is what this relation holds:

(y′′n − f (x, yn) , Uj−1) = 0

j = 1, . . . , n, or equivalently

(4) (y′′n, Uj−1) = (f (x, yn) , Uj−1)

j = 1, . . . , n.
By defining the discrete inner product [10]

(u, v) =
n∑

i=1

u

(
π − πi

n + 1

)
v

(
π − πi

n + 1

)
,

we have

(
sin2 t Uk−1, Uj−1

)
=

n∑

i=1

sin
kπi

n + 1
sin

jπi

n + 1
=

{
0 j �= k
n + 1

2
j = k

and

(5) sin2 t (y′′n, Uj−1) =
n + 1

2
cj−1 .

By multiplying the right term of (4) by sin2 t, it becomes:

(6)
(
sin2 t f (x, yn) , Uj−1

)
=

n∑

i=1

f (xi, yn (xi)) sin
πi

n + 1
sin

jπ(n + 1 − i)

n + 1

with

(7) xi = cos

(
π − πi

n + 1

)
= − cos

πi

n + 1
i = 1, . . . , n .

By equaling (5) and (6) we have:

cj−1 =
2

n + 1

n∑

i=1

sin
πi

n + 1
sin

jπ(n + 1 − i)

n + 1
f (xi, yn (xi)) .

Using the identity

(8) kUk−1 (x) = T ′
k (x) , k ≥ 1 ,
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and integrating (2) between −1 and x we have

(9) y′n (x) = y′0 +

n∑

i=1

nγi (x) f (xi, yn (xi))

where

nγi (t) =
2

n + 1
sin

πi

n + 1

n∑

k=1

pk (t)

k
sin

πk(n + 1 − i)

n + 1

with
pk (x) = Tk (x) − (−1)

k

and Tk (x) are the Chebyshev polynomials of first kind of degree k.
If f (x, y(x)) does not depend on y(x), the (9)

(10)

∫ x

−1

f(t)dt =

n∑

i=1

nγi (x) f (xi)

coincides with the modified Filippi Clenshaw-Curtis quadrature formula [10].
Hence, for x ∈ [−1, 1], (10) is a positive quadrature procedure which converges
for every f ∈ C0[−1, 1].

Integration of (9) gives

(11) yn (x) = y0 + (x + 1) y′0 +

n∑

i=1

nβi (x) f (xi, yn (xi))

where

nβi(x) =
1

n + 1
sin

πi

n + 1

{
sin

πi

n + 1
(x + 1)2+

+
n∑

k=2

1

k
sin

kπ(n + 1 − i)

n + 1

[
Tk+1(x)

k + 1
− Tk−1(x)

k − 1
− 2

(
x +

k2

k2 − 1

)
(−1)k

]}
.

Thus we obtain:




y(x) ≈ yn(x) = y0 + (x + 1)y′0 +

n∑

i=1

nβi(x)f(xi, yn(xi))

y′(x) ≈ y′n(x) = y(x0) = y′0 +

n∑

i=1

nγi(x)f(xi, yn(xi)).
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3 – Chebyshev-Galerkin methods as collocation methods

Theorem 1. Let us consider the initial value problem (1) with x0 = −1,
[x0, b] = [−1, 1]. If xi, i = 1, . . . , n are defined as (7), then the polynomial (11)
of degree n + 1 satisfies the relations

(12)

yn (−1) = y0

y′n (−1) = y′0
y′′n (xj) = f (xj , yn (xj)) , j = 1, . . . , n

i.e. it is a collocation polynomial for (1) [11].

Proof.
nβi (x) =

∫ x

−1

nγi (t) dt.

Hence, ∀i, n ∈ IN, we have
nβi (−1) = 0

and
nβ′

i (x) = nγi (x) =⇒ nβ′
i (−1) = 0.

It follows that
yn (−1) = y0 ;

y′n (−1) = y′0 +

n∑

i=1

nβ′
i (−1) y′′n (xi) = y′0.

Moreover, for the polynomial nγi (x), we get

nγ′
i (x) =

2

n + 1
sin

πi

n + 1

n∑

k=1

T ′
k (x)

k
sin

πk(n + 1 − i)

n + 1
.

Putting x = cos t, we have

nγ′
i (cos t) =

2

n + 1
sin

πi

n + 1

n∑

k=1

sin kt

sin t
sin

kπ(n + 1 − i)

n + 1

and for t = tj = arccosxj , from the orthogonality of the system of functions
sinmt ([10]), it follows that

nγ′
i (xj) = nγ′

i (cos tj) = δij .

for j = 1, . . . , n. Hence we have

y′′n (xj) =

n∑

i=1

nβ′′
i (xj) f (xi, yn (xi)) = f (xi, yn (xi)) .
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From Theorem 1 we give the following definition

Definition 1. The polynomial (11) is a global approximation method for
the solution of (1) in [−1, 1]. It is a symmetric collocation method.

Observation. Now an alternative representation for the nβi(x), i = 1, . . . , n
can be derived by observing from (12) that, since y′′n(x) interpolates f (x, y(x))
at xi, using Lagrangian interpolation we have

(13) w′′
n(x) =

n∑

k=1

lk(t)f (xk, yn (xk)) .

After two integrations and comparing with (11), we obtain

(14) nβi(x) =

∫ x

−1

(∫ s

−1

li(t)dt

)
ds =

∫ x

−1

(x− t)li(t)dt

where li(t) is a polynomial of Lagrange interpolation on the set of points {xi}:

li(t) =
n∏

k=1 k �=i

t− xk

xi − xk
.

4 – Global error

For the global error

Ln (y, x) = y (x) − yn (x) .

the following theorem holds:

Theorem 2. For all fixed x ∈ [−1, 1]

y(x) − yn(x) =
1

n!

[∫ x

−1

(x− t)n+1y(n+2)(t)dt +

− n
n∑

k=1

nβk(x)

∫ x

xk

(xk − t)n+1y(n+2)(t)dt

]
.
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Proof. We observe that for all fixed x ∈ [−1, 1]

Ln (y, x) =

∫ x

−1

(∫ s

−1

y′′(l)dl

)
ds−

n∑

k=1

nβk (x) y′′ (xk)

is a linear functional vanishing if y (t) is a polynomial of degree less than or equal
to n+1. In fact, if y (t) is a polynomial, it can be written in the Lagrange form:

y′′n(x) =

n∑

k=1

lk(t)y
′′
n (xk) ,

and from (14)

Ln (y, x) =

∫ x

−1

(∫ s

−1

y′′(l)dl

)
ds−

n∑

k=1

∫ x

−1

(∫ s

−1

lk(t)dt

)
ds y′′ (xk) = 0.

Hence from Peano’s Lemma [8],

y (x) − yn (x) =

∫ x

−1

K (t, x) y(n+2) (t) dt

where

K (t, x) =
1

(n− 1)!

[∫ x

−1

(∫ s

−1

(l − t)n−1
+ dl

)
ds−

n∑

k=1

nβk (x) (xk − t)
n−1
+

]
.

The thesis follows after some calculations.

Observation. If y(n+2) (t) is continuous in [−1, 1], then there exist η0, ηk,
k = 1, . . . , n in [−1, 1] such that

y(x) − yn(x) =
1

n!(n + 2)

[
(x− 1)n+2y(n+2)(η0) +

+ n

n∑

k=1

nβk(x)(xk − x)n+2y(n+2)(ηk)

]
.
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5 – Algorithms and numerical examples

In order to calculate the approximate solution of the initial value problem
by (11) at x ∈ [−1, 1] we need the values yn (xi), i = 1, . . . , n. For this aim we
propose two algorithms:

A1. Solve the system

yn (xi) = y0 + (xi + 1)y′0 +
n∑

k=1

nβk (xi) f (xk, yn (xk)) i = 1, ..., n.

by iterative methods, particularly a modified Newton-type method for general
non linear case. For linear problems the computational cost is considerably lower.

A2. An alternative way to calculate yn (xj) is the iterative algorithm





G0
n,j = y0 + (xj + 1) y′0 + (xj + 1)

2
f (−1, y0) /2

Gν
n,j = y0 + (xj + 1)y′0 +

n∑
k=1

akjf
(
xk, G

ν−1
n,k

)
ν = 1, 2, ...

j = 1, . . . , n, akj = nβk (xj) and Gν
n,j = Gν

n,j (xj) where G0
n,j are the first three

terms of Taylor approximation of yn (xj) used to initialize the iterations.
We apply A1 to find numerical approximations of the solutions of some test

problems. Similar results are obtained by algorithm A2.
Results are compared with the ones obtained by applying the Matlab ODE

solver based on Dormand-Prince formula. We consider the following problems:

i)





y′′ = y + 2ex

y (−1) = 0

y′(−1) =
1

e

with solution y(x) = (x + 1)ex

ii)





y′′ = −y + 2 cosx

y(−1) = − sin(−1)

y′(−1) = sin(−1) − cos(−1)

with solution y(x) = x sin(x).
The figures (Fig. 1) and (Fig. 2) present the error function in the interval

[−1, 1] in the case of Dormand-Prince approximation (dotted line) and in the
case of approximation by GCM (solid line), algorithm A1.

In the first case (ode45) 85 function evaluations are needed for problem 1 and
67 for problem 2, while A1 requires 32 function evaluations if we use a modified
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1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5
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2.5
× 10−6

Fig. 1: Problem i.

Newton-type method and only 16 evaluations of functions of one variable if we
use a direct method.

We can observe the smoothness of the error function in the case of approx-
imation by A1.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7
× 10−7

Fig. 2: Problem ii.
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Moreover, with no additional cost, we have the approximation of the first
derivative (Fig. 3 and 4).

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6
× 10−7

Fig. 3: Error function |y′(x) − y′n(x)| of problem i.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
× 10−7

Fig. 4: Error function |y′(x) − y′n(x)| of problem ii.
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−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5 × 10−7

Fig. 5: Problem iii.

Now we consider the following non-linear problem:

iii)





y′′ = −
(
1 + 0.01y2

)
y + 0.01 cos3 x

y (−1) = cos(−1)

y′(−1) = − sin(−1).

The differential non-linear equation is a particular case of the undamped Duff-
ing’s equation, with a forcing term chosen so that the exact solution is
y (x) = cosx. Figure 5 show the error function in [−1, 1] when we use ode45
(dotted line) and when we approximate by algorithm A1 (solid line).

The approximation by ode45 requires 67 function evaluations, algorithm A1 64.

Figure 6 presents the approximation of the first derivative using algorithm A1.

6 – Chebyshev-Galerkin methods as implicit Runge-Kutta-Nyström
methods

Any one-step collocation method is equivalent to some implicit Runge-Kutta
methods, where of course “equivalent” here means “matches the discrete values”.
Let χ : tk = t0 + kh be a uniform mesh with t0 = x0. On each subinterval we
apply GCM (11), so that we have a collocation method on the points tk+cj =
tk + cjh, j = 1, . . . , n, with cj = 1

2 (xj + 1), which are the images of the xj under
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−1 −0.8 −0.6 −0.4 −0.2 −0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
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2 × 10−8

Fig. 6: Error function |y′(x) − y′n(x)| of problem iii.

a linear transform mapping [−1, 1] onto [0, 1]:

y (ti+1) = y (ti) + hy′ (ti) + h2
n∑

j=1

bjf
(
ti+cj , y

(
ti+cj

))

where bj = 1
4βj(1). Putting

(15) kj = f

(
ti + cjh, yi + cjhy

′
i + h2

n∑

m=1

bjmkm

)
,

with bjm = 1
4βm (xj) ,we have:

(16) yi+1 = yi + hy′i + h2
n∑

j=1

bjkj

and from (9)

(17) y′i+1 = y′i + h

n∑

j=1

ajkj

with aj = 1
2γj(1). Equations (15), (16) and (17) gives rise to an n-stage implicit

Runge-Kutta-Nyström method (CRK) with

n∑

j=1

bj =
1

2

n∑

j=1

aj = 1.
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Using Butcher’s notation ([1]), the first three of these methods are presented in
Tables 1,2 and 3.

Table 1.
1
2

1
4

1
2

1

Table 2.
1
4

1
24 − 1

96
3
4

9
32 0

5
12

1
12

1
2

1
2

Table 3.

2−
√

2
4

1
64

5−4
√

2
96

23−16
√

2
192

1
2

3+2
√

2
48 0 3−2

√
2

48

2+
√

2
4

23+16
√

2
192

5+4
√

2
96

1
64

2+
√

2
12

1
6

2−
√

2
12

1
3

1
3

1
3

Note that the cj have the symmetry property

(18) cn+1−j = 1 − cj , j = 1, . . . ,
[n
2

]
.

A Runge-Kutta-Nyström method has order p [11] if for sufficiently smooth
problems (1)

y (xi+1) − yi+1 = O
(
hp+1

)
y′ (xi+1) − y′i+1 = O

(
hp+1

)
.

Being the method (11) a collocation method, ∀x ∈ [−1, 1] the following
estimates hold [11]:

y(x) − yn(x) = O
(
hn+2

)
, y′(x) − y′n(x) = O

(
hn+1

)
.

So the method (11) has order at least n. We may prove that for odd n the order
is n + 1. In fact, putting

M(t) =
n∏

i=1

(t− ci) ,
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if n = 2k + 1, we have

(19)

∫ 1

0

M(t)dt = 0

and this condition is equivalent to orthogonality to polynomials of degree q = 0,
so the method has order [11] p = n + q + 1 = n + 1.

The (19) follows from the fact that M(t) = (−1)nM(−t), hence, if n is odd,
M(t) is an odd function.

Coleman and Booth in [5], starting from Panovsky-Richardson method [13],
derived a class of Runge-Kutta-Nyström methods for differential equations of
the form y′′(x) = f (x, y) which uses in each interval [xk, xk+1] the set of n + 1
collocation points {xk + cjh, j = 0, . . . , n} where cj = 1

2 (xj + 1) and xj are the
extrema of Chebyshev polynomials of first kind Tk(x) of degree k.

In this context CRK method can be compared with other similar methods,
among which the Coleman and Booth Runge-Kutta-Nyström one [5], which we
indicate by CBRKN.

Thus we make a comparison between the forth order CBRKN, and the CRK
method of order four derived in this section.

6.1 – Harmonic oscillator

Let’s now solve the initial value problem

(20) y′′ = −y, y(0) = 1, y′(0) = 0

using the forth order CBRKN and CRK methods. The results in Figures 7 and 8,
produced by a MatLab code, show the absolute errors for the two methods (dot-
ted line for the CBRKN) applied to problem (20) with steplengths respectively
h = 0.01 and h = 0.05. Both methods have the same cost and are based upon
the zeros of Chebyshev polynomials but of different degrees so their coefficients
are different.

The maximum absolute errors on intervals [0, x] with steplength h = 0.01
are displayed in Table 4.

Table 4.

x CBRKN CRK

1 4.4 · 10−12 1.1 · 10−12

2 9.5 · 10−12 2.4 · 10−12

5 2.5 · 10−11 6.2 · 10−12

10 4.1 · 10−11 7.1 · 10−12

20 9.5 · 10−11 2.4 · 10−11

50 2.5 · 10−10 1.7 · 10−11

100 5.1 · 10−10 6.6 · 10−11
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Fig. 7:
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Fig. 8:

Table 5 illustrates the effects of different steplengths used over a given num-
ber of steps.
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Table 5.

h steps CBRKN CRK

0.1 500 2.5 · 10−6 1.7 · 10−7

0.1 1000 5.1 · 10−6 6.6 · 10−7

0.005 500 5.9 · 10−13 1.2 · 10−13

0.005 1000 1.6 · 10−12 3.9 · 10−13

0.002 500 8.1 · 10−15 1.5 · 10−15

0.002 1000 1.5 · 10−14 3.5 · 10−15

0.001 500 1.9 · 10−15 2.0 · 10−15

0.001 1000 3.1 · 10−15 2.8 · 10−15

Table 6 shows the maximum absolute errors on intervals [0, x] for the same
methods of order six applied to problem (20) with steplength h = 0.01:

Table 6.

x CBRKN CRK

1 5.6 · 10−16 3.3 · 10−16

2 9.4 · 10−16 1.1 · 10−16

5 1.1 · 10−15 1.1 · 10−16

10 2.7 · 10−15 2.4 · 10−15

20 4.4 · 10−15 1.2 · 10−15

50 7.9 · 10−15 4.2 · 10−15

70 1.1 · 10−14 7.8 · 10−16

100 1.2 · 10−14 3.9 · 10−14

Values of column 2 are the ones which appear in [5].
Figure 9 illustrates absolute errors when h = 0.05, in the case of order six.

6.2 – Two-body problem

A non-linear example frequently used to test numerical methods (see, e.g.
[5]) is provided by the two-body problem:

(21)





y′′ +
y

r3
= 0, y (0) = 1 − e, y′ (0) = 0

z′′ +
z

r3
= 0, z (0) = 0, z′ (0) =

√
1 + e

1 − e
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7 × 10−14

Fig. 9:

with r2 = y2 + z2. The exact solution is

y = cosE − e, z =
√

1 − e2 sinE,

where e is the eccentricity of the orbit and E is implicitly defined as x = E −
e sinE.

In Table 7 we compare the maximum absolute errors on [0, x] for the two
fourth order methods, CRK and CBRKN, applied to (21) when e = 0.1 and
steplength h = 0.01.

Table 7.

x CBRKN CRK

1 2.9 · 10−11 7.4 · 10−12

2 4.0 · 10−11 9.9 · 10−12

5 1.2 · 10−10 2.9 · 10−11

10 2.8 · 10−10 7.1 · 10−11

20 8.4 · 10−10 2.1 · 10−10

50 2.1 · 10−9 5.4 · 10−10

100 4.2 · 10−9 1.0 · 10−9

These results were produced by MatLab programs on a microcomputer and
show that CRK method is favourably comparable to CBRKN one.
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7 – Stability and periodicity

Now we investigate the numerical stability of method (11) for n = 3. To-
wards this aim we consider its equivalent implicit Runke-Kutta-Nyström form
(CRK) and then we compare results with other forth-order methods.

We apply CRK to the test equation

y′′ = −αy

where α is a real number, and after some calculation we obtain:

(22)





yi+1 =
−B

A

(
36864 + 17280h2α + 968h4α2 + 11h6α3

)
yi+

−hB

A

(
36864 + 4992h2α + 136h4α2 + h6α3

)
y′i

y′i+1 =
−hαB

A

(
36864 + 4992h2α + 120h4α2

)
yi+

−B

A

(
36864 + 17280h2α + 968h4α2 + 11h6α3

)
y′i

where

A = (17 + 12
√

2)[4608 − 72h2α + (1 + 2
√

2)h4α2]·
·
(
−36864 + 1152h2α− 8h4α2 + h6α3

)

B = 4608
(
17 + 12

√
2
)
− 72

(
17 + 12

√
2
)
h2α +

(
65 + 46

√
2
)
h4α2

The equations (22) written in matrix notation are

(23) ui+1 = Mui

in which ui = [yi, y
′
i]
T
, M = (mij),

m11 = −B

A

(
36864 + 17280h2α + 968h4α2 + 11h6α3

)

m12 = −hB

A

(
36864 + 4992h2α + 136h4α2 + h6α3

)

m21 = −hαB

A

(
36864 + 4992h2α + 120h4α2

)

m22 = m11

We treat the cases α = k2 and α = −k2.
In the following we set H = hk and denote the eigenvalues of the matrix M

by µ1,2.
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In the first case we get oscillating solutions, so it is important to have
eigenvalues of M on or inside the unit circle.

In general the eigenvalues of the amplification matrix M are the roots of
the characteristic equation

λ2 − 2R
(
H2

)
λ + P

(
H2

)
= 0

where R
(
H2

)
= 1

2 trace (M) and P
(
H2

)
= det(M) are rational functions of

H2; numerator and denominator of R are polynomials of degree ≤ n in H2. It is
known that for polynomial collocation P

(
H2

)
= 1 when the collocation nodes

are symmetric [12]. In this case, R
(
H2

)
is a rational approximation for cosH,

called stability function of the method.
Stability means that the numerical solutions remain bounded moving further

away from the starting point.

Definition 2. A method is weakly stable in an interval (0, r) if, for each
H in (0, r), |µ1| = |µ2| = 1.

Weak stability prevents the numerical solution ui to spiral into the origin.
Every symmetric collocation method is weakly stable in an interval of the form
(0, r) [12].

We have that the eigenvalues µ1,2 are complex when 0 ≤ H2 < 9.6 and
|µ| = 1 ∀H in (0, 9.6).

The stability of method CRK compares quite favorably with other one-
step fourth-order methods, for example, Runge-Kutta, Runge-Kutta-Nyström
methods [9] and Chang-Gnepp method [2]. The stability range of the Runge-
Kutta method is 0 ≤ H2 ≤ 7.756, of the Runge-Kutta-Nyström method is
0 ≤ H2 ≤ 6.690 and of the Chang-Gnepp method is 0 ≤ H ≤ 8.0722.

Definition 3. An interval
(
0, H2

p

)
is said to be an interval of periodicity

for a method (23) if, for all H2 ∈
(
0, H2

p

)
, µ1,2 are distinct, complex and of

modulii one.

If conditions of definition 3 are satisfied for all H2 > 0, the method is P-
stable, but one-step polynomial collocation does not provide any P-stable meth-
ods [4].

For method CRK, n = 3, the interval of periodicity is (0, 9.6). The interval
of stability of the fifth-order Nyström method in [3] is (0, 8.46).

Let’s now consider the case α = −k2. In the previous case we have oscillating
solutions, here the solutions are exponential. We’ll study the relative error of
method CRK for the equation under discussion, in the case of small h, that is a
large number of integration intervals, following the idea of Rutishauser [14].

The maximum eigenvalue of matrix M is

µ = 1 + hk +
1

2
h2k2 +

1

6
h3k3 +

1

24
h4k4 +

13

1536
h5k5 + O

(
h6k6

)
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Thus the relative error is

F ≈hk − lnµ

h
=

ln
(
ehk

)
− lnµ

h

=
1

h

(
ehk − µ

µ

)
≈ h4k5

1536

for large x and small h. The relative error for the Runge-Kutta method is

F ≈ h4k5

120 , for the Runge-Kutta Nyström method is F ≈ h4k5

320 and for the method

proposed by Chang and Gnepp ([3]) it is F ≈ h4k5

720 .

8 – Chebyshev-Galerkin methods as hybrid symmetric two-step
methods

Now we show that methods (11) may be formulated as symmetric two-step
hybrid methods in which the position of the off-step points are determined by
the xi defined in (7). In [5] it was proved that a collocation method on the
points tk+ci = tk + cih, i = 1, . . . , n + 1 with ci = 1

2 (xi + 1) is symmetric (that
is the nodes are such that (18) holds). Then the approximations yi ≈ y (ti) and
zi ≈ y′ (ti) satisfy the equations

(24) cihzk+1 = yk+1 − yk+cn+1−i
+ h2

n∑

j=1

bijfk+cn+1−j

for i = 1, . . . , n, k = 0, 1, . . . , where fk+cn+1−j = f
(
tk + cn+1−jh, yk+cn+1−j

)
.

(Using the 18) and replacing k + 1 by k in (24), we have:

(25) cihzk = yk − yk−ci + h2
n∑

j=1

bijfk−cj

which, for i = n + 1, may be written as

(26) hzk = yk − yk−1 + h2
n∑

j=1

bn+1,jfk−cj

and bn+1,j =
1

4
βj (xn+1) = bj .

Equations (15), (16), (17) may be put in the form:

(27)





yk+1 = yk + hzk + h2

n∑

j=1

bjfk+cj

yk+cj = yk + hcjzk + h2

n∑

i=1

bjifk+ci

zk+1 = zk + h

n∑

i=1

aifk+ci
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so the method becomes:

(28)





yk+1 = 2yk − yk−1 + h2

n∑

j=1

bj
(
fk−cj + fk+cj

)

yk+cj = 2yk − yk−cj + h2

n∑

i=1

bji (fk−ci + fk+ci)

which is a symmetric, hybrid two-step method with 2n off-step points between
tk−1 and tk+1 for each k.

If xi = cos
(n− i)π

n
, i = 0, . . . , n, (28) coincides with Panovsky-Richardson

implicit method [13]. In this case CRK method may be seen as an alternative
formulation of Panovsky-Richardson method.

Equations (28) require starting values at x0, x1 and at any off-step points
between x0 and x1. If these starting values provided by (28) are the approxi-
mations generated by CRK method on [t0, t1], then, in exact arithmetic the two
methods would yield identical results at all subsequent steps [13].

9 – Conclusions

This paper provides a family of numerical collocation methods for initial
value problems of the form (1). For each positive integer n two polynomials, one
of degree n + 1, which approximates the exact solution of (1), and the other, of
degree n, which approximates its first derivative, are given explicitly.

Numerical tests show that these methods perform as well as other existing
methods in terms of stability, of magnitude of the absolute error, and of function
evaluations.
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