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A perturbative method for direct scattering problems

NADANIELA EGIDI – PIERLUIGI MAPONI

Abstract: We present a numerical method to compute the solution of direct scat-
tering problems, that is boundary-value problems for the Helmholtz equation in un-
bounded domains of the three dimensional real Euclidean space. Such problems arise,
for example, from wave equation problems when the solution is assumed to be time-
harmonic. We consider the T -matrix method for the solution of the direct scattering
problems, which is a very classical numerical method for such a kind of problems. This
method is based on the explicit construction of an operator T mapping the data of the
problem to the solution of the problem. We propose a perturbative approach for the
numerical approximation of the operator T . Finally we report the results of our numer-
ical experience on a large number of test problems using the numerical method proposed
here. This numerical experience shows very interesting results and it justifies further
theoretical investigations.

1 – Introduction

Let us begin with some basic definitions. Let IN, IR, C be the set of natural
numbers, real numbers and complex numbers, respectively. Let n ∈ IN, we denote
with IRn, Cn the n-dimensional real Euclidean space and the n-dimensional
complex Euclidean space, respectively. We denote with (·, ·) the Euclidean scalar
product in IRn, with ‖ · ‖ the corresponding Euclidean norm. Let Sn = {x ∈
IRn+1 : ‖x‖ = 1}. Let ı be the imaginary unit. Let z ∈ C, we denote with
|z| the modulus of z and with Re(z), Im(z) the real and imaginary part of z
respectively.
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Let D ⊂ IR3 be a bounded simply connected open set with boundary ∂D
and let D be its closure. We suppose that 0 ∈ D. From the physical point of
view we consider D as the position of an obstacle, or equivalently a scatterer,
for the acoustic waves propagating in IR3 \ D, in particular we suppose this
scatterer contained in a homogeneous isotropic medium filling IR3 \D. Moreover
for such a medium we suppose a constant pressure field P . Let U i(x, t), x ∈ IR3,
t ∈ IR be an incident acoustic wave, where x ∈ IR3 denotes the space variables
and t ∈ IR denotes the time variable. Let Us(x, t), x ∈ IR3 \ D, t ∈ IR be the
scattered acoustic wave generated by the interaction of U i and the obstacle D.
These waves can be considered as perturbations for the pressure field P ; when
such perturbations are small compared to P we have that U i and Us solve the
wave equation, see [1], page 243 for details.

We suppose that U i and Us are time-harmonic, that is:

U i(x, t) = ui(x)eiωt, x ∈ IR3, t ∈ IR,(1)

Us(x, t) = us(x)eiωt, x ∈ IR3 \D, t ∈ IR,(2)

where ui, us are suitable functions of the space variables and ω > 0 is the
time-frequency.

From the wave equation for U i, Us and from formulas (1), (2) we obtain
the Helmholtz equation for ui and us, that is

∆ui(x) + k2ui(x) = 0, x ∈ IR3,(3)

∆us(x) + k2us(x) = 0, x ∈ IR3 \D,(4)

where ∆ is the Laplace operator with respect to the x variables, k = ω
c > 0 is

the wave number and c > 0 is the wave propagation velocity. We assume that
D is an impenetrable acoustically soft obstacle, so that us satisfies the following
boundary conditions:

(5) us(x) = −ui(x), x ∈ ∂D,

see [2] page 67 for details. We note that impenetrable acoustically hard obstacles
satisfy Neumann boundary condition, and obstacles having more complicated
acoustic behaviour satisfy a boundary condition that can be given in terms of an
acoustic surface impendance. Moreover we assume that the scattered acoustic
wave us has the asymptotic behaviour of an outgoing spherical wave, so that us

satisfies the Sommerfeld radiation condition, that is

(6)
∂us

∂x̂
(x) − ıkus(x) = o

(
1

‖x‖

)
, ‖x‖ → ∞,
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where x̂ =
x

‖x‖ ∈ S2, ‖x‖ �= 0 and o(·) is the Landau symbol, see [3] page 189

for a more detailed discussion on the radiation condition.
Boundary-value problem (4)-(6) is uniquely solvable provided ui in (5) is

a continuous function and D is a class C2 domain with connected complement,
see [2] page 83, [4] pages 13 and 262 for details. Let us consider the following
problem: from the knowledge of D, k and ui compute the solution us of problem
(4)-(6).

We consider the numerical approximation of such a problem. Many different
methods for the solution of problem (4)-(6), or similar scattering problems, have
been proposed in the scientific literature, see for example [5], [6], [7], for finite
difference approaches or [8], [9], [10], [11] for finite element approaches. We
note that these general purpose methods cannot be applied directly to problem
(4)-(6) being this problem defined on an unbounded domain. A quite common
technique to avoid this difficulty is to consider this problem in a domain D \D,
where D ⊂ IR3 is a bounded open domain containing D, and to substitute
the Sommerfeld radiation condition with an auxiliary condition on the artificial
boundary ∂D. This condition is usually called transparent boundary condition
or absorbing boundary condition, see [12] and the references therein. However
some specialized numerical methods allow to deal with the unbounded domain of
problem (4)-(6), see for example [2], [13], [14], [15], [16], [17], [18], [19], [20], [21]
for integral equation approaches and [22], [23], [24], [25], [26], [27] for T -matrix
approaches.

We study the T -matrix method which is a very classical method for the
solution of scattering problems. This method consists in the construction of an
operator T = T (D, k), depending only on D and k, such that:

(7) us = T ui

for every continuous function ui : ∂D → C. Usually functions ui and us are
expanded with respect to particular bases of functions defined in terms of the
spherical harmonics, so that the operator T looks like a matrix with an infinite
number of rows and an infinite number of columns. In practical situations we
consider only a finite number of entries of T , whose computation foresees the
solution of several linear systems where the entries of the coefficient matrix are
obtained by the evaluation of several surface integrals on ∂D. We denote with
Q = Q(D, k) the matrix coefficient of this linear system. Usually Q is a dense
matrix and, depending on D and k, it can be quite ill-conditioned, so that the
solution of the corresponding linear system can produce a large error in the final
solution. Moreover having in mind an efficient implementation of this method
via parallel computations the step of the solution of such a linear system is an
unpleasant step since it lowers considerably the parallel efficiency of the whole
method.

To avoid a linear system solution in the T -matrix method we propose a
perturbative method for the computation of the operator T , where the pertur-
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bation is made with respect to the boundary ∂D of the obstacle D. As base
point of this perturbation is considered the boundary ∂B of a generic obstacle
B; in such a case for the construction of the operator T we have to solve sev-
eral linear systems where the matrix coefficient is Q(B, k). So that also in the
perturbative method we really have to solve some linear systems, but now the
matrix coefficient Q(B, k) can be chosen in terms of B. We note that when the
base point B is chosen as an axial-symmetric obstacle the matrix Q(B, k), aris-
ing in the construction of the operator T , has a particular block-structure; when
B is chosen as a sphere the matrix Q(B, k) is a diagonal matrix, so that the
solution of the corresponding linear system can be performed accurately, quickly
and efficiently in a sequential computation as well as in a parallel computation.
However in general we can compute, for example, the LU factorization of the
matrix Q(B, k) and we can use this factorization everytime the boundary ∂B of
B is used as base point in the perturbative procedure.

Finally we report some of the results of our numerical experience obtained
using the numerical method proposed here. We consider a large number of test
problems, where we take into account axial-symmetric and non-axial-symmetric
obstacles, convex and non-convex obstacles. In the numerical results convergence
and stabilization features of the perturbative method proposed are outlined. This
numerical experience shown very interesting results, so that we deserve further
theoretical investigations to this introductory study.

The paper is organized as follows. In Section 2 we provide a brief introduc-
tion to the T -matrix method and we give some useful formulas for the devel-
opment of the method proposed here. In Section 3 we present the perturbative
method. In Section 4 we report some results of our numerical experience us-
ing the method presented in the previous section. In Section 5 we give some
conclusions and the possible developments of the work.

2 – The T -matrix method

The construction of the operator T is usually given in terms of suitable bases
of functions for the expansion of ui, i.e. the datum of problem (4)-(6), and us,
i.e. the unknown solution of problem (4)-(6). We denote with:

(8) Y σ
l,m(x̂(θ, φ))=γl,m

{
Pm
l (cos θ) cos(mφ), σ=0, l=0, 1, . . . , m=0, 1, . . . , l,

Pm
l (cos θ) sin(mφ), σ=1, l=1, 2, . . . , m=1, 2, . . . , l,

the spherical harmonics, where x̂(θ, φ) = (sin θ cosφ, sin θ sinφ, cos θ)t ∈ S2,
θ ∈ [0, π], φ ∈ [0, 2π), and for l = 0, 1, . . . , m = 0, 1, . . . , l, Pm

l are the Legendre
functions of order m and degree l and γl,m are normalization coefficients, that
is we have:

(9)

∫

S2

(Y σ
l,m(x̂))2ds(x̂) = 1,
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where ds is the surface measure on S2, see [28] page 331 for details. In the sequel
we denote with ν the multi-index (σ, l, m) and we denote with I the set of all
possible values of ν given by formula (8), i.e. I = {ν = (σ, l, m): σ = 0, 1,
l = σ, σ + 1, . . . , m = σ, σ + 1, . . . , l}. We note that the spherical harmonics
verify an orthogonality property, that can be seen as a generalization of property
(9), that is we have:

(10)

∫

S2

Y σ
l,m(x̂)Y σ′

l′,m′(x̂)ds(x̂) = δσ,σ′δl,l′δm,m′ , ν, ν′ = (σ′, l′,m′) ∈ I,

where δ denotes the kronecker delta.

In the construction of the operator T , introduced in (7), we use two bases
of functions {ψν , ν ∈ I}, {Reψν , ν ∈ I}, which are defined as follows:

ψν(kx) = h
(1)
l (k ‖x‖)Y σ

l,m(x̂), x ∈ IR3 \ {0}, ν ∈ I,(11)

Reψν(kx) = jl(k ‖x‖)Y σ
l,m(x̂), x ∈ IR3, ν ∈ I,(12)

where jl denotes the spherical Bessel function of order l, h
(1)
l denotes the spherical

Hankel function of first kind and order l, see [28] page 435 for details. We note
that for each ν ∈ I the complex-valued function ψν is singular at the origin
of the coordinate system, while the real-valued function Reψν is regular at the
origin of the coordinate system. Moreover from the separation of the Helmholtz
operator in spherical coordinates it is easy to see that, for each ν ∈ I, function
Reψν satisfies the Helmholtz equation in IR3, function ψν satisfies equation (4),
being 0 ∈ D, and it satisfies equation (6), for a detailed discussion see [29] page
1462.

Supposing that the functions ui and us have the following expansion:

ui(x) =
∑

ν∈I

aν Reψν(kx), x ∈ IR3,(13)

us(x) =
∑

ν∈I

fνψν(kx), x ∈ IR3 \D,(14)

we obtain that the operator T = Tν;ν′(D, k), ν, ν′ ∈ I, depending on the obstacle
D and the wave number k, can be rewritten in a more practical way than formula
(7), that is

(15) fν =
∑

ν′∈I

Tν;ν′(D, k)aν′ , ν ∈ I.
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We briefly recall the formulas useful for the computation of operator T . Let
us define the following operator:

(16)

Qν;ν′(D, k) = − ı

2
δσ,σ′δl,l′δm,m′+

+
k

2

∫

∂D

∂

∂n̂(x)
(ψν(kx) Reψν′(kx))dσ(x), ν, ν′ ∈ I,

where n̂(x) denotes the unit outward normal to ∂D at the point x ∈ ∂D and
dσ denotes the surface measure on ∂D. Let ReQν;ν′(D, k) = Re(Qν;ν′(D, k)),
ν, ν′ ∈ I. The operator T is defined as the solution of the following equation:

(17)
∑

ν′∈I

Tν;ν′(D, k)Qν′;ν′′(D, k) = −ReQν;ν′′(D, k), ν, ν′′ ∈ I.

Formula (16) and equation (17) are the results of simple but quite involved math-
ematical manipulations, which are mainly based on a representation formula for
the solutions of the Helmholtz equation and on an expansion formula, with re-
spect to the bases {ψν , ν ∈ I}, {Reψν , ν ∈ I}, of the free space Green’s function
of the Helmholtz operator with the Sommerfeld radiation condition at infinity,
see [22] for a complete derivation of these formulas.

We note that in practical situations we consider only a finite number of
elements for the operators Q and T previously defined. Given Lmax ∈ IN we
define the following finite set of multi-indices ILmax = {ν = (σ, l, m): σ = 0, 1,
l = σ, σ + 1, . . . , Lmax, m = σ, σ + 1, . . . , l} and in (16), (17) we consider ILmax

in place of I. So that, in particular, from (17) we have:

(18)
∑

ν′∈ILmax

Tν;ν′(D, k)Qν′;ν′′(D, k) = −ReQν;ν′′(D, k), ν, ν′′ ∈ ILmax
.

We abuse the notations Q and T for the matrices obtained from the cor-
responding operators. We note that the rows of matrix T can be computed as
solutions of the linear system (18), where we have multiple right-hand sides, that
is each row of matrix T corresponds to a different row of matrix ReQ through
linear system (18).

We note that the T -matrix method is an interesting technique to solve prob-
lem (4)-(6), in fact matrix T depends only on D and k. Thus once matrix T is
computed the solution of problem (4)-(6) can be easily obtained from formulas
(14), (15) for every different incident acoustic wave ui using the same matrix T .

Usually in problem (4)-(6) is considered an acoustic plane wave as the inci-
dent acoustic wave ui, that is

(19) ui(x) = eık(x,α), x ∈ ∂D,
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where α ∈ S2 is the wave propagation direction. We note that function ui given
in (19) is a solution of equation (3) for every α ∈ S2. When the choice (19) is
made the expansion (13) can be given explicitely, that is we have:

(20) eık(x,α) = 4π
∑

ν∈I

ılY σ
l,m(α) Reψν(kx), x ∈ IR3, α ∈ S2, k > 0,

see [29] page 1466 for details.

3 – The perturbative method

For the computation of matrix T we must perform two different steps: (i)
computation of the entries of matrix Q using formula (16), (ii) solution of the
linear system (18). Step (i) can be performed accurately and efficiently using
parallel computations, in fact it consists in the approximation of several integrals
that are independent one from the other. On the contrary step (ii) must be
performed with special care since the ill-conditioning of the matrix Q can make
the computation of matrix T not well accurate. We note that the condition
number of Q depends on D, k and the value chosen for the truncation parameter
Lmax. Moreover we note that step (ii) is not well suited for parallel computations,
being the solution of a linear system with, in general, a dense matrix coefficient.

We propose a perturbative method to avoid the solution of the linear system
(18). We note that similar perturbative techniques have been already used for the
solution of Fredholm integral equations of the first kind that formulate problem
(4)-(6), or similar problems. In such cases it has been noted that perturbative
techniques take care of the ill-posedness of the corresponding problem, solving
the difficulty of the problem at the various perturbative orders, see for example
[13], [14], [15], [16], [17], [21].

We limit our discussion to star-like obstacles, that is we suppose there exists
a function r : S2 → IR, such that:

(21) ∂D = {x ∈ IR3 : x = r(x̂)x̂, x̂ ∈ S2},
so that from (16) we have that the entries of matrix Q can be rewritten as follows:

(22)

Qν;ν′(D, k) = − ı

2
δσ,σ′δl,l′δm,m′+

+
1

2

∫ 2π

0

dφ

∫ π

0

dθ sin θ

(
ρ2 d(jl′(ρ)h

(1)
l (ρ))

dρ
Y σ
l,m(x̂(θ, φ))Y σ′

l′,m′(x̂(θ, φ))+

− ∂ρ

∂θ
jl′(ρ)h

(1)
l (ρ)

∂

∂θ

(
Y σ
l,m(x̂(θ, φ))Y σ′

l′,m′(x̂(θ, φ))
)

+

− 1

sin2 θ

∂ρ

∂φ
jl′(ρ)h

(1)
l (ρ)

∂

∂φ

(
Y σ
l,m(x̂(θ, φ))Y σ′

l′,m′(x̂(θ, φ))
))

, ν, ν′∈ILmax ,

where ρ(x̂) = kr(x̂), x̂ ∈ S2.
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In the perturbative approach we consider the obstacle D as a perturbation of
a given obstacle B, where we suppose that there exists a function rB : S2 → IR,
such that:

(23) ∂B = {x ∈ IR3 : x = rB(x̂)x̂, x̂ ∈ S2}.

Let ε ∈ IR with 0 ≤ ε ≤ 1, let

(24) R(x̂, ε) = rB(x̂) + εH(x̂), x̂ ∈ S2,

where H(x̂) = r(x̂) − rB(x̂), x̂ ∈ S2. Let Dε be the star-like obstacle having
boundary ∂Dε parametrized by the function R(·, ε). We note that rB(x̂) =
R(x̂, 0), r(x̂) = R(x̂, 1), x̂ ∈ S2, so that we have B = D0 and D = D1 and a
similar relation for the matrices Q defined in (22), that is Q(B, k) = Q(D0, k),
Q(D, k) = Q(D1, k).

Now, given N ∈ IN, we consider the approximation of Q(Dε, k) given by a
series in powers of ε truncated to the order N -th, that is:

(25) Q(Dε, k) ≈ Q(0) + Q(1)ε + · · · + 1

N !
Q(N)εN , 0 ≤ ε ≤ 1,

where, for n = 0, 1, . . . , N , Q(n) denotes the formal derivative of order n-th of
Q(Dε, k) with respect to ε and evaluated at ε = 0. Moreover for the matrix
T (Dε, k) we suppose a similar approximation, that is

(26) T (Dε, k) ≈ T (0) + T (1)ε + · · · + 1

N !
T (N)εN , 0 ≤ ε ≤ 1,

where T (n), n = 0, 1, . . . , N are suitable square matrices having the same order
as of matrix T . So that substituting the approximations (25), (26) in equation
(18) we obtain:

(27)

(
T (0) + T (1)ε + · · · + 1

N !
T (N)εN

)(
Q(0) + Q(1)ε + · · · + 1

N !
Q(N)εN

)
=

= −Re

(
Q(0) + Q(1)ε + · · · + 1

N !
Q(N)εN

)
,

which is an equation for matrices T (n), n = 0, 1, . . . , N . Solving this equation
order by order with respect to the powers of ε, for matrices T (n), n = 0, 1, . . . , N
we obtain the following expression:

(28)

T (0) = −Re(Q(0))(Q(0))−1

T (n) = −
(

Re(Q(n)) +

n∑

l=1

(
n

l

)
T (n−l)Q(l)

)
(Q(0))−1, n = 1, 2, . . . , N,
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where
(
n
l

)
= n!

(n−l)!l! , n, l ∈ IN, l ≤ n, is the binomial coefficient. Formula (28)

gives an explicit expression for T (n), n = 0, 1, . . . , N . More precisely, from the
knowledge of Q(0) we can compute matrix T (0), then from the knowledge of Q(0),
Q(1) and T (0) we can compute matrix T (1); we can compute the generic matrix
T (n) from the knowledge of Q(0), Q(1), . . . , Q(n) and T (0), T (1), . . . , T (n−1) com-
puted previously. The approximation of matrix T (D, k) is obtained evaluating
in ε = 1 the truncated power series given in formula (26), where the matrices
T (n), n = 0, 1, . . . , N are computed by formula (28) as explained.

Let us consider the computation of matrices Q(n), n = 0, 1, . . . , N . The
entries of these matrices are given by the derivatives of order n with respect
to ε of the corresponding entries of matrix Q(Dε, k) and these derivatives are
evaluated at ε = 0, that is

Q
(0)
ν;ν′ = Qν;ν′(Dε, k)

∣∣∣
ε=0

, ν, ν′ ∈ ILmax
,(29)

Q
(n)
ν;ν′ =

dn

dεn
Qν;ν′(Dε, k)

∣∣∣∣
ε=0

, ν, ν′ ∈ ILmax , n ≥ 1.(30)

When the differentiation operator with respect to ε can be exchanged with the
integral operators appearing in the expression of Q(Dε, k) and when also the
limit as ε → 0 can be exchanged with these integral operators we obtain a more
practical expression for the entries of matrices Q(n), n = 0, 1, . . . , N , in fact we
have:

Q(0) =Q(B, k),(31)

Q
(n)
ν;ν′ =

1

2

∫ 2π

0

dφ

∫ π

0

dθ sin θ
dn

dεn

(
η2 d(jl′(η)h

(1)
l (η))

dη
Y σ
l,m(x̂(θ, φ))Y σ′

l′,m′(x̂(θ, φ))+

− ∂η

∂θ
jl′(η)h

(1)
l (η)

∂

∂θ

(
Y σ
l,m(x̂(θ, φ))Y σ′

l′,m′(x̂(θ, φ))
)

+(32)

− 1

sin2 θ

∂η

∂φ
jl′(η)h

(1)
l (η)

∂

∂φ

(
Y σ
l,m(x̂(θ, φ))Y σ′

l′,m′(x̂(θ, φ))
))∣∣∣∣∣

ε=0

,

ν, ν′ ∈ ILmax , n ≥ 1,

where η = kR(·, ε), 0 ≤ ε ≤ 1, is the unique function in (32) that depends on ε.
From formulas (31), (32) we can easily seen that the computation of the entries of
matrices Q(n), n = 0, 1, . . . , N can be performed accurately and efficiently by a
parallel computation being these entries defined as integrals of functions that are
independent one from the other. But now also the computation of matrices T (n),
n = 0, 1, . . . , N can be performed accurately, in fact from formula (28) we can
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easily see that it consists in sums and products of matrices. However formula (28)
foresees also the computation of (Q(B, k))−1, but this matrix does not depend
on the particular obstacle D. We note that the computation of (Q(B, k))−1

can be quite easier than the computation of (Q(D, k))−1; for example, when B
is chosen as an axial-symmetric obstacle the matrix Q(B, k) is a 2 × 2 block-
diagonal matrix, so that (Q(B, k))−1 can be given in terms of the inverses of its
two diagonal blocks, see [22] for details. However the computation of (Q(B, k))−1

can be performed only one time since (Q(B, k))−1 can be stored and it can be
used back for all the obstacles D that we decide to express in terms of B in
the perturbative procedure. Moreover formula (28) is well suited for parallel
computations, in fact for n = 0, 1, . . . , N the computation of T (n) consists in n+1
matrix-matrix multiplications, where n of these multiplications are independent
one from the other. Finally we note that the choice of B cannot be completely
independent from D, in fact we expect that fast and accurate approximations of
T (D, k) can be obtained from formula (26) when B is close to D in a suitable
normed space. This normed space, essential for an eventual investigation of the
convergence properties of the approximation (26), is useless for the purpose of
the present paper thus its definition is omitted.

We conclude describing the computational consequences of a particular
choice for B, that seems quite interesting. In fact when B is chosen as a sphere
of radius rS > 0, that is rB(x̂) = rS , x̂ ∈ S2, the matrix Q(B, k) becomes a
diagonal matrix. More precisely, we have:

Q
(0)
ν;ν′ =


− ı

2
+

ρ2
S

2

d(jl(ρ)h
(1)
l (ρ))

dρ

∣∣∣∣∣
ρ=ρS


 δσ,σ′δl,l′δm,m′ , ν, ν′ ∈ ILmax

,(33)

Q
(n)
ν;ν′ =

1

2

dn

dρn

(
ρ2 d(jl′(ρ)h

(1)
l (ρ))

dρ

)∣∣∣∣∣
ρ=ρS

·

·
∫ 2π

0

dφ

∫ π

0

dθ sin θHn(x̂(θ, φ))Y σ
l,m(x̂(θ, φ))Y σ′

l′,m′(x̂(θ, φ))+

− n

2

dn−1

dρn−1

(
jl′(ρ)h

(1)
l (ρ)

) ∣∣∣∣∣
ρ=ρS

∫ 2π

0

dφ

∫ π

0

dθ sin θ ·Hn−1(x̂(θ, φ))·(34)

·
(
∂H(x̂(θ, φ))

∂θ

∂

∂θ

(
Y σ
l,m(x̂(θ, φ))Y σ′

l′,m′(x̂(θ, φ))
)

+

+
1

sin2 θ

∂H(x̂(θ, φ))

∂φ

∂

∂φ

(
Y σ
l,m(x̂(θ, φ))Y σ′

l′,m′(x̂(θ, φ))
))

,

ν, ν′ ∈ ILmax
, n ≥ 1,
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where ρS = krS . We note that (33) follows from straightforward calculations
using formulas (10), (22), (31) and formula (34) follows from formula (32). This
is an interesting case since the fact that Q(0) is a diagonal matrix can be used
effectively in formula (28) for the computation of (Q(0))−1, and besides the
evident gain in the accuracy and in the computational cost of (Q(0))−1 we have
that it improves the parallel efficiency of formula (28).

Finally, we note that the actual validation of the perturbative method pro-
posed in this paper needs a rigorous convergence analysis of series

(35)
∞∑

n=0

T (n)

n!
εn, 0 ≤ ε ≤ 1,

generated by formulas (28)-(30). This theoretical analysis deserves to be consid-
ered with further investigations, so, at present we provide only some convincing
numerical results for the experimental validation of the proposed method.

4 – Numerical results

We present some results extracted from our numerical experience using the
perturbative method proposed in the previous section. The numerical results
are relative to ten different obstacles and they show mainly the convergence and
the stabilization features of the perturbative method. In particular, we consider
star-like obstacles whose boundary is parametrized by the following functions:

Oblate Ellipsoid : r1(x̂(θ, φ)) =
1√

( 2
3 sin θ)2 + cos2 θ

,(36)

Prolate Ellipsoid : r2(x̂(θ, φ)) =
1√

sin2 θ + ( 2
3 cos θ)2

,(37)

Pseudo Apollo : r3(x̂(θ, φ)) =
3

5

√
17

4
+ 2 cos(3θ) ,(38)

Reverse Platelet : r4(x̂(θ, φ)) = 1 +
1

2
sin2 θ,(39)

Short Cylinder : r5(x̂(θ, φ)) =
1

10

√
( 2
3 sin θ)10 + cos10 θ

,(40)

Long Cylinder : r6(x̂(θ, φ)) =
1

10

√
sin10 θ + ( 2

3 cos θ)10
,(41)

Vogel’s Nut : r7(x̂(θ, φ)) =
3

2

√
1 − 3

4
sin2 θ,(42)
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Generic Ellipsoid : r8(x̂(θ, φ))=
1√((

3
2 sinφ

)2
+cos2 φ

)
sin2 θ+

(
2
3 cos θ

)2 ,(43)

Corrugated Sphere : r9(x̂(θ, φ)) =

(
1 +

1

20
cos(4θ) +

1

40
cos(8θ)

)
·(44)

·
(

1 +
1

20
cos(4φ) +

1

40
cos(8φ)

)
,

Cuboid : r10(x̂(θ, φ)) =
1

10

√
(sin10 φ + cos10 φ) sin10 θ + cos10 θ

,(45)

where θ ∈ [0, π], φ ∈ [0, 2π). We note that obstacles (36)-(42) are axial-
symmetric obstacles, that is the corresponding parametrization of the boundary
is a function independent from variable φ, obstacles (43)-(45) have not particular
symmetry properties; all the obstacles are convex excepting (38), (42), (44) that
are non-convex obstacles. In Figure 1 are shown the ten obstacles defined in
(36)-(45). Finally, in problem (4)-(6) we always consider k = 1, and in equation
(5) we choose function (19) with α = x̂(π3 ,

π
6 ).

The numerical results corresponding to obstacles (36)-(45) are reported in
Table 1. For the computation of these results we have performed the sum in
formula (26) using the arithmetic mean methods for the summation of divergent
series. The simpler arithmetic mean method is the usual Cesàro means. This
method can be generalized in several different ways obtaining, for example, the
method of Hölder, the method of Cesàro, the method of Riesz; all these methods
depend on a parameter usually called order of the method and they reduce to
the usual Cesàro means when the order is equal to one, see [30] page 94 for a
more detailed discussion. In particular for the results reported in Table 1 we
have considered the Riesz method, that is given τ ∈ IN we define Σ(N,τ) to be
the sum of the matrices T (n), n = 0, 1, . . . , N according to the Riesz method of
order τ , that is

(46) Σ(N,τ) =

N∑

n=0

(
1 − n

N + 1

)τ
T (n)

n!
.

The Riesz method is regular, that is, it does not modify the sum of convergent
series. Thus, supposing that (35) is a convergent series we can compute T (D, k)
using either series (35) or Σ(N,τ), as N → ∞. In practice methods for the
summation of divergent series are usually used for transforming slowly convergent
into rapidly convergent series. From numerical results not reported in this paper
series (35) seems to be convergent for all the considered obstacles, but the rate of
convergence is quite dependent on the difficulty of the particular obstacle taken
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Fig. 1: The obstacles defined in (36)-(45).
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into account. This unpleasant property of approximation (26) is attenuated by
using the above mentioned methods for the summation of divergent series; in
particular, we have that the method of Cesàro gives results similar to the ones
obtained with the method of Riesz. The method of Hölder gives usually better
results with respect to the method of Riesz when we consider hard obstacles,
such as for example Reverse Platelet, but it gives much worse results when we
consider easy obstacles, such as for example ellipsoids. So that given N, τ ∈ IN
matrix Σ(N,τ) is the computed approximation of the matrix T (D, k); Table 1
shows the convergence properties of the sum Σ(N,τ) to the matrix T (D, k). We
define the following performance index:

(47) E
(N,τ)
T =

∥∥Σ(N,τ) − T (D, k)
∥∥
∞

‖T (D, k)‖∞
.

where ‖ · ‖∞ denotes the operator matrix norm associated with the vector max-
imum norm. Moreover the approximation ũs,(N,τ) of the solution us of problem
(4)-(6) is computed from formulas (14), (15) substituting T (D, k) with Σ(N,τ).
Table 1 also shows a comparison between the approximation ũs of the solution
us of problem (4)-(6) obtained using the usual T -matrix method and the ap-
proximation ũs,(N,τ) obtained using the perturbative method. As a consequence
of the discussion following formula (12) this comparison takes into account only
the error in the approximation of condition (5), so that we consider the following
two performance indices:

Eu =
1

92

(∣∣∣ũs(ξ
0,0

) + ui(ξ
0,0

)
∣∣∣ +

∣∣∣ũs(ξ
10,0

) + ui(ξ
10,0

)
∣∣∣+

+

9∑

i=1

9∑

j=0

∣∣∣ũs(ξ
i,j

) + ui(ξ
i,j

)
∣∣∣
)
,(48)

E(N,τ)
u =

1

92

(∣∣∣ũs,(N,τ)(ξ
0,0

) + ui(ξ
0,0

)
∣∣∣ +

∣∣∣ũs,(N,τ)(ξ
10,0

) + ui(ξ
10,0

)
∣∣∣+

+
9∑

i=1

9∑

j=0

∣∣∣ũs,(N,τ)(ξ
i,j

) + ui(ξ
i,j

)
∣∣∣
)
,(49)

where ξ
i,j

= r(x̂( π
10 i,

π
5 j))x̂( π

10 i,
π
5 j), j, i = 0, 1, . . . , 10, and r is the parametriza-

tion of the boundary ∂D of the obstacle D under consideration. The indices Eu,

E
(N,τ)
u can be seen as relative errors computed on a regular grid of ∂D; note

that number 92, appearing in formulas (48), (49), represents the sum of the
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absolute values of ui, defined in (19), on such a grid. We note that the results
shown in Table 1 are relative to the following choice of the parameters previ-
ously described: Lmax = 6, τ = 5, 10, N = 5, 10. For a generic obstacle D the
choice of the base point B in the perturbative procedure is given by the sphere
having the nearest boundary ∂B to ∂D in the least-squares sense. Moreover
the integrals appearing in formulas (22), (34) are approximated by a composite
Gauss-Legendre formula and the solution of equation (18) is computed by the
LU factorization of matrix Q with partial pivoting.

Table 1. The numerical results for the ten obstacles (36)-(45). For each ob-

stacle the performance indices E
(N,τ)
T , E

(N,τ)
u , N = 5, 10, τ = 5, 10 and Eu are

reported.

E
(N,τ)
T E

(N,τ)
u Eu

N = 5 N = 10 N = 5 N = 10

Oblate ellipsoid
τ = 5

τ = 10

2.29(−2)

2.29(−2)

3.94(−2)

3.94(−2)

7.24(−2)

7.41(−2)

9.34(−2)

9.38(−2)
9.26(−2)

Prolate ellipsoid
τ = 5

τ = 10

2.88(−2)

2.88(−2)

4.94(−2)

4.94(−2)

5.33(−2)

5.32(−2)

7.90(−2)

7.90(−2)
4.31(−2)

Pseudo apollo
τ = 5

τ = 10

4.75(−2)

4.65(−2)

7.36(−2)

7.36(−2)

1.31(−1)

1.54(−1)

1.03(−1)

1.04(−1)
2.01(-1)

Reverse platelet
τ = 5

τ = 10

3.45(−1)

3.33(−1)

3.69(−1)

3.67(−1)

3.30

4.61

1.74

1.90
5.08

Short cylinder
τ = 5

τ = 10

2.90(−2)

2.93(−2)

5.16(−2)

5.17(−2)

2.59(−1)

2.66(−1)

2.13(−1)

2.18(−1)
3.24(−1)

Long cylinder
τ = 5

τ = 10

4.69(−2)

4.78(−2)

8.63(−2)

8.64(−2)

2.36(−1)

2.33(−1)

1.91(−1)

1.90(−1)
3.03(−1)

Vogel’s nut
τ = 5

τ = 10

1.34(−1)

1.27(−1)

1.67(−1)

1.66(−1)

1.81(−1)

3.46(−1)

1.43(−1)

1.58(−1)
1.89(−1)

Generic ellipsoid
τ = 5

τ = 10

4.77(−2)

4.81(−2)

8.11(−2)

8.13(−2)

2.77(−1)

2.52(−1)

2.02(−1)

1.97(−1)
4.69(−1)

Corrugated sphere
τ = 5

τ = 10

7.86(−3)

7.85(−3)

1.18(−2)

1.18(−2)

5.17(−2)

5.17(−2)

5.35(−2)

5.35(−2)
5.45(−2)

Cuboid
τ = 5

τ = 10

3.01(−2)

2.93(−2)

4.53(−2)

4.51(−2)

1.30(−1)

1.31(−1)

9.11(−2)

9.14(−2)
1.88(−1)
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From Table 1 we can see very interesting results. In particular, we can note
a quite rapid convergence, also due to the Riesz method, of the sum (46) to the

matrix T (D, k), in fact the indices E
(5,τ)
T , E

(10,τ)
T are quite similar. Moreover,

comparing E
(5,τ)
u , E

(10,τ)
u we can see that high values of N need for obstacles

having shape far from the sphere, such as for example Long Cylinder, Vogel’s
Nut and Cuboid, see Figure 1. We can also note that the use of a high value
for parameter τ is usually useless and sometimes spoils the accuracy of the final

approximation of T (D, k). Moreover, comparing the indices Eu, E
(N,τ)
u reported

in Table 1 it can be noted a quite general improvement of the solution obtained
by the perturbative technique with respect to the one obtained by the usual T -

matrix method. We can also note that the sensitivity of E
(N,τ)
u with respect to

τ is larger than the one of E
(N,τ)
T ; furthermore it seems that the value of τ must

be chosen according to the difficulty of the obstacle D, in fact for easy obstacles
like ellipsoids we obtain better results for low values of τ , instead for the other
obstacles we obtain better results for high values of τ .

5 – Conclusions

We consider the solution of direct scattering problems. These problems can
be seen as boundary-value problems for the Helmholtz equation in unbounded
domains. For the solution of these problems we study the so called T -matrix
method, which is a very classical method for the solution of direct scattering
problems. We propose a perturbative method based on the T -matrix method.
From a large number of numerical experiments we have discussed the improve-
ment in the accuracy of the T -matrix method due to the perturbative technique
presented. In particular the numerical results shown in Section 4 are very inter-
esting, so that we deserve further investigations of the method presented. The
main question is, of course, the settlement of classes of obstacles for which the
perturbative procedure proposed generates convergent approximations (see for-
mula (26)) of the matrix T (D, k). This investigation, unavoidable for a rigorous
validation of the proposed method, can be integrated and completed with the
study of the connection of formula (35) and the well known methods for the sum-
mation of divergent series. Another interesting question is also the development
of versions of formulas (28), (31), (32), (33), (34) that are efficient for sequential
computations and for parallel computations.

We conclude describing a possible very interesting application of the method
proposed. The perturbative procedure presented here can deal in a natural
way with the problem of scattering by random rough surface obstacles. This
problem has been initially considered for the study of water waves on the ocean
surface, but now it finds application in several different fields of engineering and
natural sciences, such as for example detection of small defects in manufacturing
processes or the study of the variations in height in natural ground surfaces, see
[31], [32], [33] for a detailed discussion.
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di Camerino – 62032 Camerino, Italy
E-mail: nadaniela.egidi@unicam.it pierluigi.maponi@unicam.it


