On the stability of the first eigenvalue of $A_{p} u+\lambda g(x)|u|^{p-2} u=0$ with varying p

A. El KHALIL - P. LINDQVIST - A. TOUZANI

Abstract: The stability with respect to p of the nonlinear eigenvalue problem

$$
\sum_{i, j=1}^{N} \frac{\partial}{\partial x_{i}}\left[\left(\sum_{m, k=1}^{N} a_{m, k}(x) \frac{\partial u}{\partial x_{m}} \frac{\partial u}{\partial x_{k}}\right)^{\frac{p-2}{2}} a_{i, j}(x) \frac{\partial u}{\partial x_{j}}\right]+\lambda g(x)|u|^{p-2} u=0
$$

is studied.

1 - Introduction and notations

In this paper we study the continuity (stability) of the eigenvalue problem

$$
\left\{\begin{array}{l}
-A_{p} u=\lambda g(x)|u|^{p-2} u \quad \text { in } \Omega \tag{1.1}\\
u \in W_{0}^{1, p}(\Omega)
\end{array}\right.
$$

with respect to p which varies continuously in $(1, \infty)$. Here Ω is a bounded domain in \mathbb{R}^{N} and $g \in L_{\text {loc }}^{\infty}(\Omega) \cap L^{r}(\Omega)$ is an indefinite weight function. The exponent $r=r(N, p)$ satisfies the following conditions

$$
\begin{cases}r \geq \frac{N p}{p-1} & \text { when } 1<p \leq N \tag{1.2}\\ r=1 & \text { when } p>N\end{cases}
$$

Key Words and Phrases: A_{p}-Laplacian - Indefinite weight - Stability - Nonlinear eigenvalue problem - Segment property.
A.M.S. Classification: 35B35-35B32-35J70
and g can change its sign in Ω, we assume only that $\Omega^{+}=\{x \in \Omega, g(x)>0\}$ has positive measure. The so-called A_{p}-Laplacian operator is defined by

$$
A_{p} u=\sum_{i, j=1}^{N} \frac{\partial}{\partial x_{i}}\left[\left(\sum_{m, k=1}^{N} a_{m, k}(x) \frac{\partial u}{\partial x_{m}} \frac{\partial u}{\partial x_{k}}\right)^{\frac{p-2}{2}} a_{i, j}(x) \frac{\partial u}{\partial x_{j}}\right]
$$

Where $A=\left(a_{i, j}\right)_{i, j}$ is a matrix satisfying the conditions
(1.3) $\left\{\begin{array}{l}\text { (i) } a_{i, j} \equiv a_{j, i} \in L^{\infty}(\Omega) \cap \mathcal{C}^{1}(\Omega) \\ \text { (ii) }|\xi|_{a}^{2} \equiv \sum_{i, j=1}^{N} a_{i, j}(x) \xi_{i} \xi_{j} \geq|\xi|^{2} \quad \text { when } x \in \Omega \text { for all } \xi \in \mathbb{R}^{N} .\end{array}\right.$

We will use the norm

$$
\|v\|_{1, p}=\left\||\nabla v|_{a}\right\|_{p}=\left(\int_{\Omega}|\nabla v|_{a}^{p} d x\right)^{\frac{1}{p}}
$$

We also define an inner product

$$
\langle\xi, \zeta\rangle_{a} \equiv \sum_{i, j=1}^{N} a_{i, j}(x) \xi_{i} \zeta_{j}
$$

The A_{p}-Laplacian operator defined above was studied by Yu. G. Reshetnyak [13] and J. Mossino [11] and used in [8]. Many elliptic operators are particular cases of the A_{p}-Laplacian operator. For example, the p-Laplacian

$$
\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)
$$

and the linear operator

$$
A_{2} u=\sum_{i, j=1}^{N} \frac{\partial}{\partial x_{i}}\left(a_{i, j}(x) \frac{\partial u}{\partial x_{i}}\right)
$$

These operators, with $p \neq 2$, are used for non-Newtonian fluids (dilatant fluids have $p>2$, pseudo-plastics have $1<p<2$), and appear in some reactiondiffusion problems as well as in nonlinear elasticity, and in glaciology $\left(p=\frac{3}{4}\right)$.

Under various conditions the simplicity of the first eigenvalue for the above case Δ_{p} were obtained by various authors. When $g \equiv 1$ the first eigenvalue for the A_{p}-Laplacian is simple as in the case of the ordinary p-Laplacian, see [3, $12,14]$ for more general g. These results were extended to our problem in [15].

Recently, for $g \equiv 1$ and without any assumptions of regularity on the domain Ω, the simplicity of the first eigenvalue was proved in [9] for the p-Laplacian Δ_{p}. Its stability (continuity) with respect to p was studied in [10]. In some other cases, it was studied in [6].

The principal eigenvalue $\lambda_{p}(g)$ of the A_{p}-Laplacian with indefinite weight g is here defined as the least positive real number $\lambda>0$ for which the problem (1.1) has a nontrivial solution.

We now describe some main results of this paper. We study the convergence of the first eigenfunctions in connection with the inequalities

$$
\lim _{s \rightarrow p_{-}} \lambda_{s}(g) \leq \lambda_{p}(g)=\lim _{s \rightarrow p_{+}} \lambda_{s}(g)
$$

proved in Theorem 3.2 and Corollary 3.1. In other words we explore the behavior of the principal eigenfunction $u_{s} \in W_{0}^{1, s}(\Omega)$ (required to be positive and $\left.\int_{\Omega} g(x)\left|u_{s}\right|^{s} d x=1\right)$ to the equation

$$
A_{s} u_{s}+\lambda_{s}(g)\left|u_{s}\right|^{s-2} u_{s}=0
$$

as s varies continuously in $(1, \infty)$. This is why we are interested in the stability to the right.

In very irregular domains with $p \leq N$, the situation $\lim _{s \rightarrow p_{-}} \lambda_{s}(g)<\lambda_{p}(g)$ is possible. An example is given by [10] in the case $A_{p}=\Delta_{p}$ and $g \equiv 1$. This situation is as a consequence of a strange convergence phenomenon: The principal eigenfunctions $u_{s}, s<p$, converge to a positive solution of the first equation (1.1).

The limit function is in the Sobolev space $W^{1, p}(\Omega)$ and in every $W_{0}^{1, p-\epsilon}(\Omega)$, $\epsilon>0$ small enough, but is not in the required $W_{0}^{1, p}(\Omega)$. If Ω satisfies the segment property then it follows from Theorem 2.1, that

$$
W_{0}^{1, q}(\Omega) \cap W^{1, p}(\Omega)=W_{0}^{1, p}(\Omega), 1<q<p
$$

In this case we show in Corollary 3.2 and Corollary 3.3 our main results related to the stability.

In Theorem 3.6 we show that the eigenfunctions and their gradients converge locally uniformly to a positive solution of the first equation problem (1.1), by the $\mathcal{C}_{\text {loc }}^{1, \alpha}$-regularity, see [4], and the L^{∞}-estimate established in the Appendix.

The paper is organized as follows: In Section 2, we establish some definitions and basic properties. In Section 3, we first give some general stability results with respect to p for the first positive eigenvalue of problem (1.1) and we restrict ourselves to bounded domain Ω having the segment property. This class of domains is fairly large. Then we prove the global stability using some results established in Section 2 and in Appendix. The segment property is needed here to guarantee the right boundary values of the limit function.

2 - Preliminary results

In defining the eigenvalues of the A_{p}-Laplacian operator with weight (in a given bounded domain $\Omega \subset \mathbb{R}^{N}$), we shall interpret Equation (1.1) in the weak sense.

Definition 2.1. We say that $\lambda \in \mathbb{R}$ is an eigenvalue, if there exists a function $u \in W_{0}^{1, p}(\Omega), u \not \equiv 0$, such that

$$
\begin{equation*}
\int_{\Omega}|\nabla u|_{a}^{p-2}\langle\nabla u, \nabla \varphi\rangle_{a} d x=\lambda \int_{\Omega} g(x)|u|^{p-2} u \varphi d x \tag{2.1}
\end{equation*}
$$

whenever $\varphi \in W_{0}^{1, p}(\Omega)$. The function u is called an eigenfunction.

2.1 - Basic properties

Under our conditions on $a_{i, j}$ and g, it is well-known that the problem (1.1) possesses at least a sequence of positive eigenvalues $\lambda_{n}, \lambda_{n} \nearrow^{+\infty}$, as $n \rightarrow+\infty$. These can obtained by the Ljusternick-Schnirelmann theory minimizing the energy functional,

$$
\Phi(u)=\left(\frac{1}{p}| ||\nabla u|_{a} \|_{p}^{p}\right)^{2}-\frac{1}{p} \int_{\Omega} g(x)|u|^{p} d x
$$

on $W_{0}^{1, p}(\Omega)$. See [2], see also [8] or [15].
Let now $\lambda_{p}(g)$ denote the first positive eigenvalue of (1.1). We recall that $\lambda_{p}(g)$ can be variationally characterized as

$$
\begin{align*}
\lambda_{p}(g) & =\min \left\{\int_{\Omega}|\nabla u|_{a}^{p} d x ; u \in W_{0}^{1, p}(\Omega), \int_{\Omega} g(x)|u|_{a}^{p} d x=1\right\}= \tag{2.2}\\
& =\min \left\{\frac{\int_{\Omega}|\nabla u|_{a}^{p} d x}{\int_{\Omega} g(x)|u|^{p} d x} ; u \in W_{0}^{1, p}(\Omega), \int_{\Omega} g(x)|u|^{p} d x>0\right\}
\end{align*}
$$

Throughout this paper, the first eigenfunctions are those corresponding to $\lambda_{p}(g)$. The principal eigenfunction, denoted u_{p}, is the first eigenfunction normalized by $\int_{\Omega} g(x)\left|u_{p}\right|^{p} d x=1$, and required to be positive. Hence

$$
\lambda_{p}(g)=\int_{\Omega}\left|\nabla u_{p}\right|_{a}^{p} d x
$$

We end this paragraph by recalling some fundamental properties, found in [8], [15], which valid under our assumptions.

1) The first eigenfunctions are essentially unique in any bounded domain, i.e., they are merely constant multiples of each other.
2) The principal eigenfunction has no zeros in the domain the first eigenfunctions are only those not changing sign.
3) The solutions of problem (1.1) are known to be of class $C_{\text {loc }}^{1, \alpha}(\Omega)$ for some $\alpha>0$ depending on p and N, see [4].

2.2 - The segment property

We begin with defining a sharp class of domains for which the boundary is sufficiently regular to guarantee that

$$
W^{1, p}(\Omega) \cap_{q<p} W_{0}^{1, q}(\Omega)=W_{0}^{1, p}(\Omega)
$$

Definition 2.2. An open subset Ω of \mathbb{R}^{N} is said to have the segment property if, given any $x \in \partial \Omega$, there exist an open set G_{x} in \mathbb{R}^{N} with $x \in G_{x}$ and y_{x} of $\mathbb{R}^{N} \backslash\{0\}$ such that, if $z \in \bar{\Omega} \cap G_{x}$ and $\left.t \in\right] 0,1\left[\right.$, then $z+t y_{x} \in \Omega$.

This property allows us by a translation to push the support of a function u in Ω. The following result is essential here.

Theorem 2.1. Let Ω be a bounded domain in \mathbb{R}^{N} having the segment property. If $u \in W^{1, p}(\Omega) \cap W_{0}^{1, q}(\Omega)$ for some $\left.q \in\right] 1, p\left[\right.$, then $u \in W_{0}^{1, p}(\Omega)$.

Proof. The following technique is inspired by [1, Theorem 3.18]. The function

$$
\tilde{u}= \begin{cases}u & \text { in } \Omega \\ 0 & \text { in } \mathbb{R}^{N} \backslash \Omega\end{cases}
$$

is in $W^{1, p}\left(\mathbb{R}^{N}\right)$. Indeed, we have $u \in W_{0}^{1, q}(\Omega)$, and so $\tilde{u} \in W^{1, q}\left(\mathbb{R}^{N}\right)$; moreover $\nabla \tilde{u}=\widetilde{\nabla u}$ weakly and a.e. on \mathbb{R}^{N}. On the other hand, $\tilde{u} \in L^{p}\left(\mathbb{R}^{N}\right)$ and $\widetilde{\nabla u}$ $\in\left(L^{p}\left(\mathbb{R}^{N}\right)\right)^{N}$, because $u \in W^{1, p}(\Omega)$. Finally, we conclude that $\left.\tilde{u} \in W^{1, p}\left(\mathbb{R}^{N}\right)\right)$. Let $K=\operatorname{supp} u=: \overline{\{x \in \Omega, u(x) \neq 0\}} \mathbb{R}^{N}$, (closure in \mathbb{R}^{N}). Thus K is compact and $K \subset \bar{\Omega}$.

If $K \subset \Omega$, let j_{ϵ} be defined as in Section 2.17 of [1], thus the convolution $j_{\epsilon} * u \in C_{0}^{\infty}(\Omega)$, provided $0<\epsilon<\operatorname{dist}(K, \partial \Omega)$, and $j_{\epsilon} * u \rightarrow u$ in $W^{1, p}(\Omega)$, as $\epsilon \rightarrow$ 0^{+}. This shows that $u \in W_{0}^{1, p}(\Omega)$. We shall therefore suppose that $K \cap \partial \Omega \neq \emptyset$. From Definition 2.2, to each $x \in \partial \Omega$, there corresponds a neighborhood G_{x} and a vector $y_{x} \in \mathbb{R}^{N} \backslash\{0\}$. Put $F=K \cap\left(\bar{\Omega} \backslash \bigcup_{x \in \partial \Omega} G_{x}\right)$; then F is compact and $F \subset \Omega$. Thus there is an open set G_{0} such that $F \subset G_{0} \subset \Omega$, with $\bar{G}_{0} \subset \Omega$. On the other hand, $K \cap \partial \Omega$ is compact in \mathbb{R}^{N} and covered by the open sets $G_{x}, x \in \partial \Omega$. Therefore $K \cap \partial \Omega$ may be covered by finitely may of the G_{x}, say $G_{1}, G_{2}, \ldots, G_{k}$, and also the sets $G_{0}, G_{1}, \ldots, G_{k}$ form an open covering of K. By a similar argument as that in the proof of Theorem 3.18. of [1, p.55], we can construct open sets $G_{0}^{\prime}, G_{1}^{\prime}, \ldots, G_{k}^{\prime}$ which form an open covering of K with $\overline{G_{j}^{\prime}} \subset G_{j}$ for each j. Now, let $\Theta=\left\{\theta_{j}, 0 \leq j \leq k\right\}$ be a partition of unity subordinate to covering $\left\{G_{j}^{\prime}, 0 \leq j \leq k\right\}$ and put $u_{j}=\theta_{j} u, \forall j=0, \ldots, k$. We have $u=\sum_{j=0}^{N} u_{j}$ and $\operatorname{supp} u_{j} \subset G_{j}^{\prime}$, for each $j=0, \ldots, k$. Therefore, it suffices to show that each $u_{j} \in W_{0}^{1, p}\left(\Omega \cap G_{j}\right)$. Since $\overline{G_{0}^{\prime}} \subset \Omega$, our discussion of the case $K \subset \Omega$ above shows that $u_{0} \in W_{0}^{1, p}(\Omega)$. For $j \geq 1$, we have $u_{j} \in W^{1, p}\left(\Omega \cap G_{j}\right)$
and $\tilde{u}_{j} \in W^{1, p}\left(\mathbb{R}^{N}\right)$. Put $K_{j}=\operatorname{supp} u_{j}$ and let $u_{j, t}=\tilde{u}_{j}\left(x-t y_{j}\right)$, with $0<t<$ $\min \left\{1,\left|y_{j}\right|^{-1} \operatorname{dist}\left(G_{j}^{\prime}, G_{j}^{c}\right)\right\}, y_{j}$ denoting the element associated with G_{j} as in Definition 2.2. Thus we have

$$
\begin{equation*}
\operatorname{supp} u_{j, t} \subset \Omega \cap G_{j} \tag{2.3}
\end{equation*}
$$

for each t satisfying $0<t<\min \left\{1,\left|y_{j}\right|^{-1} \operatorname{dist}\left(G_{j}^{\prime}, G_{j}^{c}\right)\right\}$. Indeed, we have

$$
\operatorname{supp} u_{j, t}=K_{j}+t y_{j} \subset G_{j} \cap \bar{\Omega}+t y_{j} \subset \Omega
$$

by the segment property. On the other hand, let $x \in \operatorname{supp} u_{j, t}$. Then
$\operatorname{dist}\left(x, G_{j}^{\prime}\right) \leq \operatorname{dist}\left(x, x-t y_{j}\right)+\operatorname{dist}\left(x-t y_{j}, K_{j}\right)+\operatorname{dist}\left(K_{j}, G_{j}^{\prime}\right)=\operatorname{dist}\left(x, x-t y_{j}\right)$.
We obtain

$$
\operatorname{dist}\left(x, G_{j}^{\prime}\right) \leq \operatorname{dist}\left(x, x-t y_{j}\right)=\left|t y_{j}\right|
$$

Therefore, $\operatorname{dist}\left(x, G_{j}^{\prime}\right)<\operatorname{dist}\left(G_{j}^{\prime}, G_{j}^{c}\right)$ by the choice of t. Hence $x \in G_{j}$. This completes the proof of (2.3). We also have $u_{j, t} \in W^{1, p}\left(\mathbb{R}^{N}\right)$, because $\widetilde{u_{j}} \in$ $W^{1, p}\left(\mathbb{R}^{N}\right)$; especially, we have $u_{j, t} \in W^{1, p}\left(\Omega \cap G_{j}\right)$ and from (2.3), we deduce that $u_{j, t} \in W_{0}^{1, p}\left(\Omega \cap G_{j}\right)$, for $t>0$ sufficiently small. Translation is continuous in $L^{p}\left(\Omega \cap G_{j}\right)$ so $u_{j, t} \rightarrow u_{j}$ in $L^{p}\left(\Omega \cap G_{j}\right)$ and $\nabla u_{j, t} \rightarrow \nabla u_{j}$ in $\left(L^{p}\left(\Omega \cap G_{j}\right)\right)^{N}$, as $t \rightarrow 0^{+}$(note that $\left.\nabla \widetilde{u_{j}}=\widetilde{\nabla u_{j}}\right)$. Hence $u_{j, t} \rightarrow u_{j}$ in $W^{1, p}\left(\Omega \cap G_{j}\right)$. This together with the fact that $u_{j, t} \in W_{0}^{1, p}\left(\Omega \cap G_{j}\right)$, for $t>0$ small enough, ends the proof.

Remark 2.1. A bounded domain $\Omega \subset \mathbb{R}^{N}$ has the segment property if, and only if, it is in the class \mathcal{C}, cf. [5]. This means that locally the boundary has the continuous equation $x_{N}=f\left(x_{1}, x_{2}, \ldots, x_{N-1}\right)$, after a notation of the coordinate axis.

3-Stability of $s \longrightarrow \lambda_{s}(g)$

The first positive eigenvalue $\lambda_{s}(g)$ of the A_{s}-Laplacian with weight $g \in$ $L_{\text {loc }}^{\infty}(\Omega) \cap L^{r}(\Omega)$, where $r=r(N, p)$ satisfies (1.2), exists for each $s \in(1, \infty)$ which is near enough to p. Indeed, observe that (1.2) yields the following conditions: $r>\frac{N}{p}$ if $1<p<N, r>N$ if $p=N$ and $r=1$ if $p>N$, which imply the existence of $\lambda_{s}(g)$, (cf. [15]).

We will assume throughout this section that our conditions on g and $a_{i, j}$ are satisfied.

3.1 - Some inequalities

Theorem 3.1. The eigenvalues $\lambda_{s}(g)$ and λ_{s} satisfy

$$
\begin{equation*}
p \lambda_{p}^{\frac{1}{p}}(g) \leq s \lambda_{s}^{\frac{1}{s}}\left(\frac{\lambda_{s}(g)}{\lambda_{s}}\right)^{\frac{1}{p}} \tag{3.1}
\end{equation*}
$$

when $1<p<s$ and p, s are close enough.
Proof. Let $\varphi=u_{s}^{\frac{s}{p}}$. Then $\varphi \in W_{0}^{1, p}(\Omega)$, because $s>p$. Moreover $\int_{\Omega} g|\varphi|^{p} d x=$ $\int_{\Omega} g u_{s}^{s} d x=1$, and $\nabla \varphi=\frac{s}{p}\left|u_{s}\right|^{\frac{s}{p}-1} \nabla u_{s}$. Observe that φ is admissible to compute $\lambda_{s}(g)$ in (2.2). Hence

$$
\lambda_{p}^{\frac{1}{p}}(g) \leq\left(\int_{\Omega}|\nabla \varphi|_{a}^{p} d x\right)^{\frac{1}{p}}=\frac{s}{p}\left(\int_{\Omega} u_{s}^{s-p}\left|\nabla u_{s}\right|_{a}^{p} d x\right)^{\frac{1}{p}}
$$

From Hölder's inequality, we obtain the estimate

$$
\lambda_{p}^{\frac{1}{p}}(g) \leq \frac{s}{p}\left(\int_{\Omega} u_{s}^{s} d x\right)^{\frac{1}{p}-\frac{1}{s}} \lambda_{s}^{\frac{1}{s}}(g)
$$

On the other hand, we have

$$
\lambda_{s} \int_{\Omega} u_{s}^{s} d x \leq \int_{\Omega}\left|\nabla u_{s}\right|_{a}^{s} d x=\lambda_{s}(g)
$$

by $(1.3 \mathrm{ii})$ and the minimizing property of λ_{s}. Hence

$$
\lambda_{p}^{\frac{1}{p}}(g) \leq \frac{s}{p}\left(\frac{\lambda_{s}(g)}{\lambda_{s}}\right)^{\frac{1}{p}-\frac{1}{s}} \lambda_{s}^{\frac{1}{s}}(g)=\frac{s}{p} \lambda_{s}^{\frac{1}{s}}\left(\frac{\lambda_{s}(g)}{\lambda_{s}}\right)^{\frac{1}{p}}
$$

REmark 3.1. If $g \in L^{\infty}(\Omega)$, the inequality (3.1) holds for each $1<p<$ $s<\infty$. Notice that the one-sided limits

$$
\lim _{s \rightarrow p_{-}} \lambda_{s}(g) \text { and } \lim _{s \rightarrow p_{+}} \lambda_{s}(g)
$$

exist.

Corollary 3.1. We have

$$
\limsup _{s \rightarrow p_{-}} \lambda_{s}(g) \leq \lambda_{p}(g) \leq \liminf _{s \rightarrow p_{+}} \lambda_{s}(g) .
$$

Proof. - When $s \rightarrow p_{+}$, we have $p<s<p+1$. Thus

$$
s \lambda_{s}^{\frac{1}{s}} \leq(p+1) \lambda_{p+1}^{\frac{1}{p+1}}
$$

Hence the set $\left\{\lambda_{s} \mid p<s<p+1\right\}$ is bounded. Thus $\lambda_{s}^{\frac{p}{s}-1} \rightarrow 1$, as $s \rightarrow p_{+}$. Finally, from the inequality (3.1), we deduce that

$$
\lambda_{p}(g) \leq \liminf _{s \rightarrow p_{+}} \lambda_{s}(g)
$$

- For $s \rightarrow p_{-}$, with $1<s<p$, we have from (3.1), the following inequalities

$$
\left[\left(\frac{s}{p}\right)^{p-s} \lambda_{s}^{\frac{p}{s}-1}\right] \lambda_{s}(g) \leq \lambda_{s}(g) \lambda_{s}^{1-\frac{s}{p}} \leq\left(\frac{s}{p}\right)^{s} \lambda_{p}(g)
$$

The first inequality is (3.1) for $g \equiv 1$. Hence

$$
\left(\frac{s}{p}\right)^{p} \lambda_{s}^{\frac{p}{s}-1} \lambda_{s}(g) \leq \lambda_{p}(g)
$$

Therefore

$$
\limsup _{s \rightarrow p_{-}}\left[\left(\frac{s}{p}\right)^{p} \lambda_{s}^{\frac{p}{s}-1} \lambda_{s}(g)\right] \leq \lambda_{p}(g)
$$

On the other hand, since $\lambda_{s}^{\frac{p}{s}-1} \rightarrow 1$, as $s \rightarrow p_{-}$, we obtain that

$$
\limsup _{s \rightarrow p_{-}} \lambda_{s}(g) \leq \lambda_{p}(g)
$$

Remark 3.2. Observe that if $\lim _{s \rightarrow p} \lambda_{s}(g)$ exists, then this limit is necessarily equal to $\lambda_{p}(g)$. Therefore we will study the different cases $s \rightarrow p_{+}$and $s \rightarrow p_{-}$.

3.2 - Stability to the right

Theorem 3.2. For an arbitrary bounded domain we have

$$
\lim _{s \rightarrow p_{+}} \lambda_{s}(g)=\lambda_{p}(g)
$$

Proof. Let $\varphi \in \mathcal{C}_{0}^{\infty}(\Omega)$ be such that

$$
\begin{equation*}
\int_{\Omega} g|\varphi|^{p} d x>0 \tag{3.2}
\end{equation*}
$$

and let $\epsilon>0$ (small). Applying the Dominated Convergence Theorem, we find

$$
\lim _{\epsilon \rightarrow 0_{+}} \int_{\Omega} g|\varphi|^{p+\epsilon} d x=\int_{\Omega} g|\varphi|^{p} d x>0
$$

Hence, there is $\epsilon_{0}>0$ sufficiently small such that

$$
\int_{\Omega} g|\varphi|^{p+\epsilon} d x>0, \text { when } 0<\epsilon<\epsilon_{0}
$$

On the other hand, we have

$$
\lambda_{p+\epsilon}(g) \leq \frac{\int_{\Omega}|\nabla \varphi|_{a}^{p+\epsilon} d x}{\int_{\Omega} g|\varphi|^{p+\epsilon} d x}
$$

It follows from the Dominated Convergence Theorem that

$$
\begin{equation*}
\limsup _{\epsilon \rightarrow 0_{+}} \lambda_{p+\epsilon}(g) \leq \frac{\int_{\Omega}|\nabla \varphi|_{a}^{p} d x}{\int_{\Omega} g|\varphi|^{p} d x} \tag{3.3}
\end{equation*}
$$

This, and the fact that φ is an arbitrary function satisfying (3.2), yield

$$
\limsup _{\epsilon \rightarrow 0_{+}} \lambda_{p+\epsilon}(g) \leq \lambda_{p}(g)
$$

Now the result follows from Corollary 3.1.

ThEOREM 3.3. The principal eigenfunctions u_{s} associated with $\lambda_{s}(g)$ satisfy

$$
\begin{equation*}
\lim _{s \rightarrow p_{+}} \int_{\Omega}\left|\nabla u_{s}-\nabla u_{p}\right|_{a}^{p} d x=0 \tag{3.4}
\end{equation*}
$$

Proof. For $1<p<s$ with s near p. Hölder's inequality implies that

$$
\begin{equation*}
\int_{\Omega}\left|\nabla u_{s}\right|_{a}^{p} d x \leq|\Omega|^{1-\frac{p}{s}}\left(\lambda_{s}(g)\right)^{\frac{p}{s}} . \tag{3.5}
\end{equation*}
$$

This shows that $\left\{u_{s}, s>p\right\}$ is a bounded set in $W_{0}^{1, p}(\Omega)$. Hence there is a sequence s_{1}, s_{2}, \ldots, converging to p_{+}and there is a function $u \in W_{0}^{1, p}(\Omega)$ such that $u_{s_{j}} \rightharpoonup u$ (weakly) in $W_{0}^{1, p}(\Omega)$, as $j \rightarrow+\infty$. Using the Rellich-Kondrachov Compactness Theorem, (cf.[1, p.144]), we obtain that $u_{s_{j}} \rightarrow u$ in $L^{p+\frac{1}{N}}(\Omega)$, as $j \rightarrow+\infty$; in particular, $u_{s_{j}} \rightarrow u$ in $L^{p}(\Omega)$, as $j \rightarrow+\infty$. Passing to a subsequence if necessary, we can assume that $u_{s_{j}} \rightarrow u$ a.e. in Ω. We will prove that $u \equiv u_{p}$. The weak lower semicontinuity of the norm and (3.5) yield

$$
\begin{equation*}
\int_{\Omega}|\nabla u|_{a}^{p} d x \leq \lambda_{p}(g) \tag{3.6}
\end{equation*}
$$

It suffices to have

$$
\int_{\Omega} g u^{p} d x=1
$$

Indeed, if we set $M_{s}=\max _{\Omega} u_{s}$, then from Lemma 4.1., we have $\max _{s \in[a, b]} M_{s}<$ $M<\infty$. Here M is a constant not depending on s, and $[a, b]$ is any small interval containing p. Thus $0<u_{s_{j}} \leq M$, and $0 \leq u \leq M$ a.e. on Ω. Hence

$$
|g|\left|u_{s_{j}}^{s_{j}}-u^{p}\right| \leq|g| u_{s_{j}}^{s_{j}}+|g| u^{p} \leq|g| M^{s_{j}}+|g| u^{p}
$$

a.e. on Ω. On the other hand, $M^{s_{j}} \leq M^{p+1}+1$. Thus a.e. on Ω, we have

$$
|g|\left|u_{s_{j}}^{s_{j}}-u^{p}\right| \leq|g|\left(M^{p+1}+1+M^{p}\right) \in L^{1}(\Omega)
$$

The Dominated Convergence Theorem yields

$$
\left|\int_{\Omega} g\left(u_{s_{j}}^{s_{j}}-u^{p}\right) d x\right| \leq \int_{\Omega}|g|\left|u_{s_{j}}^{s_{j}}-u^{p}\right| d x \rightarrow 0
$$

as $j \rightarrow+\infty$, since $g\left(u_{s_{j}}^{s_{j}}-u^{p}\right) \rightarrow 0$, a.e. in Ω, as $j \rightarrow+\infty$. From this it follows easily that $\int_{\Omega} g|u|^{p} d x=1$. Finally, (3.6) and the variational characterization of $\lambda_{p}(g)$ yield

$$
\int_{\Omega}|\nabla u|_{a}^{p} d x=\lambda_{p}(g)
$$

By the uniqueness of the principal eigenfunction we have $u=u_{p}$. Thus the limit function u does not depend on the particular (sub)sequence s_{1}, s_{2}, \ldots. Therefore $u_{s} \rightarrow u_{p}$ at least in $L^{p}(\Omega)$, as $s \rightarrow p_{+}$.

The rest of the proof, i.e., the strong convergence (3.4) can be obtained from Clarkson's inequalities, (cf.[1]); but with the $\left\|\left|\left|\left.\right|_{a} \|_{p^{-}}\right.\right.\right.$-norm in $W_{0}^{1, p}(\Omega)$.

3.3 - Stability to the left

This case is more difficult, because if $u \in W_{0}^{1, p-\epsilon}(\Omega)$ then it is possible that $u \notin W_{0}^{1, p}(\Omega)$.

Theorem 3.4. Let Ω be an arbitrary bounded domain. If we suppose that

$$
\begin{equation*}
\lim _{s \rightarrow p_{-}} \int_{\Omega}\left|\nabla u_{s}-\nabla u_{p}\right|_{a}^{s} d x=0 \tag{3.7}
\end{equation*}
$$

then we have

$$
\lim _{s \rightarrow p_{-}} \lambda_{s}(g)=\lambda_{p}(g)
$$

Proof. (3.7) and the Hölder inequality imply

$$
\lim _{s \rightarrow p_{-}} \int_{\Omega}\left|\nabla u_{s}-\nabla u_{p}\right|_{a}^{p-\epsilon} d x=0
$$

for any $\epsilon>0$ sufficiently small so that $0<p-s<\epsilon<p-1$. Therefore $\nabla u_{s} \rightarrow \nabla u_{p}$ in $\left(L^{p-\epsilon}(\Omega)\right)^{N}$, as $s \rightarrow p_{-}$. For $\epsilon>0$ small enough, the Hölder's inequality implies that

$$
\left\|\left|\nabla u_{s}\right|_{a}\right\|_{p-\epsilon} \leq|\Omega|^{\frac{s+\epsilon-p}{s(p-\epsilon)}}\left\|\left|\nabla u_{s}\right|_{a}\right\|_{s}
$$

Hence

$$
\begin{equation*}
\left\|\left|\nabla u_{p}\right|_{a}\right\|_{p-\epsilon} \leq|\Omega|^{\frac{\epsilon}{p(p-\epsilon)}} \liminf _{s \rightarrow p_{-}} \lambda_{s}^{\frac{1}{s}}(g) . \tag{3.8}
\end{equation*}
$$

Letting $\epsilon \rightarrow 0^{+}$, the Fatou lemma yields

$$
\lambda_{p}^{\frac{1}{p}}(g)=\left\|\left|\left|\nabla u_{p}\right|_{a} \|_{p} \leq \liminf _{s \rightarrow p_{-}} \lambda_{s}^{\frac{1}{s}}(g) .\right.\right.
$$

This completes the proof, in view of Corollary 3.1.
Remark 3.3. The converse of the theorem is an open question in the case $p \leq N$.

However, we have the following partial result for any bounded domain and every p in $(1,+\infty)$.

Theorem 3.5. Under the same assumptions, suppose that $\lim _{s \rightarrow p_{-}} \lambda_{s}(g)=$ $\lambda_{p}(g)$. Then each sequence of real numbers tending to p from below contains a subsequence s_{1}, s_{2}, \ldots such that

$$
\begin{equation*}
\lim _{j \rightarrow+\infty} \int_{\Omega}\left|\nabla u_{s_{j}}-\nabla u\right|_{a}^{s_{j}} d x=0 \tag{3.9}
\end{equation*}
$$

for some function $u \in W^{1, p}(\Omega) \cap W_{0}^{1, p-\epsilon}(\Omega)$, whenever $\epsilon>0, \int_{\Omega} g|u|^{p} d x=$ $1, u \geq 0$ a.e. on Ω and $\int_{\Omega}|\nabla u|_{a}^{p} d x \leq \lambda_{p}(g)$. The function u may be depend on the sequence, but it is a weak solution to the equation

$$
A_{p} u+\lambda_{p}(g)|u|^{p-2} u=0
$$

Proof. Let us fix $\epsilon_{0}>0$ small enough, so that $0<p-\epsilon_{0}<s<p$ and that $(p+\epsilon)<(p-\epsilon)^{*}$ for $0<\epsilon<\epsilon_{0}$; where for $t \in(1,+\infty), t^{*}=\frac{N t}{N-t}$ if $1<t<N$ and $t^{*}=+\infty$ if $t \geq N$. Using Hölder's inequality, we obtain

$$
\left\|\left|\nabla u_{s}\right|_{a}\right\|_{p-\epsilon} \leq|\Omega|^{\frac{s+\epsilon-p}{s(p-\epsilon)}} \lambda_{s}^{\frac{1}{s}}(g)
$$

when $0<\epsilon<\epsilon_{0}$. From (3.1), we conclude that the norms $\left\|\left|\nabla u_{s}\right|_{a}\right\|_{p-\epsilon}, 0<\epsilon<$ ϵ_{0}, are uniformly bounded, in view of the assumption $\lim _{s \rightarrow p_{-}} \lambda_{s}(g)=\lambda_{p}(g)$. Thus we can find a function $u \in W_{0}^{1, p-\epsilon}(\Omega), 0<\epsilon<\epsilon_{0}$; and find a sequence s_{1}, s_{2}, \ldots converging to p_{-}such that $u_{s_{j}} \rightharpoonup u$ (weakly) in $W_{0}^{1, p-\epsilon}(\Omega)$, as $j \rightarrow+\infty$, for each $\epsilon \in\left(0, \epsilon_{0}\right)$ and hence $u_{s_{j}} \rightarrow u$ in $L^{p+\epsilon}(\Omega)$. Passing to a subsequence if necessary, we can assume that $u \geq 0$ a.e. on Ω. Clearly $u \in L^{p}(\Omega)$ and is independent of ϵ. On the other hand, the weak lower semicontinuity of the norm and the assumption $\lim _{j \rightarrow+\infty} \lambda_{s_{j}}(g)=\lambda_{p}(g)$ imply that

$$
\|\left.|\nabla u|_{a}\right|_{p-\epsilon} \leq|\Omega|^{\frac{\epsilon}{p(p-\epsilon)}} \lambda_{p}^{\frac{1}{p}}(g)
$$

Then letting $\epsilon \rightarrow 0^{+}$, we obtain with Fatou's lemma that $\nabla u \in\left(L^{p}(\Omega)\right)^{N}$ and

$$
\begin{equation*}
\left\||\nabla u|_{a}\right\|_{p} \leq \lambda_{p}^{\frac{1}{p}}(g) \tag{3.10}
\end{equation*}
$$

The normalization: $\int_{\Omega} g|u|^{p} d x=1$, is preserved and

$$
\begin{equation*}
\lim _{j \rightarrow+\infty} \int_{\Omega} g\left(\frac{u_{s_{j}}+u}{2}\right)^{s_{j}} d x=1 \tag{3.11}
\end{equation*}
$$

for a subsequence if necessary. On the other hand, we have

$$
\begin{equation*}
\lambda_{s_{j}}(g) \leq \frac{\int_{\Omega}\left|\frac{\nabla u_{s_{j}}-\nabla u}{2}\right|_{a}^{s_{j}} d x}{\int_{\Omega} g\left(\frac{u_{s_{j}+u}}{2}\right)^{s_{j}} d x} \tag{3.12}
\end{equation*}
$$

for j sufficiently large, because by (3.11) there is an index j_{0} so large that

$$
\int_{\Omega} g\left(\frac{u_{s_{j}+u}}{2}\right)^{s_{j}} d x>0
$$

when $j \geq j_{0}$. Clarkson's inequality yields

$$
\int_{\Omega}\left|\frac{\nabla u_{s_{j}}-\nabla u}{2}\right|_{a}^{s_{j}} d x \leq \frac{1}{2} \lambda_{s_{j}}(g)+\frac{1}{2}\left\||\nabla u|_{a}\right\|_{s_{j}}^{s_{j}}-\lambda_{s_{j}}(g) \int_{\Omega} g\left(\frac{u_{s_{j}}+u}{2}\right)^{s_{j}} d x
$$

if $s_{j} \geq 2$. Now (3.11) and the assumption $\lim _{s \rightarrow p_{-}} \lambda_{s}(g)=\lambda_{p}(g)$ imply

$$
\limsup _{j \rightarrow+\infty} \int_{\Omega}\left|\frac{\nabla u_{s_{j}}-\nabla u}{2}\right|_{a}^{s_{j}} d x \leq \frac{1}{2}\left\||\nabla u|_{a}\right\|_{p}^{p}-\frac{1}{2} \lambda_{p}(g) .
$$

From this and (3.10), it follows easily that

$$
\lim _{j \rightarrow+\infty} \int_{\Omega}\left|\nabla u_{s_{j}}-\nabla u\right|_{a}^{s_{j}} d x=0
$$

for the case $p>2$.
For the case $1 \leq p \leq 2$, we argue as follows. There is $j_{1} \in \mathbb{N}$ such that $1 \leq s_{j} \leq 2$, for each $j \geq j_{1}$. Let $j_{2}=\max \left(j_{1}, j_{0}\right)$. Then Clarckson's inequality associated with s_{j} and (3.12) yield

$$
\begin{aligned}
\left\{\int_{\Omega}\left|\frac{\nabla u_{s_{j}}-\nabla u}{2}\right|_{a}^{s_{j}} d x\right\}^{\frac{1}{s_{j}-1}} & +\left\{\lambda_{s_{j}}(g) \int_{\Omega} g\left(\frac{u_{s_{j}}+u}{2}\right)^{s_{j}} d x\right\} \leq \\
& \leq\left\{\frac{1}{2} \lambda_{s_{j}}(g)+\frac{1}{2} \int_{\Omega}|\nabla u|_{a}^{s_{j}} d x\right\}^{\frac{1}{s_{j}-1}}
\end{aligned}
$$

On the other hand from Hölder's inequality and (3.10) we deduce that

$$
\int_{\Omega}|\nabla u|_{a}^{s_{j}} d x \leq|\Omega|^{\frac{p-s_{j}}{p}} \lambda_{p}(g)^{\frac{s_{j}}{p}} .
$$

Thus

$$
\begin{aligned}
\left\{\int_{\Omega}\left|\frac{\nabla u_{s_{j}}-\nabla u}{2}\right|_{a}^{s_{j}} d x\right\}^{\frac{1}{s_{j}-1}} \leq & \left\{\frac{1}{2} \lambda_{s_{j}}(g)+\frac{1}{2}|\Omega|^{\frac{p-s_{j}}{p}} \lambda_{p}(g)^{\frac{s_{j}}{p}}\right\}^{\frac{1}{s_{j}-1}}+ \\
& -\left\{\lambda_{s_{j}}(g) \int_{\Omega} g\left(\frac{u_{s_{j}}+u}{2}\right)^{s_{j}} d x\right\}^{\frac{1}{s_{j}-1}}
\end{aligned}
$$

Now, (3.11) and the assumption $\lim _{s \rightarrow p_{-}}=\lambda_{p}(g)$ imply that

$$
\left\{\limsup _{j \rightarrow+\infty} \int_{\Omega}\left|\frac{\nabla u_{s_{j}}-\nabla u}{2}\right|_{a}^{s_{j}} d x\right\}^{\frac{1}{p-1}} \leq\left\{\frac{1}{2} \lambda_{p}(g)+\frac{1}{2} \lambda_{p}(g)\right\}^{\frac{1}{p-1}}-\lambda_{p}(g)^{\frac{1}{p-1}}=0 .
$$

Hence

$$
\lim _{j \rightarrow+\infty} \int_{\Omega}\left|\nabla u_{s_{j}}-\nabla u\right|_{a}^{s_{j}} d x
$$

REmARK 3.4. (i) If the limit function $u \in W_{0}^{1, p}(\Omega)$, then $u \equiv u_{p}$ by the uniqueness of the principal eigenfunction and (3.10).
(ii) When $p \leq N$, in a very irregular domain the defect $\lim _{s \rightarrow p_{-}} \lambda_{s}(g)<\lambda_{p}(g)$ is possible. See the counterpart in [10] for the case

$$
\Delta_{p} u+\lambda|u|^{p-2} u=0
$$

Corollary 3.2. For any bounded domain Ω having the segment property, we have

$$
\lim _{s \rightarrow p_{-}} \lambda_{s}(g)=\lambda_{p}(g)
$$

if and only if

$$
\lim _{s \rightarrow p_{-}} \int_{\Omega}\left|\nabla u_{s}-\nabla u_{p}\right|_{a}^{s} d x=0
$$

Proof. Suppose that $\lim _{s \rightarrow p_{-}} \lambda_{s}(g)=\lambda_{p}(g)$. From Theorem 3.5, the limit function u satisfies for $\epsilon>0$ small enough $u \in W^{1, p}(\Omega) \cap W_{0}^{1, p-\epsilon}(\Omega)$ such that

$$
u \geq 0 \text { a.e. in } \Omega, \int_{\Omega} g|u|^{p} d x=1 \text { and } \int_{\Omega}|\nabla u|_{a}^{p} d x \leq \lambda_{p}(g) .
$$

Since Ω has the segment property, thus $u \in W_{0}^{1, p}(\Omega)$ by Theorem 2.1. Thus u is admissible in the definition of $\lambda_{p}(g)$. Consequently,

$$
\lambda_{p}(g)=\int_{\Omega}|\nabla u|_{a}^{p} d x
$$

Hence $u \equiv u_{p}$ by the uniqueness of the principal eigenfunction. So by (3.9), we obtain

$$
\lim _{s \rightarrow p_{-}} \int_{\Omega}\left|\nabla u_{s}-\nabla u_{p}\right|_{a}^{s} d x=0
$$

since the limit function does not depend on the choice of the sequence. The converse is immediate, in view of Theorem 3.4.

Using the $C_{\text {loc }}^{1, \alpha}$-regularity of the principal eigenfunctions u_{s}, s proved in [6] and the L^{∞}-estimate to be established in Lemma 4.1., we can state the following result generalizing [10].

Theorem 3.6. Assume that the conditions on g and $a_{i, j}$ are satisfied. Then each sequence converging to p_{-}, contains a subsequence s_{1}, s_{2}, \ldots such that $u_{s_{j}} \rightarrow u$ and $\nabla u_{s_{j}} \rightarrow \nabla u$ locally uniformly, where u is some function in $C^{1}(\Omega)$. Moreover, u is a weak solution of the equation

$$
\begin{equation*}
A_{p} u+\lambda g(x)|u|^{p-2} u=0 \tag{E}
\end{equation*}
$$

where $\lambda=\lim _{j \rightarrow+\infty} \lambda_{s_{j}}(g)$.

We know that only the first eigenfunctions are not changing signs. Thus if λ is an eigenvalue of (\mathcal{E}), then $\lambda=\lambda_{p}(g)$, and by normalization, we have $u \equiv u_{p}$. We have come to an important point: though the limit function u of $\left\{u_{s}\right\}$, as $s \rightarrow p_{-}$, is in $\in W^{1, p}(\Omega) \cap W_{0}^{1, p-\epsilon}(\Omega)$, for any $\epsilon>0$ chosen sufficiently small, it is not always the right eigenfunction u_{p}, i.e., u is not necessary in $W_{0}^{1, p}(\Omega)$. Therefore u is not admissible in the definition of $\lambda_{p}(g)$. But, If Ω satisfies the segment property, then $u=u_{p}, \lambda=\lambda_{p}(g)$ and

$$
\lim _{s \rightarrow p_{-}} \lambda_{s}(g)=\lambda_{p}(g)
$$

So we have the following result.
Corollary 3.3. For any bounded domain Ω having the segment property, we have

$$
\lim _{s \rightarrow p} \lambda_{s}(g)=\lambda_{p}(g)
$$

4-Appendix

The technique to uniformly bound u_{p} in an arbitrary domain is originally due to Ladyzhenskaya and Urlatseva, cf. [7].

Lemma 4.1. Let the assumptions on g and $a_{i, j}$ be fulfilled. Then for any bounded domain $\Omega, \max _{\Omega} u_{p}$ is bounded uniformly in p, (u_{p} denotes the normalized principal eigenfunction).

Proof. If $p>N$, then from [5, Theorem 3.18., p.240] we have

$$
\left\|u_{p}\right\|_{\infty} \leq C|\Omega|^{\frac{1}{N}-\frac{1}{p}}\left\|\nabla u_{p}\right\|_{p} \leq C|\Omega|^{\frac{1}{N}-\frac{1}{p}} \lambda_{p}^{\frac{1}{p}}(g)
$$

where $C=\frac{1}{N}\left[\frac{1-\frac{1}{p}}{\frac{1}{N}-1}\right]^{\frac{1}{p^{\prime}}} \omega_{N}^{\frac{1}{N}}$, and ω_{N} is the volume of the unit ball in \mathbb{R}^{N}.
For $1<p \leq N$, we keep track of various "constants" in Proposition 2.16. of [15]; we obtain the lower bound

$$
\left\|u_{p}\right\|_{\infty, \Omega} \leq b\left\|\nabla u_{p}\right\|_{1, \Omega}
$$

where

$$
\begin{gathered}
b=\left(2^{p} \lambda_{p}(g)\|g\|_{r, \Omega}\right)^{\frac{N r}{p r-N}}\left(C^{\theta}+C^{\frac{\theta}{p}} \omega_{N}^{\frac{\theta(1-p)}{N}}\right)^{1-\frac{p r-N}{(p-1) N r}} \\
\theta=\frac{N r}{p r(1+N)-N(1+r)}
\end{gathered}
$$

and $C=\left(\frac{(N-1) p}{2(N-p) \sqrt{N}}\right)^{p}$ if $1<p<N$, and $C=\left[\max \left\{N, \frac{r(N-1)}{r-1}\right\}\right]^{\frac{N}{r}}$ if $p=N$.
This concludes the proof of the Lemma.

Acknowledgement

The authors are indebted to Professor J.P. Gossez for a helpful discussion about the segment property.

REFERENCES

[1] R. Adams: Sobolev Spaces, Academic Press, New-York, 1975.
[2] H. Amann: Ljusternik-Schnirelman theory and nonlinear eigenvalue problems, Math. Ann., 199 (1972), 55-72.
[3] A. Anane: Simplicité et isolation de la première valeur propre du p-Laplacien, C. R. Acad. Sci. Paris, 305 (1987), 725-728.
[4] E. Di Benedetto: $C^{1+\alpha}$-local regularity of weak solutions of degenerate elliptic equations, Nonlinear Analysis T.M.A., 7 (1983), 827-859.
[5] D. E. Edmunds - W. D. Evans: Spectral Theory and Differential Operators, Clarendon Press-Oxford, 1990.
[6] A. El Khalle: Sur le problème nonlinaire A_{p}-Laplacien: Stabilité-Bifurcation, thèse de 3ième cycle, Faculté des siences Dhar-Mahraz Fés, 1996.
[7] O. Ladyzheskaya - N. Uralatseva: Linear and Quasilinear Elliptic Equation, Academic Press, New York, 1968.
[8] E. Lami Dozo - A. Touzani: Autovalores con peso indefinito del A_{p}-Laplaciano, Centro latinoamericano de Matematica e Informatica CLAMI, 1992.
[9] P. LindQvist: On the equation $\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)+\lambda|u|^{p-2} u=0$, Proc. of Amer. Math. Soc., 109 (1990), 157-164.
[10] P. Lindqvist: On Non-Linear Rayleigh Quotients, Potential Analysis, 2 (1993), 199-218.
[11] J. Mossino: Inégalités isopémetriques et applications en physique, Paris, Hermann, 1984.
[12] M. Otani - T. Theshima: On the first eigenvalue of some quasilinear elliptic equations, Pro. Japon Acad., 64, Ser. A (1988), pp. 8-10.
[13] Yu. G. Reshetnyak: Set of singular points of solutions of certain nonlinear elliptic equations, (in Russian), Sibirskij Mat. Z., 9 (1968), 354-368.
[14] S. Sakaguchi: Concavity properties of solutions to some degenerate quasilinear elliptic Direchlet problem, Annali della Scuola Normale Superiore de Pisa, Serie IV (Classe di Scienze), 14 (1987).
[15] A. Touzani: Quelques résultats sur le A_{p}-Laplacien avec poids indefini, thèse de Doctorat, U.L.B. (1991-1992).

> Lavoro pervenuto alla redazione il 31 gennaio 2003 ed accettato per la pubblicazione il 23 marzo 2004.
> Bozze licenziate il 6 dicembre 2004

Indirizzo DEGLI AUTORI:

Abdelouahed El Khalil - Department of Mathematics and Industrial Genie - Polytechnic School of Montreal - P.O. 6079, Succ. Centre-Ville - Montréal (Quebec) H3C 3A7
E-mail: lkhlil@hotmail.com
Peter Lindqvist - Department of Mathematical Sciences - University of Science and Technology - N-7491 Trondheim, Norway

E-mail: lqvist@math.ntnu.no
Abdelfattah Touzani - Department of mathematics - Faculty of sciences Dhar-Mahraz - P.O. Box 1796 Atlas - Fez 30000, Morocco
E-mail: atouzani@iam.net.ma

