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On the stability of the first eigenvalue of

Apu + λ g(x)
∣∣ u

∣∣p− u = 0 with varying p

A. El KHALIL – P. LINDQVIST – A. TOUZANI

Abstract: The stability with respect to p of the nonlinear eigenvalue problem
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
+ λg(x) | u |p−2 u = 0,

is studied.

1 – Introduction and notations

In this paper we study the continuity (stability) of the eigenvalue problem

(1.1)

{ −Apu = λg(x) | u |p−2 u in Ω

u ∈ W 1,p
0 (Ω),

with respect to p which varies continuously in (1,∞). Here Ω is a bounded
domain in IRN and g ∈ L∞

loc(Ω) ∩ Lr(Ω) is an indefinite weight function. The
exponent r = r(N, p) satisfies the following conditions

(1.2)

{
r ≥ Np

p−1 when 1 < p ≤ N

r = 1 when p > N,
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and g can change its sign in Ω, we assume only that Ω+ = {x ∈ Ω, g(x) > 0}
has positive measure. The so-called Ap-Laplacian operator is defined by

Apu =

N∑

i,j=1

∂

∂xi







N∑

m,k=1

am,k(x)
∂u

∂xm

∂u

∂xk




p−2
2

ai,j(x)
∂u

∂xj


 .

Where A = (ai,j)i,j is a matrix satisfying the conditions

(1.3)





(i) ai,j ≡ aj,i ∈ L∞(Ω) ∩ C1(Ω)

(ii) | ξ |2a ≡
N∑

i,j=1

ai,j(x)ξiξj ≥| ξ |2 when x ∈ Ω for all ξ ∈ IRN .

We will use the norm

‖ v ‖1,p=‖ | ∇v |a‖p=
(∫

Ω

| ∇v |pa dx

) 1
p

.

We also define an inner product

〈ξ, ζ〉a ≡
N∑

i,j=1

ai,j(x)ξiζj .

The Ap-Laplacian operator defined above was studied by Yu. G. Reshetnyak
[13] and J. Mossino [11] and used in [8]. Many elliptic operators are particular
cases of the Ap-Laplacian operator. For example, the p-Laplacian

∆pu = div (| ∇u |p−2 ∇u)

and the linear operator

A2u =

N∑

i,j=1

∂

∂xi

(
ai,j(x)

∂u

∂xi

)
.

These operators,with p �= 2, are used for non-Newtonian fluids (dilatant fluids
have p > 2, pseudo-plastics have 1 < p < 2 ), and appear in some reaction-
diffusion problems as well as in nonlinear elasticity, and in glaciology (p = 3

4 ).
Under various conditions the simplicity of the first eigenvalue for the above

case ∆p were obtained by various authors. When g ≡ 1 the first eigenvalue for
the Ap-Laplacian is simple as in the case of the ordinary p-Laplacian, see [3,
12, 14] for more general g. These results were extended to our problem in [15].
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Recently, for g ≡ 1 and without any assumptions of regularity on the domain Ω,
the simplicity of the first eigenvalue was proved in [9] for the p-Laplacian ∆p. Its
stability (continuity) with respect to p was studied in [10]. In some other cases,
it was studied in [6].

The principal eigenvalue λp(g) of the Ap-Laplacian with indefinite weight
g is here defined as the least positive real number λ > 0 for which the problem
(1.1) has a nontrivial solution.

We now describe some main results of this paper. We study the convergence
of the first eigenfunctions in connection with the inequalities

lim
s→p−

λs(g) ≤ λp(g) = lim
s→p+

λs(g),

proved in Theorem 3.2 and Corollary 3.1. In other words we explore the be-
havior of the principal eigenfunction us ∈ W 1,s

0 (Ω) (required to be positive and∫
Ω
g(x)|us|s dx = 1) to the equation

Asus + λs(g)|us|s−2us = 0,

as s varies continuously in (1,∞). This is why we are interested in the stability
to the right.

In very irregular domains with p ≤ N , the situation lims→p− λs(g) < λp(g)
is possible. An example is given by [10] in the case Ap = ∆p and g ≡ 1.
This situation is as a consequence of a strange convergence phenomenon: The
principal eigenfunctions us, s < p, converge to a positive solution of the first
equation (1.1).

The limit function is in the Sobolev space W 1,p(Ω) and in every W 1,p−ε
0 (Ω),

ε> 0 small enough, but is not in the required W 1,p
0 (Ω). If Ω satisfies the segment

property then it follows from Theorem 2.1, that

W 1,q
0 (Ω) ∩W 1,p(Ω) = W 1,p

0 (Ω), 1 < q < p.

In this case we show in Corollary 3.2 and Corollary 3.3 our main results related
to the stability.

In Theorem 3.6 we show that the eigenfunctions and their gradients converge
locally uniformly to a positive solution of the first equation problem (1.1), by
the C1,α

loc -regularity, see [4], and the L∞-estimate established in the Appendix.
The paper is organized as follows: In Section 2, we establish some definitions

and basic properties. In Section 3, we first give some general stability results
with respect to p for the first positive eigenvalue of problem (1.1) and we restrict
ourselves to bounded domain Ω having the segment property. This class of
domains is fairly large. Then we prove the global stability using some results
established in Section 2 and in Appendix. The segment property is needed here
to guarantee the right boundary values of the limit function.
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2 – Preliminary results

In defining the eigenvalues of the Ap-Laplacian operator with weight (in a

given bounded domain Ω ⊂ IRN ), we shall interpret Equation (1.1) in the weak
sense.

Definition 2.1. We say that λ ∈ IR is an eigenvalue, if there exists a
function u ∈ W 1,p

0 (Ω), u �≡ 0, such that

(2.1)

∫

Ω

| ∇u |p−2
a 〈∇u,∇ϕ〉a dx = λ

∫

Ω

g(x) | u |p−2 uϕdx,

whenever ϕ ∈ W 1,p
0 (Ω). The function u is called an eigenfunction.

2.1 – Basic properties

Under our conditions on ai,j and g, it is well-known that the problem (1.1)
possesses at least a sequence of positive eigenvalues λn, λn ↗+∞, as n → +∞.
These can obtained by the Ljusternick-Schnirelmann theory minimizing the en-
ergy functional,

Φ(u) =

(
1

p
|||∇u|a||pp

)2

− 1

p

∫

Ω

g(x)|u|p dx,

on W 1,p
0 (Ω). See [2], see also [8] or [15].

Let now λp(g) denote the first positive eigenvalue of (1.1). We recall that
λp(g) can be variationally characterized as

(2.2)

λp(g) = min

{∫

Ω

| ∇u |pa dx; u ∈ W 1,p
0 (Ω),

∫

Ω

g(x) | u |pa dx = 1

}
=

= min

{ ∫
Ω
| ∇u |pa dx∫

Ω
g(x) | u |p dx

; u ∈ W 1,p
0 (Ω),

∫

Ω

g(x) | u |p dx > 0

}
.

Throughout this paper, the first eigenfunctions are those corresponding to λp(g).
The principal eigenfunction, denoted up, is the first eigenfunction normalized by∫
Ω
g(x) | up |p dx = 1, and required to be positive. Hence

λp(g) =

∫

Ω

| ∇up |pa dx.

We end this paragraph by recalling some fundamental properties, found in [8],
[15], which valid under our assumptions.
1) The first eigenfunctions are essentially unique in any bounded domain, i.e.,

they are merely constant multiples of each other.
2) The principal eigenfunction has no zeros in the domain the first eigenfunc-

tions are only those not changing sign.
3) The solutions of problem (1.1) are known to be of class C1,α

loc (Ω) for some
α > 0 depending on p and N , see [4].
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2.2 – The segment property

We begin with defining a sharp class of domains for which the boundary is
sufficiently regular to guarantee that

W 1,p(Ω) ∩q<p W
1,q
0 (Ω) = W 1,p

0 (Ω).

Definition 2.2. An open subset Ω of IRN is said to have the segment
property if, given any x ∈ ∂Ω, there exist an open set Gx in IRN with x ∈ Gx

and yx of IRN \ {0} such that, if z ∈ Ω ∩Gx and t ∈]0, 1[, then z + tyx ∈ Ω.

This property allows us by a translation to push the support of a function
u in Ω. The following result is essential here.

Theorem 2.1. Let Ω be a bounded domain in IRN having the segment
property. If u ∈ W 1,p(Ω) ∩W 1,q

0 (Ω) for some q ∈]1, p[, then u ∈ W 1,p
0 (Ω).

Proof. The following technique is inspired by [1, Theorem 3.18]. The
function

ũ =

{
u in Ω

0 in IRN \ Ω,

is in W 1,p(IRN ). Indeed, we have u ∈ W 1,q
0 (Ω), and so ũ ∈ W 1,q(IRN ); moreover

∇ũ = ∇̃u weakly and a.e. on IRN . On the other hand, ũ ∈ Lp(IRN ) and ∇̃u
∈ (Lp(IRN ))N , because u ∈ W 1,p(Ω). Finally, we conclude that ũ ∈ W 1,p(IRN )).

Let K = supp u =: {x ∈ Ω, u(x) �= 0}IRN

, (closure in IRN ). Thus K is compact
and K ⊂ Ω.

If K ⊂ Ω, let jε be defined as in Section 2.17 of [1], thus the convolution
jε ∗u ∈ C∞

0 (Ω), provided 0 < ε < dist(K, ∂Ω), and jε ∗u → u in W 1,p(Ω), as ε →
0+. This shows that u ∈ W 1,p

0 (Ω). We shall therefore suppose that K ∩ ∂Ω �= ∅.
From Definition 2.2, to each x ∈ ∂Ω, there corresponds a neighborhood Gx and
a vector yx ∈ IRN \ {0}. Put F = K ∩ (Ω \⋃x∈∂Ω Gx); then F is compact and

F ⊂ Ω. Thus there is an open set G0 such that F ⊂ G0 ⊂ Ω, with G0 ⊂ Ω.
On the other hand, K ∩ ∂Ω is compact in IRN and covered by the open sets
Gx,x ∈ ∂Ω. Therefore K ∩ ∂Ω may be covered by finitely may of the Gx,
say G1, G2, ..., Gk, and also the sets G0, G1, ..., Gk form an open covering of K.
By a similar argument as that in the proof of Theorem 3.18. of [1, p.55], we
can construct open sets G′

0, G
′
1, ..., G

′
k which form an open covering of K with

G′
j ⊂ Gj for each j. Now, let Θ = {θj , 0 ≤ j ≤ k} be a partition of unity

subordinate to covering {G′
j , 0 ≤ j ≤ k} and put uj = θju, ∀j = 0, ..., k. We

have u =
∑N

j=0 uj and supp uj ⊂ G′
j , for each j = 0, ..., k. Therefore, it suffices

to show that each uj ∈ W 1,p
0 (Ω ∩Gj). Since G′

0 ⊂ Ω, our discussion of the case

K ⊂ Ω above shows that u0 ∈ W 1,p
0 (Ω). For j ≥ 1, we have uj ∈ W 1,p(Ω ∩Gj)
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and ũj ∈ W 1,p(IRN ). Put Kj = suppuj and let uj,t = ũj(x− tyj), with 0 < t <
min{1, | yj |−1 dist(G′

j , G
c
j)}, yj denoting the element associated with Gj as in

Definition 2.2. Thus we have

(2.3) suppuj,t ⊂ Ω ∩Gj ,

for each t satisfying 0 < t < min{1, | yj |−1 dist(G′
j , G

c
j)}. Indeed, we have

suppuj,t = Kj + tyj ⊂ Gj ∩ Ω + tyj ⊂ Ω

by the segment property. On the other hand, let x ∈ suppuj,t. Then

dist(x,G′
j) ≤ dist(x, x−tyj) +dist(x−tyj ,Kj) +dist(Kj , G

′
j) = dist(x, x−tyj).

We obtain

dist(x,G′
j) ≤ dist(x, x− tyj) =| tyj | .

Therefore, dist(x,G′
j) < dist(G′

j , G
c
j) by the choice of t. Hence x ∈ Gj . This

completes the proof of (2.3). We also have uj,t ∈ W 1,p(IRN ), because ũj ∈
W 1,p(IRN ); especially, we have uj,t ∈ W 1,p(Ω ∩ Gj) and from (2.3), we deduce

that uj,t ∈ W 1,p
0 (Ω ∩Gj), for t > 0 sufficiently small. Translation is continuous

in Lp(Ω ∩Gj) so uj,t → uj in Lp(Ω ∩Gj) and ∇uj,t → ∇uj in (Lp(Ω ∩Gj))
N ,

as t → 0+ (note that ∇ũj = ∇̃uj ). Hence uj,t → uj in W 1,p(Ω ∩ Gj). This

together with the fact that uj,t ∈ W 1,p
0 (Ω ∩ Gj), for t > 0 small enough, ends

the proof.

Remark 2.1. A bounded domain Ω ⊂ IRN has the segment property if,
and only if, it is in the class C, cf. [5]. This means that locally the boundary
has the continuous equation xN = f(x1, x2, ..., xN−1), after a notation of the
coordinate axis.

3 – Stability of s −→ λs(g)

The first positive eigenvalue λs(g) of the As-Laplacian with weight g ∈
L∞

loc(Ω)∩Lr(Ω), where r = r(N, p) satisfies (1.2), exists for each s ∈ (1,∞) which
is near enough to p. Indeed, observe that (1.2) yields the following conditions:
r > N

p if 1 < p < N, r > N if p = N and r = 1 if p > N , which imply the

existence of λs(g), (cf. [15]).

We will assume throughout this section that our conditions on g and ai,j
are satisfied.



[7] On the stability of the first eigenvalue of etc. 327

3.1 – Some inequalities

Theorem 3.1. The eigenvalues λs(g) and λs satisfy

(3.1) pλ
1
p
p (g) ≤ sλ

1
s
s

(
λs(g)

λs

) 1
p

,

when 1 < p < s and p, s are close enough.

Proof.Let ϕ=u
s
p
s . Then ϕ∈W 1,p

0 (Ω), because s>p.Moreover
∫
Ω
g|ϕ|pdx=∫

Ω
gus

sdx = 1, and ∇ϕ = s
p | us | sp−1 ∇us. Observe that ϕ is admissible to

compute λs(g) in (2.2). Hence

λ
1
p
p (g) ≤

(∫

Ω

| ∇ϕ |pa dx

) 1
p

=
s

p

(∫

Ω

us−p
s | ∇us |pa dx

) 1
p

.

From Hölder’s inequality, we obtain the estimate

λ
1
p
p (g) ≤ s

p

(∫

Ω

us
sdx

) 1
p− 1

s

λ
1
s
s (g).

On the other hand, we have

λs

∫

Ω

us
sdx ≤

∫

Ω

| ∇us |sa dx = λs(g)

by (1.3 ii) and the minimizing property of λs. Hence

λ
1
p
p (g) ≤ s

p

(
λs(g)

λs

) 1
p− 1

s

λ
1
s
s (g) =

s

p
λ

1
s
s

(
λs(g)

λs

) 1
p

.

Remark 3.1. If g ∈ L∞(Ω), the inequality (3.1) holds for each 1 < p <
s < ∞. Notice that the one-sided limits

lim
s→p−

λs(g) and lim
s→p+

λs(g)

exist.

Corollary 3.1. We have

lim sup
s→p−

λs(g) ≤ λp(g) ≤ lim inf
s→p+

λs(g).
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Proof. • When s → p+, we have p < s < p + 1. Thus

sλ
1
s
s ≤ (p + 1)λ

1
p+1

p+1 .

Hence the set {λs | p < s < p + 1} is bounded. Thus λ
p
s−1
s → 1, as s → p+.

Finally, from the inequality (3.1), we deduce that

λp(g) ≤ lim inf
s→p+

λs(g).

• For s → p−, with 1 < s < p, we have from (3.1), the following inequalities

[(
s

p

)p−s

λ
p
s−1
s

]
λs(g) ≤ λs(g)λ

1− s
p

s ≤
(
s

p

)s

λp(g).

The first inequality is (3.1) for g ≡ 1. Hence

(
s

p

)p

λ
p
s−1
s λs(g) ≤ λp(g).

Therefore

lim sup
s→p−

[(
s

p

)p

λ
p
s−1
s λs(g)

]
≤ λp(g).

On the other hand, since λ
p
s−1
s → 1, as s → p−, we obtain that

lim sup
s→p−

λs(g) ≤ λp(g).

Remark 3.2. Observe that if lim
s→p

λs(g) exists, then this limit is necessarily

equal to λp(g). Therefore we will study the different cases s → p+ and s → p−.

3.2 – Stability to the right

Theorem 3.2. For an arbitrary bounded domain we have

lim
s→p+

λs(g) = λp(g).
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Proof. Let ϕ ∈ C∞
0 (Ω) be such that

(3.2)

∫

Ω

g | ϕ |p dx > 0,

and let ε > 0 (small). Applying the Dominated Convergence Theorem, we find

lim
ε→0+

∫

Ω

g | ϕ |p+ε dx =

∫

Ω

g | ϕ |p dx > 0.

Hence, there is ε0 > 0 sufficiently small such that

∫

Ω

g | ϕ |p+ε dx > 0, when 0 < ε < ε0.

On the other hand, we have

λp+ε(g) ≤
∫
Ω
| ∇ϕ |p+ε

a dx∫
Ω
g | ϕ |p+ε dx

.

It follows from the Dominated Convergence Theorem that

(3.3) lim sup
ε→0+

λp+ε(g) ≤
∫
Ω

| ∇ϕ |pa dx∫
Ω
g | ϕ |p dx

.

This, and the fact that ϕ is an arbitrary function satisfying (3.2), yield

lim sup
ε→0+

λp+ε(g) ≤ λp(g).

Now the result follows from Corollary 3.1.

Theorem 3.3. The principal eigenfunctions us associated with λs(g)
satisfy

(3.4) lim
s→p+

∫

Ω

| ∇us −∇up |pa dx = 0.
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Proof. For 1 < p < s with s near p. Hölder’s inequality implies that

(3.5)

∫

Ω

| ∇us |pa dx ≤| Ω |1− p
s (λs(g))

p
s .

This shows that {us, s > p} is a bounded set in W 1,p
0 (Ω). Hence there is a

sequence s1, s2, ..., converging to p+ and there is a function u ∈ W 1,p
0 (Ω) such

that usj ⇀ u (weakly) in W 1,p
0 (Ω), as j → +∞. Using the Rellich-Kondrachov

Compactness Theorem, (cf.[1, p.144]), we obtain that usj → u in Lp+ 1
N (Ω), as

j → +∞; in particular, usj → u in Lp(Ω), as j → +∞. Passing to a subsequence
if necessary, we can assume that usj → u a.e. in Ω. We will prove that u ≡ up.
The weak lower semicontinuity of the norm and (3.5) yield

(3.6)

∫

Ω

| ∇u |pa dx ≤ λp(g).

It suffices to have ∫

Ω

gup dx = 1.

Indeed, if we set Ms = max
Ω

us, then from Lemma 4.1., we have max
s∈[a,b]

Ms <

M < ∞. Here M is a constant not depending on s, and [a, b] is any small
interval containing p. Thus 0 < usj ≤ M, and 0 ≤ u ≤ M a.e. on Ω. Hence

| g | | usj
sj − up |≤| g | usj

sj+ | g | up ≤| g | Msj+ | g | up

a.e. on Ω. On the other hand, Msj ≤ Mp+1 + 1. Thus a.e. on Ω, we have

| g | | usj
sj − up | ≤ | g | (Mp+1 + 1 + Mp) ∈ L1(Ω).

The Dominated Convergence Theorem yields

∣∣∣∣
∫

Ω

g(usj
sj − up)dx

∣∣∣∣ ≤
∫

Ω

| g | | usj
sj − up | dx → 0,

as j → +∞, since g(u
sj
sj − up) → 0, a.e. in Ω, as j → +∞. From this it follows

easily that
∫
Ω
g | u |p dx = 1. Finally, (3.6) and the variational characterization

of λp(g) yield ∫

Ω

| ∇u |pa dx = λp(g).

By the uniqueness of the principal eigenfunction we have u = up. Thus the limit
function u does not depend on the particular (sub)sequence s1, s2, .... Therefore
us → up at least in Lp(Ω), as s → p+.

The rest of the proof, i.e., the strong convergence (3.4) can be obtained from
Clarkson’s inequalities, (cf.[1]); but with the || | |a||p-norm in W 1,p

0 (Ω).
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3.3 – Stability to the left

This case is more difficult, because if u ∈ W 1,p−ε
0 (Ω) then it is possible that

u /∈ W 1,p
0 (Ω).

Theorem 3.4. Let Ω be an arbitrary bounded domain. If we suppose that

(3.7) lim
s→p−

∫

Ω

| ∇us −∇up |sa dx = 0,

then we have
lim

s→p−
λs(g) = λp(g).

Proof. (3.7) and the Hölder inequality imply

lim
s→p−

∫

Ω

| ∇us −∇up |p−ε
a dx = 0,

for any ε > 0 sufficiently small so that 0 < p − s < ε < p − 1. Therefore
∇us → ∇up in (Lp−ε(Ω))N , as s → p−. For ε > 0 small enough, the Hölder’s
inequality implies that

|| | ∇us |a||p−ε≤| Ω |
s+ε−p
s(p−ε) || | ∇us |a||s .

Hence

(3.8) || | ∇up |a||p−ε ≤| Ω | ε
p(p−ε) lim inf

s→p−
λ

1
s
s (g).

Letting ε → 0+, the Fatou lemma yields

λ
1
p
p (g) =|| | ∇up |a||p ≤ lim inf

s→p−
λ

1
s
s (g).

This completes the proof, in view of Corollary 3.1.

Remark 3.3. The converse of the theorem is an open question in the case
p ≤ N .

However, we have the following partial result for any bounded domain and
every p in (1,+∞).

Theorem 3.5. Under the same assumptions, suppose that lim
s→p−

λs(g) =

λp(g). Then each sequence of real numbers tending to p from below contains a
subsequence s1, s2, ... such that

(3.9) lim
j→+∞

∫

Ω

| ∇usj −∇u |sja dx = 0,

for some function u ∈ W 1,p(Ω) ∩ W 1,p−ε
0 (Ω), whenever ε > 0,

∫
Ω
g | u |p dx =

1, u ≥ 0 a.e. on Ω and
∫
Ω
| ∇u |pa dx ≤ λp(g). The function u may be depend

on the sequence, but it is a weak solution to the equation

Apu + λp(g)|u|p−2u = 0.
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Proof. Let us fix ε0 > 0 small enough, so that 0 < p− ε0 < s < p and that
(p + ε) < (p− ε)∗ for 0 < ε < ε0; where for t ∈ (1,+∞), t∗ = Nt

N−t if 1 < t < N
and t∗ = +∞ if t ≥ N . Using Hölder’s inequality, we obtain

|| | ∇us |a||p−ε ≤| Ω |
s+ε−p
s(p−ε) λ

1
s
s (g),

when 0 < ε < ε0. From (3.1), we conclude that the norms || | ∇us |a||p−ε, 0 < ε <
ε0, are uniformly bounded, in view of the assumption lim

s→p−
λs(g) = λp(g). Thus

we can find a function u ∈ W 1,p−ε
0 (Ω), 0 < ε < ε0; and find a sequence s1, s2, ...

converging to p− such that usj ⇀ u (weakly) in W 1,p−ε
0 (Ω), as j → +∞, for each

ε ∈ (0, ε0) and hence usj → u in Lp+ε(Ω). Passing to a subsequence if necessary,
we can assume that u ≥ 0 a.e. on Ω. Clearly u ∈ Lp(Ω) and is independent
of ε. On the other hand, the weak lower semicontinuity of the norm and the
assumption lim

j→+∞
λsj (g) = λp(g) imply that

|| | ∇u |a||p−ε ≤| Ω | ε
p(p−ε) λ

1
p
p (g).

Then letting ε → 0+, we obtain with Fatou’s lemma that ∇u ∈ (Lp(Ω))N and

(3.10) || | ∇u |a||p ≤ λ
1
p
p (g).

The normalization:
∫
Ω
g | u |p dx = 1, is preserved and

(3.11) lim
j→+∞

∫

Ω

g

(
usj + u

2

)sj

dx = 1,

for a subsequence if necessary. On the other hand, we have

(3.12) λsj (g) ≤
∫
Ω

| ∇usj
−∇u

2 |sja dx
∫
Ω
g(

usj+u

2 )sjdx
,

for j sufficiently large, because by (3.11) there is an index j0 so large that

∫

Ω

g
(usj+u

2

)sj
dx > 0,

when j ≥ j0. Clarkson’s inequality yields

∫

Ω

∣∣∣∣
∇usj −∇u

2

∣∣∣∣
sj

a

dx ≤ 1

2
λsj (g) +

1

2
|| | ∇u |a||sjsj −λsj (g)

∫

Ω

g

(
usj + u

2

)sj

dx,
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if sj ≥ 2. Now (3.11) and the assumption lim
s→p−

λs(g) = λp(g) imply

lim sup
j→+∞

∫

Ω

∣∣∣∣
∇usj −∇u

2

∣∣∣∣
sj

a

dx ≤ 1

2
|| | ∇u |a||pp −1

2
λp(g).

From this and (3.10), it follows easily that

lim
j→+∞

∫

Ω

| ∇usj −∇u |sja dx = 0,

for the case p > 2.
For the case 1 ≤ p ≤ 2, we argue as follows. There is j1 ∈ IN such that

1 ≤ sj ≤ 2, for each j ≥ j1. Let j2 = max(j1, j0). Then Clarckson’s inequality
associated with sj and (3.12) yield

{∫

Ω

|∇usj −∇u

2
|sja dx

} 1
sj−1

+

{
λsj (g)

∫

Ω

g(
usj + u

2
)sjdx

}
≤

≤
{

1

2
λsj (g) +

1

2

∫

Ω

|∇u|sja dx

} 1
sj−1

.

On the other hand from Hölder’s inequality and (3.10) we deduce that

∫

Ω

|∇u|sja dx ≤ |Ω|
p−sj

p λp(g)
sj
p .

Thus

{∫

Ω

|∇usj −∇u

2
|sja dx

} 1
sj−1

≤
{

1

2
λsj (g) +

1

2
|Ω|

p−sj
p λp(g)

sj
p

} 1
sj−1

+

−
{
λsj (g)

∫

Ω

g

(
usj + u

2

)sj

dx

} 1
sj−1

.

Now, (3.11) and the assumption lim
s→p−

= λp(g) imply that

{
lim sup
j→+∞

∫

Ω

|∇usj −∇u

2
|sja dx

} 1
p−1

≤
{

1

2
λp(g) +

1

2
λp(g)

} 1
p−1

− λp(g)
1

p−1 = 0.

Hence

lim
j→+∞

∫

Ω

|∇usj −∇u|sja dx.
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Remark 3.4. (i) If the limit function u ∈ W 1,p
0 (Ω), then u ≡ up by the

uniqueness of the principal eigenfunction and (3.10).
(ii) When p ≤ N , in a very irregular domain the defect lim

s→p−
λs(g) < λp(g)

is possible. See the counterpart in [10] for the case

∆pu + λ|u|p−2u = 0.

Corollary 3.2. For any bounded domain Ω having the segment property,
we have

lim
s→p−

λs(g) = λp(g)

if and only if

lim
s→p−

∫

Ω

| ∇us −∇up |sa dx = 0.

Proof. Suppose that lim
s→p−

λs(g) = λp(g). From Theorem 3.5, the limit

function u satisfies for ε > 0 small enough u ∈ W 1,p(Ω) ∩W 1,p−ε
0 (Ω) such that

u ≥ 0 a.e. in Ω,

∫

Ω

g | u |p dx = 1 and

∫

Ω

| ∇u |pa dx ≤ λp(g).

Since Ω has the segment property, thus u ∈ W 1,p
0 (Ω) by Theorem 2.1. Thus u is

admissible in the definition of λp(g). Consequently,

λp(g) =

∫

Ω

| ∇u |pa dx.

Hence u ≡ up by the uniqueness of the principal eigenfunction. So by (3.9), we
obtain

lim
s→p−

∫

Ω

| ∇us −∇up |sa dx = 0,

since the limit function does not depend on the choice of the sequence. The
converse is immediate, in view of Theorem 3.4.

Using the C1,α
loc -regularity of the principal eigenfunctions us, s proved in [6]

and the L∞-estimate to be established in Lemma 4.1., we can state the following
result generalizing [10].

Theorem 3.6. Assume that the conditions on g and ai,j are satisfied.
Then each sequence converging to p−, contains a subsequence s1, s2, ... such that
usj → u and ∇usj → ∇u locally uniformly, where u is some function in C1(Ω).
Moreover, u is a weak solution of the equation

(E) Apu + λg(x) | u |p−2 u = 0 ,

where λ = lim
j→+∞

λsj (g).
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We know that only the first eigenfunctions are not changing signs. Thus if
λ is an eigenvalue of (E), then λ = λp(g), and by normalization, we have u ≡ up.
We have come to an important point: though the limit function u of {us}, as
s → p−, is in ∈ W 1,p(Ω) ∩ W 1,p−ε

0 (Ω), for any ε > 0 chosen sufficiently small,
it is not always the right eigenfunction up, i.e., u is not necessary in W 1,p

0 (Ω).
Therefore u is not admissible in the definition of λp(g). But, If Ω satisfies the
segment property, then u = up, λ = λp(g) and

lim
s→p−

λs(g) = λp(g).

So we have the following result.

Corollary 3.3. For any bounded domain Ω having the segment property,
we have

lim
s→p

λs(g) = λp(g).

4 – Appendix

The technique to uniformly bound up in an arbitrary domain is originally
due to Ladyzhenskaya and Urlatseva, cf. [7].

Lemma 4.1. Let the assumptions on g and ai,j be fulfilled. Then for
any bounded domain Ω, maxΩ up is bounded uniformly in p, ( up denotes the
normalized principal eigenfunction).

Proof. If p > N , then from [5, Theorem 3.18., p.240] we have

|| up ||∞≤ C | Ω | 1
N − 1

p || ∇up ||p≤ C | Ω | 1
N − 1

p λ
1
p
p (g),

where C = 1
N [

1− 1
p

1
N −1

]
1
p′ ω

1
N

N , and ωN is the volume of the unit ball in IRN .

For 1 < p ≤ N , we keep track of various “constants” in Proposition 2.16. of
[15]; we obtain the lower bound

‖up‖∞,Ω ≤ b‖∇up‖1,Ω ;

where

b = (2pλp(g)‖g‖r,Ω)
Nr

pr−N (Cθ + C
θ
pω

θ(1−p)
N

N )1−
pr−N

(p−1)Nr ,

θ =
Nr

pr(1 + N) −N(1 + r)

and C = ( (N−1)p

2(N−p)
√
N

)p if 1 < p < N , and C = [max{N, r(N−1)
r−1 }]N

r if p = N .

This concludes the proof of the Lemma.
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