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An algorithm for estimating the optimal

regularization parameter by the L-curve

G. RODRIGUEZ – D. THEIS

Abstract: In this paper we introduce a new algorithm to estimate the optimal
regularization parameter in truncated singular value decomposition (TSVD) regulariza-
tion methods for the numerical solution of severely ill-posed linear systems. The algo-
rithm couples a geometrical approach to identify the corner of the L-curve associated
to the problem with some heuristic rules. Numerical results are reported to highlight
the performance of the algorithm with respect to other methods for the selection of the
regularization parameter.

1 – Introduction

A linear system of equations

Ax = b

is considered severely ill-conditioned when the condition number

κ(A) := ‖A‖ ‖A−1‖,

in a given matrix norm, is of the same order of magnitude, or larger, than the
reciprocal of the relative precision on the entries of the matrix A and of the right
hand side vector b.
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In this situation, no general purpose method is able to produce acceptable
results, since ill-conditioning causes a huge amplification of errors in the solution
of the linear system. Often, the only possibility for partially recovering the
solution is the exploitation of a priori informations. Regularization methods
consist of techniques that take advantage of informations on the regularity of the
solution. Usually, these informations are formally expressed as the request for
the solution x to belong to the kernel of a certain linear regularization operator
H (in most cases, the discrete approximation of a differential operator). This
approach is particularly effective when the solution of the linear system may be
thought of as the sampling of a function which exhibits some degree of regularity.
An example of great applicative interest is given by the linear systems arising in
the discretization of first kind Fredholm integral equations with discrete data

∫

Ω

k(ui, v) f(v) dv = g(ui), i = 1, . . . ,m.

Each regularization method depends on at least one parameter, whose tun-
ing is crucial for the quality of the numerical solution, since it balances the
request of approximately satisfying the linear system with the regularity con-
straint.

The three most widely used regularization techniques are the Truncated
(Generalized) Singular Value Decomposition (TSVD/TGSVD) [8], Tikhonov reg-
ularization [20], [21], [6] and regularizing iterative methods [4], [7]. A complete
survey of the various regularization strategies and the available methods for the
estimation of the optimal regularization parameter can be found in [12].

In this paper we will concentrate on the first mentioned regularization
method, and on a particular strategy for choosing its parameter, the L-curve
method. In Section 2 the TSVD and TGSVD are recalled, while in Section 3
the L-curve method is described. In Section 4 we introduce a new algorithm for
the localization of the corner of the L-curve, which has already been applied, in
a preliminary version, in some previous researches [2], [19]. Finally, in Section 5
the performance of the new algorithm is assessed on a set of test linear systems,
and in Section 6 plans for future work are discussed.

2 – The truncated (G)SVD

Let us consider, as a model problem, the overdetermined linear system

(2.1) Ax = b

where A ∈ IRm×n, m ≥ n, is a full-rank matrix.
The singular value decomposition (SVD) of A [1], [5] is given by

(2.2) UTAV =

[
Σ
0

]
, Σ = diag(σ1, . . . , σn),



[3] An algorithm for estimating the optimal etc. 71

where σ1 ≥ · · · ≥ σn > 0 are the singular values and the orthogonal matrices

U = [u1, . . . ,um] and V = [v1, . . . ,vn]

contain the left and right singular vectors, respectively. Then, the least squares
solution of (2.1) can be expressed in the form

(2.3) x =
n∑

i=1

uT
i b

σi
vi.

Severe ill-conditioning can be restated by saying that A is numerically rank-
deficient, i.e. there exists an integer k ≤ n such that, for a given tolerance ε,

σk+1, . . . , σn < ε.

This integer is, in fact, the numerical ε-rank of A, usually defined as

rankε(A) := min
‖E‖2≤ε

rank(A + E).

When a singular value σi is approximately zero, the corresponding singular vector
vi belongs to the numerical kernel of A and we expect its coefficient in (2.3) to
be negligible. If the system (2.1) is compatible this is certainly true, but the
presence of noise on b may cause a huge growth in the norm of the solution x.

To obtain a better estimate of the least squares solution the truncated SVD
(TSVD) solution is often used. It is given by

(2.4) xk =

k∑

i=1

uT
i b

σi
vi

and it coincides with the minimum 2-norm solution to the least squares problem

(2.5) min ‖Akx− b‖2,

where Ak is the best rank k approximation to A in the 2-norm, obtainable by
substituting σj = 0, j = k + 1, . . . , n, in (2.2).

It is then crucial to correctly tune the value of the regularization parameter
k in order to avoid the numerical explosion of the norm of the solution while
preserving, at the same time, all of its significant components.

When there is the a priori information that the solution (approximately)
belongs to the kernel of a certain regularization matrix H, that is the num-
ber ‖Hx‖2 is small, it is more effective to compute the solution of (2.5) which
minimizes the semi-norm ‖Hx‖2, instead than the norm ‖x‖2.
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The solution to this non-standard regularization problem can be obtained
by the transformation y = Hx, but while the case of H square nonsingular can
be easily managed, if the regularization matrix is a non square p × n matrix
(p < n) with rank p, the computation is a bit more cumbersome. A method
for taking this problem to standard form has been described in [9] and starts by
expressing the least-squares solution in the form

(2.6) x = H†
Ay + x0,

where x0 is in the null space of H and the matrix H†
A is the A-weighted pseudo

inverse of H, defined in the following.
Let the generalized singular value decomposition (GSVD) of the matrix pair

(A,H) [1], [5] be the factorization

UTAZ =



DA 0
0 In−p

0 0




V THZ = [DH 0 ]

with

DA = diag(d1, . . . , dp), 0 < d1 ≤ · · · ≤ dp ≤ 1,

DH = diag(h1, . . . , hp), 1 ≥ h1 ≥ · · · ≥ hp > 0,

and d2
i + h2

i = 1, i = 1, . . . , p. The matrices U and V are orthogonal, Z =
[z1, . . . , zn] is nonsingular and the ratios γi = di/hi, i = 1, . . . , p, are called the
generalized singular values of (A,H). Then, we define

H†
A := Z

[
D−1

H

0

]
V T

and it is immediate to observe that it is a right inverse of H.
By substituting y = Hx, with x given by (2.6), we come to the following

standard form regularization problem: find the minimum norm solution to

min ‖Āky − b̄‖2,

where Āk is the best rank k approximation to Ā = AH†
A and b̄ = b−Ax0. The

solution to this problem, known as the truncated GSVD (TGSVD) solution, is
given by

(2.7) xk =

p∑

i=p−k+1

uT
i b

di
zi +

n∑

i=p+1

(uT
i b)zi.
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Again, to get a meaningful solution it is essential to correctly estimate the value
of the regularization parameter k.

Several criteria are available for this task, some requiring the knowledge of
the standard deviation of the noise affecting the data and some not requiring it.
We will discuss the L-curve method in the next section, here we briefly recall
some of the other most widely used techniques.

The Generalized Cross Validation (GCV) [3], [22] is a statistical method
which estimates the optimal value of the regularization parameter, under the
assumption that the data vector b is affected by normally distributed noise, by
minimizing the functional

(2.8) V (k) =
1
m‖(I −A(k))b‖2

[
1
m trace(I −A(k))

]2 .

The influence matrix A(k) is defined by the identity

Axk = A(k)b.

The GCV has some computationally relevant properties and, moreover, is a
predictive mean-square error criteria [22], in the sense that it estimates the min-
imizer of the residual function

T (k) =
1

m
‖A(xk − x)‖2.

If the standard deviation σ of the noise on the data is known, the following
unbiased estimate [15] for the function T (k) is also available

T̂ (k) =
1

m
‖(I −A(k))b‖2 − σ2

m
trace(I −A(k))2 +

σ2

m
traceA2(k).

Mallows’ criterion chooses the value of k which minimizes T̂ (k). Another tech-
nique which makes use of the value of σ is Morozov discrepancy principle [17],
which takes as optimal the value of k that satisfies the equation

1

m
‖(I −A(k))b‖2 = σ2.

However, numerical experiments reported in the literature (see e.g. [3], [18])
showed that these two procedures do not give better results than GCV, even
when σ is exactly known.
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3 – The L-curve method

The L-curve method [10], [14] consists of the analysis of the piecewise linear
curve whose break-points are

(xi, yi) = (log10 ‖Axi − b‖2, log10 ‖Hxi‖2) , i = 1, . . . , p

(p is the row dimension of the regularization matrix H).
This curve, in most cases, exhibits a typical “L” shape, and the optimal value

of the regularization parameter k is considered to be the one corresponding to
the corner of the “L” (see Figure 1).
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Fig. 1: An L-curve.

This choice is justified by the fact that while the regularized solution xk of
(2.1) coincides with the least-squares solution x when k = p, the ill-conditioning
of A causes a strong growth in the weighted semi-norm ‖Hxk‖2 when k exceeds a
certain threshold (which is, in fact, the numerical ε-rank of A for a well-chosen ε).
The corner of the L-curve marks this transition, since it represents a compromise
between the minimization of the norm of the residual and the semi-norm of the
solution. This is particular evident in Figure 1: the horizontal branch of the
“L” is dominated by the regularization error, while the vertical branch shows
the sharp increase in the semi-norm caused by propagation errors.

We spend some words to explain the symbols used in this and in the following
figures. The heading of the graph displays informations on the test problem and
on the method used for its solution. In this case we created a test linear system
with the SHAW matrix, taken from [11], and with sample solution sin2pi, given
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by xi = sin 2πi
n , i = 1, . . . , n (other test matrices and solutions will be introduced

in Section 5). The dimension of the system is n and the data vector b is affected
by white noise with variance nσ2. This system, as H = I, has been solved by
TSVD. Each point on the graph stands for the particular regularized solution
xk whose index labels the point.

A numerical algorithm for the detection of the corner of the L-curve has
been introduced in [14]. When the regularization method depends on a continu-
ous parameter λ, like in Tikhonov regularization, then the L-curve is a smooth
function, possibly twice differentiable, and this method selects the value which
maximizes the curvature κ(λ) of the L-curve. If, on the contrary, the regu-
larization parameter is discrete, like in T(G)SVD or in iterative regularization
methods, the algorithm selects the parameter closest to the point of maximum
curvature of a cubic spline curve with knots resulting from a local smoothing of
the L-curve points.

This method has some drawbacks, especially when applied to a discrete
L-curve.
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Fig. 2: A cluster of points.

In fact, in T(G)SVD regularization methods the points of the L-curve tend
to cluster in a neighborhood of the corner. In this situation, errors due to
floating point computations may produce false corners and loss of convexity, as
illustrated in Figure 2 which shows an experimental L-curve together with a
close-up of a neighborhood of its corner. The effect is that the spline which fits
the L-curve often presents unexpected oscillations near the corner, which lead
to an inaccurate estimate. This is particularly dangerous when the algorithm
returns an over-estimation of the optimal value of k, which often causes a large
increase in the norm of the computed solution.

Moreover, in many practical situations, some of which are depicted in Figure
3, the L-curve totally looses its “L” shape, making it difficult to choose a good
value of the parameter without resorting to some heuristic rule.
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Fig. 3: Some bad L-curves.

We remark, anyway, that these L-curves are still rather informative about
the problems we are trying to solve, and their interpretation will allow us, in the
next section, to implement an effective strategy which exploits the informations
they contain.

The two upper graphs in Figure 3, for example, exhibit a huge increase in
the semi-norm of the solution and small changes in the residuals, mostly due
to floating-point arithmetics. This situation is typical of linear systems whose
solution exactly belongs to the kernel of the regularization matrix H and for
which just a few generalized singular values are sufficient to compute a good
approximation of the solution. In real applications, to get good results we are
interested in using a regularization matrix H whose kernel contains the biggest
possible component of the solution x, so it is important that the parameter
estimation routine could treat effectively this situation.

The lower left graph in Figure 3, instead, displays a monotonically decreas-
ing residual associated to a negligible growth in the semi-norm, typical of a



[9] An algorithm for estimating the optimal etc. 77

well-conditioned (of mildly ill-conditioned) linear system, for which it is possible
to use all the singular values in the computation of the solution. The last graph
shows both the effects in the same test problem. Obviously, one would not apply
regularization to a well conditioned matrix, but since in some applications the
matrix A is severely ill-conditioned only for a certain range of dimensions, or in
correspondence of particular values of some constants, it would be desirable if
the regularization method would automatically detect a well-conditioned matrix,
tuning correspondingly the regularization parameter.

4 – The corner algorithm

The algorithm we propose couples a simple geometrical approach to locate
the corner of a discrete L-curve, preceded by a suitable numerical pre-processing
of cluster of points, to some empirical rules aimed to recognize two classes of
L-curves “without a unique corner” for which it is possible to predict a good
value of the regularization parameter. These rules have been devised through
analyzing, and interpreting, a large number of experimental L-curves.

The algorithm takes in input the residuals and the semi-norms associated
to each regularized solution, namely

(4.1) ‖b−Axi‖, ‖Hxi‖, i = 1, . . . , p,

and can be decomposed into three phases.

1. Initially, we try to understand if the solution is approximately in the kernel
of the regularization operator H. It is important to check this condition
first, because if affirmative the L-curve would not be “L” shaped, and the
search for a corner would be useless (see upper graphs in Figure 3). The task
is performed through detecting extremely small semi-norms, with a test of
the type

min ‖Hxi‖
max ‖Hxi‖

< τ1.

The subroutine applies this test in conjunction with

min
‖Hxi‖
‖xi‖

< τ2

whenever the 2-norms of the regularized solutions are made available.
The tolerances τ1 and τ2 are two of the four constants the algorithm depends
on. They have been fixed to 10−12 and 10−4 respectively, working in double
precision, and the results do not seem much sensitive on changes in these
parameters.
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If the detection of small semi-norms is successful, the algorithm stops return-
ing the index of the smaller one as an estimate of the optimal regularization
parameter.

2. If the previous test is not verified, we compute the points of the L-curve

Pi = (log10 ‖b−Axi‖, log10 ‖Hxi‖), i = 1, . . . , p,

and the vectors

vi = Pi+1 − Pi, i = 1, . . . , p− 1.

To eliminate clusters (Figure 2) we delete all the “short” vectors, i.e. those
verifying the condition

‖vi‖ < τ3,

leaving q acceptable vectors (q ≤ p). The constant τ3, which we fix at ‖Pp−
P1‖/(2p), is rather important. Taking smaller values can give very good
results, but may also lead to dangerous over-estimates. We are currently
analyzing the possibility of choosing the value of τ3 adaptively.
After normalizing the q remaining vectors (we are only interested in their
orientation) the situation is similar to the one depicted in Figure 4.
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Fig. 4: L-curve and wedge products.

If we travel along the L-curve visiting the vectors vi in ascending order, the
corner is characterized by an angle α � −π

2 between vk and vk+1. Then, the
search for the corner can be carried out by finding the minimum z-coordinate
of the wedge products between two succeeding vectors (See Figure 4)

wi = (vi ∧ vi+1)z = ‖vi‖ · ‖vi+1‖ · sinα, i = 1, . . . , q.
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The following elementary property of wedge products

(vi ∧ vi+1)z = det ([vi vi+1 ])

allows to compute the numbers wi easily and with a small computational
effort.

3. The minimum of the wedge products is accepted as a corner only if it verifies
the condition

(4.2) min
i=1,... ,p

wi < τ4, (τ4 = −0.5).

The value of τ4, like the first two constants of the algorithm, does not seem
to be very critical for the performance of the method.
If condition (4.2) is not verified, the L-curve is considered to be without a
corner and we check for the presence of a well conditioned (or mildly ill-
conditioned) matrix by detecting a small change in the extremal semi-norms

| log10 ‖Hxp‖ − log10 ‖Hx1‖ | < 10.

In this case we return k = p as the optimal parameter.
The failure of the last test is an error condition, which we still keep in

the subroutine with the hope to trap unforeseen situations, i.e. L-curves not
belonging to the three classes we have considered, and to further improve the
algorithm.

The outline of the algorithm is reported in Figure 5. A Matlab [16] function is
available upon request (send an email to rodriguez@unica.it).
We end up with a computational remark. It is known that the residuals and the
semi-norms (4.1) can be expressed in terms of the singular system of the matrix
A. In fact, from (2.4) and (2.7) it follows

‖xi‖2 =
i∑

�=1

(
uT
� b

σ�

)2

and ‖Hxi‖2 =

p∑

�=p−i+1

(
uT
� b

γ�

)2

.

It is also possible, taking into account that

b−Axk = A(x− xk) = A(xp − xk),

to obtain a similar formula for the residuals. Anyway, even if this formula is
computationally less expensive, we noticed that the residuals computed in this
way are sometimes too well computed and give worse results, for what concerns
the estimation of the regularization parameter, with respect to the residuals
computed by implementing their definition. We feel that the reason for this is
that the residuals should be affected by propagation errors in the same amount
as the solution is, since we want to extract from them informations about the
quality of results.
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1. input ‖b− Axi‖, ‖Hxi‖, ‖xi‖, i = 1, . . . , p
2. τ1 = 10−12, τ2 = 10−4

3. if
min

i=1,... ,p
‖Hxi‖

max
i=1,... ,p

‖Hxi‖ < τ1 and min
i=1,... ,p

‖Hxi‖
‖xi‖

< τ2

1. k = arg min
i=1,... ,p

‖Hxi‖
4. else

1. for i = 1, . . . , p
1. Pi = (log10 ‖b− Axi‖, log10 ‖Hxi‖)

2. τ3 =
‖Pp − P1‖

2p , τ4 = −0.5

3. q = 0
4. for i = 1, . . . , p

1. v = Pi+1 − Pi

2. if ‖v‖ > τ3

1. q = q + 1

2. vq =
v

‖v‖
5. for i = 1, . . . , q − 1

1. wi = det
([

vi vi+1

])

6. if min
i=1,... ,q

wi < τ4

1. k = arg min
i=1,... ,q

wi

7. else
1. if | log10 ‖Hxp‖ − log10 ‖Hx1‖ | < 10

1. k = p
2. else

1. error ‘corner not found’
5. output k

Fig. 5: The corner algorithm.

5 – Numerical experimentation

To investigate the performance of our algorithm we applied it to the esti-
matation of the optimal regularization parameter in a set of test problem, which
we solved by TSVD or TGSVD when H = I or H �= I, respectively.

We considered eleven square test matrices, taken from the package Reg-
ularization Tools [11], [13] (heat(1), shaw, spikes, baart, ilaplace) and
from Matlab [16] (hilbert, pascal, lotkin, moler, prolate, random). For
n = 20, most of these matrices are severely ill-conditioned (in the sense that their
condition number exceeds the reciprocal of the machine epsilon εM � 2.2·10−16),
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two of them are mildly ill-conditioned (moler and prolate) and one (the ran-
dom matrix) is well conditioned. For n = 80 they are all severely ill-conditioned,
except the random matrix.

For each test matrix, we constructed different linear systems by computing
the right hand side b corresponding to the sample solutions listed in Table 1
(the rtools solution, which is the sample solution adopted in [11], is used only
with the matrices coming from the Regularization Tools).

Table 1. Sample solutions of linear systems.

rtools defined as in [11]

ones xi = 1

lin xi =
i

n

quad xi =
(
i−

⌊
n

2

⌋)2

/
⌈
n

2

⌉2

sin2pi xi = sin
2π(i− 1)

n

sinpi xi = sin
π(i− 1)

n

lin+sinpi xi =
i

n
+ sin

π(i− 1)

n

The linear systems so obtained were solved both in the presence and in the
absence of noise on the data. In practice, the data vector b was substituted by
the vector b̃, with components

b̃i = bi + σεi, i = 1, . . . , n,

with εi normally distributed with mean value 0 and variance 1. We considered
σ = 0, 10−8, 10−4.

By this procedure we generated 213 test problems, which we solved for
n = 20 and n = 80 either by TSVD (H = I) and by TGSVD for each of
the regularization matrices H = D1, D2, D3, being Dk the Toeplitz matrix of
dimension (n− k)× n whose first row is the discrete approximation of the k-th
derivative.

For each test problem, the optimal regularization parameter was compared
with the estimates furnished by our algorithm (labelled as corner in Tables 2 and
3), by the routine l curve from [13], which is an implementation of the maximum
curvature algorithm described in [14], and by the routine GCV, coming from the
same package, which returns the minimizer of the functional (2.8).
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Table 2. Numerical tests, n = 20.

H corner l curve GCV

I 102(8/2) 38(76/37) 94(42/35)
D1 89(21/4) 64(46/31) 76(74/54)
D2 92(30/20) 50(50/39) 39(136/114)
D3 101(44/35) 41(58/40) 28(119/100)

Table 2 lists the results obtained for n = 20 by applying the three mentioned
methods with each of the four adopted regularization matrices. The first number
in every entry of the table equals the number of tests in which the optimal
parameter is exactly identified (the “full successes”), while the two numbers in
parentheses indicate in how many tests an incorrect estimate of the regularization
parameter produces an error in the solution which exceeds the optimal one by a
factor 102 and 104, respectively (the “failures”). We remark that the algorithms
should be considered successful at least when the error on the computed solution
is smaller than 102 times the optimal error. Table 3 shows the same results for
n = 80.

Table 3. Numerical tests, n = 80.

H corner l curve GCV

I 90(39/33) 50(66/40) 72(62/51)
D1 71(27/24) 30(75/65) 56(84/39)
D2 73(25/17) 20(125/98) 56(74/62)
D3 84(34/17) 13(128/111) 44(108/77)

The numerical results show that the estimates furnished by our algorithm
are significantly more trustworthy than the ones produced by the two other
algorithms considered. Moreover, the number of the cases of total failure is
rather small. We feel that the reason for this is also that our algorithm tends to
under-estimate, rather than over-estimate, the optimal regularization parameter.
These results confirm, in particular, the great efficacy of the L-curve as a tool
for the analysis and the numerical resolution of ill-conditioned linear systems.

6 – Future work

In this section we expose the lines of research which we consider important
in order to further improve the performance of our algorithm and to extend its
range of applicability.
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First of all, we are developing an adaptive procedure to choose the values of
the constants on which the algorithm depends, in particular the one (τ3) whose
value seems to be the most sensible for the performance of the method.

We also plan to carry on a wider numerical experimentation, with the hope
to identify some particular test problems leading to L-curves which our method
actually does not recognize, i.e. cases which fall into the final error condition of
the algorithm.

Finally we wish to extend the method in order to apply it to iterative reg-
ularization methods and to Tikhonov regularization. The difficulty, in the first
case, is that the discrete regularization parameter, namely the iteration index,
does not have an upper bound, unlike in SVD methods, and we think that a
part of the algorithm should be repeated at each iteration to be able to track
the overcoming of the corner of the L-curve.

In the second case, where the parameter is a positive real number, we plan
to start with a coarse discretization of the L-curve and to add adaptively more
points in a neighborhood of the corner until its position is identified up to a
prescribed accuracy.
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