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Reconstruction of surfaces from a not large

data set by interpolation

MIRA BOZZINI – LICIA LENARDUZZI

Abstract: Many papers discuss the problem of recovering a function when a set
of data is known on a domain Ω ⊂ R2. Most of these papers assume that the size of
the data set is large. At our knowledge, little or practically nothing is said about the
case in which the sample has a size that is moderate.
In this paper we tackle this problem. We indicate a way for its solution and hence we
give a concrete example. Some numerical experiments are shown.

1 – Introduction

When the data are assigned on a domain Ω ⊂ R2 (in general Ω ≡ Q = [0, 1]×
[0, 1]) and are accurate enough, an interpolating function If(x) is constructed.

About this problem there is a broad literature, among which we recall the
well known paper [5] by Franke, that is the most hexaustive note about the nu-
merical validity of the different methods proposed in the literature for 2−variate
scattered data.

There it is stressed that the modified Shepard method and the interpolants
obtained by linear combination of radial basis functions provide a good solution
when the size n is large.

Now it is necessary to consider the adjectives good and large. The former
deals with the quality of the approximation, that in the cited paper is referred
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to both in term of error, evaluated as

epn =




M∑

j=1

| If(ξ
j
) − f(ξ

j
) |p /M




1/p

, 1 ≤ p < ∞,(1)

e∞n = maxj | (If(ξ
j
) − f(ξ

j
) |(2)

where {ξ
j
}Mj=1 are the points of a regular thick grid on Ω, and of the requirement

that there are no undue oscillations.
It is obvious that the latter term large depends on the current function f .

In general, samples with size of the order of hundreds are considered large in the
above mentioned paper by Franke for smooth functions, but at present, problems
in which the size of the data set is huge up to millions are considered too, see [4]
for example.

At this point a question arises: what shall we do when the size of the data
set is moderate?

The question is important not only from the speculative point of view, but
mainly from the applicative one. We recall in fact at least two situations relative
to real problems in which one must consider samples of small size.

The former is relative to all those cases in which it is expensive or practically
impossible to collect many data. (For example, we recall the problem of putting
few leads on the chest of a patient to represent his/her heart potential in such a
way that any pathology can be diagnosed correctly, see [1].) The current paper
is relevant to this situation.

A latter case concerns the storage of data; a huge amount of data is at
disposal, but it is necessary to select a subset of data to store a reduced set
of information (for example, with the purpose of describing the evolution of a
glacier): this is called a problem of compression of the information. Different
solutions have been proposed by methods of approximation of the data whose
algorithms are experimental [3], [7], [8] and [2].

We notice that in the compression problem we still deal with a large sample
and this makes easier to construct a good approximant.

In Section 2 of this note we tackle the problem of constructing a function
that interpolates the data and provides a good reconstruction of an unknown
smooth function in the case that the sample size is moderate. In Section 3
we indicate a method that determinates the interpolating function according to
the modality described at the previous section, as concrete example. For it an
automatic algorithm is implemented in Section 4. At last in Section 5 we show
some numerical examples to support the validity of our proposal.
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2 – Modality to construct an interpolant

The problem of interpolating a function is generally tackled according to
the following scheme.

For a function f ∈ C(Ω), Ω ⊂ R2, we consider a linear subspace of C(Ω) and
we individuate a suitable basis {φi(x)}ni=1 by which we determine the function
gn(x) =

∑n
i=1 ai(f)φi(x) that interpolates the assigned data {xi, fi}n1 .

Besides we require that as the size n increases, the corresponding sequence
of the approximating functions {gn} converges to f .

It is mostly useful to know the rate of convergence with respect to the
supremum norm because, in this case, we know in advance the order of magnitude
of the error as n is large enough.

In other words, the reliability with which we obtain a satisfying reconstruc-
tion of the unknown function f by the interpolating function gn, is based on the
asymptotic properties of gn, when we are considering a large sample.

For the problem tackled in the current paper, it is peculiar that the sam-
ple size is moderate and this does not allow us to make use of the asymptotic
properties to guarantee a good approximation.

Therefore it is necessary to individuate a different approach to the problem.
We reconsider the problem of interpolation described above.
If we analyze the modalities according to which the problem was solved in

the literature carefully, we notice that, in general, the basis functions depend
only on the assigned locations {xi}ni=1.

The consequence is that, almost surely, infinite informations are needed to
reconstruct the unknown function exactly; that is

f(x) =

∞∑

i=1

aiφi(x).

(For instance it is known that when we consider the shift invariant functions on
R, a function φ reproduces a polynomial of degree m if a sequence {ai}i∈Z exists
such that

xl =
∑

i∈Z
aiφ(x− xi) l = 0, . . . ,m.

That means that it is necessary to have a vector a ∈ l1(Z), whose components
do not vanish, to reproduce a constant.)

On the contrary, if ideally we could choose, among the basis functions,
a function φj(x) proportional to f , only one information would be needed to
reconstruct f exactly:

f = ajφj(x), ai = 0, ∀i �= j.

These considerations suggest that if we choose the basis functions conforming
to f , fewer basis functions and hence fewer functional values are needed to obtain
a good approximation to f .
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Taking into account this point of view, the construction of a satisfying in-
terpolating function has to be done by an adaptive technique.

Here we propose a technique by constructing the adaptive basis functions
by the following scheme:

• we consider n linear independent functions, each of them depending on some
parameters. We indicate such functions with

{φi(x, αi) x ∈ Ω, αi ∈ Rs s ≥ 1, i = 1, . . . n}.

(Some examples in 1d are: the B-splines with variable degree, the B-splines
with variable knots, the multiquadric with variable parameter.)
When we fix a vector set {α̂i}ni=1 the corresponding set of functions
{φi(x, α̂i}ni=1 provides a basis Bφ({αi}i) spanning a linear space.

• We consider the family Fφ of all possible bases as αi varies

Fφ = ∪α
i
∈RsBφ({αi}i)

subject to the condition that each basis gives a unique interpolant.
• Having prescribed a positive functional operator K, we define: the best basis

Bφ({α̂i}i) ∈ Fφ for the assigned interpolation problem and according to the
operator K the one that minimizes the operator K as αi varies in the subset
D ⊂ Rs in which the unicity of the interpolating function is guaranteed.

We point out that the operator K, used to construct the adaptive basis
functions, provides in addition a quantitative estimate of the approximation
obtained.

The last remark stresses the importance of choosing the operator K accord-
ing to the phenomenon at hand, as the measure of the goodness of fit is provided
by this operator. Classical operators presented in the literature are for instance:
the measure of entropy, the measure of risk, a measure of energy, the measure
according to the lp norm 1 ≤ p < ∞.

3 – An example

We begin with the following remark.
Within radial functions, the multiquadric functions

φ0(x, xj) = −
√

(x− xj)2 + (y − yj)2 + c2, j = 1, . . . , n

received wide attention. In particular, many papers were devoted to the choice
of the parameter c. For our problem, the paper [6] is interesting: there, for
dimension one, it is conjectured that the scaling of the multiquadric should be
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proportional to the local radius of curvature of the function to be interpolated.
On one hand, this conjecture supports the fact that the basis functions must be
constructed adaptively; on the other hand it allows us to notice that the adaptive
process must include other parameters together with the scaling parameter.

In fact in 2d, according to the conjecture by Hon and Kansa, when we
consider the restriction of f along the tangent t to the contour at a location xj

of the data set, we should choose a value ct of the scaling parameter depending
on the local radius of curvature relevant to the restriction considered. On the
other hand, if we consider the restriction of f along the gradient g, we should
take a value cg different from ct in general. So we adapt the argument of the
bidimensional multiquadric as follows:

aj(x
g − xg

j )
2 + bj(y

t − ytj)
2 + c2j , αj = (aj , bj , cj) ∈ D ⊂ R3

+

to balance the distance term and the parameter differently in direction t and in
direction g.

Following the scheme described in the previous section, we compute the
interpolating function in two steps:

• construction of a locally adaptive basis.
We consider the family of the linear independent functions

Fφ = ∪α
j
∈D{φ(x, xj , αj)}n1 αj ∈ D ⊂ R3

+, x, xj ∈ Ω,

with {φ(x, xj , αj) = {aj(xg − xg
j )

2 + bj(y
t − ytj)

2 + c2j}1/2.
We select the average of the local errors in the l2 norm as operator K to
individuate the basis functions in agreement with f .
In order to provide an efficient numerical method that fullfils what said
above, we restrict the range of the parameters. We take aj = 1 and cj = c,
j = 1, . . . , n, with c of the order of magnitude of the average distance
among the data locations. The component bj is made dependent on the
main curvatures in this way:

bj = bj(κ) = (1 + κµjνj)
−1, j = 1, . . . , n

where µj is directly proportional to the modulus of the gradient at xj and νj
is directly proportional to the radius of curvature of the contour at xj .
Operating with the set {αj(κ)=(1, bj(κ), c)}n1 , the best collectionBφ({αj}n1 )
is the one obtained by minimizing with respect to κ the functional

n∑

j=1

(Ijlocf(xj ; {αh(κ)}x
h
∈U(x

j
)) − f(xj))

2, κ ∈ R+
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where Ijlocf is the interpolant of the data belonging to a prescribed circular
neighborhood U(xj), excluding xj . We name {α̂j}nj=1 the optimal values of
the {αj}nj=1.
If the solution of the problem of minimum is κ = 0, we choose the values
{cj}n1 according to a decreasing function of the local density of the data
points.

• Computation of the interpolating function with the basis obtained at the
previous step:

If(x) =

n∑

j=1

âjφ(x, xj , α̂j).

4 – Algorithm

In this section we sketch the algorithm implementing the proposed method
and it fulfils two different requirements.

1) It determines the parameters for the local adaptation of the basis functions
to f from a small sample size with scattered locations or at most with
locations within regions where the experimenter feels that it is important
to probe the current phenomenon (for example in the heart potential data
case, the data are sampled more thickly in the front part of the chest).

2) The approximating function enjoys stability properties. That is to say that
when the locations {xj} are changed a little or the initial approximations of
the {bj}nj=1 are rough, the approximating function must maintain the order
of accuracy.

Step A. Determination of the best collection Bφ{αj}nj=1.

• Computation of c.
• Computation of the interpolant by the classical multiquadric basis {φ0(x, xi)}n1

I0f(x) =

n∑

i=1

ηiφ0(x, xi).

• Computation of the {µj}: we compute the quantities grad I0f(xj). We put

τj =
| grad I0f(xj) |

medianh | grad If0(xh) | and

µj =

{
τj if τj > 0.5

0 if τj < 0.5.

• Computation of the {νj}: we consider the contours {C(xj)}nj=1 of I0f related

to the heights {I0f(xj)}nj=1; each contour C(xj) is described as a set of lj
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sorted points Q = {Qk}ljk=1 which are intersection with a prefixed grid
(specified in the numerical examples); we individuate the point Qr ∈ Q
closest to xj , we consider the point Qm

r that precedes Qr of i = [10 ∗
lj/(maxj lj)] locations and the point Qp

r that follows Qr of i locations along
C(xj).
We calculate νj as

νj = mean(| cos(grad(Qr), grad(Qm
r )) |, | cos(grad(Qr), grad(Qp

r)) |).

• Estimate of κ by localized cross validation: for each xj , let us indicate
U(xj , R) the circle of radius R (in the numerical examples we specify the ra-
dius) and center at xj ; we interpolate the data with locations within U(xj , R)
but leaving out xj and by using the basis {φ(x;xh, αh(κ))}h∈U(x

j
,R),h �=j with

κ chosen such that

∑

j


fj −

∑

xh∈U(x
j
,R), h �=j

ηhφ(xj ;xh, αh(κ)




2

is minimized.

For κ = 0 we put cj = medianxh∈n(xj)
dist(xj , xh), n(xj) neighborhood of xj

according to the Delaunay triangulation, in the case that the data points are
uniformely distributed. In the case that there are regions empty of data, it is
better to put cj = meanx

h
∈n(x

j
)dist(xj , xh)+0.5∗ (medianx

h
∈n(x

j
)dist(xj , xh)−

meanx
h
∈n(x

j
)dist(xj , xh)).

Step B. Interpolation by using the collection Bφ,{α̂}n
i=1

as determined with
step A. Let denote If the final interpolant:

If(x) =

n∑

i=1

âiφ(x, xi, α̂i).

The cost of the procedure is of the order of (2/3)n3 operations.

5 – Numerical examples

In this section we present two different functions to show the effectiveness
of our proposal.

We have taken a thick regular grid 81×81 where to calculate I0f to estimate
gradient and contours well; to estimate the gradient at xj we proceed in this way:

we estimate grad I0f at the grid points and then we compute grad I0f(xj) by
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interpolating with a local cubic the gradient at the four vertices of the square to
which xj belongs.

If the data are scattered we have taken R = 0.25 for the localized cross
validation: the choice of R is such that U(xj , R) includes about ten data points,
which agrees with the choice of a local neighborhood for the local methods,
see [5]; in the case that the data are not uniformly located, we have taken R
variable to include ten points.

About the determination of κ, the golden section search method can be used
but in these examples we simply performed a grid search.

We provide the errors e2
n and e∞n defined in (1) and (2) with M = 3721,

the graphical output and the comparison with the output of the classical multi-
quadric interpolant on the same data set.

Case A. The former example deals with the sigmoidal function which is
relevant to many applicative problems and which is used as test function for
shape preserving algorithms in the literature. The function is shown in fig. 1.
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Fig. 1: True function.

Example 1. We consider a scattered data set, 40 points of which are
located inside [0.1, 0.9]2 and 13 points are placed at the boundary of the domain
(see fig. 2). The initial approximation I0f , calculated with c = 0.1, suitable
choice for the classical multiquadric, is shown in fig. 3; we have e2

n = 0.011 and
e∞n = 0.051. The graphical output with the locally adapted basis functions is
shown in fig. 4; it results e2

n = 0.004 and e∞n = 0.023.

Example 2. We consider the data locations presented in fig. 5, 40 points of
which fall within the domain of the graphical output [0.1, 0.9]2, which is framed
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Fig. 2: Data set.
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Fig. 3: Reconstruction with the classical φ0 basis.

in the figure, and other data points are placed outside for a total amount of 67
data points.

• In fig. 6 it is shown the graphical output of the I0f function (c = 0.15) and
the errors are e2

n = 0.013 and e∞n = 0.067, while in fig. 7 it is shown the
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Fig. 4: Reconstruction with the adapted φ basis.
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Fig. 5: Data locations.

graphic obtained with our method and in this case the errors are e2
n = 0.004

and e∞n = 0.026.
• For this case we check the stability with respect to the data locations and

with respect to the estimate of the derivatives.
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Fig. 6: Reconstruction with the classical φ0 basis.
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Fig. 7: Reconstruction with the adapted φ basis.

– With respect to different locations of the data, we consider a new set
obtained by the same routine for random numbers, but with a different
value of the seed. The result is shown in fig. 8.
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Fig. 8: Stability respect to the data locations. An other data set: reconstruction with the
adapted φ basis.

– With respect to a different estimate of the derivatives, due to a different
less good initial I0f approximation (calculated with c = 0.35) and
shown in fig. 9, the reconstruction with the adapted basis functions
(calculated with c = 0.15) is shown in fig. 10.
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Fig. 9: Reconstruction with the classical φ0 basis.
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Fig. 10: Stability respect to the derivatives. Reconstruction with the adapted φ basis.

Case B. The latter function is the classical humps and dips test function,
shown in fig. 11. This function has a radial structure, as also confirmed when
running the algorithm: the output is κ = 0.
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Fig. 11: True function.

Example 3. We consider 30 data uniformely scattered in the domain,
whose locations are shown in fig. 12. In this case the results are equivalent to
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Fig. 12: Data set.

those obtained by the non adaptive technique, even if there are small differences
in the error and in the graphic.
We obtain e2

n = 0.022 and e∞n = 0.093. The graphical output is shown in fig. 13.
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Fig. 13: Reconstruction with variable ci.
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When running with the basis φ0 with constant c = 0.277, it is e2
n = 0.024

and e∞n = 0.109. The graphical output is shown in fig. 14.
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Fig. 14: Reconstruction with the classical basis.

Example 4. The locations of the data stress the humps and the dip of
the test function. The function is evaluated at 27 data points in the domain
[0, 1] × [0, 1], 8 points of which staying at the boundary; their locations are
shown in fig. 15.
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Fig. 15: Data locations.
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We obtain e2
n = 0.037 and e∞n = 0.175 and the condition number of the

interpolation matrix is K2(A) = 268, the graphic is presented in fig. 16.
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Fig. 16: Reconstruction with variable ci.

On the contrary, when running with the basis φ0 with constant c=meann
i=1ci

it is e2
n = 0.048 and e∞n = 0.157 with condition number K2(A) = 4.16×109. The

graphical output is shown in fig. 17.
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Fig. 17: Reconstruction with the classical basis.
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