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The rational analogue of the Beckman-Quarles

Theorem and the rational realization of

some sets in Ed

JOSEPH ZAKS

Abstract: We describe the recent developments concerning the rational analogues
of the Beckman-Quarles Theorem, and discuss a related result concerning isometric
embeddings in Qm of subsets of En.

1 – Let Ed denote the Euclidean d-space, and let Qd denote the Euclidean
rational d-space. A mapping f : Ed → Ed is called ρ-distance preserving if
‖x − y‖ = ρ implies that ‖f(x)−f(y)‖ = ρ. The Beckman Quarles Theorem [1]
asserts that every mapping f : Ed → Ed which preserves unit distance is an
isometry, provided d ≥ 2; for a discrete version, see Tyszka [9].

W. Benz [2, 3] and H. Lenz [7] noticed that if d = 2, 3 or 4, a unit-distance
preserving mapping from Qd into Qd needs not be an isometry. A Tyszka [10]
showed that every unit distance preserving mapping f : Q8 → Q8 is an isometry.
In a sequence of papers [12,13] we extended these results to all even dimensions d
of the form d = 4k(k+1) and all the odd dimensions d of the form d = 2m2 − 1.
W. Benz [2, 3] had shown that every mapping f : Qd → Qd which preserves
the distances 1 and 2 (or, equivalently, 1 and n, n ≥ 2) is an isometry, provided
d ≥ 5. We [14] had shown that every mapping f : Qd → Qd which preserves the
distances 1 and

√
2 is an isometry, provided d ≥ 5. R. Connelly and J. Zaks [5]
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showed that for all even d, d ≥ 6, every unit distance preserving mapping f :
Qd → Qd is an isometry. W. Hibi, my Ph.D. student, has recently proved [6]
that for every d ≥ 5, every unit-preserving mapping f : Qd → Qd is an isometry.

Let Q(d, ρ) denote the graph whose vertices are the rational points of Ed

and its edges are pairs of points (x, y) for which ‖x − y‖ = ρ. Denote by ω(G)
the clique number of a graph G, and by ω(d) the clique number of Q(d, 1). The
values of ω(d) were given by Chilakamarry [4].

The main idea of W. Hibi [6] is the following lemma.

Lemma. If d ≥ 5, if m = ω(d) ≤ d and if A = {A1, . . . , Am, B,C} is an
(m + 2)-points set in Qd for which ‖Ai − Aj‖ = ‖Aj − B‖ = ‖B − C‖ = 1, 1 ≤
i < j ≤ m, then every unit preserving mapping f : A → Qd has the property that
f(C) �= f(A1).

To prove the lemma, observe that if f : A → Qd is a unit preserving mapping
for which f(C) = f(A1), then {f(A1), . . . , f(Am), f(B)} forms an (m+1)-clique
in Qd, contrary to the assumption that ω(d) = m.

2 – Let A be a subset of En and let d = dim(Aff(A)). If there exists a rational
space Qm, for some m, which contains a congruent copy of A, then the rational
dimension ρ(A) of A is defined as the least m for which Qm contains a congruent
copy of A; otherwise ρ(A) does not exist.

A set A is said to satisfy condition (ρ) if the following holds:

(ρ) ‖x− y‖2 is a rational number for all x, y in A.

Obviously, if a set A can be rationally embedded in En, then A must satisfy
the condition (ρ).

We will show that condition (ρ) is sufficient for a set A in En to have a
rational embedding in some Em. We will establish the following theorems.

Theorem 1. If the vertex set S of a d-simplex ∆d in En satisfies the
condition (ρ), then ρ(S) ≤ 4d.

Theorem 1 leads to our main result, which is the following.

Theorem 2. If a set A in En satisfies the condition (ρ), and if dim(Aff(A))=
d, then ρ(A) ≤ 4d.

Moreover, if {V0, . . . , Vd} is a subset of A which has affine dimension d,
then there exists a set {V ∗

0 , . . . , V
∗
d } of d + 1 points in Q4d and there exists an

isometric embedding f of Aff{V0, . . . , Vd} onto a d-dimensional affine flat in E4d,
such that f(Vi) = V ∗

i holds for all i, 0 ≤ i ≤ d, and f(A) is contained in Q4d;
i.e., the mapping f isometrically embeds all the points of A into rational points
in Aff{V ∗

0 , . . . , V
∗
d } in E4d.
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Proof of Theorem 1. Let {V0, . . . , Vd} be the vertex set of a d-simplex
in En for which ‖Vi − Vj‖2 = d2

ij is a rational number for all i and for all j,
0 ≤ i ≤ j ≤ d.

For each i, 1 ≤ i ≤ d, define Wi to be a point in Q4d of the form

Wi = (0, . . . , 0, w4i−3, w4i−2, w4i−1, w4i, 0, . . . , 0),

in which the four coordinates w4i−3, . . . , w4i will be defined later. We inductively
define the points V ∗

0 , . . . , V
∗
d as follows. The point V ∗

0 is taken as the origin; as-
sume that all the points V ∗

1 , . . . , V
∗
m−1 have been defined and they are of the form

V ∗
1 = W1 and V ∗

k =
k−1∑

j=1

bk,jWj + Wk ∈ Q4d, 2 ≤ k ≤ m− 1,

in which all the coefficients bk,j are rational numbers, Wk are rational points and
for which ‖V ∗

i −V ∗
j ‖=‖Vi−Vj‖=dij holds for all i and for all j, 1 ≤ i < j ≤ m−1.

Define the point V ∗
m to be of the form

V ∗
m =

m−1∑

i=1

bm,iWi + Wm ∈ Q4d,

in which all the bm,j are rational numbers for which ‖V ∗
i −V ∗

j ‖ = ‖Vi−V j‖ = dij
will hold for all i and for all j, 1 ≤ i < j ≤ m.

In the case d = 1, two points V0 and V1 are given in En, such that
‖V0 − V1‖2 = d2

12 is a positive rational number. By Lagrange’s Four Squares
Theorem [8], there exist four rational numbers α, β, γ and δ such that α2 +
β2 + γ2 + δ2 = ‖V0 − V1‖2. The two points V ∗

0 and V ∗
1 in Q4 are defined by

V ∗
0 = (0, 0, 0, 0) and V ∗

1 = (α, β, γ, δ).
The case d = 2 deals with triangles, and it had been treated in ([6], Lemma 2,

see also [14], Lemma 4 and Lemma 5); it will be included here as well.
We will determine the rational coefficients bm,1, bm,2, . . . , bm,m−1 and ratio-

nal coordinates w4m−3, w4m−2, w4m−1 and w4m of Wm as follows.
The following m equations, 0 ≤ j ≤ m− 1, are required to hold:

‖V ∗
m − V ∗

j ‖2 = d2
m,j

in particular,

‖V ∗
m − V ∗

0 ‖2 = d2
m,0 =

m−1∑

i=1

b2m,i‖Wi‖2 + ‖Wm‖2;

‖V ∗
m − V ∗

1 ‖2 = d2
m,1 = (bm,1 − 1)2‖W1‖2 +

m−1∑

i=2

b2m,i‖Wi‖2 + ‖Wm‖2.

Therefore,

‖V ∗
m − V ∗

1 ‖2 − ‖V ∗
m − V ∗

0 ‖2 = d2
m,1 − d2

m,0 = (1 − 2bm,1)‖W1‖2.
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Thus bm,1 is a rational number, since

bm,1 =
‖W1‖2 − d2

m,1 + d2
m,0

2‖W1‖2
=

d2
0,1 − d2

m,1 + d2
m,0

2d2
0,1

.

Next,

‖V ∗
m − V ∗

2 ‖2 − ‖V ∗
m − V ∗

1 ‖2 = d2
m,2 − d2

m,1 =

= (bm,1 − b2,1)
2‖W1‖2 + (bm,2 − 1)2‖W2‖2 +

m−1∑

i=3

b2m,i‖Wi‖2+

− (bm,1 − 1)2‖W1‖2 −
m−1∑

i=2

b2m,i‖Wi‖2 =

=
[
(bm,1 − b2,1)

2 − (bm,1 − 1)2
]
‖W1‖2 + (1 − 2bm,2) ‖W2‖2.

It follows that bm,2 is a rational number, and so on.
We end up with the following.

‖V ∗
m − V ∗

m−1‖2 − ‖V ∗
m − V ∗

m−2‖2 = d2
m,m−1 − d2

m,m−2 =

=
m−1−1∑

i=1

(bm,i − bm−1,i)
2‖Wi‖2 + (bm,m−1 − 1)2‖Wm−1‖2+

−
m−2−1∑

i=1

(bm,i− bm−2,i)
2‖Wi‖2 − (bm,m−2−1)2‖Wm−2‖2− b2m,m−1‖Wm−1‖2 =

= (bm,m−2 − bm−1,m−2)
2‖Wm−2‖2 + (1 − 2bm,m−1)‖Wm−1‖2+

− (bm,m−2 − 1)2‖Wm−2‖2 .

It follows that bm,m−1 is a rational number.
As a consequence, it is possible to find rational coefficients bm,i for all i,

1 ≤ i ≤ m− 1, for which V ∗
m has the required form (except possibly for the part

of Wm) and for which

‖V ∗
m − V ∗

k−1‖2 − ‖V ∗
m − V ∗

k−2‖2 = d2
m,k−1 − d2

m,k−2

holds for all k, 1 ≤ k ≤ m− 1.
Finally, from the equation

‖V ∗
m − V ∗

0 ‖2 = d2
m,0 =

m−1∑

i=1

b2m,i‖Wi‖2 + ‖Wm‖2

and the rationality of all the coefficients bm,i we conclude that ‖Wm‖2 is a
rational number.
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Next, we want to show that the expression one get for ‖Wm‖2 is non-
negative.

In fact, it follows easily from the form of the points V ∗
i that for all k,

1 ≤ k ≤ m, Aff{V ∗
0 , V

∗
1 , . . . , V

∗
k } = Aff{0,W1, . . . ,Wk}, and also that ‖Wk‖

is the height of the k-simplex conv{0,W1, . . . ,Wk} with respect to its facet
conv{0,W1, . . . ,Wk−1}; It is also the distance from the point V ∗

k to Aff{0,W1,
. . . ,Wk−1}. Thus, a priori, ‖Wk‖ ≥ 0, with equality to zero holding if, and only
if, Wk is already in Aff{0,W1, . . . ,Wk−1}.

It follows that the possibly non-zero coordinates w4m−3, w4m−2, w4m−1 and
w4m of Wm can be chosen, using Lagrange’s Four Square Theorem, as rational
numbers. It follows that Wm can be chosen as a rational point, which implies
that V ∗

m is a rational point in Q4d. Thus, ‖V ∗
m−V ∗

0 ‖2 = d2
m,0, hence ‖V ∗

m−V ∗
1 ‖2 =

d2
m,1, which implies that ‖V ∗

m − V ∗
k ‖2 = d2

m,k for all k, 1 ≤ k ≤ m− 1.

This completes the proof of Theorem 1.

Corollary 1. If the vertex set S of a d-simplex ∆d in En satisfies the
condition (ρ) and if one of the edges of ∆d has, in addition, a rational length,
then ρ(S) ≤ 4d− 3.

To prove Corollary 1, observe that if we take the two vertices of ∆d which
are at a rational distance α as the points V0 and V1, then we can choose V ∗

0 = (0)
and V ∗

1 = (α), thus save three dimensions at the beginning, and continue as in
the proof of Theorem 1. This result has been used previously ([14], Lemma 4, [6],
Corollary 1), showing that certain triangles can be rationally embedded in Q5.

Corollary 2. If the vertex set S = {V0, . . . , Vd} of a d-simplex ∆d in En

satisfies the condition (ρ) and if for every m, 1 ≤ m ≤ d, the distance from Vm to
Aff{V0, . . . , Vm−1} is a rational number, then ρ(S) = d, i.e., S can be rationally
embedded in Qd.

To prove Corollary 2, we repeat the proof of Theorem 1, and whenever there
is a need to fix Wm, it turns out that ‖Wm‖ is a rational number, hence only
one non zero rational coordinate suffices for Wm, therefore d non zero rational
coordinates will suffice for the entire {W1,W2, . . . ,Wd}.

Lemma 1. If the vertex set S = {V0, . . . , Vd} of a d-simplex ∆d is contained
in En, if U is a point of Aff{V0, . . . , Vd} and if {V0, . . . , Vd, U} satisfies the
condition (ρ), then the barycentric coordinates of U with respect to {V0, . . . , Vd}
are all rational numbers and ρ(V0, . . . , Vd, U) = ρ(V0, . . . , Vd) ≤ 4d.
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Proof of Lemma 1. Let S = {V0, . . . , Vd} be the vertex set of a d-simplex
∆d in En, let U be a point of Aff{V0, . . . , Vd} and let {V0, . . . , Vd, U} satisfy the
condition (ρ). The procedure of the proof of Theorem 1 to the set {V0, . . . , Vd, U}
in En yields a congruent set of rational points {V ∗

0 , . . . , V
∗
d , U

∗}, in which V ∗
0 is

the origin and U∗ is a point in Aff{V ∗
0 = 0, V ∗

1 , . . . , V
∗
d }. Therefore there exist

rational coefficients bk,j for which

V ∗
k =

k−1∑

j=1

bk,jWj + Wk ∈ Q4d, 1 ≤ k ≤ d, and

U∗ =
d∑

j=1

bd+1,jWj ∈ Q4d .

We wish to emphasize that there is no need for a Wd+1, in the expression for
U∗, since the point U∗ is in Aff{V ∗

0 = 0, V ∗
1 , . . . , V

∗
d }, because the point U is in

Aff{V0, V1, . . . , Vd}. The sets {V0, V1, . . . , Vd, U} and {V ∗
0 = 0, V ∗

1 , . . . , V
∗
d , U

∗}
are congruent, and from the expressions for V ∗

0 , V
∗
1 , . . . , V

∗
d and U∗ it follows

that there exist rational numbers λ1, . . . , λd, for which U∗ =
∑

i λiV
∗
i = (1 −∑

i λi)V
∗
0 +

∑
i λiV

∗
i , in which all the coefficients add up to 1. It follows that

the barycentric coordinates of U∗ with respect to {V ∗
0 , V

∗
1 , . . . , V

∗
d } are ((1 −∑

i λi), λ1, . . . , λd), which are all rational numbers. By congruency, the barycen-
tric coordinates of U with respect to {V0, V1, . . . , Vd} are ((1−∑

i λi), λ1, . . . , λd),
which are all rational numbers. This completes the proof of Lemma 1.

Lemma 1 yields the following consequence.

Corollary 3. If a set {V0, . . . , Vd} consists of d+ 1 affinely independent
rational points in En, then the following sets are equal.

(1) The set A of all the rational points of Aff(V0, . . . , Vd).

(2) The set B of all the points W of Aff(V0, . . . , Vd) for which ‖W − Vi‖2 is a
rational number for all i, 0 ≤ i ≤ d.

(3) The set C of all the points of the form
∑

i λiVi for which λi are rational

numbers and
∑

i λi = 1.

Recall that the n-dimensional volume V of conv{W1,W2, . . . ,Wn+1}, for
points W1,W2, . . . ,Wn+1 in Ek, can be determined by using all the mutual
distances. The volume V is given by the famous Euler-Cayley-Menger for-
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mula (see [11])

V 2 =
(−1)n+1

2n(n!)2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 . . . 1

1 0 d2
1,2 d2

1,3 . . . d2
1,n+1

1 d2
2,1 0 d2

2,3 . . . d2
2,n+1

1 d2
3,1 d2

3,2 0 . . . d2
3,n+1

. . . . . . . . . . . . . . . . . .

1 d2
n+1,1 d2

n+1,2 d2
n+1,3 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

where di,j = ‖Wi −Wj‖. In particular, the dimension of the affine hull of a set
A in Ek is determined in terms of the mutual distances of points of A. Thus,
dim(Aff(A)) is equal to the maximum of the value of d for which A contains a
set of d + 1 points whose convex hull has a positive d-dimensional volume. In
addition, if dim(Aff(A)) = d, then the (d + 1)-volume of the convex hull of any
d + 2 points of A is equal to zero.

Proof of Theorem 2. Let A be a set of points in En which satisfies
condition (ρ), and let dim(Aff(A)) = d. It follows that the set A contains the
vertex set {V0, . . . , Vd} of a d-simplex ∆d. Based on the proof of Theorem 1,
there exist a set {V ∗

0 , . . . , V
∗
d }, congruent to {V0, . . . , Vd} in Q4d.

Let U be any point of A\{V0, . . . , Vd}, and apply the construction of the
proof of Theorem 1 to {V0, . . . , Vd, U}. The dimension dim(Aff({V0, . . . , Vd})) is
equal to d, which is also the dimension of Aff{V0, . . . , Vd, U}. Thus, the attempt
to find a suitable point U∗, as described in the proof of Theorem 1, will yield a
rational point U∗ which is already in Aff{V ∗

0 , . . . , V
∗
d }, i.e., it has by Lemma 1

rational barycentric coordinates, with respect to {V ∗
0 , . . . , V

∗
d }. Thus, U∗ is

already in Q4d. Consider the two congruent sets of points {V0, . . . , Vd} in En

and {V ∗
0 , . . . , V

∗
d } in Q4d; there exists an isometric embedding f of {V0, . . . , Vd}

into Q4d for which f(Vi) = (V ∗
i ) holds for all i, 0 ≤ i ≤ d. Using barycentric

coordinates, based on {V0, . . . , Vd} for Aff({V0, . . . , Vd}), and on {V ∗
0 , . . . , V

∗
d }

for Aff({V ∗
0 , . . . , V

∗
d }), it follows that there exists an embedding F of A into

Aff({V ∗
0 , . . . , V

∗
d }), which is essentially a mapping of the set A into Aff({V ∗

0 , . . . ,
V ∗
d }) ∩Q4d.

Therefore ρ(A) ≤ 4d, which completes the proof of Theorem 2.

We close by the following remark. If we replace in the proof of Theorem 1
{W1, ...,Wd−1} by the usual basis {e1, ..., ed−1} of Ed−1 and replace Wd by bd,ded,
we get that bi,j is the j-th coordinate of V ∗

i . These bi,j can be constructed by a
ruler and a compass, given all the dij . Therefore we have the following theorem.

Theorem 3. Given all the mutual distances dij of a d-simplex in Ed, it is
possible to construct with a ruler and a compass (in the plane) all the coordinates
in Ed of the vertices V0, . . . , Vd of a d-simplex, for which ‖Vi − Vj‖ = dij holds
for all i and j, 1 ≤ i < j ≤ d.
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