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Segre-type theorems in finite geometry

GÁBOR KORCHMÁROS

Abstract: Segre-type theorems related to blocking sets of lines chosen with respect
to a conic in PG(2, q) are currently under investigation. A detailed survey on results
and methods used in the proofs is given.

1 – Introduction

In the joint paper [30], the following combinatorial characterisation of ex-
ternal lines to an irreducible conic in PG(2, q) is given.

Theorem 1.1. If every secant and tangent of an irreducible conic meets a
point-set L in exactly one point, then L consists of all points of an external line
to the conic.

For even q, this has been proven by Bruen and Thas [13] independently.
In the abstract of [30], the following remark is made: “while the result

admits no analogue in the real field, a number of similar properties can be
established or investigated in any Galois geometry.” In this spirit, combinatorial
characterisations of geometric objects related to conics are Segre-type theorems.

The proof of Theorem 1.1 depends on Segre’s “lemma of Tangents” which
was the key idea in the proof of his famous combinatorial characterisation of
conics of PG(2, q) with q odd, see [28], [29] and Lemma 8.11 in [22]. Likewise,
the proofs of the early Segre-type theorems dating back to the early Eighties,
relied on Segre’s lemma, see [1], [18].
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The Jamison method, developed originally for the study of blocking sets by
means of polynomials, was also a useful tool in proving Segre-type theorems. By
using the Jamison method, Blokhuis and Wilbrink [10] were able to give a
new, completely independent proof for Theorem 1.1, see also [9]. A nice presen-
tation of the Jamison method is found in [12]. A recent survey on applications
of polynomials in finite geometry is Blokhuis [8] which is, in some ways, a
continuation of Ball’s [5] and Blokhuis’ [6], [7] surveys.

Some newer Segre-type theorems are related to blocking sets. Their study
is a current research area in which the usual combinatorial and group theoretic
methods are made more efficient by using algebraic curves defined over finite
fields. Problems and results are described in the following sections.

Application of results and techniques from algebraic geometry to solving
problems in finite geometry was a powerful tool in Segre’s work. Especially his
ingenious idea to link arcs to algebraic curves via Wilson’s theorem, in such
a manner to apply the profound Hasse-Weil bounds on the number of GF (q)-
rational points of an algebraic curve, was seminal as demonstrated in Szőnyi’s
survey [33].

2 – Blocking sets of line sets in PG(2, q)

Boros, Füredi and Kahn [11] relied on Theorem 1.1 to obtain the follow-
ing result concerning an irreducible conic C in PG(2, q).

The minimum size of a point set B in PG(2, q) meeting every secant and
tangent of C is q + 1, the minimum value being attained only in a few cases,
namely when

(i) B consists of all points of an external line to C;
(ii) B contains m points from C and q + 1 −m points from a line �.

More precisely, in (ii), there is an abelian linear collineation group G of
order m preserving both C and � such that B∩C is an orbit under G while �\C is
the corresponding orbit on � under G which consists of all points lying on secants
of B ∩ C.

It is worth mentioning that this theorem was the main ingredient in their
investigation on the minimum number of members of a maximal k-clique, that
is, a family of mutually intersecting k-sets.

The above theorem is closely related to results of Wettl [37] and of Szőnyi
and Wettl [34] about (q+1)-sets Q with the following property: for some line �,
the point set Q\� is an arc and every line containing two points of Q\� is disjoint
from �\Q. The same theorem was the starting point of Mazzocca’s investigation
in [27] on nuclei of (q + 1)-sets in PG(2, q).

Similar combinatorial questions can be posed. To do this it is useful to
adopt the terminology introduced by Mazzocca in [27].
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A blocking set of a line set L is any point set B in PG(2, q) blocking L,
that is, meeting every line of L. From a result of Erdős and Lovász [17], if
|L| ≥ q2 − q then B is of linear type as it derives from a line by deleting and
adding a few points.

Results of this kind are viewed as stability theorems in the very recent
investigation by Szőnyi and Weiner [35].

Blocking sets of line sets chosen with respect to an irreducible conic C in
PG(2, q) are currently under investigation. If the line set consists of all secants
and tangents to C, then the above theorem of Boros, Füredi and Kahn [11]
provides a complete classification.

In [2], all point sets of minimum size blocking all external lines to C have been
determined in PG(2, q) with odd q. Apart from two sporadic cases occurring for
q = 5, 7, every such a point set is linear, that is, it consists of all points of a
secant of C minus the two common points of the secant and C, see Theorem 5.1.
For q even the picture is richer although no sporadic example occurs, see [19]:
two more infinite series of examples exist, namely all points of a tangent minus
the tangency point and the nucleus; for q square, all points of a Baer subplane
intersecting C in a subconic C0 minus the nucleus and the points of C0.

For q odd, a similar classification for point sets of minimum size blocking all
external and tangent lines is given in [3]. Three cases (none of them sporadic)
occur, namely all points of a tangent minus the tangency point; all points of a
secant different from its two points on C, plus the pole of the secant with respect
to (the polarity associated with) C; and all points of a Baer subplane intersecting
C in a subconic C0 minus the points of C0, see Theorem 6.1.

The picture is quite different for minimum size blocking sets of secants to C,
since the following procedure provide several examples in PG(2, q) with q even.
Let C be given with its (affine) equation Y = X2, that is, let C be a parabola in
the affine plane AG(2, q). For every a ∈ GF (q),

ϕa : (X,Y ) −→ (X + a, Y + a2)

is a translation of the affine plane AG(2, q). The center of ϕa, viewed as an elation
in the projective closure PG(2, q) of AG(2, q), is the infinite point Ba = (1, a, 0).
The translation group of C is T = {ϕa | a ∈ GF (q)} and it is isomorphic to the
additive group (GF (q),+) of GF (q). Take a subgroup G = {ϕa | a ∈ H} of T
where H is a subgroup in (GF (q),+), and define Γ to be the set of all centers of
all nontrivial translations in G. If P = (u, u2) is an affine point in C, the orbit of
P under G is ∆u = {(a+ u, (a+ u)2) | a ∈ H}. Then, B(G, u) = (C \∆u) ∪ Γ is
a blocking set of secants to C. Since B(G, u) consists of q points, it is a blocking
set of minimum size. In [4], it is shown that these are all minimum size blocking
sets of all secants to C in PG(2, q) with q even.

It may be noted that the above construction is related with sharply focused
sets arising from a geometric based secret sharing used in cryptography, see [14],
[15], [16], [20], [32].
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3 – Polynomials vanishing at internal points to an irreducible conic in
PG(2, q), q odd

An essential tool in the above investigation is a result on the linear system
of polynomials vanishing at every internal point to C, appeared in [2] and [3].
We reproduce the proof in the present and the next sections.

The degree of any non-zero polynomial f(X,Y ) ∈ GF (q)[X,Y ] vanishing
at every (x, y) with x, y ∈ GF (q) is at least q, and equality holds if and only if
f(X,Y ) = λ(Xq −X) + µ(Y q − Y ) with λ, µ ∈ GF (q), see [21] p. 87.

Given a non-empty subset I of ordered pairs (x, y) with x, y ∈ GF (q),
one can ask for the minimum degree d(I) of non-zero polynomials over GF (q)
vanishing on I. By a classical result from projective geometry, if 1

2n(n + 3) ≥
|I|, then d(I) ≤ n. For n = q − 2, this shows that d(I) ≤ q − 2 as long as
|I| ≤ 1

2 (q2 − q) − 1.
It turns out that any point-set I of size 1

2 (q2 − q) with d(I) = q−1 imposes
the greatest possible number of independent conditions on the polynomials van-
ishing on I. This suggests that such point-sets are rare and interesting objects.

We show that the set consisting of all internal points to an irreducible conic
is of this kind. Let AG(2, q) be the affine plane coordinatised by GF (q). Then
I can be viewed as a point-set of AG(2, q). Also, to a non-zero polynomial
f(X,Y ) ∈ GF (q)[X,Y ] there is associated the algebraic curve Γ of equation
f(X,Y ) = 0, and the condition f(x, y) = 0 means that Γ passes through the
point P (x, y). From now on we assume q to be odd, that is, q = ph with p > 2
prime. Let C be a parabola of AG(2, q), that is an irreducible conic tangent to
the infinite line of AG(2, q). A point P in AG(2, q) is internal to C if no tangent
to C passes through P . There are 1

2 (q2 − q) such points, and we will take I to
be the set of all internal points to C. The main result is the following theorem.

Theorem 3.1. Let Γ be an algebraic plane curve defined over the algebraic
closure of GF (q) of odd q order. If Γ passes through every internal point of a
parabola C of AG(2, q), then the degree d of Γ satisfies

d ≥ q − 1.

For the extremal case d = q − 1 we are able to provide an equation for Γ.
To do this, for every t ∈ GF (q), define the polynomial

(3.1) ϕt(X,Y ) = 1 −
(
Y − tX +

1

4
t2
)q−1

over GF (q). Note that ϕt(X,Y ) can be viewed as the characteristic function of
the line rt of equation Y − tX + 1

4 t
2 = 0. In fact, ϕt(X,Y ) equals 1 at the points

of rt and it vanishes elsewhere. Geometrically, the algebraic curve of equation
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ϕt(X,Y ) = 0 splits into the q − 1 nontangent lines through the infinite point
Qt = (1, t, 0).

Theorem 3.2. If deg Γ = q − 1 in Theorem 3.1, then Γ has equation

(3.2) f(X,Y ) =
∑

t∈GF (q)

λtϕt(X,Y ) = 0.

If, in addition, Γ is defined over GF (q), then λt ∈ GF (q), for any t ∈ GF (q).

The above theorem may be rephrased using classical terminology from the
theory of linear systems, see [31], for instance.

Theorem 3.3. The linear system of algebraic curves of degree q−1 passing
through every internal point of a parabola of AG(2, q) has dimension q−1. Such
points impose independent conditions on the algebraic curves of degree q−1 which
pass through them.

The proof of Theorem 3.1 is by contradiction. Let Γ be an algebraic curve
containing all points of I(C) whose degree d satisfies

(3.3) d < q − 1.

The first step consists in proving the following.

Lemma 3.4. Γ contains each point of C.

Proof. Let O ∈ C be any point. Consider an affine plane AG(2, q) whose
infinite line �∞ is tangent to C with tangency point distinct from O and choose
a frame in AG(2, q) with origin O such that C has equation Y = X2. External
and internal points to C can be described analytically: a point P (x, y) in A(2, q)
is external or internal to C according as x2 − y is a non-zero square or a non-
square in GF (q). Therefore, for each non-square element v ∈ GF (q), the points
P (0,−v) are in I(C). Furthermore, for each non-square element w ∈ GF (q),
the points of the parabola of equation Y = (1 − w)X2 distinct from the origin
are also contained in I(C). Actually, these are all points of I(C). Note that
d ≥ 1

2 (q+ 1), since each external line to C contains 1
2 (q+ 1) internal points to C.

Write the equation of Γ in the form

f(X,Y ) =
∑

aijX
iY j = 0.

Since the collineation (X,Y ) �→ (uX, u2Y ) with u ∈ GF (q)∗ preserves C, the
same holds for the set of its internal points. Hence, for every nonzero element
u ∈ GF (q), the algebraic curve Γu of equation

fu(X,Y ) =
∑

ui+2jaijX
iY j = 0,
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also contains each point in I(C). Therefore, the same holds for the algebraic
curve Γ′ of equation

f ′(X,Y ) =
∑

u∈GF (q)∗

fu(X,Y ).

Writing f ′(X,Y ) =
∑

bijX
iY j , we have bij = (

∑
u∈GF (q)∗ ui+2j)aij . By

Lemma 6.3 on pg. 271 of [26],

(3.4) bij =

{ −aij when either i = j = 0, or i + 2j = q − 1,

0 otherwise.

This shows that
f ′(X,Y ) = −a00 +

∑
bjX

q−2j−1Y j ,

with bj ∈ GF (q). Since deg f ′(X,Y ) ≤ d and d < q − 1, so both b0 = 0 and
j ≤ 1

2 (q − 1) hold. For every non-square element w ∈ GF (q), we have

f ′(x, (1 − w)x2) = 0

provided that x ∈ GF (q). Hence

−a00 +
∑

bj(1 − w)j = 0.

Since w(q−1)/2 + 1 = 0, this yields that the polynomial

g(T ) = −a00 +
∑

bj(1 − T )j

is either identically zero or it has the same roots as T (q−1)/2 + 1. In the latter
case,

g(T ) = c(T (q−1)/2 + 1)

for a nonzero element c. Replacing T by 1 − T , we obtain

−a00 +
∑

bjT
j = c((1 − T )(q−1)/2 + 1).

In particular, −a00 = 2c and b(q−1)/2 = c(−1)(q−1)/2. By elimination of c we get

a00 + (−1)(q−1)/22b(q−1)/2 = 0.

Furthermore, for every non-square element v ∈ GF (q), we have f ′(0,−v) = 0.
Hence

−a00 + b(q−1)/2(−v)(q−1)/2 = 0.

Since v(q−1)/2 + 1 = 0, we obtain a00 = 0. Therefore, Γ contains O.
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Lemma 3.5. A point O ∈ C is either a singular point of Γ, or C and Γ
have the same tangent at O.

Proof. We use the same set-up and arguments as in the preceding proof.
For each nonzero u ∈ GF (q), set gu(X,Y ) = u−1fu(X,Y ). Also, let g′(X,Y ) =∑

u∈GF (q)∗ g
′
u(X,Y ), and g′(X,Y ) =

∑
bijX

iY j . Then

(3.5) bij =

{ −aij when either i = 1, j = 0, or i + 2j = q,

0 otherwise.

This shows that
g′(X,Y ) = −a10X +

∑
bjX

q−2jY j

with bj ∈GF (q). This time b0 =b1 =0 and j ≤ 1
2 (q−1), again by deg g′(X,Y ) ≤ d

and (3.3). Set

h′(X,Y ) = −a10 +
∑

bjX
q−2j−1Y j .

Then g′(X,Y ) = Xh′(X,Y ). For every non-square element w of GF (q), we have
h′(x, (1 − w)x2) = 0 provided that x ∈ GF (q). Arguing as in the preceding
proof, this yields that either h′(X,Y ) is the zero polynomial, or

−a10 +
∑

bjT
j = c((1 − T )(q−1)/2 + 1)

for a nonzero element c. In the latter case, the linear term T is missing on
the left-hand side, but we have − 1

2 (q − 1)T on the other side. But this is
impossible. Therefore, a10 = 0. If a01 also vanishes, then O is a singular point
of Γ. Otherwise, Y = 0 is the tangent line to Γ at O.

Now, assume Γ to be a counterexample of minimum degree. By Lemmas 3.4
and 3.5, the intersection number I(Γ, C;O) ≥ 2 for every point O of PG(2, q)
lying in C. Since there are q+1 such points, Bézout’s theorem yields that either
2d ≥ 2(q+1), or C is a component of Γ. By (3.3) the former case does not occur.
In the latter case, Γ splits into two components, namely C and another, say ∆,
of degree d − 2. Clearly, ∆ contains all points in I(C). But this contradicts Γ
being of minimal degree.

In proving Theorem 3.3, we will also use homogeneous coordinates (X,Y, Z)
in such a way that the infinity line �∞ has equation Z = 0. Let Qt = (1, t, 0)
be a point of �∞. As we have noted in Section 3, the totally reducible curve of
degree q− 1 whose components are the lines through the point Qt different from
the two tangents to C has equation ϕt(X,Y ) = 0 with ϕt(X,Y ) defined in (3.1).

We are going to prove that any algebraic curve D of degree q − 1 passing
through every point in I belongs to the linear system Σ consisting of all curves
with equation ∑

t∈GF (q)

λtϕt(X,Y ) = 0.
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Assume that D has equation a(X,Y ) = 0, where

a(X,Y ) = Ψ0(X,Y ) + · · · + Ψq−1(X,Y ) = 0

and Ψi(X,Y ) is a homogeneous polynomial of degree i. We begin by showing

that every polynomial Ψq−1(X,Y ) =
∑q−1

i=0 aiX
iY q−1−i of degree q − 1 can be

written as

Ψq−1(X,Y ) =
∑

t∈GF (q)

λt(Y − tX)q−1 =

=
∑

t∈GF (q)

λt

q−1∑

i=0

(
q − 1
i

)
(−t)iXiY q−1−i,

for suitable λt ∈ GF (q). To do this, we need to show that the system of linear
equations

(3.6)

a0 =

(
q − 1

0

) ∑

t∈GF (q)

λt,

a1 =

(
q − 1

1

) ∑

t∈GF (q)

λt(−t),

...

aq−1 =

(
q − 1
q − 1

) ∑

t∈GF (q)

λt(−t)q−1,

has a nontrivial solution, or, equivalently, its determinant does not vanish. Apart
from the nonzero factor

c =

q−1∏

i=0

(
q − 1
i

)

this determinant is of Vandermonde type with generators wi, where i = 0, . . . , q−
1 and w is a primitive element of GF (q), which is different from 0. Therefore,
(3.6) has exactly one solution, that is there exists a unique homogeneous q-tuple
(λ0, λ1, . . . , λq−1) with entries in GF (q) such that

(3.7) Ψq−1(X,Y ) =
∑

t∈GF (q)

λt(Y − tX)q−1.

Note that the terms of degree q− 1 in ϕt(X,Y ) are those in (Y − tX)q−1. If the
polynomial a(X,Y ) − ∑

t∈GF (q) λtϕt(X,Y ) were not identically zero, then the
curve of equation

a(X,Y ) −
∑

t∈GF (q)

λtϕt(X,Y ) = 0
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would have degree q − 2 and would pass through every internal point of C con-
tradicting Theorem 3.1. Therefore

a(X,Y ) =
∑

t∈GF (q)

λtϕt(X,Y ).

It remains to show that the polynomials ϕt(X,Y ) with t ranging over GF (q) are
linearly independent over the algebraic closure of GF (q). It suffices to show that
the polynomials Ft(X,Y ) = (Y − tX)q−1 are linearly independent. Assume on
the contrary that

(3.8)
∑

t∈GF (q)

λtFt(X,Y ) = 0.

Substituting Y = 1, X= 0 we see that
∑

λt = 0, while substituting Y = u,X = 1
we get λu +

∑
λt = 0. Therefore, λu = 0. This of course also shows the

independence of the polynomials ϕt(X,Y ).

Remark 3.6. By the geometric interpretation of the polynomials ϕt(X,Y )
it is obvious that I coincides with the set of all base points of the linear system Σ.

Proposition 3.7. No curve in Σ passes through all affine points of C, but
there is exactly one containing q − 1 given points from C.

Proof. Set

(3.9) ϕ(X,Y ) =
∑

t∈GF (q)

λtϕt(X,Y ).

The point Pt = ( t
2 ,

t2

4 ) ∈ C is in the curve of equation ϕ(X,Y ) = 0 if and only if
λt = 0. Therefore, it is possible to ensure that (exactly) one curve in Σ passes
through q − 1 (but not more than q − 1) given points of C.

Lemma 3.8. Let �1, . . . , �q−1 be q− 1 pairwise distinct nontangent lines to
C through an external point P �∈ �∞ to C. Let Γ be the algebraic curve of degree
q − 1 whose components are �1, . . . , �q−1. Then Γ has equation λuϕu(X,Y ) +
λvϕv(X,Y ) = 0 with λu + λv = 0.

Proof. Let ru and rv be the tangents to C through P , and let Qu(1, u, 0)
and Qv(1, v, 0) be their infinite points. For any point R(x, y) in AG(2, q) not
lying on these tangents, both ϕu(X,Y ) and ϕv(X,Y ) vanish. This together with
λu + λv = 0 ensure that every line �i is a component of the curve of equation
λuϕu(X,Y ) + λvϕv(X,Y ) = 0. Since Γ contains no multiple line, the assertion
follows.
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A straightforward consequence of Proposition 3.7 is the following result.

Theorem 3.9. Let Γ be an algebraic plane curve defined over the algebraic
closure of GF (q), q odd. If Γ passes through every point of an irreducible conic C
of PG(2, q), and through every internal point to C, then the degree d of Γ satisfies

d ≥ q.

From now on we deal with the case d = q. To write an equation for Γ,
choose a reference system in affine coordinates such that C is the parabola of
equation Y = X2. Furthermore, for every t ∈ GF (q), define the polynomial

(3.10) ρt(X,Y ) =
[
1 −

(
Y − tX +

1

4
t2
)q−1](

X − t

2

)

over GF (q). Note that the algebraic curve of equation ρt(X,Y ) = 0 is totally
reducible, its components being the q − 1 nontangent lines through the infinite
point Qt = (1, t, 0) and the polar line of Qt = (1, t, 0) with respect to C.

Theorem 3.10. Let C be the parabola of equation Y = X2. If deg Γ = q
in Theorem 3.9, then Γ has equation

(3.11) f(X,Y ) =
∑

t∈GF (q)

λtρt(X,Y ) = 0.

If, in addition, Γ is defined over GF (q), then λt ∈ GF (q), for any t ∈ GF (q).

The above theorem may be rephrased using classical terminology from the
theory of linear systems, see [31], for instance.

Theorem 3.11. The linear system of algebraic curves of degree q passing
through every point of an irreducible conic C of PG(2, q) and through every in-
ternal point of C has dimension q−1. Such points impose independent conditions
on the algebraic curves of degree q which pass through them.

We are going to prove that any algebraic curve D of degree q passing through
every point of I(C) ∪ C belongs to the linear system Σ consisting of all curves
with equation ∑

t∈GF (q)

λtρt(X,Y ) = 0.

Write the equation of D in the form

a(X,Y ) = Ψ0(X,Y ) + · · · + Ψq(X,Y ) = 0
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where Ψi(X,Y ) is a homogeneous polynomial of degree i. We begin by showing
that the polynomial Ψq(X,Y ) =

∑q
i=0 aiX

iY q−i of degree q can be written as

(3.12)

Ψq(X,Y ) =
∑

t∈GF (q)

λtX(Y − tX)q−1 =

=
∑

t∈GF (q)

λtX

q−1∑

i=0

(
q − 1
i

)
(−t)iXiY q−1−i,

for suitable λt ∈ GF (q).
In homogeneous coordinates D has equation

a(X,Y, Z) = Ψ0(X,Y )Zq + Ψ1(X,Y )Zq−1 · · · + Ψq(X,Y ) = 0.

Since the point Q∞ = (0, 1, 0) is the infinite point of C, we have Q∞ ∈ D.
Therefore Ψq(0, 1) = 0 yielding a0 = 0. Hence

Ψq(X,Y ) = X
[ q−1∑

i=1

aiX
iY q−1−i

]
.

Thus, to end the proof we only need eq. (3.7).
Note that the terms of degree q in ρt(X,Y ) are those in X(Y − tX)q−1. If

the polynomial a(X,Y ) − ∑
t∈GF (q) λtρt(X,Y ) were not identically zero, then

the curve of equation

a(X,Y ) −
∑

t∈GF (q)

λtρt(X,Y ) = 0

would have degree q− 1 and would pass through every point of I(C)∪ C contra-
dicting Theorem 3.9. Therefore

a(X,Y ) =
∑

t∈GF (q)

λtρt(X,Y ).

It remains to show that the polynomials ρt(X,Y ) with t ranging over GF (q) are
linearly independent over the algebraic closure of GF (q). This follows from the
independence of their homogeneous part of highest degree, which is equivalent
to the independence of the polynomials ϕt.

Remark 3.12. By the geometric interpretation of the polynomials ρt(X,Y )
it is obvious that I(C) ∪ C coincides with the set of all base points of the linear
system Σ.
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4 – Representation of involutions of PGL(2, q)

Another essential tool in the investigation of Segre type theorems related to
blocking sets is Dickson’s classification of all subgroups of PGL(2, q), see [24],
[36], together with some consequences on the geometry of a conic, as stated in [2]
and [3]. For the seek of completeness, a detailed outline is given here.

As usual, PGL(2, q) denotes the projective linear group of the projective line
over GF (q) consisting of all permutations t′ = (at + b)/(ct + d) on GF (q) ∪∞
with coefficients a, b, c, d ∈ GF (q) such that ad − bc �= 0. Note that t′ = ∞ for
t = −d/c when c �= 0, and for t = ∞ when c = 0. Also, t′ = a/c for t = ∞ when
c �= 0.

Lemma 4.1. For q = ph and p odd prime, a complete list of subgroups of
PGL(2, q) together with the number N of their involutions is as follows:

(I) cyclic groups of order d with d | (q ± 1), N = 1;

(II) elementary abelian groups of order pk with k ≤ h, N = 0;

(III) dihedral groups of order 2d with d | (q ± 1), N = d + 1;

(IV) groups of order pks with s|(pk − 1) and s|(ph − 1); they are semidirect
products of an elementary abelian group of order pk with a cyclic group
of order s, N = pk;

(V) alternating group A4, N = 3;

(VI) symmetric group S4, N = 9;

(VII) alternating group A5 for q2 − 1 ≡ 0 (mod 5), N = 15;

(VIII) projective linear groups PGL(2, pk) with k|h and k < h, N = p2k;

(IX) projective special groups PSL(2, pk) with k|h and k ≤ h, N = 1
2 (pk ± 1)

for pk ≡ ∓1 (mod 4).

Furthermore, involutions in PGL(2, q) are of two types, namely

(i) t′ = −t + 4u for every u ∈ GF (q), and

(ii) t′ = (mt + 4b)/(t−m) for every m, b ∈ GF (q) with m2 + 4b �= 0.

Note that the involution t′ = −t + 4u fixes both 2u and ∞, while t′ =
(mt+4b)/(t−m) has either 2 or 0 fixed points depending on whether m2 +4b is
a nonzero square or a non-square element in GF (q). From Lemma 4.1 we deduce
two results.

Lemma 4.2. Let G be any intransitive subgroup of PGL(2, q) containing
at least q − 1 involutions. If some of such involutions have no fixed point, then
G is a dihedral group of order 2(q − 1).
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Proof. Assume first that q ≥ 13. From Lemma 4.1, subgroups of PGL(2, q)
containing at least q − 1 involutions are dihedral groups of order 2(q ± 1), the
projective special group PSL(2, q), semidirect products of order sq with s as
in (IV), and for square q groups isomorphic to PGL(2,

√
q). The dihedral sub-

groups of order 2(q+1) as well as PSL(2, q) are transitive subgroups. Semidirect
products as in (IV) have a fixed point.

It remains to show that every involution in PGL(2,
√
q) has two fixed

points. Since PGL(2, q) contains only one conjugacy class of subgroups iso-
morphic to PGL(2,

√
q), it suffices to show the assertion for just one subgroup

G ∼= PGL(2,
√
q). The permutations t′ = (at + b)/(ct + d) of GF (q) ∪ {∞}

whose coefficients a, b, c, d are in GF (
√
q) and satisfy ad− bc �= 0 constitute such

a subgroup G. Since m2 + 4b with m, b ∈ GF (
√
q) is always a nonzero square

in GF (q), the assertion follows for q ≥ 13.

Let q = 9, 11. By Lemma 4.1, there is just one new entry, namely G ∼= A5.
In both cases, A5 is a transitive subgroup of PGL(2, q). Likewise, if q = 5, 7
then G ∼= S4 and in both cases S4 is a transitive subgroup.

Given a subgroup G of PGL(2, q), a 2-component partition �∞ = L1 ∪ L2

with L1 ∩ L2 = ∅ is G-invariant if every g ∈ G either takes L1 to L2 and vice
versa (and there is at least one g ∈ G that does it), or it preserves both L1 and
L2. The subgroup N of G consisting of all elements which preserve both L1 and
L2 has index 2.

Lemma 4.3. If a proper subgroup G of PGL(2, q) contains at least q − 1
fixed-point-free involutions then either q ≡ 3 (mod 4) and G ∼= PSL(2, q), or
q = 11 and G ∼= A5, or q = 5, 7 and G ∼= S4. If, in addition, there is a G-
invariant partition with two components, then either q = 5, 7 and G ∼= S4, or
q = 5 and G is a dihedral group of order 12.

Proof. A dihedral group of order 2(q ± 1) contains at most 1
2 (q + 1) + 1

fixed-point-free involutions. This number is q − 1 only if q = 5 and the group
is dihedral of order 12. By the proof of Lemma 4.2, PGL(2,

√
q) cannot occur.

An involution in PSL(2, q) has 2 or 0 fixed points depending on whether q ≡ 1
(mod 4) or q ≡ 3 (mod 4). Furthermore, the subgroups of PGL(2, q) isomorphic
to A5 are contained in PSL(2, q), and the same holds for S4 when q = 7. Also,
every subgroups of PGL(2, 5) isomorphic to S4 contains 3 involutions with 2
fixed points and 6 fixed-point-free involutions. Finally, both PSL(2, q) and A5

are simple groups, and hence they do not have any subgroup of index 2. Instead,
S4 has A4 as subgroup.

We give a geometric representation of the involutions in PGL(2, q). As
before, AG(2, q) will stand for the affine plane over GF (q), �∞ for its infinite
line, C for the parabola of equation Y = X2, and Q∞ for the infinite point
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of C. Furthermore, rt will denote the line of equation Y = tX − 1
4 t

2, for every
t ∈ GF (q).

Note that rt is the tangent to C at the point (1
2 t,

1
4 t

2) and that Qt = (1, t, 0)
is the infinite point of rt. Obviously, Qt is distinct from Q∞. The lines rt
together with �∞ are all the tangents to C through Qt.

Now, choose any nontangent line � to C. Then either � is a vertical line
of equation X = u with u ∈ GF (q), or its equation is Y = mX + b with
m, b ∈ GF (q) and m2 + 4b �= 0. Let t �= m. Then rt meets � in a point R. Let r′

be the other tangent line to C through R when R �∈ C, and r′ = rt when R ∈ C.
The infinite Q′ point of r′ is called the image of Qt under the axial symmetry ψ�

associated to �. To recover the missing value t = m, define ψ�(Qm) = Q∞ and
ψ(Q∞) = Qm. Then Q′ = Qt′ with t′ depending on t as in the same manner as
in (i) or (ii). In other words, ψ� ∈ PGL(2, q).

This representation makes it possible to interpret properties of involutions
in PGL(2, q) in terms of geometric configurations of the corresponding symmetry
axes. In this paper, the following case is relevant.

Lemma 4.4. If ψ1, . . . , ψq−1 are the noncentral involutions of a dihedral
subgroup of PGL(2, q) of order 2(q − 1), then the corresponding symmetry axes
�1, . . . , �q−1 have a common point P . Furthermore, P is an external point to
C, and �1, . . . , �q−1 together with the two tangents to C through P form the full
pencil with base point P .

Proof. For any two distinct points A,B ∈ l∞, the subgroup D of PGL(2, q)
which preserves the set {A,B} is a dihedral subgroup of order 2(q − 1). The
q− 1 elements interchanging A and B are the noncentral involutions in D while
the cyclic subgroup of D of index 2 consists of the q − 1 elements fixing both
A and B. All dihedral subgroups of order 2(q − 1) are obtained on this way.
If A = Q∞ and B = Q0, then D consists of all involutions t′ = 4b/t together
with t′ = ut where both b and u range over GF (q)∗. Note that t′ = −t is
the unique central involution in D while lines which are symmetry axes of the
corresponding noncentral involutions in D have equation Y = b. Hence they are
all the nontangent lines through the point Q0 showing the assertion for this case.

If B ∈ �∞ is distinct from Q0, say B = Qu, then the affinity with equation
(X,Y ) �→ (X + 1

2u, Y + uX + 1
4u

2) preserves C and takes Q0 to Qu. This shows
that the assertion holds true for the case where A = Q∞ and B is any infinite
point distinct from Q∞.

Next, let A = Q1 and B = Q−1. It is easily checked that every involution
t′ = (mt−1)/(t−m) with m ∈ GF (q)\{1,−1} interchanges A and B. The same
holds for the involution t′ = −t. Thus these are all the noncentral involutions in
D. Also, the axis � of the axial symmetry corresponding to such an involution
has equation Y = mX − 1

4 and X = 0 respectively. All these axes pass through
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P (0,− 1
4 ). Thus they are all the nontangent lines through the point P (0,− 1

4 )
showing the assertion for this case.

Finally, let A,B ∈ �∞ \ {Q∞} any two distinct infinite points. Since
PGL(2, q) acts on �∞ as a 3-transitive permutation group, there is an element
in PGL(2, q) which fixes Q∞ and takes Q1 and Q−1 to A and B, respectively.
Therefore, the assertion extends to the dihedral subgroup preserving {A,B}, and
this completes the proof.

For further results, an explicit description of the action of PGL(2, q) is
needed.

Let PGL(3, q) be the projective linear group of the projective plane PG(2, q)
over GF (q) and let C be an irreducible conic of PG(2, q). Denote by Γ the
subgroup of PGL(3, q) preserving C.

If C is the conic of equation Y Z=X2 then Γ consists of all linear collineations
γ(a, b, c, d) with matrix representation x �→ xM , x = (X,Y, Z) and

M =




ad + bc 2ab 2cd
ac a2 c2

bd b2 d2




where a, b, c, d ∈ GF (q) and ad− bc �= 0, see [23], Theorem 2.37.
Let PGL(2, q) be the projective linear group of the projective line �∞ over

GF (q). As it is well known Γ ∼= PGL(2, q) and Γ acts on C as PGL(2, q) in its
sharply 3-transitive permutation representation that is in its natural representa-
tion on �∞.

If �∞ is given by Z = 0, this representation is obtained in the following
way. Identify points P = (u, u2, 1) ∈ C with points Qu = (1, u, 0) ∈ �∞, and
γ(a, b, c, d) with the linear fractional transformation

(4.1) u′ = (au + b)/(cu + d).

Then Γ acts on C as PGL(2, q) on �∞.
Let Γ0 be the subgroup of Γ consisting of all elements (4.1) with a, b, c, d ∈

GF (
√
q). Clearly Γ0

∼= PGL(2,
√
q) and Γ0 preserves the Baer subplane π0 of the

Baer involution (X,Y, Z) → (X
√
q, Y

√
q, Z

√
q), which is the canonical subplane

PG(2,
√
q) of PG(2, q) coordinatised by GF (

√
q).

Every involution in Γ0 has two fixed points on C. In fact γ(a, b, c, d) is an
involution if and only if a = −d. Then the point P (u, u2, 1) is a fixed point of
γ(a, b, c, d) when

(4.2) cu2 − 2au− b = 0.

Since a, b, c ∈ GF (
√
q), (4.2) has two solutions.
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Note that C0 = C ∩ π0 is a conic in π0. Also, a line of π0 is either a tangent
or a secant of C0 or an external line to C0, and in the latter case the line is a
secant of C.

The previous geometric representation of PGL(2, q) in which an involution
ψ� of PGL(2, q) is associated to each nontangent line � to C can be made more
explicit. In fact, ψ� is the restriction on C of the involutory homology h� ∈ Γ of
axis � whose centre is the pole of � with respect to C.

Lemma 4.5. Let ψ1, . . . , ψs be involutions of PGL(2, q). Then 〈ψ1, . . . , ψs〉
is isomorphic to 〈h1, . . . , hs〉.

Proof. It suffices to note that the only collineation fixing C pointwise is
the identity.

In studying 〈ψ1, . . . , ψs〉 three cases are distinguished. Lemma 4.2 together
with the following two lemmas depending on Dickson’s classification will play a
role.

Lemma 4.6. Let G be any intransitive subgroup of PGL(2, q), containing
at least q involutions. Then every involution in G has two fixed points if and
only if either G ∼= PGL(2,

√
q), q square, or G is a semidirect product of an

elementary abelian group of order q with a cyclic group of even order.

Proof. Every involution in a subgroup of PGL(2, q) isomorphic to PGL
(2,

√
q) has two fixed points. A subgroup of PGL(2, q) which is the semidirect

product of an elementary abelian group of order q with a cyclic group of even
order has a fixed point hence every involution must fix two points.

To prove the converse, assume first that q ≥ 13. By the classification of
subgroups of PGL(2, q), see Lemma 4.1, the subgroups of PGL(2, q) containing
at least q involutions are dihedral groups of order 2(q± 1), groups isomorphic to
PSL(2, q), groups of order qs with s|(q − 1), which are semidirect products of
an elementary abelian group of order q with a cyclic group of order s, and for
square q, groups isomorphic to PGL(2,

√
q).

From this we infer Lemma 4.6 for q ≥ 13 since dihedral subgroups of order
2(q + 1) as well as subgroups isomorphic to PSL(2, q) are transitive subgroups,
whereas the dihedral subgroups of order 2(q − 1) contain some fixed point free
involution.

If q = 9, 11 then, G can also be isomorphic to A5, see Lemma 4.1, but A5 is
a transitive subgroup of PGL(2, q) for q = 9, 11.

Likewise, if q = 5, 7 then G ∼= S4 and in both cases again S4 is a transitive
subgroup.
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Lemma 4.7. If ψ1, . . . , ψq are the involutions of a subgroup G of PGL(2, q)
isomorphic to PGL(2,

√
q), then the corresponding symmetry axes �1, . . . , �q are

lines of a Baer subplane of PG(2, q). Such a Baer subplane meets C in a conic
C0 and �1, . . . , �q are all nontangent lines of PG(2,

√
q) to C0. In particular all

the lines �1, . . . , �q are secants to C.

Proof. PGL(2,
√
q) and hence G, is generated by its involutions. According

to Lemma 4.5, let H =< h1, . . . , hq > with h1, . . . , hq ∈ Γ such that G ∼= H.
By the classification of subgroups of PGL(2, q) any two subgroups isomorphic to
PGL(2,

√
q) are conjugate in PGL(2, q). Hence, H = αΓ0α

−1 for some α ∈ Γ.
Furthermore, the Baer subplane preserved by H is the image of π0 by α.

Therefore, it suffices to show the assertion for Γ0. The axes of involutions in Γ0

are lines of π0 which are not tangent to C0 = C ∩ π0. Every nontangent line of
C0 meets C in 2 points, and hence the result follows.

The following two results come from [25] where a purely theoretic approach
is used. An alternative proof using coordinates is also possible; the necessary
computations can be carried out as in the proof of Lemma 4.4.

Lemma 4.8. If ψ1, . . . , ψq are the involutions of a subgroup G of PGL(2, q)
of order sq with s|q− 1, then the corresponding symmetry axes �1, . . . , �q have a
common point P on C.

Lemma 4.9. Let ψ1, . . . , ψq−1 be the noncentral involutions of a dihedral
subgroup G of PGL(2, q) of order 2(q − 1). The following assertions hold.

(i) The symmetry axes �1, . . . , �q−1 of ψ1, . . . , ψq−1 have a common point P ;
(ii) P is an external point to C, and �1, . . . , �q−1 together with the two tangents

to C through P form the full pencil with base point P ;
(iii) the polar line of P w.r.t C is the symmetry axes of the central involution

of G.

5 – Blocking sets of external lines

The following classification theorem comes from [2].

Theorem 5.1. Let C be an irreducible conic in PG(2, q), q odd. Let B be
a point-set in PG(2, q) which meets every external line to C. Then |B| ≥ q − 1
with equality occurring for q = 3 and q ≥ 9 in the “linear” case only, that is
when B consists of all points of a secant r of C minus the two common points of
r and C. For q = 5, 7 there exists just one more example, up to projectivities.
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The proof given here is essentially the same as in [2] and uses the results
stated in the previous sections.

Since q is odd, an orthogonal polarity is associated with C. This allows us
to state Theorem 5.1 and prove it in its dual form: if a line-set L covers the set
I(C) of all internal points to C, then |L| ≥ q − 1, and equality only holds when
L consists of all lines through an external point P minus the two tangents to C
through P . In other words, L together with the tangents to C constitute the full
pencil with base point P .

The first statement in the dual of Theorem 5.1 is a corollary to Theorem 3.1.
Henceforth we assume |L| = q − 1.

Lemma 5.2. At least half of the lines in L are external to C.

Proof. Assume that L consists of n secants together with q−1−n external
lines to C. Since each external line contains 1

2 (q+1) internal points to C whereas
each secant contains 1

2 (q − 1) internal points

(q − 1 − n)
(q + 1)

2
+ n

(q − 1)

2
≥ q(q − 1)

2
,

hence n ≤ 1
2 (q − 1).

We continue to work on an affine plane AG(2, q) whose infinite line �∞ is
tangent to C. The conic C is a parabola and we may assume C to be in its
canonical position with equation Y = X2. Let �1, . . . , �q−1 denote the lines
in L. Then �i has equation Li(X,Y ) = Y − uiX + vi with ui vi ∈ GF (q),
and the infinite point Qi of �i has homogeneous coordinates (1, ui, 0). Set
L(X,Y ) = L1(X,Y ) · · ·Lq−1(X,Y ). For any t ∈ GF (q), let Qt denote the
point of homogeneous coordinates (1, t, 0). Clearly, Qt is the infinite point of
the tangent line rt to C at the point P ( 1

2 t,
1
4 t

2). Note that rt has equation
Y − tX + 1

4 t
2 = 0.

By Theorem 3.2, there are λt ∈ GF (q) such that

(5.1) L(X,Y ) =
∑

t∈GF (q)

λt

(
1 −

(
Y − tX +

1

4
t2
)q−1)

.

Lemma 5.3. L contains a secant of C if and only if λt = 0 for at least one
t ∈ GF (q).

Proof. Assume that L contains a secant of C and let P denote one of their
common points. Write P = ( 1

2u,
1
4u

2) with u ∈ GF (q). Then L( 1
2u,

1
4u

2) = 0.

Furthermore, 1 − ( 1
4u

2 − 1
2ut + 1

4 t
2)q−1 = 1 − [ 12 (u − t)]2(q−1) is equal to 1 for

u = t, and it vanishes otherwise. By (5.1), λu = 0. Conversely, if λu = 0,
then (5.1) yields that L( 1

2u,
1
4u

2) = 0, and hence some line in L contains the
point P = ( 1

2u,
1
4u

2) of C.
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Set λ =
∑

t∈GF (q) λt.

Lemma 5.4. The infinite point Qu, u ∈ GF (q), is covered by some line of
L if and only if λu = λ.

Proof. Write (5.1) in homogeneous coordinates:

L(X,Y, Z) =

q−1∏

j=1

(Y − ujX + vjZ) =
∑

t∈GF (q)

λt

(
Zq−1 −

(
Y − tX +

1

4
t2Z

)q−1)
.

The point Qu lies on some line in L if and only if L(1, u, 0) = 0. On the other
hand, L(1, u, 0) = −λ+λu since (u−t)q−1 equals 0 for u = t and 1 otherwise.

For the rest of the proof we distinguish two cases according as λ vanishes
or does not.

Case λ = 0. Define Λ to be the set of all infinite points Qu covered by lines
in L together with the tangency point Q∞ of �∞ on C. Note that Λ does not
contain all infinite points.

As we have seen in Section 4, every line �j ∈ L defines an involution ψj in
PG(2, q) viewed as the linear collineation group of the infinite line �∞.

Lemma 5.5. Each involution ψj preserves Λ.

Proof. Let Qu be the infinite point of �j . By a previous result, ψj inter-
changes Qu with Q∞. For any point Qt �= Qu, let Qv be the image of Qt by ψj .
If Qt = Qv, then the assertion trivially holds. Otherwise, the tangent lines rt
and rv are distinct and they meet in a point P (x, y) of �j . Hence L(x, y) = 0. Let
w ∈ GF (q). Then (y − wx + 1

4w
2)q−1 vanishes for w = t and w = v, otherwise

it is equal to 1. From (5.1), λt + λv = 0. By Lemma 5.4, Qt ∈ Λ yields λt = 0.
Hence λv = 0, and by Lemma 5.4 the assertion follows.

Lemma 5.5 implies that Λ is invariant under the subgroup G of PGL(2, q)
generated by the involutions ψ1, . . . , ψq−1. According to Lemma 5.2, some of
these involutions have no fixed points. Hence, from Lemmas 4.2 and 4.4 we
obtain Theorem 5.1 in its dual form.

Case λ �= 0. This time, we define Λ+ to be the set of all infinite points Qt

covered by lines in L. By Lemma 5.4, Λ+ comprises all Qt such that λt = λ.
We will also need the set Λ− consisting of all infinite points Qt with λt = −λ
together with Q∞.

Lemma 5.6. Each involution ψj takes Λ+ to Λ−.
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Proof. Let Qu ∈ Λ+. If Qu lies in �j , then ψj interchanges Qu with
Q∞. For any point Qu �∈ �j let Qv the image of Qu under ψj . We show that
Qu �= Qv. If Qu = Qv then �j contains the tangency point P ( 1

2u,
1
4u

2) of
the affine tangent line to C through Qu. Therefore L( 1

2u,
1
4u

2) = 0. By (5.1),
0 =

∑
t∈GF (q) λt(1− ( 1

4u
2− 1

2ut+
1
4 t

2)q−1) =
∑

t∈GF (q) λt(1− (u− t)q−1). Since,

(u − t)q−1 = 1 for every t distinct from u, this yields λu = 0, a contradiction
with λ �= 0. So, we may assume Qu �= Qv.

Now, arguing as in the proof of Lemma 5.5, λu + λv = 0 follows. Since
λu = λ, this yields λv = −λ showing indeed that Qv ∈ Λ−. Conversely, if
Qv ∈ Λ−, then the image of Qv under ψj is in Λ+. This has already been noted
for Qv = Q∞ at the beginning. Also, the preceding arguments remain valid
when + and − are interchanged giving a proof for the assertion.

Set Λ = Λ+ ∪ Λ−. Then the previous lemma shows that Lemma 5.5 holds
true for the case λ �= 0. As before, this yields that Λ is invariant under the
subgroup G of PGL(2, q) generated by the involutions ψ1, . . . , ψq−1.

If Λ is a proper subset of �∞, we may argue as before by using Lemmas 5.2,
4.2 and 4.4. The conclusion is that the lines of L are those of a pencil with an
external base point P minus the two tangents to C through P . But this cannot
actually occur in the present situation by Lemma 3.8.

If Λ consists of all points in �∞, then no λt vanishes. By Lemma 5.3, every
line in L is external to C showing that no involution ψi has fixed point on C. By
Lemma 4.3, we are left with three sporadic cases, namely q = 5, 7 and G ∼= S4,
and q = 5 and G is a dihedral group of order 12.

Case q = 5. A nonlinear example of a line-set L covering I(C) consists of
the four external lines to C:

�1 : Y = 4X + 4; �2 : Y = 3X + 2; �3 : Y = X + 3; �4 : Y = X + 4.

Set

f(X,Y ) = (Y − (4X + 4))(Y − (3X + 2)((Y − (X + 3))(Y − (X + 4)).

As before, let

ϕt(X,Y ) = 1 −
(
Y − tX +

1

4
t2
)4

for t ∈ GF (5). It is straightforward to check that

f(X,Y ) =
∑

t∈GF (5)

λtϕt(X,Y )

with λ0 = λ2 = 1 and λ1 = λ3 = λ4 = −1. In particular,

λ =
∑

t∈GF (5)

λt = −1.
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The involutions in PGL(2, 5) which correspond to the lines �1, . . . , �4 are

ψ1 : t′ =
4t + 1

t + 1
; ψ2 : t′ =

3t + 3

t + 2
; ψ3 : t′ =

t + 2

t + 4
; ψ4 : t′ =

t + 1

t + 4
.

The subgroup G = 〈ψ1, ψ2, ψ3, ψ4〉 is a dihedral group of order 12. In PGL(2, 5),
there exist 10 dihedral subgroups of order 12, and they are pairwise conjugate
under PGL(2, 5). So, we have 10 projectively equivalent nonlinear examples. A
computer aided exhaustive search shows that no more nonlinear example exists.
In particular, the possibility G ∼= S4 does not actually occur for q = 5.

Case q = 7. A nonlinear example of a line-set L covering I(C) consists of
six external lines to C:

{
�1 : Y = 5; �2 : Y = 2X + 2; �3 : Y = 2X + 4;

�4 : Y = 2X + 5; �5 : Y = 5X + 5; �6 : Y = X + 1.

Set

f(X,Y ) = (Y − 5)(Y − (2X + 2))(Y − (2X + 4))×
× (Y − (2X + 5))(Y − (5X + 5))(Y − (X + 1)),

and

ϕt(X,Y ) = 1 −
(
Y − tX +

1

4
t2
)6

for t ∈ GF (7). It is easy to check that f(X,Y ) =
∑

t∈GF (7) λtϕt(X,Y ) with

λ0 = λ1 = λ3 = λ6 = 2 and λ2 = λ4 = λ5 = 5. In particular, λ =
∑

t∈GF (5) =

λt = 2. The involutions in PGL(2, 7) which correspond to the lines �1, . . . , �6
are

ψ1 : t′ =
6

t
; ψ2 : t′ =

2t + 1

t + 5
; ψ3 : t′ =

2t + 2

t + 5
;

ψ4 : t′ =
2t + 6

t + 5
; ψ5 : t′ =

5t + 6

t + 2
; ψ6 : t′ =

t + 4

t + 6
.

Furthermore, G = 〈ψ1, . . . , ψ6〉 ∼= S4. In PGL(2, 7), there exist 14 subgroups
isomorphic to S4, and they are pairwise conjugate under PGL(2, 7). So, we have
14 projectively equivalent nonlinear examples. As for q = 5, a computer-aided
exhaustive search shows that no other nonlinear example exists.
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6 – Blocking sets of nontangent lines

The classification theorem and its proof come from [3].

Theorem 6.1. Let C be an irreducible conic in PG(2, q), q odd and let B be
a point set in PG(2, q) which meets every external and tangent line to C. Then
|B| ≥ q with equality occurring in the following cases:

• B consists of all points of a tangent to C minus the tangency point ;

• B consists of all points of a secant r of C different from the two common
points of r and C, plus the pole of r with respect to C;

• B consists of all points of a Baer subplane PG(2,
√
q) intersecting C in a

conic C0 of PG(2,
√
q), minus the points of C0.

As in the preceding section, Theorem 6.1 is stated and proven in its dual
form: let I(C) be the set of all internal points of C. If a line set L covers the set
I(C) ∪ C then |L| ≥ q, and equality holds in the following cases:

• L consists of all lines through a point P on C minus the tangent at P to C;

• L consists of all lines through an external point P different from the two
tangents to C, plus the polar line of P with respect to C;

• L consists of all lines of a Baer subplane PG(2,
√
q) intersecting C in a conic

C0 of PG(2,
√
q) different from the tangent lines to C0.

The first statement in the dual of Theorem 6.1 is a corollary to Theorem 3.9.
Henceforth we assume |L| = q.

Lemma 6.2. No line in L is tangent to C.

Proof. In the preceding section, sets of q−1 lines covering all internal points
to C are classified. If L′ denotes such a set then, either there is an external point
P to C such that L′ consists of all nontangent lines to C through P , or q = 5, 7
and all the lines of L′ are external to C.

Now, assume on the contrary that a line � ∈ L is tangent to C at L. Re-
moving � from L gives a set of lines L′ covering all internal points to C and all
points of C different from L. Therefore L′ consists of all nontangent lines to C
through an external point P to C.

Let P1, P2 be the tangency points of the tangents to C through P . Then
neither P1 nor P2 is covered by L′, and hence both must be covered by �. But
this is impossible as � is a tangent to C.
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We continue to work on an affine plane AG(2, q) whose infinite line �∞ is
tangent to C. The conic C is a parabola and we may assume C to be in its
canonical position with equation Y = X2. Let �1, . . . , �q denote the lines in L.
Then �i has either equation Li(X,Y ) = Y − uiX + vi = 0 with ui vi ∈ GF (q),
and the infinite point Qi of �i has homogeneous coordinates (1, ui, 0), or �i has
equation Li(X,Y ) = X − ui = 0 with ui ∈ GF (q) and Q∞ = (0, 1, 0) is its
infinite point.

Set L(X,Y ) = L1(X,Y ) · · ·Lq(X,Y ). For any t ∈ GF (q), let Qt denote
the point of homogeneous coordinates (1, t, 0). Clearly, Qt is the infinite point
of the tangent line qt to C at the point P ( 1

2 t,
1
4 t

2). Note that qt has equation
Y − tX + 1

4 t
2 = 0.

By Theorem 3.10, there are λt ∈ GF (q) such that

(6.1) L(X,Y ) =
∑

t∈GF (q)

λt

[
1 −

(
Y − tX +

1

4
t2
)q−1](

X − t

2

)
.

Set λ =
∑

t∈GF (q) λt.

Lemma 6.3. The infinite point Qu, u ∈ GF (q), is covered by some line of
L if and only if λu = λ.

Proof. Write (6.1) in homogeneous coordinates:

L(X,Y, Z) =
∑

t∈GF (q)

λt

[
Zq−1 −

(
Y − tX +

1

4
t2Z

)q−1](
X − t

2
Z
)
.

The point Qu lies on some line in L if and only if L(1, u, 0) = 0. On the other
hand, L(1, u, 0) = −λ+λu since (u−t)q−1 equals 0 for u = t and 1 otherwise.

Define Λ to be the set of all infinite points Qu covered by lines in L together
with the tangency point Q∞ of �∞ on C. Note that Λ does not contain all infinite
points.

As we have seen in Section 4, every line �j ∈ L defines an involution ψj in
PGL(2, q) viewed as the linear collineation group of the infinite line �∞.

Lemma 6.4. Each involution ψj preserves Λ.

Proof. Let Qu be the infinite point of �j . By a previous result, ψj inter-
changes Qu with Q∞. For any point Qt �= Qu, let Qv be the image of Qt by ψj .
If Qt = Qv, then the assertion trivially holds. Otherwise, the tangent lines qt
and qv are distinct and they meet in a point P (x, y) of �j where x = 1

4 (t + v).
Hence L(x, y) = 0. Let w ∈ GF (q). Then (y−wx+ 1

4w
2)q−1 vanishes for w = t

and w = v, otherwise it is equal to 1. From (6.1),

λt

(
x− t

2

)
+ λv

(
x− v

2

)
=

1

4
(v − t)(λt − λv) = 0.
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By Lemma 6.3, Qt ∈ Λ yields λt = λ. Hence also λv = λ, and by Lemma 6.3
the assertion follows.

Lemma 6.4 implies that Λ is invariant under the subgroup G of PGL(2, q)
generated by the involutions ψ1, . . . , ψq. If L contains some external lines then
some of these involutions have no fixed point. Hence, from Lemmas 4.2, and 4.9,
L consists of all lines through an external point P different from the two tangents
to C, plus the polar line of P with respect to C.

Otherwise, L consists of all secant lines to C and every involution ψi has
two fixed points. Hence from Lemma 4.6, G is either a group of order qs with
s|q− 1, or it is isomorphic to PGL(2,

√
q). In the former case, from Lemma 4.8,

L consists of all lines through a point P on C minus the tangent at P to C.

Finally, when G is isomorphic to PGL(2,
√
q), then from Lemma 4.7 we

have that L is the set of lines of a Baer subplane π0 minus the tangents to the
conic C ∩ π0 and Theorem 6.1 follows.
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