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Hierarchy of almost-periodic function spaces

J. ANDRES – A. M. BERSANI – R. F. GRANDE

Abstract: The various types of definitions of almost-periodic functions are exam-
ined and compared in order to clarify the hierarchy of almost-periodic function spaces.
Apart from the standard definitions, we introduce also new classes and comment some
other, less traditional, definitions, to make a picture as much as possible complete.
Several new results concerning horizontal hierarchies are proved. Illustrating examples
and counter-examples are shown.

1 – Introduction

Ever since their introduction by H. Bohr in the mid-twenties, almost-periodic
(a.p.) functions have played a role in various branches of mathematics. Also, in
the course of time, various variants and extensions of Bohr’s concept have been
introduced, most notably by A. S. Besicovitch, V. V. Stepanov and H. Weyl.
Accordingly, there are a number of monographs and papers covering a wide
spectrum of notions of almost-periodicity and applications (see the large list of
references).

An extension of Bohr’s original (scalar) concept of a different kind are the
generalizations to vector-valued almost-periodic functions, starting with Boch-
ner’s work in the thirties. Here, too, are a number of monographs on the subject,
most notably by L. Amerio and G. Prouse [4] and by B. M. Levitan and
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V. V. Zhikov [100]. This vector-valued (Banach space valued) case is partic-
ularly important for applications to (the asymptotic behavior of solutions to)
differential equations and dynamical systems.

In recent years, this branch of the field has led to a kind of revival of the
almost-periodicity field. One of the basic breakthroughs in this context was
M. I. Kadets’ solution of the “integration problem” in 1969 (see [74]), showing
that the scalar result (the integral of a uniformly a.p. function is uniformly a.p.,
provided it is bounded) carries over to exactly the class of Banach spaces not
containing an isomorphic copy of c0, the scalar null sequences.

Starting from there, the more general question of which kind of (ordinary or
partial) “almost-periodic differential equations” (of various types) has almost-
periodic solutions (of the same or related type), has vividly been taken up, both
in the linear and in the nonlinear case. In the nonlinear case, positive results are
sparse, and hard to come by; mostly, because of the absence of the machinery of
spectral theory. In the linear case, though, there has been tremendous progress
within the past ten years, both in breadth and depth. A fairly complete account
of this development is to be found in parts B and C of a recent monograph by
W. Arendt, C. Batty, M. Hieber and F. Neubrander [10].

Hence, in the theory of almost-periodic (a.p.) functions, there are used
many various definitions, mostly related to the names of H. Bohr, S. Bochner,
V. V. Stepanov, H. Weyl and A. S. Besicovitch ([4], [16], [17], [22], [24],
[25], [26], [27], [31], [32], [33], [34], [35], [39], [41], [55], [67], [99], [100], [105],
[106], [107]).

On the other hand, it is sometimes difficult to recognize whether these
definitions are equivalent or if one follows from another. It is well-known that, for
example, the definitions of uniformly a.p. (u.a.p. or Bohr-type a.p.) functions,
done in terms of a relative density of the set of almost-periods (the Bohr-type
criterion), a compactness of the set of translates (the Bochner-type criterion,
sometimes called normality), the closure of the set of trigonometric polynomials
in the sup-norm metric, are equivalent (see, for example, [22], [41]).

The same is true for the Stepanov class of a.p. functions ([22], [35], [67],
[107]), but if we would like to make some analogy for, e.g., the Besicovitch class
of a.p. functions, the equivalence is no longer true.

For the Weyl class, the situation seems to be even more complicated, be-
cause in the standard (Bohr-type) definition, the Stepanov-type metric is used,
curiously, instead of the Weyl one.

Moreover, the space of the Weyl a.p. functions is well-known [35], unlike the
other classes, to be incomplete in the Weyl metric.

In [57], E. Fœlner already pointed out these considerations, without arriving
at a clarification of the hierarchies.

Besides these definitions, there exists a lot of further characterizations, done,
e.g., by J.-P. Bertrandias [20], R. Doss [48], [50], [51], A. S. Kovanko [86],
[87], [88], [89], [91], [92], [93], B. M. Levitan [99], A.A.Pankov [107], and the
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references therein], A. C. Zaanen [135], which are, sometimes, difficult to com-
pare with more standard ones.

Therefore, our main aim is to clarify the hierarchy of such classes, in a
“horizontal”, as well as a “vertical”, way.

More precisely, we would like to fulfill at least the following table and to
indicate the related relationships.

a. periods normal approx.

Bohr Def. 2.2 Def. 2.6 Def. 2.8

Stepanov Def. 3.1 Def. 3.3 Def. 3.4

equi-Weyl Def. 4.1 Def. 4.2 Def. 4.3

Weyl Def. 4.4 Def. 4.5 Def. 4.6

Besicovitch Def. 5.16 Def. 5.17 Def. 5.5

Table 1

Furthermore, we would like to collect and comment all the equivalent defi-
nitions in the literature to those in Table 1.

This goal is stimulated by our interest to apply elsewhere these notions to
the theory of nonlinear a.p. oscillations (cf. [5], [6], [7], [8]). It occurs that the
most suitable definitions w.r.t. applications to differential equations are those
by means of almost-periods (the first column in Table 1). On the other hand,
the obtained implications in Table 2 in Section 6 allow us to assume a bit more,
when e.g. using the definitions by means of approximations (the third column
in Table 1), but to get a bit less in terms of almost-periods. Moreover, because
of the regularity of solutions, we can get in fact normal oscillations, even when
considering a.p. equations in terms of almost-periods. Thus, imposing some
additional restrictions on a.p. equations, and subsequently normal solutions, one
might come back to almost-periodic forced oscillations, defined by means of
approximations. We would like to follow this idea in one of our forthcoming
papers. The present classification can be regarded as the first step of this aim.
The next one should contain the integrals of a.p. functions from all given classes,
playing the fundamental role in representing solutions of linear a.p. equations.
The Bohr-Neugebauer type results (i.e. boundedness implies almost-periodicity)
for linear a.p. systems with constant coefficients was recently investigated in this
frame by our PhD student L. Radova in [109]. The final desired step is to build
the theory of a.p. oscillations (for linear as well as nonlinear differential equations
and inclusions), just on the basis of the indicated implications. This is, however,
still a rather long way to go, and so we are not quoting here papers concerning
a.p. solutions of differential equations, apart from those, where new classes of
a.p. functions were introduced.
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The paper is organized appropriately to Table 1.
In Sections 2 and 3, uniformly and the Stepanov a.p. classes are defined and

compared.
In Sections 4 and 5, the same is done for the equi-Weyl, the Weyl and the

Besicovitch a.p. classes. Some new results concerning the horizontal hierarchies
are proved.

In Section 6, the most important properties, common to all the spaces, are
illustrated. The desired hierarchy is clarified, fulfilling the Table 1 and showing
several counter-examples, demonstrating non-equivalence.

All the theorems already presented in the literature are quoted with (some-
times only partial) references. The theorems without references are intended to
be (as far as the authors know) original.

Sometimes, we will not distinguish between a function f and the values f(x)
it assumes; it will be clear from the context whether we mean the functions or
their values. Furthermore, speaking about Weyl or Besicovitch metrics implicitly
means to deal with the related quotient spaces, because otherwise we should
rather speak about Weyl or Besicovitch pseudo-metrics.

Many further definitions of generalized spaces of almost periodic functions
are present in literature (see the large list of the references). Some of them will
be briefly introduced and discussed at the end of Sections 2–5 and in Section 7.

Finally, in Section 7, some concluding remarks and open problems will be
pointed out.

2 – Uniformly almost-periodicity definitions and horizontal hierarchies

The theory of a.p. functions was created by H. Bohr in the Twenties, but it
was restricted to the class of uniformly continuous functions.

Let us consider the space C0(IR; IR) of all continuous functions, defined on
IR and with the values in IR.

In this section, the definitions of almost-periodicity will be based on the
topology of uniform convergence.

Definition 2.1. A set X ⊆ IR is said to be relatively dense (r.d.) if there
exists a number l > 0 (called the inclusion interval), s.t. every interval [ a, a+ l ]
contains at least one point of X.

Definition 2.2. (see, for example, [4, p. 3], [22, p. 2], [67, p. 170]) [Bohr-
type definition] A function f ∈ C0(IR; IR) is said to be uniformly almost-periodic
(u.a.p.) if, for every ε > 0, there corresponds a r.d. set {τ}ε s.t.

(2.1) sup
x∈IR

|f(x + τ) − f(x)| < ε ∀τ ∈ {τ}ε .

Each number τ ∈ {τ}ε is called an ε-uniformly almost-period (or a uniformly
ε-translation number) of f .
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Proposition 2.3.([4, p. 5], [22, p. 2], [76, p. 155]) Every u.a.p. function is
uniformly continuous.

Proposition 2.4.([4, p. 5], [22, p. 2], [76, p. 155]) Every u.a.p. function is
uniformly bounded.

Proposition 2.5.([4, p. 6], [22, p. 3]) If a sequence of u.a.p. functions fn
converges uniformly in IR to a function f , then f is u.a.p., too.

In other words, the set of u.a.p. functions is closed w.r.t. the uniform con-
vergence. Since it is a closed subset of the Banach space Cb := C0 ∩L∞ (i.e. the
space of bounded continuous functions, endowed with the sup-norm), it is Ba-
nach, too.

Actually, it is easy to show that the space is a commutative Banach algebra,
w.r.t. the usual product of functions (see, for example, [113, pp. 186–188]).

Definition 2.6. ([22, p. 10], [41, p. 14], [100, p. 4]) [normality or Bochner-
type definition] A function f ∈ C0(IR; IR) is called uniformly normal if, for every
sequence {hi} of real numbers, there corresponds a subsequence {hni} s.t. the
sequence of functions {f(x + hni

)} is uniformly convergent.

The numbers hi are called translation numbers and the functions fhi(x) :=
f(x + hi) are called translates.

In other words, f is uniformly normal if the set of translates is precompact
in Cb (see [4], [107]).

Let us recall that a metric space X is compact (precompact) if every sequence
{xn}n∈IN of elements belonging to X contains a convergent (fundamental) sub-
sequence.

Obviously, if X is a complete space, it is equivalent to say that X is pre-
compact, relatively compact (i.e. the closure is compact) or compact.

The necessary (and, in a complete metric space, also sufficient) condition
for the relative compactness, or an equivalent condition for the precompactness,
of a set X can be characterized by means of (see, for example, [78], [102]):

the total boundedness (Hausdorff theorem): for every ε > 0 there exists a finite
number of points {xk}k=1,... ,n s.t.

X ⊂
n⋃

k=1

(xk, ε) ,

where (xk, ε) denotes a spherical neighbourhood of xk with radius ε; the set
{xk}k=1,... ,n is called an ε-net for X.
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Remark 2.7. Every trigonometric polynomial

P (x) =
n∑

k=1

ake
iλkx ; (ak ∈ IR ; λk ∈ IR)

is u.a.p. Then, according to Proposition (2.5), every function f , obtained as the
limit of a uniformly convergent sequence of trigonometric polynomials, is u.a.p.

It is then natural to introduce the third definition:

Definition 2.8. ([24, p. 224], [35, p. 36], [41, p. 9]) [approximation] We
call C0

ap(IR; IR) the (Banach) space obtained as the closure of the space P(IR; IR)
of all trigonometric polynomials in the space Cb, endowed with the sup-norm.

Remark 2.9. Definition (2.8) may be expressed in other words: a function f
belongs to C0

ap(IR; IR) if, for any ε > 0, there exists a trigonometric polynomial
Tε, s.t.

sup
x∈IR

|f(x) − Tε(x)| < ε .

It is easy to show that C0
ap, like C0, is invariant under translations, that is

C0
ap contains, together with f , the functions f t(x) := f(x+ t) ∀t ∈ IR (see, for

example, [100, p. 4]).
The three main definitions, (2.2), (2.6) and (2.8), are shown to be equivalent:

Theorem 2.10.([4, p. 8], [22, pp. 11-12], [99, pp. 23-27], [100, p. 4], [107,
pp. 7-8]) [Bochner criterion] A continuous function f is u.a.p. iff it is uniformly
normal.

Theorem 2.11.([24, p. 226], [107, p. 9]) A continuous function f is u.a.p.
iff it belongs to C0

ap(IR; IR).

Remark 2.12. To show the equivalence among Definitions (2.2), (2.6)
and (2.8), in his book [41, pp. 15-23], C. Corduneanu follows another way that
will be very useful in the following sections: he shows that

(2.8) =⇒ (2.6) =⇒ (2.2) =⇒ (2.8).

In order to satisfy the S. Bochner criterion, L. A. Lusternik has proved an
Ascoli–Arzelà-type theorem, introducing the notion of equi-almost-periodicity.

Theorem 2.13.([41, p. 143], [100, p. 7], [102, pp. 72-74]) [Lusternik] The
necessary and sufficient condition for a family F of u.a.p. functions to be pre-
compact is that
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1) F is equi-continuous, i.e. for any ε > 0, there exists δ(ε) > 0 s.t.

|f(x1) − f(x2)| < ε if |x1 − x2| < δ(ε) ∀f ∈ F ;

2) F is equi-almost-periodic, i.e. for any ε > 0 there exists l(ε) > 0 s.t., every
interval whose length is l(ε), contains a common ε-almost-period ξ for all
f ∈ F , i.e.

|f(x + ξ) − f(x)| < ε ∀f ∈ F ; x ∈ IR ;

3) for any x ∈ IR, the set of values f(x) of all the functions in F is precompact.

Remark 2.14. As already seen, for numerical almost-periodic functions,
condition 3) in the Lusternik theorem coincides with the following:

3′) for any x ∈ IR, the set of values f(x) of all the functions in F is uniformly
bounded.

The u.a.p. functions, like the periodic ones, can be represented by their
Fourier series.

Definition 2.15. For every function f , we will call as the mean value of f
the number

(2.2) M [f ] = lim
T→∞

1

2T

∫ T

−T

f(x) dx =:

∫
f(x) dx .

Theorem 2.16.([22, pp. 12-15], [35, p. 45], [100, pp. 22-23]) [Mean value
theorem] The mean value of every u.a.p. function f exists and

(2.3)

a) M [f ] = lim
T→∞

1

T

∫ T

0

f(x) dx = lim
T→∞

1

T

∫ 0

−T

f(x) dx ;

b) M [f ] = lim
T→∞

1

2T

∫ a+T

a−T

f(x) dx ; uniformly w.r.t. a ∈ IR.

Remark 2.17. Every even function satisfies (2.3), while necessary condition
for an odd function to be u.a.p. is that M [f ] = 0. Furthermore, since, for every
u.a.p. function f and for every real number λ, the function f(x)e−iλx is still a
u.a.p. function, the number

(2.4) a(λ, f) := M [f(x)e−iλx]

always exists.

Theorem 2.18.([22, p. 18], [100, pp. 23-24]) For every u.a.p. function f ,
there always exists at most a countable infinite set of values λ (called the Bohr–
Fourier exponents or frequencies) for which a(λ) �= 0.
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The numbers a(λ, f) are called the Bohr–Fourier coefficients and the set

σ(f) := {λn | a(λn, f) �= 0}

is called the spectrum of f .
The formal series

∑
n a(λn, f)e−iλx is called the Bohr–Fourier series of f

and we write

(2.5) f(x) ∼
∑

n

a(λn, f)e−iλx .

Let us now consider the connection between the Bohr–Fourier exponents and
the almost-periods. To this aim, we recall the so-called Kronecker theorem on
the diophantine approximation (see, for example, [4, pp. 30-38], [22, p. 35], [41,
pp. 146-150]).

Lemma 2.19.([41, pp. 146-147]) Let

f(x) ∼
+∞∑

k=1

a(λk, f)eiλkx

be a u.a.p. function. For every ε > 0, there correspond n ∈ IN and δ ∈ IR,
0 < δ < π, s.t. any real number τ which is a solution of the system of diophantine
(or congruencial) inequalities

|λkτ | < δ (mod 2π) ; k = 1, . . . , n

is an ε-almost-period for f(x).

Theorem 2.20.([4, pp. 31-33], [22, p. 35], [41, pp. 147-149]) [Kronecker
theorem] Let λk, θk (k = 1, . . . , n) be arbitrary real numbers. The system of
diophantine inequalities

|λkτ − θk| < δ (mod 2π) ; k = 1, . . . , n

has solutions τδ ∈ IR, for any δ > 0, iff every relation

n∑

k=1

mkλk = 0 ; mk ∈ IN

implies
n∑

k=1

mkθk ≡ 0 (mod 2π) ; mk ∈ IN .
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Lemma 2.21.([41, p. 149]) Let

f(x) ∼
+∞∑

k=1

a(λk, f)eiλkx

be a u.a.p. function and λ a real number which is rationally linearly independent
of the Bohr–Fourier exponents λk. For every ε > 0, there correspond a number
δ ∈ IR, 0 < δ < π

2 and n ∈ IN, s.t. there exists an ε-almost-period τ which
satisfies the system of inequalities

|λkτ | < δ (mod 2π) ; |λτ − π| < δ (mod 2π) ; k = 1, . . . , n .

Proposition 2.22.([22, p. 18], [100, pp. 31-33]) [Bohr Fundamental theo-
rem] The Parseval equation

∑

n

|a(λn, f)|2 = M{|f(x)|2}

is true for every u.a.p. function.

Proposition 2.23.([22, p. 27], [100, p. 24]) [Uniqueness theorem] If two
u.a.p. functions have the same Fourier series, then they are identical.

In other words, two different elements belonging to C0
ap cannot have the

same Bohr–Fourier series.
It is worthwhile to introduce a further definition of the u.a.p. functions,

which may be useful, by a heuristic way, to understand more deeply the structure
of the space C0

ap (see [107, pp. 5-9]).

Definition 2.24. The Bohr compactification, or the compact hull , of IR is
a pair (IRB , iB), where IRB is a compact group and iB : IR → IRB is a group
homomorphism, s.t. for any homomorphism Φ : IR → Γ into a compact group Γ
there exists a unique homomorphism ΦB : IRB → Γ s.t. Φ = ΦB ◦ iB .

The Bohr compactification of a given group is always uniquely determined
up to isomorphisms. Since IR is a locally compact abelian group, its Bohr com-
pactification can be constructed by means of the group IR′ of the characters of
IR (that is, the group of all the homomorphisms χ from IR into the circumference
T = {z ∈ C | |z| = 1}), that can be written as

χ(x) = eiξx ; x ∈ IR ; ξ ∈ IR .

Since the map ξ → eiξx defines an isomorphism between IR and IR′, we can
identify IR′ with IR.
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In other words, the Bohr compactification may be interpreted as an isomor-
phism between IR and a subgroup of the cartesian product (with the power of
continuum) of the circumference T : if Tλ ≡ T ∀λ ∈ IR,

TC =
∏

λ∈IR

Tλ

endowed with an appropriate topology (for further information, see, e.g., [3], [9],
[11], [16], [17], [68], [69], [70], [75], [112], [132]).

Theorem 2.25.([107 , p. 7]) f ∈ C0
ap iff there exists a function f̃ ∈

C0(IRB ; IR) s.t.
f = f̃ ◦ iB =: i∗B f̃

(i.e. f can be extended to a continuous function on IRB).

Remark 2.26. The extension f̃ is unique and it satisfies

sup
x∈IR

|f(x)| = sup
y∈IRB

|f̃(y)| .

Thus, we can establish an isometric isomorphism

i∗B : C0(IRB ; IR) ∼ C0
ap(IR ; IR)

and every u.a.p. function can be identified with a continuous function defined on
IRB . This isometry allows us to deduce many properties of C0

ap by means of the
properties of C0 (see [52], [69], [107]).

The importance of the Bohr compactification will be more clear, when we
study the Besicovitch-like a.p. functions, in Section 5.

The possibility to generalize the notion of almost-periodicity in the frame-
work of continuous functions was studied by B. M. Levitan, who introduced the
notion of N -almost-periodicity (see [67], [99], [100]), in terms of a diophantine
approximation.

Definition 2.27. A number τ = τ(ε,N) is said to be an (ε,N)-almost-
period of a function f ∈ C0(IR, IR) if, for every x s.t. |x| < N ,

(2.6) |f(x + τ) − f(x)| < ε .

Definition 2.28. A function f ∈ C0(IR, IR) is said to be an N-almost-
periodic (N -a.p.) if we can find a countable set of real numbers {Λn}n∈IN, de-
pending on f and possessing the property that, for every choice of ε and N , we
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can find two positive numbers n = n(ε,N) and δ = δ(ε,N) s.t. each real number
τ , satisfying the system of inequalities

|Λkτ | < δ (mod 2π) ; k = 1, 2, . . . , n ,

is an (ε,N)-almost-period of the function f , i.e. satisfies inequality (2.4).

Although every u.a.p. function is N -a.p., the converse is not true.

Example 2.29. ([67, p. 185], [100, pp. 58-59]) Given the function

p(x) = 2 + cosx + cos(
√

2x) ,

we have inf
x∈IR

p(x) = 0; then the function q(x) = 1
p(x) is unbounded, and conse-

quently it is not u.a.p. On the other hand, the function q is N -a.p.

Although this class of functions preserves many properties of the u.a.p. func-
tions, many other properties do not hold anymore. For example, the mean
value (2.2), in general, does not exist, even for bounded functions. Further-
more, we can associate, to every N -a.p. function, different Fourier series (see
[99, pp. 150-153], [100, p. 62]). Nevertheless, this space is very useful to obtain
generalizations of classical results in the theory of ordinary differential equations
with almost-periodic coefficients (see [99]).

In [29], [130] (for a more recent reference, see also [106]), a further class of
almost-periodic functions, called almost-automorphic, was introduced. It can be
shown that this class is a subset of the space of N -almost-periodic functions.
This class was furtherly generalized in [36], [110], where it is shown that this
more general space of almost-automorphic functions coincides with the class of
N -almost-periodic functions.

The theory of u.a.p. functions can be generalized to spaces of functions
defined in IRn or, more generally, on groups (see, for example, [3], [16], [17], [30],
[60], [101], [112], [131], [132]), and with the values in IRn, in C or, more generally,
in a metric, in a Banach or in a Hilbert space (see, for example, [4], [28], [41],
[100], [107]).

These generalizations can be very useful to introduce and to study the
Stepanov-like a.p. functions, described in the next section, based on the ne-
cessity to generalize the notion of almost-periodicity to discontinuous functions
which must be, in any case, locally integrable.

One of the most important goals of this first generalization to discontinuous
functions, as much as of the other spaces studied in the next sections, is to find
a Parseval-like relation for the coefficients of the Bohr–Fourier series related to
the functions belonging to these spaces and, consequently, to find approximation
theorems for these spaces, which generalize Theorem (2.1).
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3 – Stepanov almost-periodicity definitions and horizontal hierarchies

Since all the various extensions of the definition of a.p. functions will involve
also discontinuous functions, by means of integrals on bounded intervals, it is
natural to work with locally integrable functions, i.e. f ∈ Lp

loc(IR; IR).

First of all, let us introduce the following Stepanov norms and distances:

‖ f ‖Sp
L

= sup
x∈IR

[
1

L

∫ x+L

x

|f(t)|p dt

] 1
p

;(3.1)

DSp
L

(f , g) =‖ f − g ‖Sp
L

= sup
x∈IR

[
1

L

∫ x+L

x

|f(t) − g(t)|p dt

] 1
p

.(3.2)

Since L is a fixed positive number, we might expect infinite Stepanov norms; but
it can be trivially shown that, for every L1, L2 ∈ IR+, there exist k1, k2 ∈ IR+

s.t.

k1 ‖ f ‖Sp
L1

≤ ‖ f ‖Sp
L2

≤ k2 ‖ f ‖Sp
L1

i.e. all the Stepanov norms are equivalent.

Due to this equivalence, we can replace in formula (3.1) L by an arbitrary
positive number. In particular, we can consider the norm, where L = 1.

Definition 3.1. ([4, pp. 76-77], [22, p. 77], [41, p. 156], [67, p. 189], [99,
p. 200], [100, p. 33]) [Bohr-type definition] A function f ∈ Lp

loc(IR; IR) is said
to be almost-periodic in the sense of Stepanov (Sp

ap) if, for every ε > 0, there
corresponds a r.d. set {τ}ε s.t.

(3.3) sup
x∈IR

[∫ x+1

x

|f(t + τ) − f(t)|p dt

] 1
p

< ε ; ∀τ ∈ {τ}ε .

Each number τ ∈ {τ}ε is called an ε-Stepanov almost-period (or Stepanov
ε-translation number of f).

Originally, V. V. Stepanov [114], [115] called the spaces S1
ap and S2

ap

respectively “the class of almost-periodic functions of the second and the third
type”. N. Wiener [134] called the space S2

ap “the space of pseudoperiodic
functions”. P. Franklin [66] called the spaces S1

ap and S2
ap respectively apS

(almost-periodic summable functions) and apSsq (almost-periodic functions with
a summable square).

The space S1
ap will be shortly indicated as Sap.
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Theorem 3.2.([67, p. 189], [99, Th. 5.2.3., p. 201]) Every Sp
ap-function is

a) Sp-bounded
and

b) Sp-uniformly continuous, i.e.

∀ε > 0 ∃ δ = δ(ε) s.t. if |h| < δ, then DSp [f(x + h) , f(x)] < ε .

Definition 3.3. ([67, p. 189], [87], [129]) [Sp-normality] A function f ∈
Lp

loc(IR; IR) is said Sp-normal if the family of functions {f(x + h)} (h is an
arbitrary real number) is Sp-precompact, i.e. if for each sequence f(x+h1), f(x+
h2), . . . , we can choose an Sp-convergent sequence.

Let us define the Banach space

BSp := {f ∈ Lp
loc(IR; IR) | ‖ f ‖Sp< +∞} .

Definition 3.4. ([24, p. 224], [35, p. 36]) [approximation] We will call
Sp(IR ; IR) the space obtained as the closure in BSp of the space P(IR ; IR) of
all trigonometric polynomials w.r.t. the norm (3.1).

We have, by virtue of Theorem (3.2) and by Definition (3.4), Sp
ap⊂BSp, Sp⊂

BSp.
Using the appropriate implications (see [35, Th. 1, p. 47], [67, Th. 7, p. 190

and Th. 4, p. 191] or, analogously, [22, pp. 88-91], [107, pp. 26-27]), we can show
the main

Theorem 3.5. The three spaces, defined by the definitions (3.1), (3.3),
(3.4), are equivalent.

Theorem 3.6.([35, pp. 51-53], [67, Th. 6, p. 189]) The spaces Sp
ap are com-

plete w.r.t. the norm (3.1).

An important contribution to the study of the equivalence of the different
definitions for the spaces of the Stepanov, the (equi-)Weyl and the Besicovitch
type, came from A. S. Kovanko. Unfortunately, many of his papers (written in
Russian or in Ukrainian) were published in rather obscure journals; furthermore,
many of his results were written without any proof. It is however useful to quote
these results, in order to clarify the several hierarchies. Since the notion of
normality is related to precompactness, A. S. Kovanko ([86], [87]) studied
the necessary and sufficient conditions to guarantee the precompactness of some
subclasses of the spaces Sp

ap, by means of a Lusternik-type theorem, introducing
the notion of Sp-equi-almost-periodicity.
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Definition 3.7. Let E ∈ IR be a measurable set and, for every closed
interval [a, b], let E(a, b) := E ∩ [a, b]. Given two measurable functions f, g, let
us define, for every a ≥ 0,

(3.4)

Ea := {x ∈ IR s.t. |f(x) − g(x)| ≥ a} ;

δ[a,b](E) :=
µ[E(a, b)]

b− a
(density of E w.r.t. [a, b]) ;

δLS (E) := sup
x∈IR

µ[E(x, x + L)]

L
,

(where µ(X) represents the usual Lebesgue measure of a set X);

DE
Sp
L
[f, g] := sup

x∈IR

[
1

L

∫

E(x,x+L)

|f(t) − g(t)|p dt

] 1
p

;(3.5)

DL
S [f, g] := inf

0<a<+∞
[a + δLS (Ea)] ;(3.6)

fL(x) :=
1

L

∫ x+L

x

f(t) dt .

Theorem 3.8.([86], [87]) The necessary and sufficient condition for a family
F of Sp

ap-functions to be Sp-precompact for every value L is that, for every
ε > 0, L > 0,

1) there exists σ = σ(ε, L) > 0 s.t.

DE
Sp
L
[f, 0] < ε if δLS (E) < σ , ∀f ∈ F ;

2) there exists ρ = ρ(ε, L) s.t.

DSp
L
[f, fh] < ε ∀ 0 < h < ρ , ∀f ∈ F ;

3) there exists a r.d. set of Sp-almost-periods {τ(ε, L)}, common to all the
elements of F , i.e.

DSp
L
[fτ , f ] < ε , ∀f ∈ F .
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Remark 3.9. In Theorem (3.8), conditions 2) and 3) can be respectively
replaced by the conditions:

2′) for every ε > 0, L > 0, there exists δ = δ(ε, L), s.t.

DL
S [fh, f ] < ε ∀ 0 < h < δ , ∀f ∈ F ;

3′) there exists a r.d. set (w.r.t. the distance (3.6)) of almost-periods {τ(ε, L)},
common to every f ∈ F , s.t.

DL
S [fτ , f ] < ε ∀ f ∈ F .

Remark 3.10. Since the spaces Sp
ap are subspaces of Lp

loc(IR; IR), they
must be regarded as quotient spaces, where each element is an equivalence class
w.r.t. the relation

f ∼ g ⇐⇒ DSp [f, g] = 0 .

Consequently, two different functions belong to the same class iff they differ from
each other by a function with Sp-norm equal to 0. This fact occurs when the
two functions differ only on a set of the zero Lebesgue measure.

The theory of the Sp
ap-spaces can be included in the theory of C0

ap-spaces
with the values in a Banach space (see [4, pp. 7, 76-78], [7], [41, p. 137], [100,
pp. 33-34], [107, pp. 24-28]), by means of the so-called Bochner transform, that
will be briefly recalled here.

The Bochner-transform

f b(x) = f(x + η) , η ∈ [0, 1], x ∈ IR ,

associates, to each x ∈ IR, a function defined on [0, 1].
Thus, if f ∈ Lp

loc(IR; IR), then f b ∈ Lp
loc(IR , Lp([0, 1])).

Consequently,

BSp = {f ∈ Lp
loc(IR; IR) | f b ∈ L∞(IR , Lp([0, 1]))} ,

because ‖f‖pSp = ‖f b‖L∞ :

‖ f b ‖L∞ = ess sup
x∈IR

‖ f b ‖Lp([0,1]) = ess sup
x∈IR

[∫ 1

0

|f(x + η)|p dη

] 1
p

.

Moreover, since for every f ∈ Lp
loc(IR; IR), f b ∈ C0(IR, Lp([0, 1])), then

BSp = {f ∈ Lp
loc(IR; IR) | f b ∈ Cb(IR , Lp([0, 1]))} ,

where Cb denotes the space of bounded continuous functions.
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S. Bochner has shown (see [4, pp. 76-78]) that

Sp = {f ∈ Lp
loc(IR; IR) | f b ∈ C0

ap(IR, Lp([0, 1]))} .

Remark 3.11. Since

‖ f ‖pSp = ‖ f b ‖Cb(IR,Lp([0,1])) ,

we have

fn → f in Sp
ap ⇐⇒ f b

n → f b in C0
ap(IR , Lp([0, 1])) .

The possibility to relate the spaces Sp
ap to the space C0

ap(IR, Lp([0, 1])) en-
ables us to explain the similarity of the results obtained for Sp

ap and C0
ap, in

particular, for the equivalence of the three definitions of almost-periodicity.
In [66], [114] and [115], a very wide generalization of the spaces Sp

ap to
measurable functions is shown.

Definition 3.12. A measurable function is said measurable almost-periodic
(Map) if, for every ε > 0, there exists a r.d. set {τε} s.t., for a fixed number d,

|f(x + τ) − f(x)| < ε

for every x except a set whose Lebesgue exterior measure in every interval of
length d is less than dε, or whose density on every interval of length d is less
than ε.

Originally, V. V. Stepanov [114], [115] called this space “class of almost
periodic of the first type”.

As remarked by V. V. Stepanov [115] and P. Franklin [66], the definition
remains essentially unchanged if d is not fixed, but may be arbitrary; in this case
the length L, related to the definition of relative density, depends on both d
and ε.

Theorem 3.13.([66], [115]) For every ε > 0, any function f ∈ Map is
bounded except a set of density less than ε in every interval of length d.

The space Map can be also defined by means of an approximation theorem.

Theorem 3.14.([66]) A measurable function f belongs to Map iff there
exists a sequence of trigonometric polynomials {Pε} s.t., for every ε > 0, |f(x)−
Pε(x)| < ε, for every x except a set of density less than ε in every interval of
length d.
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It is important to underline that, while changing values of every u.a.p. func-
tion in every non-empty bounded set gives a function which cannot be u.a.p.,
for the functions belonging to Sp

ap or to Map an analogous property holds if we
modify a function in a set with a nonzero Lebesgue measure.

On the other hand, V. V. Stepanov [115] has shown that, since the fol-
lowing inclusions hold (see Formula (6.4))

(3.7) C0
ap ⊂ Sp1

ap ⊂ Sp2
ap ⊂ S1

ap ⊂ Map ∀p1 > p2 > 1 ,

if a function belonging to one of the last four spaces in the sequence (3.7) is
respectively uniformly continuous, p1-integrable, p2-integrable, uniformly inte-
grable, then it belongs to the space of the corresponding earlier type.

Let us recall that (see, for example, [81], [115]) a measurable function f is
said to be uniformly integrable if, for every ε > 0 and d > 0, there corresponds
a number η > 0 s.t. ∫

E

|f(x)| dx < ε ,

for every set E s.t. µ(E) < η and diam(E) ≤ d.

The difficulty related to the space Map consists in the definition of frequen-
cies. In fact, if a measurable function is not integrable, then the quantities (2.4)
need not exist, in general. The problem can be overcome by considering a se-
quence of cut-off functions

gn(x) =





f(x), for |f(x)| ≤ n

n
f(x)

|f(x)| , for |f(x)| > n .

In fact, the functions gn are uniformly integrable, and consequently S1
ap(see [115]).

So, by virtue of Theorem (6.5), we have a countable set of frequencies, given
by the union of all the frequencies a(λ, gn) of the functions gn. Rejecting all
the frequencies s.t. limn→+∞a(λ, gn) = 0, this set can be interpreted as the
spectrum of the measurable function f , even if the limit of some sequence of
frequencies is not finite or does not exist at all. It can be shown [66] that the
spectrum of f does not depend on the choice of the sequence of cut-off functions
(instead of an = {n}, we could consider another increasing sequence ak = {nk},
s.t. limk→+∞nk = +∞ and s.t. there exists K > 0, for which nk+1 − nk < K).

Let us remark that, when we restrict ourselves to uniformly integrable func-
tions, this definition of the spectrum coincides with the classical one for the
S1
ap-functions (see [66]).
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4 – Weyl and equi-Weyl almost-periodicity definitions and horizontal
hierarchies

Although the three definitions of the C0
ap and Sp

ap-spaces are related to the
same norms (respectively, the sup-norm and (3.1)), the classical definitions of
Weyl spaces are using two different norms: (3.1) and the Weyl norm

(4.1) ‖ f ‖Wp = lim
L→∞

sup
x∈IR

[
1

L

∫ x+L

x

|f(t)|p dt

] 1
p

= lim
L→∞

‖ f ‖Sp
L
,

induced by the distance

(4.2) DWp(f, g) = lim
L→∞

sup
x∈IR

[
1

L

∫ x+L

x

|f(t) − g(t)|p dt

] 1
p

= lim
L→∞

DSp
L

[f, g] .

It can be easily shown that these limits always exist (see [22, pp. 72-73], [99,
pp. 221-222]).

In order to clarify the reason of the usage of two different norms, let us
introduce in a “naive” way six definitions.

Definition 4.1. ([8], [22, p. 77], [24, pp. 226-227], [67, p. 190], [99, p. 200])
[Bohr-type definition] A function f ∈ Lp

loc(IR; IR) is said to be equi-almost-
periodic in the sense of Weyl (e − W p

ap) if, for every ε > 0, there correspond
a r.d. set {τ}ε and a number L0 = L0(ε) s.t.

(4.3) sup
x∈IR

[
1

L

∫ x+L

x

|f(t + τ) − f(t)|p dt

] 1
p

< ε ; ∀τ ∈ {τ}ε ; ∀L ≥ L0(ε) .

Each number τ ∈ {τ}ε is called an ε-equi-Weyl almost-period (or equi-Weyl
ε-translation number of f).

Definition 4.2. [equi-W p-normality] A function f ∈ Lp
loc(IR; IR) is said to

be equi-W p-normal if the family of functions {fh} (h is an arbitrary real number)
is Sp

L-precompact for sufficiently large L, i.e. if, for each sequence fh1 , fh2 , . . . ,
we can choose an Sp

L-fundamental subsequence, for a sufficiently large L.

Definition 4.3. [approximation] We will denote by equi-W p(IR ; IR) the
space obtained as the closure in BSp of the space P(IR ; IR) of all trigonometric
polynomials w.r.t. the norm (3.1) for sufficiently large L, i.e. for every f ∈ e−W p

and for every ε > 0 there exist L0 = L0(ε) and a trigonometric polynomial Tε

s.t.
DSp

ap
[f , Tε] < ε ∀ L ≥ L0(ε) .
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Definition 4.4. ([8], [88]) [Bohr-type definition] A function f ∈Lp
loc(IR; IR)

is said to be almost-periodic in the sense of Weyl (W p
ap) if, for every ε > 0, there

corresponds a r.d. set {τ}ε s.t.

(4.4) lim
L→∞

sup
x∈IR

[
1

L

∫ x+L

x

|f(t + τ) − f(t)|p dt

] 1
p

< ε ; ∀τ ∈ {τ}ε .

Each number τ ∈ {τ}ε is called an ε-Weyl almost-period (or a Weyl ε-
translation number of f).

Definition 4.5. [W p-normality] A function f ∈ Lp
loc(IR; IR) is said to

be W p-normal if the family of functions {fh} (h is arbitrary real number) is
W p-precompact, i.e. if for each sequence fh1 , fh2 , . . . , we can choose a W p-
fundamental subsequence.

Analogously to the Stepanov spaces, we can introduce the space

BW p := {f ∈ Lp
loc(IR; IR) s.t. ‖ f ‖Wp < +∞} .

Definition 4.6. ([22, pp. 74-75], [24, p. 225], [35, pp. 35-36]) [approxima-
tion] We denote by W p(IR ; IR) the space obtained as the closure in BW p of the
space P(IR ; IR) of all trigonometric polynomials w.r.t. the norm (4.1).

The spaces e−W 1
ap and W 1

ap will be shortly indicated as e−Wap and Wap.
Definition (4.4) has been used in [8], but, as already pointed out by the

authors, it was introduced by A. S. Kovanko in the paper without proofs [88].
Due to the equivalence of all the Sp

L-norms, to find a number L1 s.t., by
means of Definition (4.3), a sequence of polynomials converges in the norm Sp

L1

implies that the sequence converges in every Sp
L-norm; it follows that the spaces

given by Definition (4.3) coincide with the spaces Sp
ap.

On the other hand, the following theorem holds.

Theorem 4.7.([22, pp. 82-83], [35, Th. 2, p. 48]) A function f ∈ W p satis-
fies Definition (4.1).

Consequently, we cannot expect the equivalence of the definitions for each
type of spaces. As shown in [8], the space defined by means of Definition (4.1)
is an intermediate space between Sp

ap and W p
ap and the inclusion is strict (see [8,

Example 1]).

Theorem 4.8.([22, p. 83], [24, pp. 232-233], [67, p. 190], [99, pp. 222-223]) A
function f ∈ e−W p

ap belongs to BW p.
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Remark 4.9. It can be easily shown (see [35, p. 37]) that the sets BSp

and BW p coincide, but the different norms imply a big difference between the
two spaces. In fact, although BSp is complete w.r.t. the Stepanov norm (see
[35, pp. 51-53]), the space BW p is incomplete w.r.t. the Weyl norm (see [35,
pp. 58-61]).

On the other hand, since the set of Sp-bounded functions coincides with the
set of W p-bounded functions, every e − W p

ap-function is also e − W p-bounded
and Sp-bounded.

Theorem 4.10.([22, p. 84], [24, pp. 233-234], [67, p. 190], [99, pp. 223-
224]) A function f ∈ e − W p

ap is equi-W p-uniformly continuous, i.e. for any
ε > 0 there exist two positive numbers L0 = L0(ε) and δ = δ(ε) s.t., if |h| < δ,
then

DSp
L
{fh, f} < ε , ∀L ≥ L0(ε) .

Theorem 4.11.([67, p. 191]) For every function f ∈ e − W p
ap and every

ε > 0, we can find a trigonometric polynomial Pε, satisfying the inequality

DWp(f, Pε) < ε .

The meaning of the last theorem is that Definition (4.1) =⇒ Definition (4.6).
Consequently, by Theorems (4.7) and (4.11), we have shown that Defini-

tion (4.1) is equivalent to Definition (4.6). The same result has been obtained
in [22, pp. 82-91], [24, pp. 231-241], [66].

Theorem 4.12. The space of e − W p-normal functions is equivalent to
e−W p

ap.

Proof. The proof is based partly on [8], [99] and [123].

Sufficiency: fix ε > 0. Since {fh s.t. h ∈ IR} is e−W p-precompact, there
exists L0 = L0(ε) s.t.

(4.5)
∀L ≥ L0(ε) , ∀h ∈ IR ∃ j = 1, . . . , n s.t.

DSp
L
[fh−hj , f ] = DSp

L
[fhj , fh] < ε .

Thus, the numbers τ = h− hj are Sp
L − ε-almost periods. Take

(4.6) k = max
j=1,... ,n

|hj |

and let a ∈ IR be arbitrary. If h = a + k and hj satisfy (4.5), we obtain, due
to (4.6), that h − hj ∈ [a, a + 2k]. Thus, each interval of length 2k contains an
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e−W p−ε-almost period of f and the number 2k is a constant of relative density
to the set

{
τ s.t. τ = h− hj , h ∈ IR , j = 1, . . . , n ; DSp

L
[fhj , fh] < ε

}
,

which is consequently r.d.

Necessity: assume that f is an e−W p
ap function and fix ε > 0. By virtue

of Theorem (4.10), the function is e−W p-uniformly continuous, i.e.

(4.7) ∃L0 = L0(ε) s.t. ∀L ≥ L0 ∃δ > 0s.t.∀ |w| < δ DSp
L

[f, fw] <
ε

2
.

Let k be a constant of relative density to the set {τ s.t.D
Sp
L

1

[f, fτ ] < ε
2}, (i.e.,

for every interval I of length k there exist τ ∈ I and L1 > 0 s.t. D
Sp
L
[f, fτ ] < ε

2 ,

for every L ≥ L1). To these numbers k and δ we associate a positive integer n
s.t.

(4.8) nδ ≤ k < (n + 1)δ

and put hj = j · δ (j = 1, . . . , n). For any h ∈ IR, in the interval [−h,−h+ k] of
length k we find some Sp

L1
− ε

2 -almost period τ , s.t.

(4.9) DSp
L

[fτ , f ] <
ε

2
, ∀L ≥ L1 .

Futhermore, we choose h and τ in such a way that

(4.10) |h + τ − hj | < δ

(this is possible because of (4.8) and the fact that τ ∈ [−h,−h + k]). Take
L2 = max{L0, L1}. By means of (4.7), (4.9) and (4.10), we write, for every
L ≥ L2,

DSp
L

[fh, fhj ] ≤ DSp
L

[fh, fh+τ ] + DSp
L

[fh+τ , fhj ] =

= DSp
L

[fτ , f ] + DSp
L

[fh+τ−hj , f ] <
ε

2
+

ε

2
= ε .

This shows that {fhj ; j = 1, . . . , n} is a finite ε-net to {fh ; h ∈ IR}, w.r.t. the
equi-Weyl metric.
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Due to the fact that the spaces C0
ap and Sp

ap are complete, it is possible to
state the Bochner criterion in terms of compactness instead of pre-compactness
(see [35, pp. 51-53], [99, pp. 23-27, 199-200, 216-220], [137, pp. 10-11, 38]).
Surprisingly, the spaces BW p and W p are not complete w.r.t. the Weyl norm
(see [8], [35, pp. 58-61], [88], [99, pp. 242-247]).

As for the Stepanov spaces, A. S. Kovanko ([88], [91], [92]) studied the
necessary and sufficient conditions to guarantee the compactness of some sub-
classes of the spaces e−W p

ap and W p
ap, by means of a Lusternik-type theorem.

In order to find necessary and sufficient conditions for an e−W p
ap function

to be e−W p-normal, let us introduce another definition.

Definition 4.13. ([91], [92]) A sequence of W p-bounded functions {fn} is
called

1) e−W p-uniformly fundamental if, for every ε > 0, there exists L0(ε) s.t.

lim sup
m,n→∞

DSp
L
[fm, fn] < ε ∀L ≥ L0 ;

2) e − W p-uniformly convergent if there exists a function f ∈ BW p s.t., for
every ε > 0, there exists L0(ε) s.t.

lim sup
n→∞

DSp
L
[f, fn] < ε ∀L ≥ L0 .

Theorem 4.14.([91]) A sequence of functions belonging to BW p is e−W p-
uniformly fundamental iff it is e−W p-uniformly convergent. It means that the
space BW p, endowed with the norm of e−W p-uniform convergence, is complete.

Theorem 4.15.([92]) A set M of e−W p
ap functions is compact, w.r.t. the

e−W p-uniformly convergence, if for every ε > 0,

i) ∃σ > 0 , T1 > 0 s.t.

DE
Sp
T
[f, 0] < ε if δTS (E) < σ , ∀T ≥ T1 ; ∀f ∈ M ;

ii) (e−W p-equi-continuity) ∃η > 0 , T2 > 0 s.t.

DSp
T
[fh, f ] < ε if |h| < η ; ∀T ≥ T2 ; ∀f ∈ M ;

iii) (e−W p-equi-almost-periodicity) ∃ T3 > 0 and a r.d. set {τε} of real numbers
s.t.

DSp
T
[fτ , f ] < ε if τ ∈ {τε} ; ∀T ≥ T3 ; ∀ f ∈ M ,

where D
Sp
T
, DE

Sp
T

and δTS (E) are respectively given by (3.2), (3.4), (3.1).

Theorem 4.16.([92]) The necessary and sufficient condition in order to
have f ∈ e−W p

ap is that the set of all the translates {fτ} be relatively compact
in the sense of e−W p-uniform convergence.
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To show the second theorem about normality, we need some introductory
definitions, too.

Definition 4.17. Given a Lebesgue-measurable set E ⊆ IR, let E(a, b) :=
E ∩ (a, b), for every interval (a, b), and |E(a, b)| its Lebesgue measure. Let us
denote

δW (E) = lim
T→∞

[
sup
a∈IR

|E(a− T, a + T )|
2T

]
.

Definition 4.18. For every f, φ ∈ Lp
loc(IR; IR), let us introduce the distance

DE
Wp(f, φ) := lim

T→∞



 sup

a∈IR

[
1

2T

∫

E(a−T,a+T )

|f − φ|p dx

] 1
p



 .

This distance, when E ≡ IR, coincides with the Weyl distance DWp(f, φ).
In order to avoid any confusion about the concept of compactness, A. S. Ko-

vanko introduced the so-called ideal limits of every Cauchy sequence of W p
ap func-

tions. The distance between two ideal limits f and g is defined in the following
way:

DWp [f, g] := lim
m,n→+∞

DWp [fm, gn] ,

where the sequences {fm}, {gn} are two Cauchy sequences whose ideal limits are
respectively f and g.

We are now ready to state the following Lusternik-type theorem:

Theorem 4.19.([88]) The necessary and sufficient condition for the relative
compactness in the Weyl norm of a class M of functions f ∈ W p

ap is that, for
every ε > 0,

i) there exists a number σ > 0 s.t. DE
Wp(f, 0) < ε if δW (E) < σ, for every

function f ∈ M ;

ii) (W p-equi-continuity) there exists a number η > 0 s.t.

DWp [fh, f ] < ε if |h| < η ,

for every function f ∈ M ;
iii) (W p-equi-almost-periodicity) there exists a r.d. set of almost-periods {τε}

s.t.
DWp {fτ , f} < ε

for every function f ∈ M .
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Remark 4.20. In both Theorems (4.15) and (4.19), conditions ii) and
iii) are the integral versions of the corresponding hypotheses in the Lusternik
theorem for C0

ap-functions; on the other hand, in the original Lusternik theorem
the first condition is related to the Ascoli-Arzelà theorem; in Theorems (4.15)
and (4.19) it is substituted by a condition that recalls the Lp-version of the
Ascoli-Arzelà theorem, given by M. Riesz, M. Fréchet and A. N. Kolmogorov
(see, for example, [37, Theorem IV.25 and Corollary IV.26, pp. 72-74]).

Theorem 4.21.([88]) The spaces of W p-normal functions in the sense of
Kovanko and W p

ap are equivalent.

If we weaken the hypothesis on compactness and ask only the pre-com-
pactness for the set of translates {fh}, we need an auxiliary condition:

Hypothesis ([8]). Let f ∈ L1
loc(IR, IR), with DWp(f) < +∞, be uniformly

continuous in the mean, i.e.

∀ ε

3
> 0 ∃ δ > 0 ∀|h| < δ :

1

l

∫ l

0

|fh(t) − f(t)| dt <
ε

3
,

uniformly w.r.t. l ∈ (0,+∞).

Theorem 4.22.([8]) If a W p
ap function satisfies the Hypothesis, then it is

W p-uniformly continuous, i.e. for any ε > 0 there exists δ = δ(ε) s.t., if |h| < δ,
then

(4.11) DWp {fh, f} < ε .

Theorem 4.23.([8]) Let f ∈ L1
loc(IR, IR) be a W p-function satisfying the

Hypothesis. Then f ∈ W p
ap iff it is W p-normal.

Corollary 4.24. Every W p-normal function is W p
ap.

Following analogous proofs to u.a.p. functions (see [22, pp. 11-12] or [41,
p. 16, Theorem 10]), it is possible to show the following

Theorem 4.25. Every W p-function is W p-normal.
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Proof. Let us consider an arbitrary W p-function f and a sequence of
trigonometric polynomials {Tn},W p- converging to f . Let us take a sequence of
real numbers {hn} and a subsequence {h1n} s.t. {T1(x+h1n)} is W p-convergent.
Then, we can extract from {h1n} a subsequence {h2n} s.t. {T2(x+ h2n)} is W p-
convergent, too, and so on. In this way, we construct a subsequence {hrn}, for
every r ∈ IN s.t. {Tq(x + hrn)} is W p-convergent, for every q ≤ r. Let us take
the subsequence {hrr}, which is a subsequence of every sequence {hqn}, with
the exception of at most a finite number of terms. Consequently, the sequence
{Tn(x + hrr)} is W p-convergent, for every n ∈ IN. Given ε > 0, let n ∈ IN be
sufficiently large so that

(4.12) DWp [f, Tn] <
ε

3
.

There exists N(ε) > 0 s.t.

(4.13)

DWp [f(x + hrr), f(x + hqq)]≤DWp [f(x + hrr), Tn(x + hrr)]+

+DWp [Tn(x + hrr), Tn(x + hqq)] + DWp [Tn(x + hqq), f(x + hqq)]<ε

∀q, r ≥ N(ε) .

Thus, the sequence {f(x+hrr)} is W p-fundamental, and consequently the func-
tion f is W p-normal.

Remark 4.26. The analogy of Theorem (4.25) for e −W p spaces is guar-
anteed by the fact that

a) the spaces e−W p coincide with the spaces Sp;

b) the spaces Sp coincide with the spaces Sp-normal (see Theorem (3.5));

c) the spaces Sp-normal are included in the spaces e − W p-normal (see For-
mula (6.4)).

The converse of Corollary (4.24) or Theorem (4.25) is, in general, not true.

Example 4.27. (cf. [127, pp. 20-21]) (Example of an equi-W 1-normal func-
tion which is not an equi-W 1-function) Let us consider the function, defined
on IR,

f(x) =

{
1 , for 0 < x <

1

2
;

0 , elsewhere .

For every L, τ ∈ IR, L ≥ 1, we have

∫ x+L

x

|f(t + τ) − f(t)| dt ≤ 1 .
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2 1 1 2

1

2

Fig. 1

Thus,

(4.14) DSL
[fτ , f ] = sup

x∈IR

{
1

L

∫ x+L

x

|f(t + τ) − f(t)| dt
}

≤ 1

L
.

For every ε > 0, there exists L ≥ 1, s.t.

DSL
[fτ , f ] ≤ ε ∀τ ∈ IR .

Consequently, the function belongs to e−Wap.
From Theorem (4.12), we conclude that the function is e−W -normal.
On the other hand, there always exists x ∈ IR such that, for every τ > ε,

where 0 < ε < 1
2 , we have (L = 1)

∫ x+1

x

|f(t + τ) − f(t)| dt > ε .

Therefore, if ε < 1
2 , then (L = 1)

DS1 [f
τ , f ] > ε ∀τ > ε .

For τ ≥ L− 1
2 , we get even

DSL
[fτ , f ] ≥ 1

2L
.

So, the function is not Sap. Since the sets Sap and e−W 1 coincide, we have the
claim.
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Example 4.28. (Example of a W 1
ap-function which is not a W 1-normal

function) The example is partly based on [127, pp. 42-47].
Let us consider the function

f(x) =





0 , if x ∈ (−∞, 0] ;√
n

2
, if x ∈ (n− 2;n− 1] , n = 2, 4, 6 . . . ;

−
√

n

2
, if x ∈ (n− 1;n] , n = 2, 4, 6 . . .

2 2 4 6 8 10

1

2

1

2

Fig. 2

Let us show that this function is a Wap-function. To this aim, let us consider
the set {x + 2k , k ∈ Z} and let us show that

DW [f2k, f ] = 0 ∀k ∈ Z .

If k = 0, the proof is trivial. Furthermore, if k < 0, k = −m, then

DW [f2k, f ] = DW [f, f−2k] = DW [f2m, f ] .

It will be then sufficient to study the case k > 0. Since we will consider the limit
for L → +∞, let us take L > 2k. There exists an integer i such that

(4.15) 2k ≤ 2i ≤ L < 2(i + 1) .

Let us compute

(4.16) DSL
[f2k, f ] = sup

x∈IR

{
1

L

∫ x+L

x

|f(t + 2k) − f(t)| dt
}

.
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Since, in the interval (−∞,−2i), we have |f(x+ 2k)− f(x)| = 0; in the interval
(−2i, 0), the function |f(x + 2k) − f(x)| is increasing; in the interval (0,+∞),
the function |f(x+2k)−f(x)| is decreasing, the maximum value for the integral
in (4.14) is obtained in an interval including 0. Considering (4.15), we can write

DSL
[f2k, f ] = sup

x∈IR

{
1

L

∫ x+L

x

|f(t + 2k) − f(t)| dt
}

≤

≤ 1

2i

∫ 2(i+1)

−2(i+1)

|f(t + 2k) − f(t)|dt =
1

2i

∫ 0

−2(i+1)

|f(t + 2k) − f(t)|dt+

+
1

2i

∫ 2(i+1)

0

|f(t + 2k) − f(t)|dt =
1

i

k∑

j=1

√
j +

1

i

i+1∑

j=1

[√
j + k −

√
j
]

=

=
1

i

k∑

j=1

√
j +

1

i

i+1∑

j=1

[
k√

j + k +
√
j

]
≤ 1

i

k∑

j=1

√
j +

1

i

i+1∑

j=1

k√
j
.

By virtue of the Cauchy integral criterion for positive series, or by induction, it
can be shown that

l∑

j=1

1√
j

≤ 2
√
l ∀l ∈ IN .

Consequently,

DSL
[f2k, f ] ≤


1

i

k∑

j=1

√
j


+

2k
√
i + 1

i
.

Passing to the limit for L → +∞, we obtain

DW [f2k, f ] = lim
L→+∞

DSL
[f2k, f ] ≤

≤ lim
L→+∞


1

i

k∑

j=1

√
j +

2k
√
i + 1

i


 = 0 .

Then the set {2k; k ∈ Z} represents, for every ε > 0, a set of W 1
ap − ε-almost-

periods for the function f , which is, consequently, W 1-almost-periodic. In Ex-
ample (5.37), it will be shown that this function is not B1-normal. Furthermore,
in Section 6 we will show that the space of W 1-normal functions is included in
the space of B1-normal functions. Consequently, this function is not W 1-normal.

Let us observe that this function does not satisfy both the conditions of the
Hypothesis. In fact,

‖f‖SL
= sup

x∈IR

1

L

∫ x+L

x

|f(t)| dt ≥ 1

L

∫ L

0

|f(t)| dt .
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For every L, there exists k > 0 s.t. 2k ≤ L < 2k + 1. Then

‖f‖SL
≥ 1

2k + 1

∫ 2k

0

|f(t)| dt =
1

2k + 1


2

k∑

j=1

√
j


 ≥ 4

3(2k + 1)
k

3
2 ,

where the last inequality is obtained by virtue of the Cauchy integral criterion of
convergence. Consequently, letting L → +∞, we obtain that the function is un-
bounded in the W 1-norm. Furthermore, the function is not uniformly continuous
in the mean. In fact,

1

L

∫ L

0

|f(t + h) − f(t)|dt ≥ 1

2k + 1
×

×





k∑

j=1

[∫ 2j−1

2j−1−h

2
√

jdt +

∫ 2j

2j−h

|
√

j + 1 +
√

j|dt
]
 =

=
h

2k


3 +

√
k + 1 +

k∑

j=2

4
√

j


 ≥ h

2k

[
3 +

√
k + 1 +

8

3
(k

3
2 − 1)

]
≥ 4

3
h
√
k ,

where we have again used the Cauchy integral criterion.
The nonuniformity follows immediately. Furthermore, the function is not

W 1-continuous, since

‖fh − f‖S1 ≥ sup
x∈IR

[
4

3
h
√
k

]

and

‖fh − f‖W 1 ≥ lim
k→+∞

sup
x∈IR

[
4

3
h
√
k

]
= +∞ .

The previous example shows that Theorems (4.8) and (4.10) cannot be extended
to W p

ap-functions because, in general, a W p
ap-function is neither BW p nor W 1-

continuous.

Example 4.29. ([8], [127, p. 48]) (Example of a W 1-normal function which
is not a W 1-function) In [8], the Heaviside step function

H(x) =

{
0 , if x < 0

1 , if x ≥ 0

is shown to be Wap, but not e − Wap, that is, by virtue of Theorems (4.7)
and (4.11), not W 1. In fact, a relative density of the set {τ / DSl

(f, fτ ) < ε},
for some l, requires arbitrary large values of τ ’s in this set (we can extract some
sequences of τn −→ ∞ with n → ∞). If we demand that l is (perhaps large
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but) constant for all τ ’s (we fix ε), then for most of them we get τ > l and
subsequently DSl

(fτ , f) = 1
l · l = 1 = const. So, DSl

(fτ , f) < ε is impossible
(for all τ ’s, simultaneously), by which f is not e−Wap. On the other hand, we

have DW (fτ , f) = liml→∞ 1
l · τ = 0 (we can assume that τ < l, since l → ∞), by

which f is Wap. Therefore, e−Wap ⊂ Wap.
Furthermore, J. Stryja [127, p. 48] has shown that the function is W -normal.

4 2 2 4

1

2

Fig. 3

In fact, since, from the almost-periodicity of H, for any τ ∈ IR,

DW [Hτ , H] = 0 ,

then we have that, for every ε > 0 and for every set of translates {H(x+ a); a ∈
IR}, there exists a finite ε-net w.r.t. the distance DW , given by the only value
H(x). The W -normality follows immediately.

Let us finally observe that, as can be easily seen, the Heaviside function
is BW 1 and uniformly continuous in the mean, which are the two sufficient
conditions to guarantee the W -normality of a Wap-function.

As already observed in [8], since the spaces BW p and W p are incomplete
in the Weyl norm, the between lying spaces W p

ap ∩BW p and W p-normal ∩BW p

are incomplete, too. Furthermore, the spaces e − W p, equivalent to Sp
ap, are

complete in the equi-Weyl norm. However, it is an open question, whether the
spaces e−W p

ap ∩BSp are complete or not.
A. S. Kovanko has generalized the definition of almost-periodic functions in

the sense of Weyl, by means of a Bohr-like definition.

Definition 4.30. ([81]) A measurable function is said asymptotically al-
most-periodic (a.a.p.) if, for every ε > 0, there correspond two positive num-
bers l = l(ε), T0 = T0(ε) s.t., in every interval of length l(ε), there exists an
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ε-asymptotic almost-period τ(ε) s.t. the inequality

|f(x + τ) − f(x)| < ε ,

holds for every x ∈ IR, except a set whose density, w.r.t. every interval of length
greater than T0, is less than ε.

Theorem 4.31.([81]) Every a.a.p. function f s.t. fp is uniformly integrable
is W p.

For the a.a.p. function, it is possible to state an approximation theorem.

Theorem 4.32.([81]) An integrable function f is a.a.p. iff, for every ε > 0,
there exist a trigonometric polynomial Pε and a positive number T = Tε s.t.

|f(x) − Pε(x)| < ε ,

holds for every x ∈ IR, except a set whose density, w.r.t. every interval of length
greater than T0, is less than ε.

In [129], H. D. Ursell introduced four new definitions in terms of normality
and almost-periods. He called the first two classes respectively W -normal and
Wap. Here, in order to avoid any confusion with Definitions (4.1), (4.2), (4.4)
and (4.5), we will call these classes respectively W -normal and W ap.

Definition 4.33. ([129]) A function f ∈ L1
loc(IR; IR) is said to be W -normal

if, for every sequence {f(x + hn)}, there exists a subsequence {f(x + hnk
)} s.t.

lim
j,k→+∞

[
lim

T→+∞
1

T

∫ T

0

|f(x + hnj
) − f(x + hnk

)| dx
]

= 0 .

This definition is evidently more general than Definition (4.5) of the W p-
normality, for p = 1 (put x = 0 in (4.4)). The limit is namely not made uniformly
w.r.t. every interval [a, a + T ], but only on the interval [0, T ]. However, we do
not know whether or not H. D. Ursell’s W -normal space is complete.

Definition 4.34. ([129]) A function f ∈ L1
loc(IR; IR) is said to be W ap if,

for every ε > 0, there exist a r.d. set of numbers τ and a number T0 = T0(ε) s.t.

1

T

∫ T

0

|f(x + τ) − f(x)| dx ∀T > T0 .

H. D. Ursell shows that Definition (4.33) implies Definition (4.34). He also
claims that the converse is true, but he does not prove the statement.
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Furthermore, he introduces the space W∗−ap, which is equivalent to the
e−Wap space, and the W∗-normal space.

Definition 4.35. ([129]) A function f ∈ L1
loc(IR; IR) is said to be W∗-

normal if, for every sequence {f(x+hn)}, there exists a subsequence {f(x+hnk
)}

s.t.

lim
j,k→+∞

{
lim

T→+∞
sup
a∈IR

[
1

T

∫ a+T

a

|f(x + hnj
) − f(x + hnk

)| dx
]}

= 0 .

This space is evidently the same as the W -normal one. H. D. Ursell shows
that the e−Wap space is contained in the W∗-normal one and he concludes that
the W ap, W -normal, e − Wap and W∗-normal spaces are equivalent. This last
statement is again not proved and is a bit surprising.

It seems to us that H. D. Ursell’s statement is false, because it is easy to
show that the Heaviside step function, which is not e−Wap, is W -normal.

As already observed, due to their continuity, the elements of C0
ap are in fact

real functions; furthermore, since every space Sp
L is a subspace of Lp

loc(IR; IR), it is
obtained as a quotient space, w.r.t. the usual equivalence relation for (Bochner-)
Lebesgue integrable functions:

f ∼ g ∈ Sp
ap ⇐⇒ µ{x ∈ IR|f(x) �= g(x)} = 0 ,

where µ is the usual Lebesgue measure.

On the other hand, the elements of the space W p
ap are more general classes

of equivalence. In fact, two different functions, belonging to the same class,
may differ even on a set with Lebesgue measure greater than 0 (even infinite),
provided

f − g ∈ Lp
loc(IR; IR) .

Consequently, to handle elements in W p
ap (and, a fortiori, as will be shown in

the next section, in Bp
ap), is less convenient than to work with Sp

ap-functions.

5 – Besicovitch almost-periodicity definitions and horizontal hierar-
chies

As already pointed out, the structure of the Weyl spaces is more intricated
than Sp

ap and C0
ap, because every element of the space is a class of Lp

loc(IR; IR)
functions, which may differ from each other even on a set of an infinite Lebesgue
measure. We have not deepened the question in the previous section, but it is
necessary to talk about this fact for the Besicovitch spaces.
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Following [107], let us consider the Marcinkiewicz spaces

Mp(IR) =

=

{
f : IR → IR, f ∈ Lp

loc(IR; IR), s.t.‖f‖p =

= lim sup
T→∞

(
1

2T

∫ T

−T

|f(x)|p dx

) 1
p

< +∞
}

∀p ≥ 1 .

For the case p = +∞, we have

M∞(IR) =
{
f : IR → IR , f ∈ L1

loc, s.t. ‖ f ‖∞ = ‖ f ‖L∞ < +∞
}

.

Mp, endowed with the seminorm

(5.1) ‖ f ‖p=





lim supT→∞

(
1

2T

∫ T

−T

|f(x)|pdx
) 1

p

, if 1 ≤ p < +∞

‖f‖L∞ = ess supx∈IR |f(x)| , if p = +∞

is a seminormed space.
Sometimes it is convenient to use the seminorm ([23], [35, p. 42])

‖f‖∗p = max



lim sup

T→+∞

[
1

T

∫ T

0

|f(x)|p dx

] 1
p

, lim sup
T→+∞

[
1

T

∫ 0

−T

|f(x)|p dx

] 1
p



 ,

which is equivalent to the seminorm (5.1), because

(
1

2

) 1
p

‖f‖∗p ≤ ‖ f ‖p ≤ ‖f‖∗p .

Theorem 5.1.([104]) [Marcinkiewicz] The space Mp is a Fréchet space,
i.e. a topological seminormed complete space.

The proof is essentially based on the following

Lemma 5.2. For a seminormed space (X, ‖ ·‖), the following conditions are
equivalent :

i) X is complete;
ii) every absolutely convergent series is convergent (i.e. ∀{xn}n∈IN ⊂ X s.t.∑∞

n=1 ‖xn‖ < +∞, there exists x ∈ X s.t. limN→+∞ ‖x−∑N
n=1 xn‖ = 0).
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Let us note that the limits in the Marcinkiewicz space are not uniquely
determined. In fact, two different functions, differing from each other (even on
an infinite set) by a function belonging to Lp, can be the limits of the same
Cauchy sequence of elements in Mp. Following the standard procedure, let us
consider the kernel of the seminorm (5.1)

Kp = {f ∈ Mp s.t. ‖ f ‖p = 0} .

Let us consider the equivalence relation

(5.2) f ∼ g ⇐⇒ ‖ f − g ‖p = 0 ; f, g ∈ Mp

and the quotient space
Mp(IR) = Mp/Kp ,

denoting by f̂ the element belonging to Mp, corresponding to the function f .
Since Mp is a seminormed space and Kp is a subspace, then (5.1) represents

a norm on Mp. Since Mp is complete, then Mp is a Banach space. This fact
follows from the well-known

Lemma 5.3. Let (X, ‖ · ‖) be a seminormed space. Then

i) the kernel K = {x ∈ X s.t. ‖x‖ = 0} is a linear subspace of X;
ii) if [x] is an equivalence class, then ‖[x]‖ := ‖x‖ defines a norm on the quo-

tient space X/K;
iii) if X is complete, then X/K is a Banach space.

Let us now consider the class

Wp=



f : IR → IR, f ∈ Mp s.t. ∃ lim

T→∞

(
1

2T

∫ T

−T

|f(x)|p dx

) 1
p



⊂Mp .

It is possible to show that this class is not a linear space, because it is not closed
w.r.t. the summation.

Example 5.4. Let us consider the functions

f1(x) =

{
0 , for x ≤ 1

x +
√

2 + sin log x + cos log x , for x > 1

and

f2(x) =

{
0 , for x ≤ 1

−x , for x > 1 .



[35] Hierarchy of almost-periodic function spaces 155

We have

1

2T

∫ T

−T

f2
1 (x)dx =

1

2T

[
T 3 − 1

3
+ T (2 + sin log T ) − 2+

+

∫ T

1

2x
√

2 + sin log x + cos log x dx

]
.

Then
∫

f2
1 (x)dx = lim

T→+∞

[
T 2

6
− 1

6T
+

2 + sin log T

2
− 1

T

]
+

+ lim
T→+∞

∫ T

1

x
√

2 + sin log x + cos log x dx

T
=

(applying de L’Hôspital’s rule)

= lim
T→+∞

T 2

6
+ lim

T→+∞
2 + sin log T

2
+ lim

T→+∞
T
√

2 + sin log T + cos log T ≥

≥ lim
T→+∞

[
T 2

6
+

1

2

]
= +∞ .

On the other hand,

∫
f2
2 (x) dx = lim

T→+∞
1

2T

∫ T

1

x2 dx = lim
T→+∞

1

2T

[
x3

3

]T

1

= +∞ .

However, the function

g(x) = f1(x) + f2(x) =

{
0 , for x ≤ 1
√

2 + sin log x + cos log x , for x > 1

is such that

∫ T

−T

g2(x) dx =

∫ T

1

[2 + sin log x + cos log x] dx = T (2 + sin log T ) − 2 ,

and consequently

∫
g2(x) dx = lim

T→+∞

[
2 + sin log T

2
− 1

T

]
= lim

T→+∞

[
1 +

sin log T

2

]

does not exist.
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Definition 5.5. ([35, p. 36], [67, p. 192], [135, pp. 103-108]) [approxima-
tion] We will denote by Bp(IR) the Besicovitch space obtained as the closure in
Mp of the space P(IR, IR) of all trigonometric polynomials.

In other words, an element in Bp can be represented by a function f ∈
Lp

loc(IR; IR) s.t., for every ε > 0, there exists Pε ∈ P s.t.

lim sup
T→∞

(
1

2T

∫ T

−T

|f(x) − Pε(x)|p dx

) 1
p

< ε .

Proposition 5.6.([35, p. 45], [97]) The space Bp is a closed subspace of Wp.

Consequently, since Bp is a closed subset of the complete space Mp, it is
complete, too.

It is possible to introduce another space as the completion of the space P.

Definition 5.7. ([12]) We will denote by Bp the space obtained as the
abstract completion of the space P w.r.t. the norm

(5.3) |||P |||p = lim
T→∞

(
1

2T

∫ T

−T

|P (x)|p dx

) 1
p

; P ∈ P .

By the definition, Bp is a Banach space and its elements are classes of Cauchy
sequences of trigonometric polynomials w.r.t. the norm (5.3). Thus, according
to this definition, it is rather difficult to understand the meaning of an element
of Bp. The following theorem allows us to assign to every element of this space
a real function.

Theorem 5.8. Bp ≡ Bp .

Proof. First of all, let us remark that, for every element of the space P,
the norms (5.1) and (5.3) coincide.

Both Bp and Bp contain a subspace isomorphic to the space P. Let us
identify these subspaces. Let P̂ ∈ Bp be an equivalence class of Cauchy se-
quences of trigonometric polynomials w.r.t. the norm (5.3). Then, every se-
quence {Pn}n∈IN ∈ P̂ is such that ‖Pn − Pm‖p → 0, for m,n → ∞. It follows

that {Pn}n∈IN is a Cauchy sequence in Bp, and consequently there exists f̂ ∈ Bp

such that ‖Pn − f̂‖p → 0, for n → ∞. In other words, the class P̂ uniquely

determines a class f̂ of functions belonging to Lp
loc(IR; IR) w.r.t. the equivalence

relation
f, g ∈ f̂ ⇐⇒ ‖f − g‖p = 0 .
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In fact, if the sequence {Qn}n∈IN ∈ P̂ were such that ‖Qn − g‖p → 0, then we
should have

‖f−g‖p ≤ ‖f−Pn‖p + ‖Pn−Qn‖p + ‖Qn−g‖p → 0 , whenever n → ∞ ,

because, if {Pn}n∈IN, {Qn}n∈IN ∈ P̂ , then ‖Pn −Qn‖p → 0, whenever n → ∞.

On the other hand, a class f̂ ∈ Bp uniquely determines a class of trigono-
metric polynomials P̂ ∈ Bp. In fact, let {Pn}n∈IN, {Qn}n∈IN ⊂ Bp(IR) be such

that ‖Pn − f̂‖p → 0, ‖Qn − f̂‖p → 0, whenever n → ∞ (i.e. there exist f, g ∈ f̂
such that ‖f − Pn‖p → 0 and ‖Qn − g‖p → 0). Let us show that there exists

P̂ ∈ Bp such that {Pn}n∈IN, {Qn}n∈IN ∈ P̂ . In fact,

‖Pn −Qn‖p ≤ ‖f − Pn‖p + ‖Qn − f‖p → 0 , whenever n → ∞ .

Then the two sequences are equivalent and belong to the same class of the
space Bp

ap. It is easy to show that the equivalence between the two spaces is an
isometry.

Remark 5.9. Considering the closure of the space P w.r.t. the norm (5.1)
in the space Mp, we obtain a space B̃p, which is still a seminormed, complete
space, whose elements are still functions; its quotient space, w.r.t. the equivalence
relation (5.2), is Bp.

Definition (5.5) is obtained as an approximation definition. It is possible to
show that this definition is equivalent to a Bohr-like one, provided we introduce
a new property of numerical sets.

Definition 5.10. ([22, pp. 77-78], [24, p. 227], [57]) A set X ⊂ IR is said
to be satisfactorily uniform (s.u.) if there exists a positive number l such that
the ratio r of the maximum number of elements of X included in an interval of
length l to the minimum number is less than 2.

Every s.u. set is r.d. The converse is, in general, not true.
Although, for example, the set Z is r.d. and s.u. in IR, the set X = Z ∪{

1
n

}
n∈IN

is r.d., but it is not s.u.: in fact, due to the presence of the accumulation
point 0, r = +∞ ∀l > 0. Thus, a r.d. set, in order to be s.u., cannot have any
finite accumulation point.

Definition 5.11. ([22, p. 78], [24, p. 227], [57, p. 6]) A function f ∈
Lp

loc(IR; IR) is said to be almost-periodic in the sense of Besicovitch (Bp
ap) if, for

every ε > 0, there corresponds a s.u. set {τk}k∈Z (τj < τi if j < i) s.t., for each i,

(5.4) lim sup
T→∞

(
1

2T

∫ T

−T

|f(x + τi) − f(x)|p dx

) 1
p

< ε ,
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and, for every c > 0,

(5.5) lim sup
T→∞

(
1

2T

∫ T

−T

[
lim sup
n→∞

1

2n + 1

n∑

i=−n

1

c

∫ x+c

x

|f(t + τi)− f(t)|pdt
]
dx

) 1
p

<ε.

The space B1
ap will be shortly indicated by Bap.

Theorem 5.12.([22, pp. 95-97, 100-101], [24, pp. 247-257]) The spaces Bp
ap

and Bp are equivalent.

It can be readily checked that Definition (5.11) is rather cumbersome, even
in its simplified form, obtained substituting conditions (5.4) and (5.5) with the
simplest one [23]

(5.6) lim sup
T→∞

(
1

2T

∫ T

−T

[
lim sup
n→∞

1

2n + 1

n∑

i=−n

|f(x + τi) − f(x)|p
]

dx

) 1
p

<ε.

It can be be shown [22], [24] that the spaces given by these two different defini-
tions are equivalent.

A. S. Besicovitch introduced even a simpler definition, which permits us to
introduce another space.

Definition 5.13. ([22, p. 112], [24, p. 267]) A function f ∈ L1
loc is said to

be B
1

ap if

lim inf
T→∞

1

2T

∫ T

−T

|f(x)| dx < +∞

and, for every ε > 0, there corresponds a s.u. set of numbers τi s.t., for each i,
(5.4) and (5.5) are satisfied.

Theorem 5.14.([22, pp. 113-123], [24, pp. 268-269]) B
1

ap ⊂ Bap .

The inclusion is strict, as shown in [22, pp. 126-129], [24, pp. 286-291].

It is worthwhile to observe that, although B
1

ap is strictly contained in Bap,

to every function in B
1

ap there corresponds a function Bap with the same Bohr–
Fourier series. This property is related to the following

Theorem 5.15.([22, pp. 123], [24, pp. 281-282]) To every function f ∈ Bap,

there corresponds a B
1

ap-function differing from f by a function the mean value
of whose modulus is zero.
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Due to the difficulty of the original definition, several authors have studied
alternative (and simpler) definitions of the Besicovitch spaces, each of them based
on Bohr-like or Bochner-like properties in the Besicovitch norm. It is then conve-
nient to consider the norm (5.1) rather than the norm given by Definition (5.11).
To this aim, we need some preliminary definitions in terms of (5.1).

Definition 5.16. ([8], [20, p. 69], [48]) [Bohr-type definition] A function
f ∈ Lp

loc(IR; IR) is said to be almost-periodic in the sense of Doss (Bp
ap) if, for

every ε > 0, there corresponds a r.d. set {τ}ε s.t.

lim sup
T→∞

(
1

2T

∫ T

−T

|f(x + τ) − f(x)|p dx

) 1
p

< ε ∀τ ∈ {τ}ε .

Each number τ ∈ {τ}ε is called an ε-Bp almost-period (or a Bp−ε-translation
number) of f .

Definition 5.17. ([46], [50]) [normality or Bochner-type definition] A func-
tion f ∈ Lp

loc(IR; IR) is called Bp-normal if, for every sequence {hi} of real
numbers, there corresponds a subsequence {hni} s.t. the sequence of functions
{f(x + hni

)} is Bp-convergent, i.e.

lim
m,n→+∞

lim sup
T→+∞

1

2T

∫ T

−T

|f(x + hn) − f(x + hm)|p dx = 0 .

Definition 5.18. ([20, p. 15], [48], [50]) [continuity] A function f ∈
Lp

loc(IR; IR) is called Bp-continuous if

lim
τ→0

lim sup
T→+∞

1

2T

∫ T

−T

|f(x + τ) − f(x)|p dx = 0 .

The space of all the Bp-continuous functions will be indicated with Bp
c .

Clearly, it is a (complete) subspace of Mp.

Definition 5.19. ([20, p. 15]) [regularity] A function f ∈ Lp
loc(IR; IR) is

called Bp-regular if, for every l ∈ IR,

(5.7) lim sup
T→±∞

1

2T

∫ T

T−l

|f(x)|p dx = 0 .

This condition implies that a Bp-regular function cannot assume too large
values in finite intervals. The space of all the Bp-regular functions will be indi-
cated by Bp

r . Clearly, it is a (complete) subspace of Mp (see [20, p. 16]). Besides,
since

lim sup
T→±∞

1

2T

∫ T

T−l

|f(x)|p dx ≤ ‖f‖pp ,
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it follows that every null function in the Besicovitch norm is regular.

Theorem 5.20.([50]) A function f ∈ Lp
loc(IR; IR) belongs to the space Bp iff

1) f is Bp-bounded, i.e. it belongs to Mp;

2) f is Bp-continuous;

3) f is Bp-normal;

4) for every λ ∈ IR,

lim
L→+∞

lim sup
T→+∞

∫ T

−T

∣∣∣∣
1

L

∫ x+L

x

f(t)eiλt dt− 1

L

∫ L

0

f(t)eiλt dt

∣∣∣∣ dx = 0 .

Remark 5.21. Condition 4) is, actually, formed by infinite conditions, each
one for each value of λ. Each of them is independent of the others. For example,
it can be proved (see [50]) that, for every λ0, the functions f(x) = eiλ0x signx
satisfy conditions 1), 2), 3) and condition 4), for every value λ �= λ0.

Condition 4) can be replaced by the following condition ([50]):

4′) to every λ ∈ IR, there corresponds a number a(λ) s.t.

lim
L→+∞

lim sup
T→+∞

∫ T

−T

∣∣∣∣
1

L

∫ x+L

x

f(t)eiλt dt− a(λ)

∣∣∣∣ dx = 0 ;

or by (see [50])

4′′) for every a ∈ IR, there exists a function f (a) ∈ Lp, a-periodic and s.t.

(5.8) lim
n→+∞

{
lim sup
T→+∞

1

2T

∫ T

−T

[
1

n

n−1∑

k=0

|f(x + ka) − f (a)(x)|p dx

]}
= 0 .

Moreover, condition 3) can be replaced by a Bohr-like condition ([48]):

3′) for every ε, the set of numbers τ for which

lim sup
T→+∞

1

2T

∫ T

−T

|f(x + τ) − f(x)| dx < ε

is r.d.

It follows that, under conditions 1), 2) and 4), a function is Bp-normal iff it
is almost-periodic in the sense of R. Doss.

Comparing Theorems (5.12) and (5.20), let us note that introducing a Bohr-
like definition as in condition 3′) represents a weaker structural characterization
than Definition (5.11).
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J.-P. Bertrandias has restricted his analysis to Bp
c -functions (see Defini-

tion 5.18), showing the equivalence of the different definitions.

Definition 5.22. ([20, p. 69]) A function f ∈ Bp
c is called Mp-almost-

periodic (Mp
ap) if, for every ε > 0, there exists a r.d. set {τε} s.t.

lim sup
T→∞

(
1

2T

∫ T

−T

|f(x + τ) − f(x)|p dx

) 1
p

< ε ∀τ ∈ {τ}ε .

Definition 5.23. ([20, p. 69]) [normality] A function f ∈ Bp
c is called

Mp-normal if the set {fτ} of its translates is Bp-precompact.

Theorem 5.24.([20, p. 69]) Definitions (5.22) and (5.23) are equivalent.

In order to show the equivalence with the third type of definition, we need
a preliminary definition.

Definition 5.25. ([20, p. 50]) Given a family {kλ(x)}λ∈IR of Bp-constant
functions (see Definition (6.9)), we will call by a generalized trigonometric poly-
nomial, or by a trigonometric polynomial with Bp-constant coefficients, the func-
tion ∑

λ∈IR

kλ(x)eiλx .

The class of generalized trigonometric polynomials will be denoted by P p.
It is easy to show that this is a linear subspace of Bp

c . Obviously, the space P is
a subspace of P p.

Theorem 5.26.([20, p. 71]) A function f ∈ Bp
c is Mp

ap iff it is the Bp-limit
of a sequence of generalized trigonometric polynomials. In other words, Mp

ap is
the closure, w.r.t. the Besicovitch norm, of the space P p.

Since Mp
ap is a closed subspace of the complete space Bp

c , it is complete, too.
The space Bp is a complete subspace of Mp

ap.

Theorem 5.27.([20, p. 72]) The space Mp
ap is a complete subspace of Bp

r .

Theorem 5.28.([20, p. 72]) [Uniqueness theorem] If two functions belonging
to Mp

ap have the same generalized Bohr–Fourier coefficients, they are equivalent
in the Besicovitch norm.



162 J. ANDRES – A. M. BERSANI – R. F. GRANDE [42]

Comparing Theorem (5.20), Remark (5.21) and Definitions (5.22), (5.23), it
is clear that Condition 4) in Theorem (5.20), or the equivalent 4′), is the neces-
sary and sufficient condition in order for a Mp

ap-function to be a Bp-function. For

example, the functions fλ(x) = eiλx signx, are Mp
ap-functions (since signx is a

Bp-constant), but they are not Bp-functions, as already shown in Remark (5.21).
J.-P. Bertrandias has also proved a further characterization of the Besicov-

itch functions, in terms of correlation functions, whose discussion would bring
us far from the goal of this paper. For more information, see [20, pp. 70-71].

On the other hand, A. S. Kovanko has introduced a new class of functions
and has proved its equivalence with the space Bp

ap.

Definition 5.29. ([93]) Given a function f ∈ Lp
loc(IR; IR) and a set E ⊂ IR,

let us define

M
E{|f |p} = {DE

Bp [f, 0]}p := lim sup
T→+∞

[
1

2T

∫

E∩(−T,T )

|f(x)|p dx

]

and

δE := lim sup
T→+∞

|E(−T, T )|
2T

,

where
|E(−T, T )| = µ[E ∩ (−T, T )] .

Observe that that, if E = IR,

M
E{|f |p} = ‖f‖pp .

f(x) is said to be Bp-uniformly integrable (f ∈ Bp
u.i.) if ∀ε > 0 ∃ η(ε) > 0

s.t.
M

E{|f |p} < ε , whenever δE < η .

Definition 5.30. ([93], [94]) A function f is said to belong to the class
Ap if

1) f ∈ Bp
u.i.;

2) ∀ε > 0 ∃η > 0 and a r.d. set of ε-almost periods τ s.t.

|f(x + t) − f(x)| < ε for τ − η < t < τ + η ,

for arbitrary x ∈ IR, possibly with an exception of a set Et, s.t. δEt < η;
3) for every a > 0 ∃ a-periodic function f (a)(x) which is a.e. bounded and

s.t. (5.8) holds.

Remark 5.31. In [93], A. S. Kovanko shows that, if a function f belongs to
Ap, then it belongs to Lp. Thus, condition 4′′) in Remark (5.21) is a consequence
of condition 3) in Definition (5.30).

Theorem 5.32.([93]) Bp ≡ Ap .
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G. Bruno and F. R. Grande proved a Lusternik-type theorem, very similar
to the corresponding theorem for C0

ap-functions.

Theorem 5.33.([38]) Let F be a family of elements belonging to Bp
ap, 1 ≤

p < +∞, closed and bounded. Then the following statements are equivalent :

1) F is compact in the Bp-norm;
2) F is Bp-equi-continuous, i.e. for any ε > 0 there exists δ = δ(ε) s.t., if

|h| < δ, then

DBp [fh, f ] < ε , ∀f ∈ F

and Bp-equi-almost-periodic, i.e., for any ε > 0, there exists l(ε) > 0 s.t. ev-
ery interval whose lenghth is l(ε)contains a common ε-almost-period ξ for
all f ∈ F , i.e.

DBp [fξ, f ] < ε ∀f ∈ F .

Theorem 5.34.([38]) Every Bp-function is Bp-normal.

Remark 5.35. Theorem (5.34) is also a corollary of Theorem (5.20), by
means of which we also prove that every Bp-function is Bp

ap, B
p-bounded and

Bp-continuous.

Theorem 5.36.([38]) Every Bp-normal function is Bp
ap.

For both Theorems (5.34) and (5.36), the converse is not true.

Example 5.37. (Example of a function which is Bp
ap, but not Bp-normal)

The example is based partly on [127, pp. 42-47]. In Example (4.28), it has been
shown that the function

f(x) =





0 , if x ∈ (−∞, 0] ;√
n

2
, if x ∈ (n− 2;n− 1] , n = 2, 4, 6 . . . ;

−
√

n

2
, if x ∈ (n− 1;n] , n = 2, 4, 6 . . . ;

is a W 1
ap-function. Furthermore, in Section 6, it will be shown that every W p

ap-
function is Bp

ap. Consequently, since the function is W 1
ap, it is B1

ap. Now, we
want to show that it is not B1-normal. Let us take c ∈ IR, c �= 2k; k ∈ Z.
Without any loss of generality, we can suppose c > 0. In fact, if c < 0, (c = −d),
then

DB [fd, f ] = DB [f, f−d] = DB [fc, f ] .
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Since we will have to consider the limit for T → ∞, let us take T > c. Then
there exist i, l ∈ IN s.t.

2i ≤ c < 2(i + 1) ; 2l ≤ T < 2(l + 1) .

Put δ := c− 2i. We distinguish two cases:

a) 0 ≤ δ ≤ 1 ;
b) 1 < δ < 2.

Since we have to evaluate

1

2T

∫ T

−T

|f(t + c) − f(t)| dt ,

let us compute the difference |f(t+ c)− f(t)| in intervals whose union is strictly
included in the interval [−T, T ]. For the case a), we will take the intervals
(j − 1 − δ, j − 1), j = 2, 4, 6, . . . , for the case b), we will take the intervals
(j, j + δ), j = 2, 4, 6, . . . We have respectively

|f(t + c) − f(t)| =

√
j

2
+

√
j + 2i

2
;

|f(t + c) − f(t)| =

√
j + 2

2
+

√
j + 2 + 2i

2
.

Since the second equality can be obtained from the first one by means of a
variable shifting, let us consider only the case a). We have

1

2T

∫ T

−T

|f(t + c) − f(t)| dt ≥ 1

2l

l∑

n=1

∫ 2n−1

2n−1−δ

|f(t + c) − f(t)| dt =

=
1

2l

l∑

n=1

δ
(√

n + i +
√
n
)

≥ 1

l

l∑

n=1

δ
√
n ≥ δ

l

2

3
l
3
2 ,

where the last inequality is obtained by virtue of the Cauchy integral criterion
of convergence. Thus, we get

1

2T

∫ T

−T

|f(t + c) − f(t)| dt ≥ 2δ

3

√
l .

Passing to the limit for T → ∞, i.e. for l → ∞, provided c �= 2k (k ∈ Z), we
obtain

DB [fc, f ] = lim sup
T→∞

1

2T

∫ T

−T

|f(t + c) − f(t)| dt ≥ δ

3
lim
l→∞

√
l = +∞ .
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If we fix a number a ∈ IR and a sequence {ai}i∈IN s.t. ai − a �= 2k; k ∈ Z, then

DB [fa, fai ] = DB [fa−ai , f ] = +∞ .

We conclude that the sequence of translates {f(x+ai)} is not relatively compact
and consequently the function is not B1-normal.

Let us note that the function cannot satisfy all the conditions 1), 2), 3) in
Theorem (5.20) (otherwise, according to Remark (5.21), it would be B1-normal).
Let us show that f is not B1-continuous. In fact,

|f(x + α) − f(x)| =





√
2n , if x ∈ (n− 1 − α, n− 1]

√
n

2
+

√
n− 2

2
, if x ∈ (n− 2 − α, n− 2] ,

for every n = 2, 4, 6, . . .
Let us take T = 2l. Then

∫ T

−T

|f(x+α)−f(x)|dx =

l∑

k=1

[√
k +

√
k − 1

]
α+

l∑

k=1

2
√
kα =

[
3
√
l +

l−1∑

k=1

4
√
k

]
α.

Passing to the limit,

lim
T→+∞

1

2T

∫ T

−T

|f(x + α) − f(x)| dx ≥ lim
l→+∞

α

4l

[
3
√
l +

l−1∑

k=1

4
√
k

]
≥

≥ α lim
l→+∞

[
3

4
√
l

+
2

3l
(l − 1)

3
2

]
= +∞ ,

and the claim follows.
Example 5.38. (Example of a function which is Bp-normal, but not Bp)

The example is partly based on [35, p. 107] and [57, p. 5]. Let us consider the
function

sign(x) =





−1 , if x < 0

0 , if x = 0

1 , if x > 0 .

As shown in [57, p. 5], this function is not Bp: it is sufficient to recall that, by
virtue of Theorem (6.2), for every Bp-function, there exists the mean value (2.2)
and

M [f ] = lim
T→∞

1

T

∫ T

0

f(x) dx = lim
T→∞

1

T

∫ 0

−T

f(x) dx .

However,

lim
T→+∞

1

T

∫ T

0

signx dx = 1 ;

lim
T→+∞

1

T

∫ 0

−T

signx dx = −1 .
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Thus, Theorem (6.2) is not fulfilled. On the other hand, signx is a Bp
ap-function,

because

| sign(x + τ) − sign(x)| =

{
2 , if x ∈ [−τ, 0)

0 , elsewhere ,

and
‖ sign(x + τ) − sign(x)‖p = 0 ∀τ ∈ IR .

Let us show that it is Bp-normal, too.
In fact, for every choice of hm, hn (let us choose, without any loss of gener-

ality, hm > hn > 0), we have

∫ T

−T

| sign(x + hm) − sign(x + hn)|p dx =

∫ −hn

−hm

dx = hm − hn ,

and consequently

‖ sign(x + hm) − sign(x + hn)‖p = 0

as well as the Bp-normality.
More generally, we can consider a function f(x) = e−iλx signx, which is not

Bp, for every λ ∈ IR (see Remark (5.21)).
On the other hand, each of the functions e−iλx signx is Bp-normal. In fact,

for every choice of hm, hn (hm > hn), we have

∫ T

−T

|f(x + hm) − f(x + hn)| dx =

∫ −hn

−hm

1 dx = hm − hn ,

and consequently

∫
|eiλ(x+hm) − eiλ(x+hn)| dx = 0 ∀ hm, hn ∈ IR .

So, the claim follows.
However, for these functions, Formula (2.3) holds. In fact

lim
T→+∞

1

T

∫ T

0

e−iλx signx dx = lim
T→+∞

i

λT

[
e−iλT − 1

]
= 0 ;

lim
T→+∞

1

T

∫ 0

−T

e−iλx signx dx = lim
T→+∞

i

λT

[
eiλT − 1

]
= 0 .

This example shows that Theorem (6.2) in Section 6, characterizing Bp-functions,
is, in general, not satisfied by Bp

ap and Bp-normal functions.
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The importance and the properties of the spaces Bp
ap can be better under-

stood applying again the Bohr compactification. Let us introduce on IRB the
normalized Haar measure µ (i.e. the positive regular Borel measure s.t. µ(U) =
µ(U + s), for every Borel subset U ⊂ IRB and for every s ∈ IRB (invariance
property) and s.t. µ(IRB) = 1 (normality property)).

It is possible [107] to show that the space Bp
ap is isomorphic to the space

Lp(IRB , IR), where Lp is taken w.r.t. the Haar measure defined on IRB . It follows
that

‖f‖pBp =





‖f̃‖pLp(IRB ,µ) =

∫

IRB

|f̃(x)|p dµ(x) , if 1 ≤ p < +∞

ess supx∈IRB
|f̃(x)| , if p = +∞ ,

where f̃ is the extension by continuity of f from IR to IRB .
From this isomorphism, many properties for the spaces Bp

ap can be obtained.
For example, two functions differing from each other even on the whole real axis
can belong to the same Besicovitch class, because two functions belonging to the
same Lp(IRB , IR)-class may differ from each other on a set of the Haar measure
zero and the real numbers are embedded in the Bohr compactification as a dense
set of the Haar measure zero. Furthermore, recalling the inclusions among the
spaces Lp on compact sets, we have

B∞
ap ⊂ Bp1

ap ⊂ Bp2
ap ⊂ B1

ap ∀ p1 > p2 > 1 ,

where
B∞

ap =
⋂

p∈IN

Bp
ap .

Furthermore ([64], [71], [72]), the spaces Bp
ap, 1 ≤ p < ∞, are reflexive spaces

and their duals are given by Bq
ap, where q is s.t. 1

q + 1
p = 1. The spaces Bp

ap

are not separable (see, for example, [135, p. 108]). In particular, the space B2
ap

is a non-separable Hilbert space, in which the exponents eiλx (λ ∈ IR) form an
orthonormal basis. Other properties can be found in [12], [64], [71], [72], [107,
pp. 11-12], [108].

6 – Vertical hierarchies. Properties. Examples and counter-examples

In the previous sections, we have shown that, although for the spaces C0
ap

and Sp
ap, the three definitions, in terms of relative density, normality and polyno-

mial approximation, are equivalent, for the remaining spaces (e-W p
ap, W

p
ap, B

p
ap)

the equivalence does not hold anymore.
It is then important to check the relationships among every definition ob-

tained w.r.t. one norm and the less restrictive definitions related to more general
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classes. Before studying these relations and the vertical hierarchies among the
spaces up to now studied, let us recall the most important properties that are
common to all these spaces.

In fact, many of the properties of the u.a.p. functions can be satisfied by
the functions belonging to the spaces of generalized a.p. functions. For the sake
of simplicity, let us indicate with Gp the either (generic) space Sp, e-W p, W p or
Bp (similarly for the spaces Gp

ap and Gp-normal). If not otherwise stated, the
following theorems will be valid for any of the spaces studied.

First of all, let us underline the connection of almost-periodic functions with
the trigonometric series.

Theorem 6.1.([22, p. 104], [24, p. 262], [35, p. 45], [67, pp. 191, 193]) Every
Gp-function can be represented by its Fourier series, given by formula (2.5).

Theorem 6.2.([22, p. 93], [24, p. 244-245], [35, p. 45], [67, p. 191] [Mean
value theorem] The mean value (2.2) of every Gp-function f exists and

a) M [f ] = lim
T→∞

1

T

∫ T

0

f(x) dx = lim
T→∞

1

T

∫ 0

−T

f(x) dx(6.1)

b) M [f ] = lim
T→∞

1

2T

∫ a+T

a−T

f(x) dx ;(6.2)

where the last limit exists uniformly w.r.t. a ∈ IR, for every function in Sp, in
e−W p and in W p.

Theorem (6.2) is related to a property of the Sp-norm, stated by S. Koizumi.

Theorem 6.3.([77]) A function f ∈ Lp
loc(IR; IR) belongs to BSp iff there

exists a positive constant K ′ s.t.

lim sup
T→+∞

1

2T

∫ T

−T

|f(x + t)|p dt ≤ K ′ , uniformly w.r.t. x ∈ IR .

Remark 6.4. Repeating the considerations done in Remark (2.17), for
every f ∈ Gp, the quantities a(λ), given by (2.4), are finite, for every λ ∈ IR.

This fact is no longer true, in general, for Gp
ap-functions, as shown in Ex-

ample (7.7).

Theorem 6.5.([22, p. 104], [24, p. 262], [35, p. 45]) For every Gp-function
f , there always exists at most a countable infinite set of the Bohr–Fourier expo-
nents λ, for which a(λ) �= 0, where a(λ) are given by (2.4).
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Theorem 6.6.([22, p. 109], [35, p. 47]) [Bohr Fundamental Theorem] The
Parseval equation ∑

n

|a(λn, f)|2 = M{|f |2}

is true for every G2-function.

Theorem 6.7.([22, p. 109], [24, p. 266], [35, p. 45]) [Uniqueness Theorem] If
two Gp-functions f , g have the same Fourier series, then they are identical, i.e.

DG [f, g] = 0 .

In other words, two different elements belonging to Gp cannot have the same
Bohr–Fourier series.

The functions whose Gp-norm is equal to zero are called Gp-zero functions
([35, p. 38]).

Proposition 6.8. Every Gp-zero function is a Gp-function and belongs to
the class of the function f(x) ≡ 0.

Definition 6.9. ([20]) A Gp-bounded function is said Gp-constant if, for
every real number τ ,

‖fτ − f‖Gp = 0 .

Proposition 6.10. Every Gp-zero function is Gp-constant.

Proof. In fact, for every τ ∈ IR, ‖fτ − f‖Gp ≤ ‖fτ‖Gp + ‖f‖Gp = 0.

The converse is, in general, not true. For example, the function f(x) ≡ 1 is,
obviously, Gp-constant, but

‖f‖p = lim sup
T→+∞

1

2T

∫ T

−T

1 dx = 1 �= 0 .

Proposition 6.11. Every Gp-constant is Gp
ap and Gp-normal.

The last property cannot be extended to the Gp-functions. For example, the
function f(x) = signx is Bp-constant. It is Bp

ap, but it is not Bp (see Example
(5.38)).

Theorem 6.12.([22, pp. 110-112], [35, p. 47]) [Riesz–Fischer theorem] To
any series

∑
ane

iλnx, for which
∑ |an|2 converges, corresponds a G2-function

having this series as its Bohr–Fourier series.



170 J. ANDRES – A. M. BERSANI – R. F. GRANDE [50]

In order to establish the desired vertical hierarchies, let us recall the most
important relationships among the norms (2.1), (3.1), (4.1), (5.1) (see, for ex-
ample, [22, pp. 72-76], [24, pp. 220-224], [35, pp. 36-37]).

For every f ∈ Lp
loc(IR; IR) and for every p ≥ 1, the following inequalities

hold:

‖f‖C0 ≥ ‖f‖Sp
L

≥ ‖f‖Wp ≥ ‖f‖p .

Consequently, we obtain, for every p ≥ 1,

(6.3)

C0
ap ⊆ Sp ⊆ W p ⊆ Bp;

C0
ap ⊆ Sp− normal ⊆ e−W p− normal ⊆ W p− normal ⊆ Bp− normal;

C0
ap ⊆ Sp

ap ⊆ e−W p
ap ⊆ W p

ap ⊆ Bp
ap .

Furthermore, it is easy to show, by virtue of the Hölder inequality, that, for every
1 ≤ p1 < p2,

‖f‖Gp1 ≤ ‖f‖Gp2 ,

and, consequently,

(6.4) C0
ap ⊆ Gp2 ⊆ Gp1 ⊆ G1 ⊆ L1

loc .

Defining the spaces

BGp := {f ∈ Lp
loc(IR; IR) s.t. ‖ f ‖Gp < +∞} ,

from formula (6.4) and from Definition (2.8), the following theorem holds.

Theorem 6.13.([22, pp. 75-76], [35, p. 38]) The spaces Gp coincide with
the spaces obtained as the closures of the space C0

ap w.r.t. the norms (3.2),
(4.1), (5.1).

Furthermore, the following properties for bounded functions hold:

Theorem 6.14.([35, p. 37]) Every Gp-function is Gp-bounded.

Remark 6.15. Theorem (6.14) does not hold, in general, for the spaces
W p

ap and Bp
ap, as shown by Example (4.28).

Theorem 6.16.([35, pp. 62-63]) Every bounded function belonging to G1

belongs to every space Gp, ∀p > 1.
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Inclusions (6.3) can be improved, recalling some theorems and examples.

Theorem 6.17.([48]) If there exists a number M s.t. the exponents of a Sp
ap-

function f are less in modulus than M , then f is equivalent to a u.a.p. function.

Theorem 6.18.([4, Th. VII, p. 78], [22, pp. 81-82], [41, p. 158, Th. 6.16])
[Bochner] If f ∈ Sp

ap is uniformly continuous, then f is u.a.p.

H. D. Ursell [129] has shown an example of a continuous Sp
ap-function,

which is not uniformly continuous and which is not C0
ap.

On the other hand, it is not difficult to show that the space C0
ap is strictly

contained in Sp
ap, for every p.

In his book [99], B. M. Levitan shows two interesting examples.

Example 6.19. ([99, pp. 209-210]) Let f ∈ C0
ap. Then the function

F (x) = sign(f(x)) =





1 , if f(x) > 0

0 , if f(x) = 0

−1 , if f(x) < 0

is S1
ap.

Example 6.20. ([99, pp. 212-213]) Given the quasi-periodic (and, a fortiori,
almost-periodic) function φ(x) = 2 + cosx + cos

√
2x, the function

f(x) = sin

(
1

φ(x)

)

is S1
ap.

However, in order to have Sp
ap-functions which are not in C0

ap, it would be
sufficient to consider, for example, the functions obtained modifying the values
of an f ∈ C0

ap on all the relative integers, because the elements of Lp
loc(IR; IR)

(and, consequently, of Sp
ap) are the classes of functions obtained by means of the

equivalence relation f ∼ g if f = g, a.e. in IR.
The following example shows a function f ∈ Sp

ap which is unbounded.

Example 6.21. The function

f(x) =

{
cosx , if x �= kπ ,

k , if x = kπ ,

is not continuous and it is unbounded, but it belongs to the same class of
Lp

loc(IR; IR) as the function g(x) = cosx, which is, obviously, u.a.p. Thus, it
is Sp

ap, for every p.

Theorem 6.22.([22, p. 77], [67, p. 190], [99, p. 222]) If, in the norm (4.1),
lim supε→0 L(ε) is finite, then a function f ∈ e-W p

ap is an Sp
ap-function.
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In other words, the spaces Sp
ap can be interpreted as uniform W p-spaces.

The spaces Sp
ap are strictly included in e−W p

ap.

Example 6.23. (Example of an e − W p-normal function which does not
belong to Sp

ap) The example is partly based on [127, pp. 20-21]. In Example
(4.27), we have already proved that the function, defined on IR,

f(x) =

{
1 , for 0 < x <

1

2
,

0 , elsewhere ,

is e−W -normal, but not Sap.
Let us note that, by Formula (4.14), for every L ≥ 1,

DSL
[fτ , f ] < ε if L = L(ε) ≥ 1

ε
.

Thus, lim supε→0 L(ε) = +∞, and the hypothesis in Theorem (6.22) is not
satisfied.

Another example can be found in [35] (Main Example 2, pp. 70-73 and Main
Example II, pp. 115-116).

In Example (4.29), we have shown that the Heaviside step function

H(x) =

{
0 , if x < 0

1 , if x ≥ 0 ,

is a W 1
ap-function, but not e−W 1

ap. Since the space e−W 1
ap corresponds to the

space W 1 (see Theorems (4.7), (4.11)) and the spaces W p are included in the
spaces W p-normal, Example (4.28) shows a second example of a W p

ap-function
which is not an e−W p

ap-function, other than [8, Example 1].
As already shown for the W p

ap and e−W p
ap spaces, the three definitions for

a more general space can be inserted among those of a more restrictive space.
This situation is very clear when we compare the W p and Bp-definitions.

Example 6.24. (Example of a Bp-function which is not a W p
ap-function)

Let us take the function

f(x) =

{
n

1
2p , if n2 ≤ x < n2 +

√
n ,

0 , elsewhere ,

where p ∈ IR , p > 1 and n ∈ IN , n ≥ 1.
As pointed out in [20, p. 42], this function is unbounded, Bp-bounded and

Bp-constant. Consequently, by virtue of Proposition (6.11), it is Bp
ap.
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Let us compute ‖f‖q, for every q ≥ 1. It is sufficient to take T = N2 +√
N , N ∈ IN.

‖f‖qq =lim sup
T→+∞

1

2T

∫ T

−T

|f(x)|qdx =lim sup
N→+∞

1

2(N2 +
√
N)

∫ N2+
√
N

0

|f(x)|q =

=lim sup
N→+∞

1

2(N2 +
√
N)

N∑

k=1

√
kk

q
2p .

For q = p, we have

‖f‖pp = lim
N→+∞

1

2(N2 +
√
N)

N(N + 1)

2
=

1

4
.

For q > p, we have

‖f‖qq ≥ lim sup
N→+∞

1

2(N2 +
√
N)

2p

3p + q
N

1
2 (3+ q

p ) = +∞ ,

because 1
2 (3 + q

p ) > 2.
For q < p, we have

‖f‖qq ≤ lim sup
N→+∞

1

2(N2 +
√
N)

2p

3p + q
(N + 1)

1
2 (3+ q

p ) = 0 ,

because 1
2 (3 + q

p ) < 2.
In the last two cases, we have used the Cauchy integral criterion.
It follows that f ∈ Bq ,∀q < p, because it is a Bq-zero function.
Let us show that f �∈ W q

ap.
Without any loss of generality, we can take τ > 0 and T > τ . There exists

a real number M s.t.
√
M > T > τ . Thus,

sup
x∈IR

1

T

∫ x+T

x

|f(x + τ) − f(x)|q dx ≥ 1

T

∫ N2+
√
N

N2+
√
N−τ

N
q
2p dx =

τ

T
N

q
2p ,

for every N ≥ M . Consequently, taking the limit for N → +∞, we arrive at

‖fτ − f‖W q = +∞ ∀q ≥ 1 ;∀τ > 0 ;∀T > τ .

Let us observe that, since Bq ⊂ Bq-normal and W q-normal ⊂ W q
ap, this example

shows simultaneously a function which is Bq, but not W q-normal, and a function
which is Bq-normal, but not W q

ap.
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Let us finally remark that this function does not satisfy Condition (6.2) in
Theorem (6.2), uniformly w.r.t. a. In fact, for every T > 0, there exists N ∈ IN
s.t.

√
N > 2T . Consequently,

∣∣∣∣ sup
a∈IR

1

2T

∫ a+T

a−T

f(x)dx−M [f ]

∣∣∣∣ ≥
1

2T

∫ N2+
√

N
2 +T

N2+
√

N
2 −T

N
1
2p dx = N

1
2p→N→+∞ +∞ ,

and the claim follows.

Example 6.25. (Example of a W 1-normal function which is not a B1-
function) The example is partly based on [127, p. 48]. As shown in Exam-
ple (4.29), the function H(x) is W 1-normal. On the other hand, it does not
satisfy (6.1), because

lim
T→∞

1

T

∫ T

0

H(x) dx = 1 �= lim
T→∞

1

T

∫ 0

−T

H(x) dx = 0 .

Consequently, it is not B1.
It means that H(x) does not satisfy all the conditions of Theorem (5.20).

In fact, while, for every λ �= 0 and for L sufficiently large,

1

2TL

[∫ T

−T

∣∣
∫ x+L

x

H(t)eiλtdt−
∫ L

0

H(t)eiλtdt
∣∣dx
]

=

=
1

2TL

[∫ 0

−T

∣∣∣∣
∫ x+L

0

eiλtdt−
∫ L

0

eiλtdt

∣∣∣∣dx+

∫ T

0

∣∣∣∣
∫ x+L

x

eiλtdt−
∫ L

0

eiλtdt

∣∣∣∣dx
]

=

=
1

2TL|λ|

[∫ 0

−T

∣∣ eiλx − 1
∣∣dx +

∫ T

0

∣∣eiλx − 1
∣∣∣∣eiλL − 1

∣∣dx
]

≤ 3

L|λ| ,

and consequently,

lim
L→+∞

lim
T→+∞

1

2TL

[∫ T

−T

∣∣∣∣
∫ x+L

x

H(t)eiλtdt−
∫ L

0

H(t)eiλtdt

∣∣∣∣dx
]

=

= lim
L→+∞

3

L|λ| = 0 ,

for λ = 0,

lim
L→+∞

lim
T→+∞

1

2TL

[∫ T

−T

∣∣
∫ x+L

x

H(t)eiλt dt−
∫ L

0

H(t)eiλt dt
∣∣ dx

]
=

= lim
L→+∞

lim
T→+∞

1

2TL

[∫ 0

−T

|x| dx
]

= lim
L→+∞

lim
T→+∞

T

4L
= +∞ ,

and the function does not satisfy condition 4), for every λ ∈ IR.
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Example 6.26. ([127, pp. 42-47]) (Example of a W 1
ap-function which is not

a B1-normal function) In Example (4.28), we have shown that the function

f(x) =





0 , if x ∈ (−∞, 0] ;√
n

2
, if x ∈ (n− 2;n− 1] , n = 2, 4, 6 . . . ;

−
√

n

2
, if x ∈ (n− 1;n] , n = 2, 4, 6 . . . ;

belongs to e−W 1
ap. On the other hand, in Example (5.37), the function is shown

not to be B1-normal.

Example 6.27. ([35, Example 3b, pp. 58-61, pp. 111-114], [127, pp. 34-38])
(Example of a Bp-function which is not a W p-function) The function

f(x) =





1, if x ∈
[
n− 1

2
, n +

1

2

]
, n ∈ Z, nmod 2 = 0 but nmod 22 �= 0 ,

2, if x ∈
[
n− 1

2
, n +

1

2

]
, n ∈ Z, nmod 22 = 0 but nmod 23 �= 0 ,

3, if x ∈
[
n− 1

2
, n +

1

2

]
, n ∈ Z, nmod 23 = 0 but nmod 24 �= 0 ,

...

0, elsewhere ,

2 4 6 8 10 12 14 16 18

1

2

3

4

Fig. 4

is a Bp-function which is not a W p-function.
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Taking into account the last four examples, we can conclude that there does
not exist any inclusive relation between the spaces W p

ap and Bp.
The previous theorems and examples allow us to write down Table 2.

�

⇑

�

⇑

a. periods normal approx.

Bohr C0
ap u. normal u.a.p.

Stepanov Sp
ap Sp-normal Sp

equi-Weyl e W p
ap e−W p-normal � e W p

Weyl W p
ap � W p-normal � W p

Besicovitch Bp
ap �

��� ��
Bp-normal � Bp

⇔

⇔

⇔ ⇔

⇔

⇐

⇐

⇐⇐

⇐

⇑

�

⇑

�

⇑

�

⇑ �

⇑

�

⇑

�

⇑

�

⇑

�

⇑

⇑ ⇑

�
− −

.......

....... .......

.......

Table 2

7 – Further generalizations. Open problems. Perspectives

As for the case of the C0
ap-functions, it is possible to generalize the theory

of the Gp-functions to spaces of functions defined on arbitrary groups (see, for
example, [58], [63], [65]).

Many authors have furthermore generalized in different directions the notion
of almost-periodicity; for example, R. Doss ([47], [49], in terms of diophantine
approximations), S. Stoinski ([116], [117], [118], [119], [120], [121], [122], [123],
[124], [125], [126], in terms of ε-almost-periods), K. Urbanik ([128], in terms of
polynomial approximations), etc.

Besides that, the contribution by A. S. Kovanko to the theory of generalized
a.p. functions is significant in this context: namely in [79], [80], he introduced

ten different definitions of a.p. functions (of types A,A,B,B′, B,B
′
, C, C ′, C, C

′
),

in terms of ε-almost-periods, showing that the space of A-a.p. functions is the
largest one and that the space of C-a.p. functions is an intermediate space be-
tween W 2 and B2. See also [85], [90], [93], [96].

Furthermore, in [81], [82], [83], [84], [94], [95], he extended the theory of
a.p. functions to non-integrable functions, in terms of polynomial approxima-
tions. He introduced the space of α-a.p. functions, which coincides with the
space Map, by virtue of Definition (3.12) and Theorem (3.14), and the spaces
of αk-a.p. functions, which are the extensions of the spaces Bp to measurable
functions. These spaces are included in the space of α-a.p. functions. Moreover,
it is possible to prove a Bohr-like property for the spaces of αk-a.p. functions
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and to show that, for every α1-a.p. function, the mean value exists and the set
of values a(λ), defined by (2.4), for which α(λ) �= 0, is at most countable.

In [84], the author introduces the space of β-a.p. functions, in terms of a
Bohr-like definition, where the set of almost-periods is satisfactorily uniform,
like in Definition (5.10), and shows that this space coincides with the space of
α-a.p. functions. Thus, he shows the equivalence of two definitions (Bohr-like
and approximation) for these spaces. Moreover, he proves that the space B1

is included in this space. Finally, he states a necessary and sufficient condition
in order for a B1-function to be α-a.p., in terms of the so-called asymptotic
uniform integrability (see [84]). E. Fœlner [57] has specialized the study of
these spaces, considering Bp-bounded functions and bounded functions, proving
interesting relationships with the spaces Bp.

Generalizing the theory of weakly a.p. functions (see [53], [54]), J.-P. Ber-
trandias [20, pp. 64-68, 71] has introduced the spaces of Bp-weakly a.p. func-
tions, showing that every Bp

ap-function is Bp-weakly a.p. (see [20, p. 71]).
In this section, we will only concentrate our attention to the generalizations

given by C. Ryll-Nardzewski, S. Hartman, J. P. Kahane (see [75] and the refer-
ences therein), which are related to the Bohr-Fourier coefficients, not considering
the almost-periodicity of the functions, and C. Zhang [136] (cf. [2]). We will
also mention possible multivalued extensions in [5], [6], [8], [40], [42], [52].

Definition 7.1. ([75]) A function f ∈ Lp
loc(IR; IR) is called almost-periodic

in the sense of Hartman (shortly, H1
ap) if, for every λ ∈ IR, the number

af (λ) = lim
T→+∞

1

2T

∫ T

−T

f(x)e−iλx dx

exists and is finite.

Definition 7.2. ([75]) A function f ∈ Lp
loc(IR; IR) is called almost-periodic

in the sense of Ryll-Nardzewski (shortly, R1
ap) if, for every λ ∈ IR, the number

(7.1) bf (λ) = lim
T→+∞

1

T

∫ X+T

X

f(x)e−iλx dx, exists uniformly w.r.t. x ∈ IR ,

and is finite.

Every R1
ap-function is, obviously, H1

ap (and, for every λ and for every f ∈
R1

ap, af (λ) = bf (λ)). The converse, in general, is not true.

Example 7.3. (Example of a H1
ap-function, neither belonging to R1

ap nor
to B1) We have already shown in Example (5.38) that the function f(x) = signx
does not belong to B1. Nevertheless, f ∈ H1

ap and its spectrum is empty. In
fact, for every λ �= 0,

∫ T

−T

f(x)e−iλx dx = −
∫ 0

−T

e−iλx dx +

∫ T

0

e−iλx dx =
2

iλ
[1 − cos(λT )] .
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Thus,

af (λ) = lim
T→+∞

1

2T

∫ T

−T

f(x)e−iλxdx = lim
T→+∞

1

iλT
[1 − cos(λT )] = 0 ∀λ �= 0.

If λ = 0,

af (0) = lim
T→+∞

1

2T

∫ T

−T

f(x) dx = lim
T→+∞

1

2T

[
−
∫ 0

−T

dx +

∫ T

0

dx

]
= 0 .

Finally, let us prove that f �∈ R1
ap. It is sufficient to show that property (7.1)

does not hold for λ = 0. In fact,

∫ X+T

X

signx dx =





−
∫ 0

X

dx +

∫ X+T

0

dx, for X < 0

∫ X+T

X

dx , for X ≥ 0

=

=

{
2X + T , for X < 0 ,

T , for X ≥ 0 .

Then

bf (0) = lim
T→+∞

1

T

∫ X+T

X

signx dx = 1 .

Since ∣∣∣∣
1

T

∫ X+T

X

signx dx − 1

∣∣∣∣ =





∣∣∣∣
2X

T

∣∣∣∣ , for X < 0 ,

0 , for X ≥ 0 ,

we have ∣∣∣∣
1

T

∫ X+T

X

signx dx − bf (0)

∣∣∣∣ < ε ,

whenever
∣∣ 2X

T

∣∣ < ε, i.e. ∀T > 2|X|
ε . Consequently, the limit bf (0) is not uniform

w.r.t. X and f(x) = signx �∈ R1
ap.

It can be observed that, in this case, af (0) = 0 �= bf (0) = 1. On the other
hand, it can be easily shown that bf (0) = 0 ∀λ �= 0, uniformly w.r.t. X ∈ IR.

As pointed out in [75] and from Theorem (6.2) and Remark (6.4), every Sp
ap

and W p
ap-function is R1

ap and every Bp-function is H1
ap, while there is no relation

between the spaces Bp
ap and R1

ap and between the spaces Bp
ap and H1

ap.

Example 7.4. (Example of a function belonging to B1
ap, but not to R1

ap)
In Example (6.24), we could see a function which is B1

ap, but not W 1
ap, showing
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that (6.2) does not hold uniformly w.r.t. a ∈ IR. Consequently, the function does
not belong to R1

ap.

Analogously to the spaces Gp, we can introduce the spectrum σ(f) for a
H1

ap-function f(x) as

σ(f) = {λ ∈ IR s.t. af (λ) �= 0} .

Theorem 7.5.([75]) The spectrum of every function f ∈ H1
ap is at most

countable.

Remark 7.6. Every non negative H1
ap-function is B1-bounded, because,

in this case, af (0) = ‖f‖1. This property is no longer true for general H1
ap-

functions.

Example 7.7. (Example of a function which is Bp
ap, for every p ≥ 1, but

not H1
ap) Let us take the function, with values in C,

f(x) = ei log |x| .

Clearly,

‖f‖pp =

∫ ∣∣ei log |x|∣∣p dx = 1 .

Besides that, J.-P. Bertrandias [20, p. 42] has shown that f is Bp-constant
and, consequently, by virtue of Proposition (6.11), it is Bp

ap, for every p ≥ 1.
Let us show that this function does not belong to H1

ap, in particular, that
it does not have a mean value. In fact,

M [f ] =

∫
ei log |x| dx = lim

T→+∞
1

T

∫ T

0

ei log x dx =
(1 − i)

2
lim

T→+∞
ei log T .

Since the limit in the last equality does not exist, the claim follows.

Theorem 7.8.([75]) Every function f ∈ H1
ap, belonging to some Marcin-

kiewicz space Mp, p > 1, is the sum of a Bp
ap-function and of a H1

ap-function
whose spectrum is empty.

J. Bass [13], [14], [15] and J.-P. Bertrandias [18], [19], [20] introduced
the spaces of pseudo-random functions, in terms of correlation functions, showing
that these spaces are included in Bp

c and in the space of Hartman functions whose
spectrum is empty (see [19]). There is no relation between the spaces Bp and
the spaces of pseudo-random functions, but some theorems concerning operations
involving Bp and pseudo-random functions can be proved (see, for example, [14,
pp. 28-31]).
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In the framework of the resolution of systems of ordinary differential equa-
tions, C. Zhang has introduced in [136] a new class of a.p. functions.

Definition 7.9. ([2], [136]) Set

PAP0(IR) =

{
φ ∈ C0(IR) s.t. lim

T→+∞
1

2T

∫ T

−T

|φ(x)| dx = 0

}
.

A function f ∈ C0(IR) is called a pseudo almost-periodic function if it is the sum
of a function g ∈ C0

ap and of a function φ ∈ PAP0(IR).
g is called the almost-periodic component of f and φ is the ergodic pertur-

bation.

E. Ait Dads and O. Arino [2] have furtherly generalized these spaces
to measurable functions, introducing the spaces P̃AP . As remarked in [2], the
mean value, the Bohr-Fourier coefficients and the Bohr-Fourier exponents of
every pseudo a.p. function are the same of its a.p. component.

As concerns almost-periodic multifunctions (considered in [5], [6], [8]; cf. also
[40], [42], [52]), let us introduce the following metrics:

(Bohr) D(ϕ,ψ) := sup
t∈IR

dH(ϕ(t), ψ(t)),

(Stepanov) DSp
L
(ϕ,ψ) := sup

x∈IR

[
1

L

∫ x+L

x

dH(ϕ(t), ψ(t))p dt

] 1
p

,

(Weyl) DWp(ϕ,ψ) := lim
L→∞

sup
x∈IR

[
1

L

∫ x+L

x

dH(ϕ(t), ψ(t))p dt

] 1
p

=

= lim
L→∞

DSp
L
(ϕ,ψ),

(Besicovitch) DBp(ϕ,ψ) := lim sup
T→∞

[
1

2T

∫ T

−T

dH(ϕ(t), ψ(t))p dt

] 1
p

,

where ϕ,ψ : IR → 2IR \ {∅} are measurable multifunctions with nonempty
bounded, closed values and dH(·, ·) stands for the Hausdorff metric.

Since every multifunction, say P : IR → 2IR\{∅}, is well-known (see e.g. [42],
[52]) to be measurable if and only if there exists a sequence {pn} of measurable
(single-valued) selections of P , i.e. pn ⊂ P ∀n ∈ IN, such that P can be Castaing-
like represented as follows

P (t) =
⋃

n∈IN

pn(t) ,

the standard (single-valued) measure-theoretic arguments make the distance
dH(ϕ,ψ) to become a single-valued measurable function.
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Therefore, replacing the metrics in definitions in Table 1 (cf. also Table 2)
by the related ones above, we have correct definitions of almost-periodic multi-
functions.

Definition 7.10. We say that a measurable multifunction ϕ : IR →
2IR \{∅} with nonempty, bounded, closed values is G-almost-periodic if G means
any of the respective classes defined in Table 1 (cf. also Table 2) with metrics
replaced by the above ones, i.e. those involving the Hausdorff metric.

Remark 7.11. Although Sp
ap-multifunctions with nonempty (convex) com-

pact values possess (single-valued) Sp
ap-selections (see [42], [52]), the same is not

true for C0
ap-multifunctions (see [40]). It is an open problem whether or not

W p
ap or Bp

ap-multifunctions possess the respective (single-valued) selections. For
equi-W p

ap-multifunctions, the problem was affirmatively answered quite recently
by L. I. Danilov [43].

Instead of defining further classes of a.p. functions (see the large list of
references), let us conclude with posing some further open problems.

Since, unfortunately, W p
ap �⇒ Bp, it is a question under which additional

assumptions, say A, we would have W p
ap

A⇒Bp, because then the following linear
sequence would take place: u.a.p. ⇔ u. normal ⇔ C0

ap ⇒ Sp ⇔ Sp − normal ⇔
Sp
ap ⇔ e − W p ⇒ e − W p − normal ⇔ e − W p

ap ⇔ W p ⇒ W p − normal ⇒
W p

ap
A⇒Bp ⇒ Bp − normal ⇒ Bp

ap.
For this is, in view of Theorem (5.20) and Remark (5.21), sufficient that the

given functions are Bp-bounded, Bp-continuous and one of conditions 4) or 4′)
or 4′′) in Theorem (5.20) and Remark (5.21) takes place.

Because of possible applications to differential equations or inclusions, it
would be also interesting to know what happens with the hierarchy in Table 2,
provided a.p. functions are additionally uniformly continuous.
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[80] A. S. Kovanko: Sur quelques généralisations des fonctions presque-périodiques,
C.R. Acad. Sci. Paris, 186 (1928), 729-730.

[81] A. S. Kovanko: Sur l’approximation des fonctions presque périodiques générali-
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