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Hierarchy of almost-periodic function spaces

J. ANDRES - A. M. BERSANI - R. F. GRANDE

ABSTRACT: The various types of definitions of almost-periodic functions are exam-
ined and compared in order to clarify the hierarchy of almost-periodic function spaces.
Apart from the standard definitions, we introduce also new classes and comment some
other, less traditional, definitions, to make a picture as much as possible complete.
Several new results concerning horizontal hierarchies are proved. Illustrating examples
and counter-examples are shown.

1 — Introduction

Ever since their introduction by H. Bohr in the mid-twenties, almost-periodic
(a.p.) functions have played a role in various branches of mathematics. Also, in
the course of time, various variants and extensions of Bohr’s concept have been
introduced, most notably by A. S. Besicovitch, V. V. Stepanov and H. Weyl.
Accordingly, there are a number of monographs and papers covering a wide
spectrum of notions of almost-periodicity and applications (see the large list of
references).

An extension of Bohr’s original (scalar) concept of a different kind are the
generalizations to vector-valued almost-periodic functions, starting with Boch-
ner’s work in the thirties. Here, too, are a number of monographs on the subject,
most notably by L. AMERIO and G. PROUSE [4] and by B. M. LEVITAN and
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V. V. Zuikov [100]. This vector-valued (Banach space valued) case is partic-
ularly important for applications to (the asymptotic behavior of solutions to)
differential equations and dynamical systems.

In recent years, this branch of the field has led to a kind of revival of the
almost-periodicity field. One of the basic breakthroughs in this context was
M. I. Kadets’ solution of the “integration problem” in 1969 (see [74]), showing
that the scalar result (the integral of a uniformly a.p. function is uniformly a.p.,
provided it is bounded) carries over to exactly the class of Banach spaces not
containing an isomorphic copy of ¢y, the scalar null sequences.

Starting from there, the more general question of which kind of (ordinary or
partial) “almost-periodic differential equations” (of various types) has almost-
periodic solutions (of the same or related type), has vividly been taken up, both
in the linear and in the nonlinear case. In the nonlinear case, positive results are
sparse, and hard to come by; mostly, because of the absence of the machinery of
spectral theory. In the linear case, though, there has been tremendous progress
within the past ten years, both in breadth and depth. A fairly complete account
of this development is to be found in parts B and C of a recent monograph by
W. ARENDT, C. BATTY, M. HIEBER and F. NEUBRANDER [10].

Hence, in the theory of almost-periodic (a.p.) functions, there are used
many various definitions, mostly related to the names of H. BOHR, S. BOCHNER,
V. V. StepaNov, H. WEYL and A. S. BestcovircH ([4], [16], [17], [22], [24],
[25], [26], [27], [31], [32], [33], [34], [35], [39], [41], [55], [67], [99], [100], [105],
[106], [107]).

On the other hand, it is sometimes difficult to recognize whether these
definitions are equivalent or if one follows from another. It is well-known that, for
example, the definitions of uniformly a.p. (u.a.p. or Bohr-type a.p.) functions,
done in terms of a relative density of the set of almost-periods (the Bohr-type
criterion), a compactness of the set of translates (the Bochner-type criterion,
sometimes called normality), the closure of the set of trigonometric polynomials
in the sup-norm metric, are equivalent (see, for example, [22], [41]).

The same is true for the Stepanov class of a.p. functions ([22], [35], [67],
[107]), but if we would like to make some analogy for, e.g., the Besicovitch class
of a.p. functions, the equivalence is no longer true.

For the Weyl class, the situation seems to be even more complicated, be-
cause in the standard (Bohr-type) definition, the Stepanov-type metric is used,
curiously, instead of the Weyl one.

Moreover, the space of the Weyl a.p. functions is well-known [35], unlike the
other classes, to be incomplete in the Weyl metric.

In [57], E. Feelner already pointed out these considerations, without arriving
at a clarification of the hierarchies.

Besides these definitions, there exists a lot of further characterizations, done,
e.g., by J.-P. BERTRANDIAS [20], R. Doss [48], [50], [51], A. S. KOVANKO [86],
[87], [88], [89], [91], [92], [93], B. M. LEVITAN [99], A. A. PANKOV [107], and the
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references therein], A. C. ZAANEN [135], which are, sometimes, difficult to com-
pare with more standard ones.

Therefore, our main aim is to clarify the hierarchy of such classes, in a
“horizontal”, as well as a “vertical”, way.

More precisely, we would like to fulfill at least the following table and to
indicate the related relationships.

a. periods normal approz.

Bohr Def. 2.2 Def. 2.6 Def. 2.8

Stepanov Def. 3.1 Def. 3.3 Def. 3.4

equi- Weyl Def. 4.1 Def. 4.2 Def. 4.3

Weyl Def. 4.4 Def. 4.5 Def. 4.6

Besicovitch Def. 5.16 Def. 5.17 Def. 5.5
Table 1

Furthermore, we would like to collect and comment all the equivalent defi-
nitions in the literature to those in Table 1.

This goal is stimulated by our interest to apply elsewhere these notions to
the theory of nonlinear a.p. oscillations (cf. [5], [6], [7], [8]). It occurs that the
most suitable definitions w.r.t. applications to differential equations are those
by means of almost-periods (the first column in Table 1). On the other hand,
the obtained implications in Table 2 in Section 6 allow us to assume a bit more,
when e.g. using the definitions by means of approximations (the third column
in Table 1), but to get a bit less in terms of almost-periods. Moreover, because
of the regularity of solutions, we can get in fact normal oscillations, even when
considering a.p. equations in terms of almost-periods. Thus, imposing some
additional restrictions on a.p. equations, and subsequently normal solutions, one
might come back to almost-periodic forced oscillations, defined by means of
approximations. We would like to follow this idea in one of our forthcoming
papers. The present classification can be regarded as the first step of this aim.
The next one should contain the integrals of a.p. functions from all given classes,
playing the fundamental role in representing solutions of linear a.p. equations.
The Bohr-Neugebauer type results (i.e. boundedness implies almost-periodicity)
for linear a.p. systems with constant coeflicients was recently investigated in this
frame by our PhD student L. Radova in [109]. The final desired step is to build
the theory of a.p. oscillations (for linear as well as nonlinear differential equations
and inclusions), just on the basis of the indicated implications. This is, however,
still a rather long way to go, and so we are not quoting here papers concerning
a.p. solutions of differential equations, apart from those, where new classes of
a.p. functions were introduced.
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The paper is organized appropriately to Table 1.

In Sections 2 and 3, uniformly and the Stepanov a.p. classes are defined and
compared.

In Sections 4 and 5, the same is done for the equi-Weyl, the Weyl and the
Besicovitch a.p. classes. Some new results concerning the horizontal hierarchies
are proved.

In Section 6, the most important properties, common to all the spaces, are
illustrated. The desired hierarchy is clarified, fulfilling the Table 1 and showing
several counter-examples, demonstrating non-equivalence.

All the theorems already presented in the literature are quoted with (some-
times only partial) references. The theorems without references are intended to
be (as far as the authors know) original.

Sometimes, we will not distinguish between a function f and the values f(z)
it assumes; it will be clear from the context whether we mean the functions or
their values. Furthermore, speaking about Weyl or Besicovitch metrics implicitly
means to deal with the related quotient spaces, because otherwise we should
rather speak about Weyl or Besicovitch pseudo-metrics.

Many further definitions of generalized spaces of almost periodic functions
are present in literature (see the large list of the references). Some of them will
be briefly introduced and discussed at the end of Sections 2-5 and in Section 7.

Finally, in Section 7, some concluding remarks and open problems will be
pointed out.

2 — Uniformly almost-periodicity definitions and horizontal hierarchies

The theory of a.p. functions was created by H. Bohr in the Twenties, but it
was restricted to the class of uniformly continuous functions.

Let us consider the space C°(IR;IR) of all continuous functions, defined on
IR and with the values in IR.

In this section, the definitions of almost-periodicity will be based on the
topology of uniform convergence.

DEFINITION 2.1. A set X C IR is said to be relatively dense (r.d.) if there
exists a number [ > 0 (called the inclusion interval), s.t. every interval [ a,a+1 ]
contains at least one point of X.

DEFINITION 2.2. (see, for example, [4, p. 3], [22, p. 2], [67, p. 170]) [Bohr-
type definition] A function f € C°(IR;IR) is said to be uniformly almost-periodic
(w.a.p.) if, for every € > 0, there corresponds a r.d. set {7}, s.t.

(2.1) jtelnp:){|f(x+7')ff(x)\ <e vre{r},.

Each number 7 € {7}_is called an e-uniformly almost-period (or a uniformly
e-translation number) of f.
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PROPOSITION 2.3([4, p. 5], [22, p. 2], [76, p. 155]) Every u.a.p. function is
uniformly continuous.

PROPOSITION 2.4([4, p. 5], [22, p. 2], [76, p. 155]) Every u.a.p. function is
uniformly bounded.

PROPOSITION 2.5([4, p. 6], [22, p. 3]) If a sequence of uw.a.p. functions f,
converges uniformly in R to a function f, then f is u.a.p., too.

In other words, the set of u.a.p. functions is closed w.r.t. the uniform con-
vergence. Since it is a closed subset of the Banach space Cj, := C° N L> (i.e. the
space of bounded continuous functions, endowed with the sup-norm), it is Ba-
nach, too.

Actually, it is easy to show that the space is a commutative Banach algebra,
w.r.t. the usual product of functions (see, for example, [113, pp. 186-188]).

DEFINITION 2.6. ([22, p. 10], [41, p. 14], [100, p. 4]) [normality or Bochner-
type definition] A function f € C°(IR;IR) is called uniformly normal if, for every
sequence {h;} of real numbers, there corresponds a subsequence {h,,} s.t. the
sequence of functions {f(z + hy,)} is uniformly convergent.

The numbers h; are called translation numbers and the functions f"i(z) :=
f(z + h;) are called translates.

In other words, f is uniformly normal if the set of translates is precompact
in Cy (see [4], [107]).

Let us recall that a metric space X is compact (precompact) if every sequence
{Zp}nen of elements belonging to X contains a convergent (fundamental) sub-
sequence.

Obviously, if X is a complete space, it is equivalent to say that X is pre-
compact, relatively compact (i.e. the closure is compact) or compact.

The necessary (and, in a complete metric space, also sufficient) condition
for the relative compactness, or an equivalent condition for the precompactness,
of a set X can be characterized by means of (see, for example, [78], [102]):

the total boundedness (Hausdorff theorem): for every e > 0 there exists a finite
number of points {xy }r=1,... n S.t.

XcC U (T, €) s
k=1

where (2y,€) denotes a spherical neighbourhood of x; with radius €; the set
{Zk}k=1,.. n is called an e-net for X.
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REMARK 2.7. Every trigonometric polynomial
P(x) = Z ape . (ap € R; A\ € R)
k=1

is u.a.p. Then, according to Proposition (2.5), every function f, obtained as the
limit of a uniformly convergent sequence of trigonometric polynomials, is u.a.p.

It is then natural to introduce the third definition:

DEFINITION 2.8. ([24, p. 224], [35, p. 36], [41, p. 9]) [approximation] We
call C9 (IR;IR) the (Banach) space obtained as the closure of the space P(IR;IR)
of all trigonometric polynomials in the space Cjp, endowed with the sup-norm.

REMARK 2.9. Definition (2.8) may be expressed in other words: a function f
belongs to C’gp(IR; R) if, for any € > 0, there exists a trigonometric polynomial
Te, s.t.

sup |f(x) = Te(z)| < €.
zeR

It is easy to show that Cf,, like C?, is invariant under translations, that is
Cgp contains, together with f, the functions fi(z) := f(x +1t) Vte R (see, for
example, [100, p. 4]).

The three main definitions, (2.2), (2.6) and (2.8), are shown to be equivalent:

THEOREM 2.10([4, p. 8], [22, pp. 11-12], [99, pp. 23-27], [100, p. 4], [107,
pp- 7-8]) [Bochner criterion] A continuous function f is u.a.p. iff it is uniformly
normal.

THEOREM 2.11([24, p. 226], [107, p. 9]) A continuous function [ is u.a.p.
iff it belongs to C,(R; IR).

REMARK 2.12. To show the equivalence among Definitions (2.2), (2.6)
and (2.8), in his book [41, pp. 15-23], C. Corduneanu follows another way that
will be very useful in the following sections: he shows that

28) = (26) = (22) = (2.8).

In order to satisfy the S. Bochner criterion, L. A. Lusternik has proved an
Ascoli-Arzela-type theorem, introducing the notion of equi-almost-periodicity.

THEOREM 2.13([41, p. 143], [100, p. 7], [102, pp. 72-74]) [Lusternik] The
necessary and sufficient condition for a family F of u.a.p. functions to be pre-
compact is that
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1) F is equi-continuous, i.e. for any € > 0, there exists d(¢) > 0 s.t.
[f(x1) — fx2)| <€ if  |xp — x| < d(e) VfeF;

2) F is equi-almost-periodic, i.e. for any e > 0 there exists l(¢) > 0 s.t., every
interval whose length is l(€), contains a common e-almost-period & for all
feF, ie.

lf(x4+& — flx)|<e VfeF; zeR;

3) for any x € R, the set of values f(x) of all the functions in F is precompact.
REMARK 2.14. As already seen, for numerical almost-periodic functions,
condition 3) in the Lusternik theorem coincides with the following:

3') for any x € IR, the set of values f(x) of all the functions in F is uniformly
bounded.

The u.a.p. functions, like the periodic ones, can be represented by their
Fourier series.

DEFINITION 2.15. For every function f, we will call as the mean value of f
the number

(22) wisl = Jim o [ o = f 1w

THEOREM 2.16([22, pp. 12-15], [35, p. 45], [100, pp. 22-23]) [Mean value
theorem| The mean value of every u.a.p. function f exists and

.1 " .10
a) M[f]= lim T/o f(x) de = lim T [T f(x) dzx

T—o00 T—o00
(2.3)
b) M[f] = lim 1 / f(z) da ; uniformly w.r.t. a € IR.
T—oo 2T a—T

REMARK 2.17. Every even function satisfies (2.3), while necessary condition
for an odd function to be u.a.p. is that M[f] = 0. Furthermore, since, for every
w.a.p. function f and for every real number ), the function f(z)e™"* is still a
u.a.p. function, the number

(2.4) a(X, f) = M[f(z)e”]
always exists.
THEOREM 2.18([22, p. 18], [100, pp. 23-24]) For every u.a.p. function f,

there always exists at most a countable infinite set of values \ (called the Bohr—
Fourier exponents or frequencies) for which a(X) # 0.
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The numbers a(\, f) are called the Bohr—Fourier coefficients and the set

U(f) = {)‘n | a()‘naf) # 0}

is called the spectrum of f.
The formal series Y., a(A,, f)e ™ is called the Bohr—Fourier series of f
and we write

(2.5) F@) ~ Y al, e

n

Let us now consider the connection between the Bohr—Fourier exponents and
the almost-periods. To this aim, we recall the so-called Kronecker theorem on
the diophantine approximation (see, for example, [4, pp. 30-38], [22, p. 35], [41,
pp. 146-150]).

LEMMA 2.19([41, pp. 146-147]) Let
+oo ‘
f@) ~ Y7 a(hy, fles”

k=1

be a u.a.p. function. For every e > 0, there correspond n € IN and § € IR,
0 < § <, s.t. any real number T which is a solution of the system of diophantine
(or congruencial) inequalities

[Ae7| < 6 (mod 27); k=1,...,n
is an e-almost-period for f(x).
THEOREM 2.20([4, pp. 31-33], [22, p. 35], [41, pp. 147-149]) [Kronecker
theorem] Let A, 0, (k = 1,...,n) be arbitrary real numbers. The system of
diophantine inequalities

[A\eT — 0k < 0 (mod 27); k=1,...,n

has solutions 7s € IR, for any § > 0, iff every relation
n
Z mA, = 0: myeN
k=1

mmplies

Z mify = 0 (mod 27) ; my € IN .
k=1
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LEMMA 2.21([41, p. 149]) Let

—+oo

f@) ~ > ali, e

k=1

be a u.a.p. function and A a real number which is rationally linearly independent
of the Bohr—Fourier exponents \. For every € > 0, there correspond a number
d€ R, 0<0< 5 andn € IN, s.t. there exists an e-almost-period T which
satisfies the system of inequalities

[AeT| < 6 (mod 27) ; AT —7| <§ (mod 27); k=1,...,n.

PROPOSITION 2.22([22, p. 18], [100, pp. 31-33]) [Bohr Fundamental theo-
rem| The Parseval equation

> laln, HIF = M{|f(2)]*}

1s true for every u.a.p. function.

PROPOSITION 2.23([22, p. 27], [100, p. 24]) [Uniqueness theorem] If two
u.a.p. functions have the same Fourier series, then they are identical.

In other words, two different elements belonging to C’gp cannot have the
same Bohr—Fourier series.

It is worthwhile to introduce a further definition of the u.a.p. functions,
which may be useful, by a heuristic way, to understand more deeply the structure
of the space Cp, (see [107, pp. 5-9]).

DEFINITION 2.24. The Bohr compactification, or the compact hull, of IR is
a pair (IRp,ip), where Rp is a compact group and ig : IR — Rp is a group
homomorphism, s.t. for any homomorphism ¢ : IR — T" into a compact group I'
there exists a unique homomorphism &5 : IRp - I's.t. ® = Ppoip.

The Bohr compactification of a given group is always uniquely determined
up to isomorphisms. Since IR is a locally compact abelian group, its Bohr com-
pactification can be constructed by means of the group IR" of the characters of
IR (that is, the group of all the homomorphisms x from IR into the circumference
T ={z€ C| |z| =1}), that can be written as

x(z) = e, zcR; €R.

Since the map & — €%” defines an isomorphism between IR and IR/, we can
identify IR" with IR.
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In other words, the Bohr compactification may be interpreted as an isomor-
phism between IR and a subgroup of the cartesian product (with the power of
continuum) of the circumference T if T\ =T VA € IR,

TC:H Ty

AER

endowed with an appropriate topology (for further information, see, e.g., [3], [9],
[11], [16], [17], [68], [69], [70], [75], [112], [132]).

THEOREM 2.25([107 , p. 7]) f € C3, iff there exists a function f e
C°(Rp ; R) s.t. ) .
[ = foip =ipf

(i.e. f can be extended to a continuous function on Rp).

REMARK 2.26. The extension f is unique and it satisfies

sup |f(z)] = sup |f(y)|.

zeR yERpB
Thus, we can establish an isometric isomorphism
ip : C°%Rp; R) ~ CY(R;R)

and every u.a.p. function can be identified with a continuous function defined on
IRp. This isometry allows us to deduce many properties of C’gp by means of the
properties of C° (see [52], [69], [107]).

The importance of the Bohr compactification will be more clear, when we
study the Besicovitch-like a.p. functions, in Section 5.

The possibility to generalize the notion of almost-periodicity in the frame-
work of continuous functions was studied by B. M. Levitan, who introduced the
notion of N-almost-periodicity (see [67], [99], [100]), in terms of a diophantine
approximation.

DEFINITION 2.27. A number 7 = 7(¢, N) is said to be an (e, N)-almost-
period of a function f € C°(IR,R) if, for every z s.t. |z| < N,

(2.6) lflz+7)— flz)] <e.

DEFINITION 2.28. A function f € C°(IR,IR) is said to be an N-almost-
periodic (N-a.p.) if we can find a countable set of real numbers {A,, },en, de-
pending on f and possessing the property that, for every choice of € and N, we
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can find two positive numbers n = n(e, N) and 6 = d(e, N) s.t. each real number
7, satisfying the system of inequalities

|ApT| <6 (mod 27); k=1,2,...,n,

is an (e, N)-almost-period of the function f, i.e. satisfies inequality (2.4).
Although every u.a.p. function is N-a.p., the converse is not true.

EXAMPLE 2.29. ([67, p. 185], [100, pp. 58-59]) Given the function

p(z) = 2+ cos 4 cos(V2z) |

we have in]%p(x) = 0; then the function ¢(z) = ﬁ is unbounded, and conse-
e

quently it is not u.a.p. On the other hand, the function ¢ is N-a.p.

Although this class of functions preserves many properties of the u.a.p. func-
tions, many other properties do not hold anymore. For example, the mean
value (2.2), in general, does not exist, even for bounded functions. Further-
more, we can associate, to every N-a.p. function, different Fourier series (see
[99, pp. 150-153], [100, p. 62]). Nevertheless, this space is very useful to obtain
generalizations of classical results in the theory of ordinary differential equations
with almost-periodic coefficients (see [99]).

In [29], [130] (for a more recent reference, see also [106]), a further class of
almost-periodic functions, called almost-automorphic, was introduced. It can be
shown that this class is a subset of the space of N-almost-periodic functions.
This class was furtherly generalized in [36], [110], where it is shown that this
more general space of almost-automorphic functions coincides with the class of
N-almost-periodic functions.

The theory of u.a.p. functions can be generalized to spaces of functions
defined in IR™ or, more generally, on groups (see, for example, [3], [16], [17], [30],
[60], [101], [112], [131], [132]), and with the values in IR", in C or, more generally,
in a metric, in a Banach or in a Hilbert space (see, for example, [4], [28], [41],
[100], [107]).

These generalizations can be very useful to introduce and to study the
Stepanov-like a.p. functions, described in the next section, based on the ne-
cessity to generalize the notion of almost-periodicity to discontinuous functions
which must be, in any case, locally integrable.

One of the most important goals of this first generalization to discontinuous
functions, as much as of the other spaces studied in the next sections, is to find
a Parseval-like relation for the coefficients of the Bohr—Fourier series related to
the functions belonging to these spaces and, consequently, to find approximation
theorems for these spaces, which generalize Theorem (2.1).
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3 — Stepanov almost-periodicity definitions and horizontal hierarchies

Since all the various extensions of the definition of a.p. functions will involve
also discontinuous functions, by means of integrals on bounded intervals, it is
natural to work with locally integrable functions, i.e. f € L (IR;IR).

loc
First of all, let us introduce the following Stepanov norms and distances:

x4+ L P
L[ sor dt} ;

1 xz+L
(32) Dy (F. 9) =l f—gllgy = sup lz [ g a
z€R T

1) [ fls = sup
zeR

1
P

Since L is a fixed positive number, we might expect infinite Stepanov norms; but
it can be trivially shown that, for every Li, Lo € IR, there exist k1,ks € IR
S.t.

Bl fllsy, < 0F sy < Rl £ llgy.

i.e. all the Stepanov norms are equivalent.
Due to this equivalence, we can replace in formula (3.1) L by an arbitrary
positive number. In particular, we can consider the norm, where L = 1.

DEFINITION 3.1. ([4, pp. 76-77], [22, p. 77], [41, p. 156], [67, p. 189], [99,
p. 200], [100, p. 33]) [Bohr-type definition] A function f € L} (IR;IR) is said
to be almost-periodic in the sense of Stepanov (S%)) if, for every ¢ > 0, there

corresponds a r.d. set {7}, s.t.

x+1 %
(3.3) sup {/ lft+7)—fOPdt] <e; Vred{r}e.

zeR

Each number 7 € {7}, is called an e-Stepanov almost-period (or Stepanov
e-translation number of f).

Originally, V. V. STEPANOV [114], [115] called the spaces S}, and S2,
respectively “the class of almost-periodic functions of the second and the third
type”. N. WIENER [134] called the space Sgp “the space of pseudoperiodic
functions”. P. FRANKLIN [66] called the spaces S;p and Sgp respectively apS
(almost-periodic summable functions) and apSsq (almost-periodic functions with
a summable square).

The space S,, will be shortly indicated as S,,.
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THEOREM 3.2([67, p. 189], [99, Th. 5.2.3., p. 201]) Every S%,-function is

a) SP-bounded
and
b) SP-uniformly continuous, i.e.

Ve>0 36=0d(e) s.t. if [h| <9, then Dg,|[f(z+h), f(z)]<e.

DEFINITION 3.3. ([67, p. 189], [87], [129]) [SP-normality] A function f €
LP (R;IR) is said SP-normal if the family of functions {f(z + h)} (h is an
arbitrary real number) is SP-precompact, i.e. if for each sequence f(z+hy), f(z+
hs), ..., we can choose an SP-convergent sequence.

Let us define the Banach space

BSP = {f € LiyeR;R) | || f [lgp< +o0} .

loc

DEFINITION 3.4. ([24, p. 224], [35, p. 36]) [approximation] We will call
SP(IR ; IR) the space obtained as the closure in BS? of the space P(IR ; IR) of
all trigonometric polynomials w.r.t. the norm (3.1).

We have, by virtue of Theorem (3.2) and by Definition (3.4), S5, C BSP, SP C
BSP.

Using the appropriate implications (see [35, Th. 1, p. 47], [67, Th. 7, p. 190
and Th. 4, p. 191] or, analogously, [22, pp. 88-91], [107, pp. 26-27]), we can show
the main

THEOREM 3.5. The three spaces, defined by the definitions (3.1), (3.3),
(3.4), are equivalent.

THEOREM 3.€[35, pp. 51-53], [67, Th. 6, p. 189])  The spaces SE, are com-
plete w.r.t. the norm (3.1).

An important contribution to the study of the equivalence of the different
definitions for the spaces of the Stepanov, the (equi-)Weyl and the Besicovitch
type, came from A. S. Kovanko. Unfortunately, many of his papers (written in
Russian or in Ukrainian) were published in rather obscure journals; furthermore,
many of his results were written without any proof. It is however useful to quote
these results, in order to clarify the several hierarchies. Since the notion of
normality is related to precompactness, A. S. Kovanko ([86], [87]) studied
the necessary and sufficient conditions to guarantee the precompactness of some
subclasses of the spaces S?,, by means of a Lusternik-type theorem, introducing
the notion of SP-equi-almost-periodicity.
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DEFINITION 3.7. Let E € IR be a measurable set and, for every closed
interval [a, b], let E(a,b) := E N [a,b]. Given two measurable functions f,g, let
us define, for every a > 0,

Ea = {117 cIR s.t. ‘f(IE) — g(x)| > CL} :

FE(a,b
(34) 5[a,b] (E) = %
95(E) = sup w ,

(density of E w.r.t. [a,b]) ;

(where u(X) represents the usual Lebesgue measure of a set X);

E . l _ P ’ .
(3.5) Dgp[f,9] = sup [L /E(I’HL) 1f(@) —g@)" dt|
(3.6) Ds[f.g):= | _inf la+0§(Ea)]

x+L
Fol) =1 / £(t) dt

THEOREM 3.§]86], [87]) The necessary and sufficient condition for a family
F of Sh,-functions to be SP-precompact for every value L is that, for every
e>0,L>0,

1) there exists 0 = o(e, L) > 0 s.t.

Dg,z[f,()] <e if SLPB)<o, VfeF;
2) there exists p = p(e, L) s.t.

Dsz[f,ﬁ]<e YO<h<p, VfeF,

3) there exists a r.d. set of SP-almost-periods {(e, L)}, common to all the
elements of F, i.e.

DSi[fT7f]<€7 VfE-F
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REMARK 3.9. In Theorem (3.8), conditions 2) and 3) can be respectively
replaced by the conditions:

2} for every € > 0, L > 0, there exists 6 = d(e, L), s.t.

DSlf" fl<e ¥V 0<h<d, VfeF;

3’) there exists a r.d. set (w.r.t. the distance (3.6)) of almost-periods {7 (¢, L)},
common to every f € F, s.t.

DE[fT, fl<e VfeF.

REMARK 3.10. Since the spaces S%, are subspaces of Lj (IR;IR), they
must be regarded as quotient spaces, where each element is an equivalence class
w.r.t. the relation

[~g < Dgr[f,g]=0.

Consequently, two different functions belong to the same class iff they differ from
each other by a function with SP-norm equal to 0. This fact occurs when the
two functions differ only on a set of the zero Lebesgue measure.

The theory of the S? -spaces can be included in the theory of Cy -spaces
with the values in a Banach space (see [4, pp. 7, 76-78], [7], [41, p. 137], [100,
pp. 33-34], [107, pp. 24-28]), by means of the so-called Bochner transform, that
will be briefly recalled here.

The Bochner-transform

fola)y=fl@+n) ., nel0l1, zeR,

associates, to each z € IR, a function defined on [0, 1].
Thus, if f € LP (IR;R), then f* € LY (R, L?([0,1])).
Consequently,

BSP ={fe Ll (R;R) | f* € L=(R, LP([0,1]))} ,

loc

because || f||%, = || f*||:

1
3

1
17 e = esssup | £ ooy = esssup | [ 1@ anl
x€R R 0

S

Moreover, since for every f € LY (IR;IR), f* € C°(IR, LP([0,1])), then

loc

BS? ={fe Ll (R;R) | f* € Cy(R, L([0,1]))} ,

loc

where (% denotes the space of bounded continuous functions.
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S. Bochner has shown (see [4, pp. 76-78]) that

St ={fell (R;R)| f°eCR,L\(0,1])}.

loc
REMARK 3.11. Since

|| f ||1§p = || fb ”Cb(]R,LP([O,l])) )

we have

fo—= finSP = P fPinCY(R, LP([0,1])) .

The possibility to relate the spaces S, to the space Cp, (IR, L*([0,1])) en-
ables us to explain the similarity of the results obtained for S%, and C’gp, in
particular, for the equivalence of the three definitions of almost-periodicity.

In [66], [114] and [115], a very wide generalization of the spaces S%, to

measurable functions is shown.

DEFINITION 3.12. A measurable function is said measurable almost-periodic
(M,p) if, for every e > 0, there exists a r.d. set {7} s.t., for a fixed number d,

[fx+7) = flz)] < e

for every = except a set whose Lebesgue exterior measure in every interval of
length d is less than de, or whose density on every interval of length d is less
than e.

Originally, V. V. STEPANOV [114], [115] called this space “class of almost
periodic of the first type”.

Asremarked by V. V. STEPANOV [115] and P. FRANKLIN [66], the definition
remains essentially unchanged if d is not fixed, but may be arbitrary; in this case
the length L, related to the definition of relative density, depends on both d
and e.

THEOREM 3.13][66], [115]) For every ¢ > 0, any function [ € My, is
bounded except a set of density less than € in every interval of length d.

The space Mg, can be also defined by means of an approximation theorem.

THEOREM 3.14([66]) A measurable function f belongs to M,y iff there
exists a sequence of trigonometric polynomials { P.} s.t., for every e > 0, |f(z)—

P.(x)| < e, for every x except a set of density less than € in every interval of
length d.
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It is important to underline that, while changing values of every u.a.p. func-
tion in every non-empty bounded set gives a function which cannot be u.a.p.,
for the functions belonging to S%, or to M,, an analogous property holds if we
modify a function in a set with a nonzero Lebesgue measure.

On the other hand, V. V. STEPANOV [115] has shown that, since the fol-
lowing inclusions hold (see Formula (6.4))

(3.7) Cy, C S c S C S, C My Vpr>po > 1,

if a function belonging to one of the last four spaces in the sequence (3.7) is
respectively uniformly continuous, pi-integrable, po-integrable, uniformly inte-
grable, then it belongs to the space of the corresponding earlier type.

Let us recall that (see, for example, [81], [115]) a measurable function f is
said to be uniformly integrable if, for every € > 0 and d > 0, there corresponds
a number 7 > 0 s.t.

| l@iae < .

for every set E s.t. pu(E) < n and diam(E) < d.

The difficulty related to the space My, consists in the definition of frequen-
cies. In fact, if a measurable function is not integrable, then the quantities (2.4)
need not exist, in general. The problem can be overcome by considering a se-
quence of cut-off functions

f@),  for [f(@) <n
gn(z) = nM, for |f(x)] >n .

/()]

In fact, the functions g, are uniformly integrable, and consequently S}, (see [115]).
So, by virtue of Theorem (6.5), we have a countable set of frequencies, given
by the union of all the frequencies a(A,g,) of the functions g,. Rejecting all
the frequencies s.t. lim,a(X, g,) = 0, this set can be interpreted as the
spectrum of the measurable function f, even if the limit of some sequence of
frequencies is not finite or does not exist at all. It can be shown [66] that the
spectrum of f does not depend on the choice of the sequence of cut-off functions
(instead of a,, = {n}, we could consider another increasing sequence ay, = {ns},
s.t. limg_ 1 oong = +00 and s.t. there exists K > 0, for which ngy1 —ng < K).

Let us remark that, when we restrict ourselves to uniformly integrable func-
tions, this definition of the spectrum coincides with the classical one for the
Sg,-functions (see [66]).
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4 — Weyl and equi-Weyl almost-periodicity definitions and horizontal
hierarchies

Although the three definitions of the Cf, and S -spaces are related to the
same norms (respectively, the sup-norm and (3.1)), the classical definitions of
Weyl spaces are using two different norms: (3.1) and the Weyl norm

1 z+L 3
—_ ] _ p — .
41 I fllwe = lim sup [L /x [f(®)] dt] Jim | f sy

X zeR

induced by the distance

=

1 xz+L
(42) Dws(f.g) = lim_sup lz [ 1w - ger dt] = Jim Dy [f.q)

L—o0 zcR

It can be easily shown that these limits always exist (see [22, pp. 72-73], [99,
pp. 221-222]).

In order to clarify the reason of the usage of two different norms, let us
introduce in a “naive” way six definitions.

DEFINITION 4.1. ([8], [22, p. 77], [24, pp. 226-227], [67, p. 190], [99, p. 200])
[Bohr-type definition] A function f € LP (IR;IR) is said to be equi-almost-
periodic in the sense of Weyl (e — Wé’p) if, for every € > 0, there correspond

ar.d. set {7}, and a number Ly = Ly(e) s.t.

1 x+L %
(4.3) sup [—/ [ft+71) = f@O))P dt| <e; Vre{r}te; VL > Ly(e).
z€R L x

Each number 7 € {7}, is called an e-equi- Weyl almost-period (or equi- Weyl
e-translation number of f).

DEFINITION 4.2. [equi-WWP-normality] A function f € Li, (IR;IR) is said to
be equi-WP-normal if the family of functions {f*} (h is an arbitrary real number)
is S7-precompact for sufficiently large L, i.e. if, for each sequence fh e

we can choose an S?-fundamental subsequence, for a sufficiently large L.

DEFINITION 4.3. [approximation] We will denote by equi-WP(IR ; IR) the
space obtained as the closure in BS? of the space P(IR ; IR) of all trigonometric
polynomials w.r.t. the norm (3.1) for sufficiently large L, i.e. for every f € e— WP
and for every e > 0 there exist Ly = Lg(e) and a trigonometric polynomial T,
s.t.

Dy [f, T < e YV L > Lo(e) .
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DEFINITION 4.4. ([8], [88]) [Bohr-type definition] A function fe L? (IR;IR)
is said to be almost-periodic in the sense of Weyl (WE)) if, for every e > 0, there
corresponds a r.d. set {7}, s.t.

P

1 x+L
(4.4) lim sup [z / lfE+7)— fO))P dt| <e; Vr e {7} .

L—oo zcR

Each number 7 € {7}, is called an e-Weyl almost-period (or a Weyl e-
translation number of f).

DEFINITION 4.5. [WP-normality] A function f € L{ (IR;IR) is said to
be WP-normal if the family of functions {f"} (h is arbitrary real number) is
WP-precompact, i.e. if for each sequence f"',f"2 ... we can choose a WP-

fundamental subsequence.

Analogously to the Stepanov spaces, we can introduce the space

BWP = {fell (RyR) st. | fl|lwe < 400} .

loc

DEFINITION 4.6. (][22, pp. 74-75], [24, p. 225], [35, pp. 35-36]) [approxima-
tion] We denote by WP(IR ; IR) the space obtained as the closure in BW? of the
space P(IR ; IR) of all trigonometric polynomials w.r.t. the norm (4.1).

The spaces e — W, and W, will be shortly indicated as e — W,,, and W,,,,.

Definition (4.4) has been used in [8], but, as already pointed out by the
authors, it was introduced by A. S. Kovanko in the paper without proofs [88].

Due to the equivalence of all the S7-norms, to find a number L; s.t., by
means of Definition (4.3), a sequence of polynomials converges in the norm Sil
implies that the sequence converges in every S7-norm; it follows that the spaces
given by Definition (4.3) coincide with the spaces S%,,.

On the other hand, the following theorem holds.

THEOREM 4.7]22, pp. 82-83], [35, Th. 2, p. 48]) A function f € WP satis-
fies Definition (4.1).

Consequently, we cannot expect the equivalence of the definitions for each
type of spaces. As shown in [8], the space defined by means of Definition (4.1)
is an intermediate space between S, and W, and the inclusion is strict (see [8,
Example 1]).

THEOREM 4.§]22, p. 83], [24, pp. 232-233], [67, p. 190], [99, pp. 222-223]) A
Junction f € e — W[, belongs to BWP.
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REMARK 4.9. It can be easily shown (see [35, p. 37]) that the sets BSP
and BWP coincide, but the different norms imply a big difference between the
two spaces. In fact, although BSP is complete w.r.t. the Stepanov norm (see
[35, pp. 51-53]), the space BW?P is incomplete w.r.t. the Weyl norm (see [35,
pp. 58-61]).

On the other hand, since the set of SP-bounded functions coincides with the
set of WP-bounded functions, every e — WZ -function is also e — WP-bounded
and SP-bounded.

THEOREM 4.1([22, p. 84], [24, pp. 233-234], [67, p. 190], [99, pp. 223-
224]) A function f € e — WP, is equi-WP-uniformly continuous, i.e. for any
€ > 0 there exist two positive numbers Lo = Lo(e) and 6 = 6(€) s.t., if |h| < 0,
then

Dgr {f".f} <€ , VL= Lo(e) .

THEOREM 4.11([67, p. 191]) For every function f € e — WE, and every
€ >0, we can find a trigonometric polynomial P., satisfying the inequality

Dy »(f,P) < €.

The meaning of the last theorem is that Definition (4.1) = Definition (4.6).

Consequently, by Theorems (4.7) and (4.11), we have shown that Defini-
tion (4.1) is equivalent to Definition (4.6). The same result has been obtained
in [22, pp. 82-91], [24, pp. 231-241], [66].

THEOREM 4.12. The space of e — WP-normal functions is equivalent to
e— WPk,

PRrROOF. The proof is based partly on [8], [99] and [123].

SUFFICIENCY: fix € > 0. Since {f" s.t. h € IR} is e — WP-precompact, there
exists Lo = Lo(e) s.t.

VL > Lo(e) , YVhelR Jj=1,...,n st

(49 D I

Thus, the numbers 7 = h — h; are S? — e-almost periods. Take

(4.6) k= max |hj]

and let a € R be arbitrary. If h = a + k and h; satisfy (4.5), we obtain, due
o (4.6), that h — h; € [a,a + 2k]. Thus, each interval of length 2k contains an
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e — WP —e-almost period of f and the number 2k is a constant of relative density
to the set

{T st. T=h—h;, he R, j=1,....n; Dgf" " < e} ,

which is consequently r.d.

NECESSITY: assume that f is an e — W[, function and fix € > 0. By virtue
of Theorem (4.10), the function is e — WP-uniformly continuous, i.e.

(47)  3Lo=Lo(e) st VL > Lo 30> 0st.Y [w| <6 Dgy [f,f*] < % .
Let k be a constant of relative density to the set {7 s.t.Dgo [f, f7] < 5}, (i,
Ll
for every interval I of length k there exist 7 € I and Ly > 0s.t. Do [f, f7] < §,
L

for every L > L;). To these numbers k and § we associate a positive integer n
s.t.
(4.8) nd < k < (n+1)5

andput h; =j-6 (j=1,...,n). For any h € IR, in the interval [—h, —h + k] of
length k& we find some Szl — 5-almost period 7, s.t.

(49) DS? [fva] < ; VL > Ll .

|

Futhermore, we choose h and 7 in such a way that
(4.10) [h+7—hj] <3¢

(this is possible because of (4.8) and the fact that 7 € [—h,—h + k]). Take
Ly = max{Lo,L1}. By means of (4.7), (4.9) and (4.10), we write, for every
L > L2a

DSZ [fh,fhj] < DSZ [fh7fh+7—] + DSZ [f}L+T,fhj] _

=Dgp 4] + Dy [F7770. 1] < 5+

NN e
DN

This shows that {f" ; j =1,... ,n} is a finite e-net to {f* ; h € R}, w.r.t. the
equi-Weyl metric. O
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Due to the fact that the spaces ng and S%, are complete, it is possible to
state the Bochner criterion in terms of compactness instead of pre-compactness
(see [35, pp. 51-53], [99, pp. 23-27, 199-200, 216-220], [137, pp. 10-11, 38]).
Surprisingly, the spaces BWP and WP are not complete w.r.t. the Weyl norm
(see [8], [35, pp. 58-61], [88], [99, pp. 242-247]).

As for the Stepanov spaces, A. S. KOvANKO ([88], [91], [92]) studied the
necessary and sufficient conditions to guarantee the compactness of some sub-
classes of the spaces e — W, and WP, by means of a Lusternik-type theorem.

In order to find necessary and sufficient conditions for an e — W[, function
to be e — WP-normal, let us introduce another definition.

DEFINITION 4.13. ([91], [92]) A sequence of WP-bounded functions { f,,} is
called

1) e — WP-uniformly fundamental if, for every e > 0, there exists Lo(e) s.t.

lim sup DSQ [frns fn] <€ VL > Lo ;

m,n— 00

2) e — WP-uniformly convergent if there exists a function f € BWP s.t., for
every € > 0, there exists Lo(e) s.t.

lim sup DSZ [fs fn] <€ VL > Ly .

n—r00

THEOREM 4.14([91]) A sequence of functions belonging to BW?P is e—WP-
uniformly fundamental iff it is e — WP-uniformly convergent. It means that the
space BWP | endowed with the norm of e — WP -uniform convergence, is complete.

THEOREM 4.15([92]) A set M of e — WP functions is compact, w.r.t. the
e — WP-uniformly convergence, if for every e > 0,

i) o >0, T1 >0 s.t.

Dgg[f,0]<e if  dL(E)<o , VI>T, ; VfeM;
ii) (e — WP-equi-continuity) 3n >0, Tp > 0 s.t.

DS;[fh,f] <e if Jhl<n ; VI >Ty, ; VfeM;

ili) (e—WP-equi-almost-periodicity) 3 T5 > 0 and a r.d. set {7c} of real numbers

s.t.
DS;[fT,f]<6 if re{r}; VI'>T3;VfeM,
where Dy, , DE, and 6% (E) are respectively given by (3.2), (3.4), (3.1).
T T

THEOREM 4.1([92]) The necessary and sufficient condition in order to
have f € e — WL is that the set of all the translates {f7} be relatively compact
in the sense of e — WP-uniform convergence.
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To show the second theorem about normality, we need some introductory
definitions, too.

DEFINITION 4.17. Given a Lebesgue-measurable set £ C IR, let E(a,b) :=
E N (a,b), for every interval (a,b), and |FE(a,b)| its Lebesgue measure. Let us
denote

sup
T—00

|[E(a—T,a+T)|
a€R 2T

DEFINITION 4.18. For every f,¢ € L? (IR;IR), let us introduce the distance

loc

P

D (f,0) = Jim sup
a

2T /E(a—T,a+T)

|f—olP dm]

This distance, when E = IR, coincides with the Weyl distance Dy, (f, ¢).
In order to avoid any confusion about the concept of compactness, A. S. Ko-
vanko introduced the so-called ideal limits of every Cauchy sequence of W, func-
tions. The distance between two ideal limits f and ¢ is defined in the following
way:
DWP[f7g] = lim DWP[fm,gn] ’

m,n—4oo

where the sequences { f, }, {gn} are two Cauchy sequences whose ideal limits are
respectively f and g.
We are now ready to state the following Lusternik-type theorem:

THEOREM 4.19([88]) The necessary and sufficient condition for the relative
compactness in the Weyl norm of a class M of functions f € WL, is that, for
every € > 0,

i) there exists a number o > 0 s.t. D&, (f,0) < e if dw(E) < o, for every
function f € M ;

it) (WP-equi-continuity) there exists a number n > 0 s.t.
Dy f" fl <e if |pl<n,

for every function f e M ;
ili) (WP-equi-almost-periodicity) there exists a r.d. set of almost-periods {7.}
s.1.

Dy {7, f} <e
for every function f € M .
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REMARK 4.20. In both Theorems (4.15) and (4.19), conditions ii) and
iii) are the integral versions of the corresponding hypotheses in the Lusternik
theorem for C’((L)p—functions; on the other hand, in the original Lusternik theorem
the first condition is related to the Ascoli-Arzela theorem; in Theorems (4.15)
and (4.19) it is substituted by a condition that recalls the LP-version of the
Ascoli-Arzela theorem, given by M. Riesz, M. Fréchet and A. N. Kolmogorov
(see, for example, [37, Theorem IV.25 and Corollary IV.26, pp. 72-74]).

THEOREM 4.21([88]) The spaces of WP-normal functions in the sense of
Kovanko and W, are equivalent.

If we weaken the hypothesis on compactness and ask only the pre-com-
pactness for the set of translates {f"}, we need an auxiliary condition:

HypotHESIS ([8]). Let f € Li,.(R,IR), with Dw=»(f) < +00, be uniformly
continuous in the mean, i.e.

1 l
v§>o 35>0 V|h|<5:7/ IF () — f(t)] dt <
0

€
3 ’

uniformly w.r.t. I € (0, +00).

THEOREM 4.22([8]) If a WP, function satisfies the Hypothesis, then it is
WP-uniformly continuous, i.e. for any € > 0 there exists § = §(e) s.t., if |h| < 0,
then

(4.11) Dy {f" f} <e.

THEOREM 4.23([8]) Let f € L} (IR,IR) be a WP-function satisfying the

loc

Hypothesis. Then f € W&, iff it is WP-normal.
COROLLARY 4.24. Every WP-normal function is W[,.

Following analogous proofs to u.a.p. functions (see [22, pp. 11-12] or [41,
p. 16, Theorem 10]), it is possible to show the following

THEOREM 4.25. Every WP-function is WP-normal.
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PROOF. Let us consider an arbitrary WP-function f and a sequence of
trigonometric polynomials {7}, }, WP- converging to f. Let us take a sequence of
real numbers {h, } and a subsequence {h1,} s.t. {T1(z+hi,)} is WP-convergent.
Then, we can extract from {hi,} a subsequence {hay} s.t. {T2(z + hap)} is WP-
convergent, too, and so on. In this way, we construct a subsequence {h,,}, for
every r € IN s.t. {T,(z + hyp)} is WP-convergent, for every ¢ < r. Let us take
the subsequence {h,,}, which is a subsequence of every sequence {hy,}, with
the exception of at most a finite number of terms. Consequently, the sequence
{T,(xz + hyp)} is WP-convergent, for every n € IN. Given € > 0, let n € IN be
sufficiently large so that

(4.12) Dy lf, T <

Wl

There exists N(e) > 0 s.t.

Dyy» [f(m + hrr)a f(x + hqq)] <Dy» [f(x + hpr ), T (2 + hrr)]+
(4.13) +Dyyo [T0(x + R ), To (@ + hgg)] + Dyyo [T (T + hgq), f(x + hgg)] <€
Vg,r > N(e) .

Thus, the sequence {f(x+ h,..)} is WP-fundamental, and consequently the func-
tion f is WP-normal. 0

REMARK 4.26. The analogy of Theorem (4.25) for e — W? spaces is guar-
anteed by the fact that

a) the spaces e — WP coincide with the spaces S?;
b) the spaces SP coincide with the spaces SP-normal (see Theorem (3.5));

c) the spaces SP-normal are included in the spaces e — WP-normal (see For-
mula (6.4)).

The converse of Corollary (4.24) or Theorem (4.25) is, in general, not true.
EXAMPLE 4.27. (cf. [127, pp. 20-21]) (Example of an equi-W!-normal func-
tion which is not an equi-W'-function) Let us consider the function, defined
on IR,
1, for0<x< !
, for r< =
{1 o<
0, -elsewhere .

For every L,7 € IR, L > 1, we have

z+L
[ e -swla < 1
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Fig. 1

Thus,

S

1 x+L
(110 Ds 1) = swp {— / f(t+7)—f(t)|dt} <

ze€R L
For every € > 0, there exists L > 1, s.t.
Ds, [f7,f] < e vVrelR.

Consequently, the function belongs to e — W,,.

From Theorem (4.12), we conclude that the function is e — WW-normal.

On the other hand, there always exists z € IR such that, for every 7 > ¢,
where 0 < € < 1, we have (L = 1)

r+1
/ [fit+7)— f(t)] dt > €.

Therefore, if € < 3, then (L = 1)
Dgs, [f7,f] > € VT > €.

Fort>L — %, we get even

T 1
DSL[f 7f] 2 ﬁ

So, the function is not S,,. Since the sets S,;, and e — W1 coincide, we have the
claim.
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ExXAMPLE 4.28. (Example of a W, -function which is not a W'-normal
function) The example is partly based on [127, pp. 42-47].
Let us consider the function

0, if x € (—00,0] ;
n
-, ifren—2n—-1, n=2,4,6... ;
-5 ( |

—\/g, ifren—1;n], n=246...

Fig. 2

Let us show that this function is a Wyp-function. To this aim, let us consider
the set {x +2k , k € Z} and let us show that

Dwlf*,fl=0 VkeZ.
If k£ = 0, the proof is trivial. Furthermore, if £ < 0, K = —m, then
DW[kaaf] = DW[fvf_Qk] = DW[mevf] .

It will be then sufficient to study the case k > 0. Since we will consider the limit
for L — 400, let us take L > 2k. There exists an integer ¢ such that

(4.15) 2% <2 <L<20i+1).

Let us compute

zeR

x+L
(1.16) DSL[f%,f]Sup{i / f(t+2k)f(t)ldt}-
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Since, in the interval (—oo, —2i), we have |f(z + 2k) — f(x)| = 0; in the interval
(=2i,0), the function |f(z + 2k) — f(x)| is increasing; in the interval (0, 4o00),
the function | f(z + 2k) — f(z)| is decreasing, the maximum value for the integral
in (4.14) is obtained in an interval including 0. Considering (4.15), we can write

x+L
Ds, [, f] = sup {%/ |f(8+2k) = f(2) dt}

zeR
1 2(i+1) 1 0
<5 [F(E+28) = f(0)ldt = o [F(t+2k) = F(D)]dt+
v o) 23i11) tJ—2(i+1)
1 2(i+1) 1+1

top ) 2R - f@)lde= Zxﬁ Z[W’”‘Vﬂ:

:’Zf+ iMTk 7l Zf f\f

By virtue of the Cauchy integral criterion for positive series, or by induction, it
can be shown that

1
— Vie N .
27
Consequently,
k
1 2k\/i+ 1
Dl g < |2 Y 7|+ BV
j=1

Passing to the limit for L — 400, we obtain

W[f2k7f]: L1—1>I—ir-loo DSL[kaﬂf] <

< lim

L—+oo

k -
% Z \/}+2k\/2+1 _ 9.
=

Then the set {2k;k € Z} represents, for every € > 0, a set of W1 — e-almost-
periods for the function f, which is, consequently, W '-almost- peI’lOdlC In Ex-
ample (5.37), it will be shown that this function is not B'-normal. Furthermore,
in Section 6 we will show that the space of W!-normal functions is included in
the space of B'-normal functions. Consequently, this function is not W!'-normal.

Let us observe that this function does not satisfy both the conditions of the
Hypothesis. In fact,

1 x+L 1 L
s, = s ¢ [ 1@l > £ [ Is@)ae
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For every L, there exists k > 0 s.t. 2k < L < 2k + 1. Then

1flse > =2 /k Fld = Qi N R —
So= ok+1 T+l |4 T = 3@+ )"

where the last inequality is obtained by virtue of the Cauchy integral criterion of
convergence. Consequently, letting L — 400, we obtain that the function is un-
bounded in the W'-norm. Furthermore, the function is not uniformly continuous
in the mean. In fact,

1 L
_ — >
A RGUEN O s
k 2j—1 2j
« zU 2\/3dt+/ Ix/—j+1+\/§|dt] _
j=1 W2j-1-h 2j—=h

k
h h
— B+ VEFI+Y 45 >ﬁ[3+\/1@+1+§(/¢%—1)}> Wk,

ok

Wl =~

Jj=2

where we have again used the Cauchy integral criterion.
The nonuniformity follows immediately. Furthermore, the function is not
W-continuous, since

4
17"~ fllse = sup |5
reR
and

" = fllwr > lim sup Eh\/ﬂ = +00.

li
k—+oco recR
The previous example shows that Theorems (4.8) and (4.10) cannot be extended
to W& -functions because, in general, a W2 -function is neither BW? nor wi-
continuous.

EXAMPLE 4.29. ([8], [127, p. 48]) (Example of a W!-normal function which
is not a Wl-function) In [8], the Heaviside step function

0, ifz <0
H(z) = .

1, ifxz>0
is shown to be W,,, but not e — W, that is, by virtue of Theorems (4.7)
and (4.11), not W1. In fact, a relative density of the set {r / Dg,(f, f7) < €},
for some [, requires arbitrary large values of 7’s in this set (we can extract some
sequences of 7, — oo with n — o0). If we demand that [ is (perhaps large



150 J. ANDRES — A. M. BERSANI - R. F. GRANDE [30]

but) constant for all 7’s (we fix €), then for most of them we get 7 > [ and
subsequently Dg, (f7, f) = % Il =1= const. So, Dg,(f7, f) < € is impossible
(for all 7’s, simultaneously), by which f is not e — W,,. On the other hand, we
have Dy (f7, f) = limy_,o0} -7 = 0 (we can assume that T < I, since | — 00), by
which f is We,. Therefore, e — W,, C W,

Furthermore, J. Stryja [127, p. 48] has shown that the function is W-normal.

Fig. 3

In fact, since, from the almost-periodicity of H, for any 7 € IR,
Dw[H",H] = 0,

then we have that, for every ¢ > 0 and for every set of translates {H(z + a);a €
R}, there exists a finite e-net w.r.t. the distance Dy, given by the only value
H(z). The W-normality follows immediately.

Let us finally observe that, as can be easily seen, the Heaviside function
is BW' and uniformly continuous in the mean, which are the two sufficient
conditions to guarantee the W-normality of a W, -function.

As already observed in [8], since the spaces BW? and W? are incomplete
in the Weyl norm, the between lying spaces W2 N BW? and W?-normal NBW?
are incomplete, too. Furthermore, the spaces e — WP, equivalent to S% , are
complete in the equi-Weyl norm. However, it is an open question, whether the
spaces e — W[, N BSP are complete or not.

A. S. Kovanko has generalized the definition of almost-periodic functions in
the sense of Weyl, by means of a Bohr-like definition.

DEFINITION 4.30. ([81]) A measurable function is said asymptotically al-
most-periodic (a.a.p.) if, for every e > 0, there correspond two positive num-
bers | = l(e),Ty = To(e) s.t., in every interval of length [(e), there exists an
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e-asymptotic almost-period 7(¢€) s.t. the inequality

[fz+7) = flo)] < e,

holds for every x € IR, except a set whose density, w.r.t. every interval of length
greater than Tp, is less than e.

THEOREM 4.31([81]) Ewvery a.a.p. function f s.t. fP is uniformly integrable
is WP,

For the a.a.p. function, it is possible to state an approximation theorem.

THEOREM 4.32([81]) An integrable function f is a.a.p. iff, for every e > 0,
there exist a trigonometric polynomial P, and a positive number T =T, s.t.

|f(z) = Pe(x)] < €,

holds for every x € IR, except a set whose density, w.r.t. every interval of length
greater than Ty, is less than €.

In [129], H. D. Ursell introduced four new definitions in terms of normality
and almost-periods. He called the first two classes respectively W-normal and
Wap. Here, in order to avoid any confusion with Definitions (4.1), (4.2), (4.4)

and (4.5), we will call these classes respectively W-normal and W .

DEFINITION 4.33. ([129]) A function f € L (IR;R) is said to be W -normal

loc

if, for every sequence {f(z + hy)}, there exists a subsequence {f(x + h,,, )} s.t.

: N

This definition is evidently more general than Definition (4.5) of the W?-
normality, for p = 1 (put 2 = 0 in (4.4)). The limit is namely not made uniformly
w.r.t. every interval [a,a + T], but only on the interval [0,7]. However, we do
not know whether or not H. D. Ursell’s W-normal space is complete.

DEFINITION 4.34. ([129]) A function f € L{ (IR;IR) is said to be W, if,

loc
for every e > 0, there exist a r.d. set of numbers 7 and a number T = Tp(e) s.t.

1

T
T/o [flx+7)— f(z)|de VT >Tp .

H. D. Ursell shows that Definition (4.33) implies Definition (4.34). He also
claims that the converse is true, but he does not prove the statement.
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Furthermore, he introduces the space W,_,p, which is equivalent to the
e — Wy, space, and the W,-normal space.

DEFINITION 4.35. ([129]) A function f € L{ (IR;IR) is said to be W,-
normal if, for every sequence { f(z+hy,)}, there exists a subsequence { f(x+h,, )}
S.t.

1 a+T
lim { lim sup [?/ |f(x+hnj)—f(w+hnk)|dx1} =0.

Jyk—+o0 T—+00 4eR

This space is evidently the same as the W-normal one. H. D. Ursell shows
that the e — W, space is contained in the W,-normal one and he concludes that
the Wap, W-normal, e — Wap and W,.-normal spaces are equivalent. This last
statement is again not proved and is a bit surprising.

It seems to us that H. D. Ursell’s statement is false, because it is easy to
show that the Heaviside step function, which is not e — Wy, is W-normal.

As already observed, due to their continuity, the elements of Cgp are in fact
real functions; furthermore, since every space S is a subspace of L], .(IR;IR), it is
obtained as a quotient space, w.r.t. the usual equivalence relation for (Bochner-)
Lebesgue integrable functions:

f~geSy, = plreR|f(z)#9(x)} =0,

where p is the usual Lebesgue measure.

On the other hand, the elements of the space W, are more general classes
of equivalence. In fact, two different functions, belonging to the same class,
may differ even on a set with Lebesgue measure greater than 0 (even infinite),
provided

f=g€ L (R;R) .
Consequently, to handle elements in W2, (and, a fortiori, as will be shown in
the next section, in B ), is less convenient than to work with S% -functions.

5 — Besicovitch almost-periodicity definitions and horizontal hierar-
chies

As already pointed out, the structure of the Weyl spaces is more intricated
than S§, and Cgp, because every element of the space is a class of L} (IR;IR)
functions, which may differ from each other even on a set of an infinite Lebesgue
measure. We have not deepened the question in the previous section, but it is

necessary to talk about this fact for the Besicovitch spaces.
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Following [107], let us consider the Marcinkiewicz spaces

MP(R) =

loc

1
I v
= lim sup (/ |f(z)P dx) <+oo} Vp>1.
T—o00 2T -T

For the case p = +00, we have

:{f:lR—>IR,f€L” (R; R), s.t. £, =

MPR)={fR—=R, f€Lj, st | fllo=1Fllz= <400} .

MP, endowed with the seminorm

1 T P
limsupr_,o | == x)|Pde | , if1<p<4o0
GRS <2T [y ) ’

[fllzee = esssupger |f(z)] if p = +o0

is a seminormed space.
Sometimes it is convenient to use the seminorm ([23], [35, p. 42])

1

T % 0 P
15 = max  Timsup [1 | 1@ dx] lim sup [1 | 1s@r dx] ,
T—+o0 T 0 T

T—+oo -T

which is equivalent to the seminorm (5.1), because
1
0N .., \
(3) 15 <071 < 1.

THEOREM 5.1([104]) [Marcinkiewicz] The space MP is a Fréchet space,
i.e. a topological seminormed complete space.

The proof is essentially based on the following
LEMMA 5.2. For a seminormed space (X, ||-||), the following conditions are

equivalent:

i) X is complete;
ii) every absolutely convergent series is convergent (i.e. V{Zp}tnew C X s.t.
Sy el < 4oo, there exists x € X s.t. Impy—y 400 Hx—zgzl z,|| =0).
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Let us note that the limits in the Marcinkiewicz space are not uniquely
determined. In fact, two different functions, differing from each other (even on
an infinite set) by a function belonging to LP, can be the limits of the same
Cauchy sequence of elements in MP. Following the standard procedure, let us
consider the kernel of the seminorm (5.1)

Kp={feM’st | flp,=0}.
Let us consider the equivalence relation
(5.2) frg = 1 f=9lp=0 ;5 fgeM
and the quotient space
MP(IR) = MP/K, ,

denoting by f the element belonging to MP, corresponding to the function f.

Since MP is a seminormed space and K, is a subspace, then (5.1) represents
a norm on MP. Since MP is complete, then MP is a Banach space. This fact
follows from the well-known

LEMMA 5.3. Let (X, |- ]]) be a seminormed space. Then

i) the kernel K = {x € X s.t. ||z|| = 0} is a linear subspace of X ;
ii) if [x] is an equivalence class, then ||[z]|| := ||z|| defines a norm on the quo-
tient space X/K;
ili) of X is complete, then X/K is a Banach space.

Let us now consider the class

T P
WP=( f:IR—= R, fe MPst. 3 lim (i/ |f(z)P dx) cMP?P .

It is possible to show that this class is not a linear space, because it is not closed
w.r.t. the summation.

EXAMPLE 5.4. Let us consider the functions

0, forx <1
filz) = :
x4+ /2 + sinlog z + coslog x| forx > 1

and

0, for z <1
fz(I){

-, forz >1.
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We have

1 [T3-1
[ +T(2+sinlogT) — 2+

o,
ﬁ[Tf1<x>dx=ﬁ -

T
+/ 2x\/2+sinlogx+coslogx dx}
1

Then

T2 1 2+4sinlogT 1 N
6 67T 2 T

J[ff(x)dmz lim

T—+o00

T
/ x\/2+sinlogx+coslogx dx
1

li =
T T—1>r£oo T

(applying de L’Hospital’s rule)

T2 2+ sinlogT
_ . 1= . . : >
TLHJIrloo 5 + TE)IEOO — + T1~1>I}rloo T\/2 + sinlog T + coslogT >
> i T2 + L +
im —+-| = 4+
T T—+oco [§ 2

On the other hand,

1 ’ 1 [a3 T
][fzg(x) dr = lim — / 22 dr = lim — {?} = +oo.
1 1

T—+oo 2T T—+oo 2T
However, the function

0, forx <1

g(x) = fi(z) + fa(z) = {

V2 +sinlogz + coslogx , for x> 1

is such that

T T
/ g (z) de = / [2 4+ sinlogz + coslogx] dv = T(2+ sinlogT) — 2,
-7 1

and consequently

. 2 +sinlogT 1 . sinlog T
2 — - @ - — - =
7[9 (z) de = Tglfoo [ 5 T] lim [1 + }

does not exist.
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DEFINITION 5.5. ([35, p. 36], [67, p. 192], [135, pp. 103-108]) [approxima-
tion] We will denote by BP(IR) the Besicovitch space obtained as the closure in
MP of the space P(IR,R) of all trigonometric polynomials.

In other words, an element in BP can be represented by a function f €
LP (R;R) s.t., for every € > 0, there exists P. € P s.t.

loc

1
1 T P
lim sup (— / |f(z) — P(x)? dx) <e€.
T—o0 2T -T

PROPOSITION 5.64[35, p. 45], [97]) The space B? is a closed subspace of WP.

Consequently, since BP is a closed subset of the complete space MP, it is
complete, too.
It is possible to introduce another space as the completion of the space P.

DEFINITION 5.7. ([12]) We will denote by B? the space obtained as the
abstract completion of the space P w.r.t. the norm

-T

_— :
— _ p .
(53) 1Pl = Jim <2T/ () d:c> . Pep.

By the definition, B? is a Banach space and its elements are classes of Cauchy
sequences of trigonometric polynomials w.r.t. the norm (5.3). Thus, according
to this definition, it is rather difficult to understand the meaning of an element
of BP. The following theorem allows us to assign to every element of this space
a real function.

THEOREM 5.8. BP = 3P .

PRrROOF. First of all, let us remark that, for every element of the space P,
the norms (5.1) and (5.3) coincide.

Both BP and BP contain a subspace isomorphic to the space P. Let us
identify these subspaces. Let P € BP be an equivalence class of Cauchy se-
quences of trigonometric polynomials w.r.t. the norm (5.3). Then, every se-
quence {P, }nen € P is such that |P, — Py, — 0, for m,n — co. It follows
that { P, }new is a Cauchy sequence in BP, and consequently there exists f € B?

such that |P, — f], — 0, for n — co. In other words, the class P uniquely

p
loc

determines a class f of functions belonging to L (IR;IR) w.r.t. the equivalence

relation .
figef=If—gll,=0.
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In fact, if the sequence {@Qp}nen € P were such that 1Qn — gllp — 0, then we
should have

1F=glly < [lf =Pallp + [Pn=@nllp + [@n—gllp = 0,  whenever n — o0,

because, if {P, }nen, {Qn}nen € P, then | P, — Qull, — 0, whenever n — oo.

On the other hand, a class f € BP uniquely determines a class of trigono-
metric polynomials P € BP. In fact, let {P,}nhen, {@n}nen € BP(IR) be such
that || P, — fll, = 0, [|@Qn — fll, — 0, whenever n — oo (i.e. there exist f,g € f
such that ||f — P, ||p — 0 and ||Q, — ng — 0). Let us show that there exists
P € BP such that {Pp}nen, {@ntnen € P. In fact,

[P0 = @nllp < If = Pally + [|@n—fllp =0,  whenever n —oo.

Then the two sequences are equivalent and belong to the same class of the
space BL . It is easy to show that the equivalence between the two spaces is an
isometry. 0

REMARK 5.9. Considering the closure of the space P w.r.t. the norm (5.1)
in the space MP, we obtain a space BP, which is still a seminormed, complete
space, whose elements are still functions; its quotient space, w.r.t. the equivalence
relation (5.2), is BP.

Definition (5.5) is obtained as an approximation definition. It is possible to
show that this definition is equivalent to a Bohr-like one, provided we introduce
a new property of numerical sets.

DEFINITION 5.10. ([22, pp. 77-78], [24, p. 227], [57]) A set X C IR is said
to be satisfactorily uniform (s.u.) if there exists a positive number [ such that
the ratio r of the maximum number of elements of X included in an interval of
length [ to the minimum number is less than 2.

Every s.u. set is r.d. The converse is, in general, not true.

Although, for example, the set Z is r.d. and s.u. in IR, the set X = Z U
{%}nem is r.d., but it is not s.u.: in fact, due to the presence of the accumulation
point 0, r = 400 VI > 0. Thus, a r.d. set, in order to be s.u., cannot have any
finite accumulation point.

DEFINITION 5.11. ([22, p. 78], [24, p. 227], [57, p. 6]) A function f €
Li, . (R;R) is said to be almost-periodic in the sense of Besicovitch (BE,,) if, for
every € > 0, there corresponds a s.u. set {7 }rez (1; < 7 if j < ) s.t., for each i,

Bl=

T
(5.4) lim sup (21T / |f(x+7)— f(x)P dz ) <e€,

T—o0 —-T
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and, for every ¢ > 0,

1 T P
. P
(5.5) h;n_}solip <_2T/—T E / ft+71)— f(t)] dt] dx) <e.

The space By, will be shortly indicated by By,

lim sup
n—oo

THEOREM 5.12([22, pp. 95-97, 100-101], [24, pp. 247-257])  The spaces BE,
and B? are equivalent.

Tt can be readily checked that Definition (5.11) is rather cumbersome, even
in its simplified form, obtained substituting conditions (5.4) and (5.5) with the
simplest one [23]

1
p

17 " v
(5.6) limsup <2T/ llimsup Z (x+m) f(x)|p1 dm) <e.

T—o0 n—00

It can be be shown [22], [24] that the spaces given by these two different defini-
tions are equivalent.

A. S. Besicovitch introduced even a simpler definition, which permits us to
introduce another space.

DEFINITION 5.13. ([22, p. 112], [24, p. 267]) A function f € L{
be Eip if

loc 18 said to

S
lim inf o7 / |f(z)] de < 400

T— 00 _T

and, for every € > 0, there corresponds a s.u. set of numbers 7; s.t., for each i,
(5.4) and (5.5) are satisfied.

THEOREM 5.14([22, pp. 113-123], [24, pp. 268-269]) B., C Bap -

ap
The inclusion is strict, as shown in [22, pp. 126-129], [24, pp. 286-291].
It is worthwhile to observe that, although E,llp is strictly contained in B,,,

. .5l . .
to every function in B, there corresponds a function B,, with the same Bohr—
Fourier series. This property is related to the following

THEOREM 5.15([22, pp. 123], [24, pp. 281-282]) To every function f € Bqp,

—1 . . . .
there corresponds a B,,-function differing from f by a function the mean value
of whose modulus is zero.
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Due to the difficulty of the original definition, several authors have studied
alternative (and simpler) definitions of the Besicovitch spaces, each of them based
on Bohr-like or Bochner-like properties in the Besicovitch norm. It is then conve-
nient to consider the norm (5.1) rather than the norm given by Definition (5.11).
To this aim, we need some preliminary definitions in terms of (5.1).

DEFINITION 5.16. ([8], [20, p. 69], [48]) [Bohr-type definition] A function
f e Lt (IR;IR) is said to be almost-periodic in the sense of Doss (BY,) if, for
every € > 0, there corresponds a r.d. set {7}_s.t.

1
1 T P
limsup | — / |f(x+7)— f(2)|P do < e VT e {r},
T—o00 2T -T

Each number 7 € {7}_is called an e-B? almost-period (or a BP —e-translation
number) of f.

DEFINITION 5.17. ([46], [50]) [normality or Bochner-type definition] A func-
tion f € Li (IR;IR) is called BP-normal if, for every sequence {h;} of real
numbers, there corresponds a subsequence {hy,} s.t. the sequence of functions
{f(z + hy,)} is BP-convergent, i.e.

lim hmsup — / x+hy) — f(x+hy)P de = 0.

m,n—+4o0o T— 400

DEFINITION 5.18. ([20, p. 15], [48], [50]) [continuity] A function f €
LP (R;IR) is called BP-continuous if

_ p =
lim limsup 5T / flx+7)— f(a)P dz 0.

=0 T 400

The space of all the BP-continuous functions will be indicated with BZ.
Clearly, it is a (complete) subspace of MP.

DEFINITION 5.19. ([20, p. 15]) [regularity] A function f € L} (IR;IR) is
called BP-regular if, for every [ € R,

T

1
(5.7) limsup — |f(x)|P dz = 0.
Tostoo 2T T—1

This condition implies that a BP-regular function cannot assume too large
values in finite intervals. The space of all the BP-regular functions will be indi-
cated by BP. Clearly, it is a (complete) subspace of MP? (see [20, p. 16]). Besides,

since
T

1
limsup — )P de < p
msop 57 [ 1f@P de < 071
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it follows that every null function in the Besicovitch norm is regular.

THEOREM 5.20([50]) A function f € L} (IR;IR) belongs to the space B iff

1) f is BP-bounded, i.e. it belongs to MP;
2) f is BP-continuous;

3) f is BP-normal;

)

4) for every A € IR,

T
lim limsup /

L=+40co T4oo JoT

1 I+L
Z/ f(t)et dt — / f(t) ”\tdt‘dx:().

REMARK 5.21. Condition 4) is, actually, formed by infinite conditions, each
one for each value of \. Each of them is independent of the others. For example,
it can be proved (see [50]) that, for every \g, the functions f(z) = "0 signx
satisfy conditions 1), 2), 3) and condition 4), for every value A # X.

Condition 4) can be replaced by the following condition ([50]):

4") to every X € IR, there corresponds a number a(\) s.t.

T
lim limsup /
L4 Tsioo Jor

7 / f(t)e™t dt — a()\)‘ dr = 0;

or by (see [50])

4") for every a € IR, there exists a function f(*) € LP, a-periodic and s.t.

1
(5.8)  lim {gniilg o7 [ Z |f(z + ka) — f@(z)[P dxH =0.
Moreover, condition 3) can be replaced by a Bohr-like condition ([48]):
3) for every e, the set of numbers 7 for which
1 T
limsup — |[flx+7)— f(x)] de < €
T—400 2T -T

is r.d.

It follows that, under conditions 1), 2) and 4), a function is BP-normal iff it
is almost-periodic in the sense of R. Doss.

Comparing Theorems (5.12) and (5.20), let us note that introducing a Bohr-
like definition as in condition 3') represents a weaker structural characterization
than Definition (5.11).



[41] Hierarchy of almost-periodic function spaces 161

J.-P. Bertrandias has restricted his analysis to BP-functions (see Defini-
tion 5.18), showing the equivalence of the different definitions.

DEFINITION 5.22. ([20, p. 69]) A function f € BP is called MP-almost-
periodic (M%) if, for every € > 0, there exists a r.d. set {7} s.t.

T—o00 -T

T »
lim sup <% / |[f(z4+71)— f(z)]P dx) < e Vre{r} .

DEFINITION 5.23. ([20, p. 69]) [normality] A function f € BP is called
MP-normal if the set {f7} of its translates is BP-precompact.

THEOREM 5.24([20, p. 69]) Definitions (5.22) and (5.23) are equivalent.

In order to show the equivalence with the third type of definition, we need
a preliminary definition.

DEFINITION 5.25. (]20, p. 50]) Given a family {kx(x)}rer of BP-constant
functions (see Definition (6.9)), we will call by a generalized trigonometric poly-
nomial, or by a trigonometric polynomial with BP-constant coefficients, the func-

tion
Z Ex(z)e™® .

AER

The class of generalized trigonometric polynomials will be denoted by PP.
It is easy to show that this is a linear subspace of BZ. Obviously, the space P is
a subspace of PP.

THEOREM 5.26([20, p. 71]) A function f € BE is M5, iff it is the BP-limit
of a sequence of generalized trigonometric polynomials. In other words, M5, is
the closure, w.r.t. the Besicovitch norm, of the space PP.

Since M%, is a closed subspace of the complete space B, it is complete, too.
The space BP is a complete subspace of M% .

THEOREM 5.27([20, p. 72]) The space MY, is a complete subspace of BY.

THEOREM 5.2&]20, p. 72]) [Uniqueness theorem] If two functions belonging
to ML, have the same generalized Bohr—Fourier coefficients, they are equivalent
in the Besicovitch norm.
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Comparing Theorem (5.20), Remark (5.21) and Definitions (5.22), (5.23), it
is clear that Condition 4) in Theorem (5.20), or the equivalent 4'), is the neces-
sary and sufficient condition in order for a M#% -function to be a BP-function. For
example, the functions f)(z) = ¢* signx, are ME -functions (since signz is a
BP-constant), but they are not BP-functions, as already shown in Remark (5.21).

J.-P. Bertrandias has also proved a further characterization of the Besicov-
itch functions, in terms of correlation functions, whose discussion would bring
us far from the goal of this paper. For more information, see [20, pp. 70-71].

On the other hand, A. S. Kovanko has introduced a new class of functions
and has proved its equivalence with the space BY .

DEFINITION 5.29. ([93]) Given a function f € L{, (IR;IR) and a set E C IR,
let us define

MC{fPy = {DE, [£,0]}" = limsup

1 p
7 | ] dx]

T—400
and BT T
0F := limsup [ECT, D)) ,
T—400 2T
where

|E(=T,T)] = plEN(=T,T)] .
Observe that that, if £ = IR,

—E
MALfPY = 1115 -
f(x) is said to be BP-uniformly integrable (f € BY . ) if Ve >0 3Jnle) > 0
S.t.
ME{WP} < €, whenever 0FE < 7.

DEFINITION 5.30. ([93], [94]) A function f is said to belong to the class
A, if
1) feBy;

2) Ye >0 3In >0 and a r.d. set of e-almost periods 7T s.t.
[flx+t)—f(z)] <€ for T—np <t < T7+7n,

for arbitrary = € IR, possibly with an exception of a set F;, s.t. 6E; < ;
3) for every a > 0 3 a-periodic function f(*)(x) which is a.e. bounded and
s.t. (5.8) holds.

REMARK 5.31. In [93], A. S. Kovanko shows that, if a function f belongs to
A,, then it belongs to LP. Thus, condition 4”) in Remark (5.21) is a consequence
of condition 3) in Definition (5.30).

THEOREM 5.32([93]) BP = A, .
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G. Bruno and F. R. Grande proved a Lusternik-type theorem, very similar
to the corresponding theorem for CJ -functions.

THEOREM 5.33([38]) Let F be a family of elements belonging to BE,, 1 <
p < 400, closed and bounded. Then the following statements are equivalent:

1) F is compact in the BP-norm;
2) F is BP-equi-continuous, i.e. for any € > 0 there exists 6 = 0(e) s.t., if
|h| <&, then
DBZ’ [fhaf] <€, vfef

and BP-equi-almost-periodic, i.e., for any € > 0, there exists [(€) > 0 s.t. ev-
ery interval whose lenghth is l(€)contains a common e-almost-period & for
all f € F, i.e

DBP [ff’f] <€ erf

THEOREM 5.34([38]) Every BP-function is BP-normal.

REMARK 5.35. Theorem (5.34) is also a corollary of Theorem (5.20), by
means of which we also prove that every BP-function is Bf,, BP-bounded and
BP-continuous.

THEOREM 5.36([38]) Every BP-normal function is Bf,.

For both Theorems (5.34) and (5.36), the converse is not true.

ExAMPLE 5.37. (Example of a function which is Bf,, but not BP-normal)
The example is based partly on [127, pp. 42-47]. In Example (4.28), it has been
shown that the function

0, if z € (—00,0] ;
n

foy =4 V7 Hrel-2Zn-1], n=246.;

—\/g, ifre(n—1;n,n=246...;

is a W, -function. Furthermore, in Section 6, it will be shown that every W2 -
function is B2 . Consequently, since the function is W,,, it is B},. Now, we
want to show that it is not B'-normal. Let us take ¢ € IR, ¢ # 2k; k € Z.
Without any loss of generality, we can suppose ¢ > 0. In fact, if ¢ < 0, (¢ = —d),

then
Dglf%, f1 = Dslf, f~* = Dslf", f] -
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Since we will have to consider the limit for T" — oo, let us take T" > ¢. Then
there exist 7,1 € IN s.t.

2i<e<2i+1l); AT <2l+1).

Put § := ¢ — 2i. We distinguish two cases:

a) 0<d<1;
b) 1< <2

Since we have to evaluate

1 T
op |, e - r@ld,

let us compute the difference |f(t 4+ ¢) — f(t)| in intervals whose union is strictly
included in the interval [—T,T]. For the case a), we will take the intervals
(j—1—=0,j—1), j = 2,4,6,..., for the case b), we will take the intervals
(J,7+9), j =2,4,6,... We have respectively

PRI 3

If(t+0)—f(t)|=\/j;2+\/‘7+22+2i .

Since the second equality can be obtained from the first one by means of a
variable shifting, let us consider only the case a). We have

l

1 T 1 2n—1
7 [ era—fola = 5 3 [ e - ol a -

n=1

—~1 >
C»Jll\.')
le

- %;5(\/n_+i+\/ﬁ)2l25\/_

where the last inequality is obtained by virtue of the Cauchy integral criterion
of convergence. Thus, we get

I 26
T |, Mtro—f@la = Vi

Passing to the limit for 7" — oo, i.e. for [ — oo, provided ¢ # 2k (k € Z), we
obtain

T
Dy, f = tmswp o [ 7o)~ SO dt > 3 Jim Vi = oo

T—o0 -T
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If we fix a number a € IR and a sequence {a;}ien s.t. a; —a # 2k; k € Z, then
Dp[f*, f*] = Dg[f*" ", fl= +oo .

We conclude that the sequence of translates { f(z+a;)} is not relatively compact
and consequently the function is not Bl-normal.

Let us note that the function cannot satisfy all the conditions 1), 2), 3) in
Theorem (5.20) (otherwise, according to Remark (5.21), it would be B'-normal).
Let us show that f is not Bl—continuous In fact,

ifre(n—1—a,n—1]

f(z+a) - \f F frem—2-an-2,

for every n = 2,4,6, ...
Let us take T'= 2[. Then

/_i|f(m+a)—f(x)|dx - Z [f+ \/—} a—l—z 2ka =

3¢+Z4f]

k=1
Passing to the limit,
T a -1
. 1 _ > a
T1_1>I_~r_10<J o7 /. |f(z 4+ a) = f(z)| dz ilfrnoo o 3\/Z+’; 4\/4
3 2 3
> i 2L =
2 a lm LM + g 1)2} e

and the claim follows.

ExAMPLE 5.38. (Example of a function which is BP-normal, but not BP)
The example is partly based on [35, p. 107] and [57, p. 5]. Let us consider the
function

-1, ifx <0
sign(z) = ¢ 0, ifx=0
1, ifx>0.

As shown in [57, p. 5], this function is not BP: it is sufficient to recall that, by
virtue of Theorem (6.2), for every BP-function, there exists the mean value (2 2)
and

T—00 T T—o0 T

M[f] = lim / f(z) dz = lim / f(z
However,

1 T
TLiIEOO T /0 signz doe = 1

N Y A
T1—1>r4r-1<>o T /_T81gnxdx— —1.
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Thus, Theorem (6.2) is not fulfilled. On the other hand, signz is a B -function,

because ) . 0
) € - )
|sign(z + 7) — sign(z)| = ifeel-n0)
0, elsewhere |
and
vr €eR.

| sign(z +7) —sign(z)[l, = 0

Let us show that it is BP-normal, too.
In fact, for every choice of hyy,, hy, (let us choose, without any loss of gener-

ality, hy, > h, > 0), we have

T “hn
/ |sign(z + hy,) — sign(x + hy,)|P de = / de = hy —hy
T o

and consequently
| sign(z + hy,) — sign(x + hy)l|, =

as well as the BP-normality.
More generally, we can consider a function f(z) = e~*** sign x, which is not

B, for every A € IR (see Remark (5.21)).
On the other hand, each of the functions e ~*** sign « is BP-normal. In fact,

for every choice of hy,, hy, (hy > hy,), we have
T i
[ i@ thn) = e bl e = [ 1de = = ha
-7 hm
and consequently

][ |er@thm) _ gX@thn)| g = 0 Y Ay hy €R .

So, the claim follows.
However, for these functions, Formula (2.3) holds. In fact

T ; ,

pim g [ e srde = i 1] = 03
0 )

TE)TOO T [T e~ gignz do = TEIEOO )\LT [ei)‘T — 1} =0.

This example shows that Theorem (6.2) in Section 6, characterizing BP-functions,
is, in general, not satisfied by Bf, and BP-normal functions.
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The importance and the properties of the spaces Bf, can be better under-
stood applying again the Bohr compactification. Let us 1ntroduce on IRp the
normalized Haar measure p (i.e. the positive regular Borel measure s.t. u(U) =
w(U + s), for every Borel subset U C IRp and for every s € Rp (invariance
property) and s.t. u(IRp) = 1 (normality property)).

It is possible [107] to show that the space B?, is isomorphic to the space
LP(IRp,IR), where L? is taken w.r.t. the Haar measure defined on IR . It follows
that

1 =/}R F@)P du@), i 1<p< o0
B

ess SUP,cR |f(£c)| , if p=+4o0,

1/ 150

where f is the extension by continuity of f from IR to IRp.

From this isomorphism, many properties for the spaces B, can be obtained.
For example, two functions differing from each other even on the whole real axis
can belong to the same Besicovitch class, because two functions belonging to the
same LP(IR g, R)-class may differ from each other on a set of the Haar measure
zero and the real numbers are embedded in the Bohr compactification as a dense
set of the Haar measure zero. Furthermore, recalling the inclusions among the
spaces LP on compact sets, we have

By CBM CBR2 C B, Vp>p>1,

where

() B2,

peN

Furthermore ([64], [71], [72]), the spaces BL , 1 < p < oo, are reflexive spaces

1,1
and their duals are given by BZ . where ¢ is s.t. 1tz = 1. The spaces Bf,

ap>’
are not separable (see, for example, [135, p. 108]). In particular, the space ng
is a non-separable Hilbert space, in which the exponents e** (A € IR) form an
orthonormal basis. Other properties can be found in [12], [64], [71], [72], [107,

pp. 11-12], [108].

6 — Vertical hierarchies. Properties. Examples and counter-examples

In the previous sections, we have shown that, although for the spaces ng
and S, the three definitions, in terms of relative density, normality and polyno-
mial approximation, are equivalent, for the remaining spaces (e- we,, Wk, B )
the equivalence does not hold anymore.

It is then important to check the relationships among every definition ob-

tained w.r.t. one norm and the less restrictive definitions related to more general
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classes. Before studying these relations and the vertical hierarchies among the
spaces up to now studied, let us recall the most important properties that are
common to all these spaces.

In fact, many of the properties of the u.a.p. functions can be satisfied by
the functions belonging to the spaces of generalized a.p. functions. For the sake
of simplicity, let us indicate with GP the either (generic) space SP, e-WP, WP or
BP (similarly for the spaces G%, and GP-normal). If not otherwise stated, the
following theorems will be valid for any of the spaces studied.

First of all, let us underline the connection of almost-periodic functions with
the trigonometric series.

THEOREM 6.1([22, p. 104], [24, p. 262], [35, p. 45], [67, pp. 191, 193]) Every
GP-function can be represented by its Fourier series, given by formula (2.5).

THEOREM 6.2([22, p. 93], [24, p. 244-245], [35, p. 45, [67, p. 191] [Mean
value theorem] The mean value (2.2) of every GP-function f exists and

T—o0

T 0
(6.1) a) M[f] = Tlgréo % /0 f(z) de = lim % /7T f(z) dx
1 a+T

62) M= Jim o [ )

where the last limit exists uniformly w.r.t. a € R, for every function in SP, in
e — WP and in WP.

Theorem (6.2) is related to a property of the SP-norm, stated by S. Koizumi.

THEOREM 6.3([77]) A function f € LY (IR;IR) belongs to BS? iff there
exists a positive constant K’ s.t.

T

1
limsup — |[f(x+t)P dt < K', uniformly w.r.t. x € R .
T—400 2T -T

REMARK 6.4. Repeating the considerations done in Remark (2.17), for
every f € GP, the quantities a(\), given by (2.4), are finite, for every A € IR.

This fact is no longer true, in general, for G% -functions, as shown in Ex-
ample (7.7).

THEOREM 6.5([22, p. 104], [24, p. 262], [35, p. 45]) For every GP-function
f, there always exists at most a countable infinite set of the Bohr—Fourier expo-
nents A, for which a(\) # 0, where a(X\) are given by (2.4).
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THEOREM 6.6([22, p. 109], [35, p. 47]) [Bohr Fundamental Theorem] The
Parseval equation

> laQn NP = M{|f?}
is true for every G?-function.

THEOREM 6.7]22, p. 109], [24, p. 266], [35, p. 45]) [Uniqueness Theorem] If
two GP-functions f, g have the same Fourier series, then they are identical, i.e.

DG [f7g] =0.

In other words, two different elements belonging to G? cannot have the same
Bohr—Fourier series.

The functions whose GP-norm is equal to zero are called GP-zero functions
([35, p. 38]).

PROPOSITION 6.8. Fvery GP-zero function is a GP-function and belongs to
the class of the function f(x) =0.

DEFINITION 6.9. ([20]) A GP-bounded function is said GP-constant if, for
every real number 7,

/"= fller = 0.

PROPOSITION 6.10. Every GP-zero function is GP-constant.

PrOOF. In fact, for every 7 € R, [|[f™ — fllce < I/ e + || fllge = 0. 0

The converse is, in general, not true. For example, the function f(x) =1 is,
obviously, GP-constant, but

1 T
= limsu —/ lde =1 0.
I, = tmsup o7 [ z

PROPOSITION 6.11. Every GP-constant is G, and GP-normal.

The last property cannot be extended to the GP-functions. For example, the
function f(z) = signx is BP-constant. It is BE , but it is not B? (see Example
(5.38)).

THEOREM 6.12([22, pp. 110-112], [35, p. 47]) [Riesz—Fischer theorem] To
any series . ane™®, for which Y |an|? converges, corresponds a G?-function
having this series as its Bohr—Fourier series.
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In order to establish the desired vertical hierarchies, let us recall the most
important relationships among the norms (2.1), (3.1), (4.1), (5.1) (see, for ex-
ample, [22, pp. 72-76], [24, pp. 220-224], [35, pp. 36-37]).

For every f € Li,.(R;IR) and for every p > 1, the following inequalities
hold:

Ifllce = Wfllse = Nflwe = I1fllp -
Consequently, we obtain, for every p > 1,
Cop © S7 CWP C B;
(6.3) C’gp C SP—normal C e — WP —normal C W”— normal C B” — normal;

0
Co,CSh Ce—WE CWP CBY,.

Furthermore, it is easy to show, by virtue of the Holder inequality, that, for every
1 < p1 <p2,

I fllges < Nfllgr= ,

and, consequently,

(6.4) Cy, € G C G" C G C L.

Defining the spaces

BG? = {fe ! (R;R) st | fllg < +oo},

loc

from formula (6.4) and from Definition (2.8), the following theorem holds.

THEOREM 6.13([22, pp. 75-76], [35, p. 38]) The spaces GP coincide with
the spaces obtained as the closures of the space C’gp w.r.t. the norms (3.2),
(4.1), (5.1).

Furthermore, the following properties for bounded functions hold:
THEOREM 6.14([35, p. 37]) Every GP-function is GP-bounded.

REMARK 6.15. Theorem (6.14) does not hold, in general, for the spaces
W#, and Bl as shown by Example (4.28).

THEOREM 6.16([35, pp. 62-63]) Every bounded function belonging to G*
belongs to every space GP, ¥p > 1.
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Inclusions (6.3) can be improved, recalling some theorems and examples.

THEOREM 6.17[48]) If there exists a number M s.t. the exponents of a S,-
function f are less in modulus than M, then f is equivalent to a u.a.p. function.

THEOREM 6.18([4, Th. VII, p. 78], [22, pp. 81-82], [41, p. 158, Th. 6.16])
[Bochner] If f € SE, is uniformly continuous, then f is u.a.p.

H. D. URSELL [129] has shown an example of a continuous S, -function,
which is not uniformly continuous and which is not Cgp.

On the other hand, it is not difficult to show that the space Cfl)p is strictly
contained in ST, for every p.
In his book [99], B. M. Levitan shows two interesting examples.

EXAMPLE 6.19. (99, pp. 209-210]) Let f € C7,. Then the function

1, if f(z)>0
F(z) =sign(f(z)) =4 0, if f(z) =0
-1, if f(z) <0

is Sa-
EXAMPLE 6.20. ([99, pp. 212-213]) Given the quasi-periodic (and, a fortiori,
almost-periodic) function ¢(x) = 2 + cosx + cos v/2x, the function

However, in order to have SP -functions which are not in Cj,,, it would be
sufficient to consider, for example, the functions obtained modifying the values

of an f € Cgp on all the relative integers, because the elements of L (IR;IR)

gl
is S,

loc
(and, consequently, of S? ) are the classes of functions obtained by means of the

equivalence relation f ~ g if f = g, a.e. in R.
The following example shows a function f € S%, which is unbounded.

EXAMPLE 6.21. The function
cosz , if ¢ # k|
fz) = .
k if z =knm ,
is not continuous and it is unbounded, but it belongs to the same class of

LP (R;IR) as the function g(xz) = cosz, which is, obviously, w.a.p. Thus, it

is S, for every p.

THEOREM 6.22([22, p. 77], [67, p. 190], [99, p. 222]) If, in the norm (4.1),
limsup,_,q L(e) is finite, then a function f € e-WP is an SE,-function.
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In other words, the spaces S%, can be interpreted as uniform W?-spaces.
The spaces S¥, are strictly included in e — W7,

EXAMPLE 6.23. (Example of an e — WP-normal function which does not
belong to S7,) The example is partly based on [127, pp. 20-21]. In Example
(4.27), we have already proved that the function, defined on IR,

1 for 0< <1
s or < =,

0, elsewhere |

is e — W-normal, but not Sg,.
Let us note that, by Formula (4.14), for every L > 1,

DSL [fTa.ﬂ < € if L:L(E)Z

| o=

Thus, limsup,_,, L(e) = +oo, and the hypothesis in Theorem (6.22) is not
satisfied.

Another example can be found in [35] (Main Example 2, pp. 70-73 and Main
Example II, pp. 115-116).
In Example (4.29), we have shown that the Heaviside step function

0, ifz <0
@ = {] ]

1, ifx >0,
is a Walp—function, but not e — Walp. Since the space e — Walp corresponds to the
space W1 (see Theorems (4.7), (4.11)) and the spaces WP are included in the
spaces WP-normal, Example (4.28) shows a second example of a W2 -function
which is not an e — W2 -function, other than [8, Example 1].

As already shown for the W[, and e — W, spaces, the three definitions for

a more general space can be inserted among those of a more restrictive space.
This situation is very clear when we compare the W? and BP-definitions.

ExampPLE 6.24. (Example of a BP-function which is not a W¥ -function)
Let us take the function

fa) = nﬁ, ifn?2<z<n?+n,
0, elsewhere |
wherepeIR, p>landnelN, n>1.
As pointed out in [20, p. 42], this function is unbounded, BP-bounded and
BP-constant. Consequently, by virtue of Proposition (6.11), it is B .
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Let us compute | f||4, for every ¢ > 1. It is sufficient to take T = N? +

VN, N eIN.

1 N24VN
9 =1im Su —/ )|9%dx =lim su / z)|? =
I£ll3=tim_sup Mitde =tim s o [ 1)

1
=lim sup VEkk .
N—+oco 2(N2+\/ )kzl

For ¢ = p, we have

171 = Tl
N oo 2(N2 4+ v/N) 2 4
For g > p, we have
1 2 3.4
[fl§ > lim sup P N3G+ = 4o,

N—too 2(N2++/N) 3p+g

because 3 (3+ 1) > 2.
For ¢ < p, we have

1 2
Il < lim sup P (N+1)36+D = o,

Notoo 2(N2++/N) 3p+gq

because 3 ; B+1) <2

In the last two cases, we have used the Cauchy integral criterion.

It follows that f € BY ,Vq < p, because it is a B%-zero function.

Let us show that f ¢ W4

Without any loss of generality, we can take 7 > 0 and 7" > 7. There exists
a real number M s.t. VM > T > 1. Thus,

1 4T 1 N24v/N ,
sup fla+7)—fl@)dz = N dz =

N7
cer T - T Iy vN-r

)

Nl

for every N > M. Consequently, taking the limit for N — 400, we arrive at
If™ = fllwe = 400 Vg>1:;V7>0;VT >71.

Let us observe that, since B C B%-normal and W%-normal C W{,, this example
shows simultaneously a function which is B¢, but not W%-normal, and a function

which is B?-normal, but not Wg,.
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Let us finally remark that this function does not satisfy Condition (6.2) in
Theorem (6.2), uniformly w.r.t. a. In fact, for every T > 0, there exists N € IN
s.t. VN > 2T. Consequently,

1 a+T 1 N2y YN 41 ) .
— de— M[f]| > — No%de = N —y_ 40000,
WSt f(x)dx [f]’ 2 oF /NuQ_T x N—soo 00

and the claim follows.

EXAMPLE 6.25. (Example of a Wl-normal function which is not a B!-
function) The example is partly based on [127, p. 48]. As shown in Exam-
ple (4.29), the function H(z) is Wlnormal. On the other hand, it does not
satisfy (6.1), because

1 O
1 H =1 1i — H = .
T;I%OT/ do #Tf;oT/_T () dw =0

Consequently, it is not B!.
It means that H(z) does not satisfy all the conditions of Theorem (5.20).
In fact, while, for every A # 0 and for L sufficiently large,

/ ] / t)eMdt — / Hit Mtdt‘dx] =

4L . T| rz+L L
/ / eMdt — / eMdt|dz+ / / eMdt— / Mt
-T 0 0 0 x 0

1 /O| i)\aji]_’d +/T|i>\x1||iAL1|d <i
ot | )t e ¢ I

and consequently,

2TL

1
ToTL

T | ra+l R L R
: : Xt gy it _
L1—1>I-|r—loo TEIEOO L /_T /L H(t)e'dt /0 H(t)e'Ndt d:c]
3
= 1. = O
Lotee LN
for A =0,
z>\t o 1At _

P 2TL / / at / H(pe™ dt | dm]

— lm lim — olde | = lm  lim - — 4
o L—1>I—{-1c>o T—1>1}-100 2TL T Tz B L—lffoo T_1>I}_100 4L B o

and the function does not satisfy condition 4), for every A € R.
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EXAMPLE 6.26. ([127, pp. 42-47]) (Example of a W, -function which is not
a Bl-normal function) In Example (4.28), we have shown that the function

0, if x € (—00,0] ;

fla) = \/g ifre(n—2n—1], n=246... ;

— /= ifre(n—1;n], n=246...;
belongs to e — Walp. On the other hand, in Example (5.37), the function is shown
not to be B'-normal.

EXAMPLE 6.27. ([35, Example 3b, pp. 58-61, pp. 111-114], [127, pp. 34-38])
(Example of a BP-function which is not a WP-function) The function

_ L 1]
1, ifxe n—i,n—l—i ,n€ Z,nmod2=0 but nmod22 #0 ,
. [ 1 17 9 3
2, ifx e n—§,n+§ n € Z,nmod2° =0 but nmod2° #0 ,
flz) = . 1 1] 5 .
3, ifzxe nfi,nJri ,n€ Z,nmod2° =0 but nmod2* # 0,
0, elsewhere ,

T —p——

2 4 6 8 10 12 14 16 18

Fig. 4

is a BP-function which is not a WP-function.



176 J. ANDRES — A. M. BERSANI - R. F. GRANDE [56]

Taking into account the last four examples, we can conclude that there does
not exist any inclusive relation between the spaces W2, and B?.
The previous theorems and examples allow us to write down Table 2.

a. periods normal approz.
Bohr ce, A4 u. normal = w.a.p.
U4 U4 U4
Stepanov Sk, = SP-normal 4 SP
U % 0
equi- Weyl e—WEk = e —WP-normal <:,,:g> e— WP
uﬁ L\ ll:# ....... N \Uﬂ:
Weyl Wk, <;:t> WP-normal <:,,:g> we
U4 %% ....... [ R &E% U4
Besicovitch Br <;:t> BP-normal <:,,::> BP
ap

Table 2

7 — Further generalizations. Open problems. Perspectives

As for the case of the C’gp—functions, it is possible to generalize the theory
of the GP-functions to spaces of functions defined on arbitrary groups (see, for
example, [58], [63], [65]).

Many authors have furthermore generalized in different directions the notion
of almost-periodicity; for example, R. Doss ([47], [49], in terms of diophantine
approximations), S. STOINSKI ([116], [117], [118], [119], [120], [121], [122], [123],
[124], [125], [126], in terms of e-almost-periods), K. URBANIK ([128], in terms of
polynomial approximations), etc.

Besides that, the contribution by A. S. Kovanko to the theory of generalized
a.p. functions is significant in this context: namely in [79], [80], he introduced
ten different definitions of a.p. functions (of types A, A, B, B', B, F/, c,c',C, 6/),
in terms of e-almost-periods, showing that the space of A-a.p. functions is the
largest one and that the space of C-a.p. functions is an intermediate space be-
tween W2 and B2. See also [85], [90], [93], [96].

Furthermore, in [81], [82], [83], [84], [94], [95], he extended the theory of
a.p. functions to non-integrable functions, in terms of polynomial approxima-
tions. He introduced the space of a-a.p. functions, which coincides with the
space Mgy, by virtue of Definition (3.12) and Theorem (3.14), and the spaces
of aj-a.p. functions, which are the extensions of the spaces BP to measurable
functions. These spaces are included in the space of a-a.p. functions. Moreover,
it is possible to prove a Bohr-like property for the spaces of ag-a.p. functions
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and to show that, for every aj-a.p. function, the mean value exists and the set
of values a(\), defined by (2.4), for which «()\) # 0, is at most countable.

In [84], the author introduces the space of f-a.p. functions, in terms of a
Bohr-like definition, where the set of almost-periods is satisfactorily uniform,
like in Definition (5.10), and shows that this space coincides with the space of
a-a.p. functions. Thus, he shows the equivalence of two definitions (Bohr-like
and approximation) for these spaces. Moreover, he proves that the space B!
is included in this space. Finally, he states a necessary and sufficient condition
in order for a B'-function to be a-a.p., in terms of the so-called asymptotic
uniform integrability (see [84]). E. F@&LNER [57] has specialized the study of
these spaces, considering BP-bounded functions and bounded functions, proving
interesting relationships with the spaces BP.

Generalizing the theory of weakly a.p. functions (see [53], [54]), J.-P. BER-
TRANDIAS [20, pp. 64-68, 71] has introduced the spaces of BP-weakly a.p. func-
tions, showing that every Bf -function is BP-weakly a.p. (see [20, p. 71]).

In this section, we will only concentrate our attention to the generalizations
given by C. Ryll-Nardzewski, S. Hartman, J. P. Kahane (see [75] and the refer-
ences therein), which are related to the Bohr-Fourier coefficients, not considering
the almost-periodicity of the functions, and C. ZHANG [136] (cf. [2]). We will
also mention possible multivalued extensions in [5], [6], [8], [40], [42], [52].

DEFINITION 7.1. ([75]) A function f € L (IR;IR) is called almost-periodic

loc

in the sense of Hartman (shortly, H, ) if, for every A € IR, the number

. 1
af(A) - TEIJIrloo ﬁ

T
/ fz)e™ ™ dx
-7

exists and is finite.

DEFINITION 7.2. ([75]) A function f € L (IR;IR) is called almost-periodic

loc

in the sense of Ryll-Nardzewski (shortly, Rclzp) if, for every A € IR, the number

X+T
(7.1) by(N) = Tl_i)rfoo T /X f(x)e™™* dx, exists uniformly w.r.t. z € IR,

and is finite.

Every R}Ip—function is, obviously, H, ;p (and, for every A and for every f €
R, af(X) =bg(X)). The converse, in general, is not true.

ExAMPLE 7.3. (Example of a H, -function, neither belonging to R, nor
to B') We have already shown in Example (5.38) that the function f(z) = signx
does not belong to B!. Nevertheless, f € H, ;p and its spectrum is empty. In
fact, for every A # 0,

T . 0 ‘ T 9
/ f(z)e™™ do = —/ e~ dy +/ e dy = [1 —cos(AT)] .
—-T 0 i\

-T
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1
(V) = lim / Fa)e e = Tm [l cos(NT)] =0 YA £ 0.

T—+o00 2T T—+o00 1
Ifx=0
af(o):Tl—lf—&r-looQT/ f d‘r—Tl—lg-Eooﬁ_/_de—’_/o dr| = 0.

Finally, let us prove that f ¢ Rj . It is sufficient to show that property (7.1)
does not hold for A = 0. In fact,

0 X+T
XAT 7/ dm+/ dr, for X <0
/ signx dxr = )§+T 0 =
X / dx | for X >0
X
_[2X+T, for X <0,
S\ T , for X >0 .
Then
) 1 X+T ]
br(0) = TEI}:OO T /X signx de = 1.
Since 9%
1o — for X <0,
T / signx de — 1| =
X 0, for X >0,
we have
1 [X+T
‘— / signz dx — bf(O)‘ <e,
T Jx
whenever ’ ’ < € ie VT > 21X . Consequently, the limit b;(0) is not uniform

w.r.t. Xand f(z )—Slgnx¢R
It can be observed that, in this case, ay(0) = 0 # by (0) = 1. On the other
hand, it can be easily shown that b;(0) = 0 VA # 0, uniformly w.r.t. X € R.

As pointed out in [75] and from Theorem (6.2) and Remark (6.4), every S,
and WP -function is R;,, and every BP-function is H,,, while there is no relation
between the spaces Bf, and R1 and between the spaces B, and H,, !

EXAMPLE 7.4. (Example of a function belonging to B!

In Example (6.24), we could see a function which is B},

p» but not to R} )

but not Wy, showing
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that (6.2) does not hold uniformly w.r.t. a € IR. Consequently, the function does
not belong to R,,.

Analogously to the spaces GP, we can introduce the spectrum o(f) for a
H, -function f(x) as
o(f) = {AeR st oap(X) # 0}.

THEOREM 7.5([75]) The spectrum of every function f € H,, is at most
countable.

REMARK 7.6. Every non negative H, ;p-function is Bl-bounded, because,
in this case, ag(0) = | f|li. This property is no longer true for general H, -
functions.

ExamMmpLE 7.7. (Example of a function which is B?,, for every p > 1, but
not H,,) Let us take the function, with values in C,

f((E) _ eilog|w| )

Clearly,
(Rl :][ jertos el de = 1.

Besides that, J.-P. BERTRANDIAS [20, p. 42] has shown that f is BP-constant
and, consequently, by virtue of Proposition (6.11), it is B , for every p > 1.

Let us show that this function does not belong to H,,, in particular, that
it does not have a mean value. In fact,

. 1 T 1—34 .
M[f] = ][ 6110g|ﬂc| dr = Thrf T / eilogw .. ( 5 Z) ThIJIrl eilogT
—roe 0 —+00

Since the limit in the last equality does not exist, the claim follows.

THEOREM 7.8([75]) Every function f € H,,, belonging to some Marcin-
kiewicz space MP, p > 1, is the sum of a BL -function and of a H(}p—function

whose spectrum is empty.

J. Bass [13], [14], [15] and J.-P. BERTRANDIAS [18], [19], [20] introduced
the spaces of pseudo-random functions, in terms of correlation functions, showing
that these spaces are included in B? and in the space of Hartman functions whose
spectrum is empty (see [19]). There is no relation between the spaces BP and
the spaces of pseudo-random functions, but some theorems concerning operations
involving B? and pseudo-random functions can be proved (see, for example, [14,
pp. 28-31]).
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In the framework of the resolution of systems of ordinary differential equa-
tions, C. Zhang has introduced in [136] a new class of a.p. functions.

DEFINITION 7.9. ([2], [136]) Set

T
PAPy(IR) = {¢e CO(R) s.t. T % o) do = 0} .

A function f € C°(IR) is called a pseudo almost-periodic function if it is the sum
of a function g € CY, and of a function ¢ € PAPy(IR).

g is called the almost-periodic component of f and ¢ is the ergodic pertur-
bation.

E. AiT Daps and O. ARINO [2] have furtherly generalized these spaces
to measurable functions, introducing the spaces PAP. As remarked in (2], the
mean value, the Bohr-Fourier coefficients and the Bohr-Fourier exponents of
every pseudo a.p. function are the same of its a.p. component.

As concerns almost-periodic multifunctions (considered in [5], [6], [8]; cf. also
[40], [42], [52]), let us introduce the following metrics:

(Bohr) D(e,v) := sup du (e(t), ¥ (1)),

x+L m
(stepanon) Dyl i=sw |1 [ antettvyrar]

z€R L
1 z+L %
(Wa)  Dwnlpow)i= Jimsup |1 [ au(eto, v ar]” =

r :
(Besicovitch)  Dpw(p,1) := limsup [% /_T dr(e(t),¥(t))? dt] ,

T— o0
where ¢,9 : IR — 2B\ {0} are measurable multifunctions with nonempty
bounded, closed values and dg (-, -) stands for the Hausdorff metric.
Since every multifunction, say P : IR — 2B\ {0}, is well-known (see e.g. [42],

[52]) to be measurable if and only if there exists a sequence {p,} of measurable

(single-valued) selections of P, i.e. p,, C P ¥n € IN, such that P can be Castaing-
like represented as follows

P = Jpl),

the standard (single-valued) measure-theoretic arguments make the distance
dpr (¢, 1)) to become a single-valued measurable function.
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Therefore, replacing the metrics in definitions in Table 1 (cf. also Table 2)
by the related ones above, we have correct definitions of almost-periodic multi-
functions.

DEFINITION 7.10. We say that a measurable multifunction ¢ : R —
2R\ 1)} with nonempty, bounded, closed values is G-almost-periodic if G means
any of the respective classes defined in Table 1 (cf. also Table 2) with metrics
replaced by the above ones, i.e. those involving the Hausdorff metric.

REMARK 7.11. Although S% -multifunctions with nonempty (convex) com-
pact values possess (single-valued) S ,-selections (see [42], [52]), the same is not
true for Cgp—multifunctions (see [40]). It is an open problem whether or not
W&, or B -multifunctions possess the respective (single-valued) selections. For

equi-W§ -multifunctions, the problem was affirmatively answered quite recently
by L. I. Danilov [43].

Instead of defining further classes of a.p. functions (see the large list of
references), let us conclude with posing some further open problems.
Since, unfortunately, W, # BP, it is a question under which additional

assumptions, say A, we would have Wé’péBp , because then the following linear
sequence would take place: u.a.p. < u. normal < Cgp = SP & SP — normal <
S, & e—WP = e— WP —normal & e - WP < WP = WP — normal =

W4 BP = B? — normal = BY,.

For this is, in view of Theorem (5.20) and Remark (5.21), sufficient that the
given functions are BP-bounded, BP-continuous and one of conditions 4) or 4)
or 4”) in Theorem (5.20) and Remark (5.21) takes place.

Because of possible applications to differential equations or inclusions, it
would be also interesting to know what happens with the hierarchy in Table 2,
provided a.p. functions are additionally uniformly continuous.
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