Some corrector results for composites with imperfect interface

PATRIZIA DONATO

Abstract: In this paper we give some corrector results for a problem modelling the stationary heat diffusion in a conductor with two components, a connected one Ω_{1}^{ε} and a disconnected one Ω_{2}^{ε}, consisting of ε-periodic connected components of size ε. The flow of heat is proportional, by mean of a function of order $\varepsilon^{\gamma}, \gamma>-1$, to the jump of the temperature field, due to a contact resistance on the interface. We prove a corrector result for the temperature in the component Ω_{1}^{ε}. Moreover, for $-1<\gamma \leq 1$ we prove the strong convergence to zero of the gradient of the temperature in the component Ω_{2}^{ε}. Due to different a priori estimates, the case $\gamma>1$ needs to be treated separately. These results complete the study of the asymptotic behaviour of this problem done in [10].

1 - Introduction

In this paper we consider a domain Ω of \mathbb{R}^{n}, such that $\Omega=\Omega_{1}^{\varepsilon} \cup \overline{\Omega_{2}^{\varepsilon}}$, where Ω_{1}^{ε} is a connected domain and Ω_{2}^{ε} is a disconnected one, union of ε-periodic sets of size ε.

We prove some corrector results for the problem

$$
\begin{cases}-\operatorname{div}\left(A^{\varepsilon} \nabla u^{\varepsilon}\right)=f_{1} & \text { in } \Omega_{1}^{\varepsilon} \tag{1.1}\\ -\operatorname{div}\left(A^{\varepsilon} \nabla u^{\varepsilon}\right)=f_{2} & \text { in } \Omega_{2}^{\varepsilon} \\ {\left[A^{\varepsilon} \nabla u^{\varepsilon}\right] \cdot n=0} & \text { on } \Gamma^{\varepsilon} \\ A^{\varepsilon} \nabla u_{1}^{\varepsilon} \cdot n=-\varepsilon^{\gamma} h^{\varepsilon}\left[u^{\varepsilon}\right] & \text { on } \Gamma^{\varepsilon} \\ u^{\varepsilon}=0 & \text { on } \partial \Omega\end{cases}
$$

[^0]prescribing the continuity of the conormal derivatives on a contact surface $\Gamma^{\varepsilon}=$ $\partial \Omega_{2}^{\varepsilon}$ and a jump of the solution which is proportional to the conormal derivative by mean of a function of order ε^{γ}. Here, n denotes the unit outward normal to Ω_{1}^{ε} and $u_{i}^{\varepsilon}=\left.u^{\varepsilon}\right|_{\Omega_{i}^{\varepsilon}} i=1,2$.

This problem models the stationary diffusion in a two-component heat conductor with a contact resistance (see H. S. Carslaw and J. C. Jaeger [5] for a physical justification of the model). Therefore, its asymptotic behaviour describes the effective thermal conductivity of the homogenized composite and takes into account the influence of the contact barrier. The description of the limit problem has been studied in [10]. The corrector results presented here complete the asymptotic study therein.

Let us recall that in [10] is proved that, if $-1<\gamma \leq 1$, then a suitable extension $P_{1}^{\varepsilon} u_{1}^{\varepsilon}$ of u_{1}^{ε} weakly converges to the solution u_{1} in $H_{0}^{1}(\Omega)$ of the limit problem

$$
\begin{cases}-\operatorname{div}\left(A^{0} \nabla u_{1}\right)=\theta_{1} f_{1}+\theta_{2} f_{2} & \text { in } \Omega \tag{1.2}\\ u_{1}=0 & \text { on } \partial \Omega\end{cases}
$$

with the convergences

$$
\begin{cases}A^{\varepsilon} \widetilde{\nabla u_{1}^{\varepsilon}} \rightharpoonup A^{0} \nabla u_{1} & \text { weakly in }\left[L^{2}(\Omega)\right]^{n}, \tag{1.3}\\ A^{\varepsilon} \widetilde{\nabla u_{2}^{\varepsilon}} \rightharpoonup 0 & \text { weakly in }\left[L^{2}(\Omega)\right]^{n},\end{cases}
$$

where θ_{i}, for $i=1,2$, represents the proportion of the material in Ω_{i}^{ε} and \sim denotes the zero extension to the whole of Ω. Moreover, $\widetilde{u_{2}^{\varepsilon}}$ weakly converges in $L^{2}(\Omega)$ to $\theta_{2} u_{1}$ if $-1<\gamma<1$ and to $\theta_{2}\left(u_{1}+c_{h}^{-1} f_{2}\right)$, with $c_{h}=\frac{1}{\left|Y_{2}\right|} \int_{\Gamma} h(y) d \sigma_{y}$, if $\gamma=1$.

The constant matrix A^{0} is the same as that obtained by D. Cioranescu and J. Saint Jean Paulin ([8], see also [9]) for the homogenization of the Laplace problem in the perforated domain Ω_{1}^{ε} with a Neumann condition on the boundary of the holes. Hence, the effective conductivity of the first conductor is the same as that obtained when there is no material occupying Ω_{2}^{ε}, with in the limit problem $\theta_{1} f_{1}+\theta_{2} f_{2}$ instead of $\theta_{1} f_{1}$. The flux related to u_{2}^{ε} asymptotically vanishes, thus the whole homogenized material behaves as if the composite Ω_{2}^{ε} does not contribute in the heat propagation.

The first corrector result of this paper states that, if $-1<\gamma \leq 1$, the following convergence holds:

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0}\left\|\nabla u_{1}^{\varepsilon}-C^{\varepsilon} \nabla u_{1}\right\|_{L^{1}\left(\Omega_{1}^{\varepsilon}\right)^{n}}=0 \tag{1.4}
\end{equation*}
$$

where C^{ε} is the same corrector matrix as that of the Laplace problem in the perforated domain Ω_{1}^{ε} with a Neumann condition on the holes. We also prove that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0}\left\|\nabla u_{2}^{\varepsilon}\right\|_{L^{1}\left(\Omega_{2}^{\varepsilon}\right)^{n}}=0 \tag{1.5}
\end{equation*}
$$

This strong convergence implies, in particular, that the weak convergence to zero of $A^{\varepsilon} \widehat{\nabla} u_{2}^{\varepsilon}$, stated in [10], is actually strong.

The main difficulty for proving these convergences is to describe the asymptotic behaviour of the energy. In general, the convergence of the energy to that of the homogenized problem is straightforward. Here the situation is more complicated, due to the presence of the boundary term in the variational formulation.

For $-1<\gamma<1$, we prove that the energy, which includes a boundary term, converge to that of problem (1.2).

For the case $\gamma=1$, we only can prove that the limit superior of the energy is lower than that of the homogenized problem (1.2). Nevertheless, this result is sufficient to prove convergences (1.4) and (1.5). Its proof is quite technical and mainly makes use of two lemmas. The first one (Lemma 3.3) is a variant of a lemma proved in [6] and transforms integral on the boundary Γ^{ε} into volume integrals on Ω_{2}^{ε}. The second one (Lemma 3.4), proved in [11], provides for a weakly converging sequences vanishing in Ω_{2}^{ε} a better inequality than that given by the lower semi-continuity.

In the case $\gamma>1$ where, as shows a counterexample of [14], one cannot expect bounded a priori estimates for the solution, we replace as in [10] the function f_{2} in problem (1.1) by $\varepsilon^{\frac{\gamma-1}{2}} f_{2}$. We prove that in this case we still have convergence (1.4). The question if (1.5) still holds for $\gamma=1$ remains open.

The first homogenization results for this kind of boundary conditions was done, for some values of the parameter γ, by J. L. Auriault and H. I. Ene [1] by the multiple scales method. We refer to R. Lipton [15] for the study of the limit problem when $\gamma=0$, to S . Monsurrò [17] for the case $\gamma \leq-1$ and to [10] for the case $\gamma>-1$. For similar homogenization problems we also refer to J. N. Pernin [18], E. Canon and J. N. Pernin [3], [4], H. Ene [12], H. Ene and D. Polisevski [13], H. K. Hummel [14] and to R. Lipton and B. Vernescu [16] (for other related references see also the bibliography of [10]).

In Section 2 we state the correctors results (Theorems 2.5 and 2.9). They are proved in Section 4. The asymptotic behaviour of the energy according to the different values of γ is studied in Section 3.

2 - Formulation of the problem and main results

In the following, Ω will be an open bounded subset of \mathbb{R}^{n} and $\{\varepsilon\}$ a positive sequence converging to zero.

We denote by $Y=] 0, l_{1}[\times \ldots] 0, l_{n}\left[\right.$ the reference cell and by Y_{1} and Y_{2} two non empty open subsets such that $Y=Y_{1} \cup \overline{Y_{2}}$, with Y_{1} connected and $\Gamma \doteq \partial Y_{2}$ Lipschitz continuous.

For any $k \in Z^{n}$, we denote

$$
Y_{i}^{k}:=k_{l}+Y_{i}, \quad \Gamma_{k}:=k_{l}+\Gamma,
$$

where $k_{l}=\left(k_{1} l_{1}, \ldots, k_{n} l_{n}\right)$ and $i=1,2$. We assume that

$$
\begin{equation*}
\partial \Omega \cap\left(\cup_{k \in Z^{n}}\left(\varepsilon \Gamma_{k}\right)\right)=\emptyset \tag{2.1}
\end{equation*}
$$

and, for any fixed ε, we set

$$
K_{\varepsilon}:=\left\{k \in Z^{n} \mid \varepsilon Y_{2}^{k} \subset \Omega \neq \emptyset\right\} .
$$

Then, we define the two components of Ω and the interface (see fig. 1 below) respectively by

$$
\Omega_{i}^{\varepsilon}:=\Omega \cap\left\{\cup_{k \in K_{\varepsilon}} \varepsilon Y_{i}^{k}\right\}, i=1,2, \quad \Gamma^{\varepsilon}=\partial \Omega_{2}^{\varepsilon} .
$$

Figure 1.
Observe that (2.1) implies the fact that $\partial \Omega \cap \Gamma^{\varepsilon}=\emptyset$, so that the component Ω_{1}^{ε} is connected and the component Ω_{2}^{ε} is union of disjoint translated sets of εY_{2}, whose number is of order ε^{-n}.

In what follows, we denote by
$-\sim$ the zero extension to the whole of Ω of functions defined on Ω_{1}^{ε} or Ω_{2}^{ε},

- χ_{ω} the characteristic function of any open set $\omega \subset \mathbb{R}^{n}$,
$-m_{\omega}(v)=\frac{1}{|\omega|} \int_{\omega} f d x$ the average on Y of any function $v \in L^{1}(\omega)$.
We recall that

$$
\begin{equation*}
\chi_{\Omega_{i}^{\varepsilon}} \rightharpoonup \theta_{i}:=\frac{\left|Y_{i}\right|}{|Y|}, \quad \text { weakly in } L^{2}(\Omega) \tag{2.2}
\end{equation*}
$$

For α, β such that $0<\alpha<\beta$, let A be a Y-periodic matrix field satisfying

$$
\left\{\begin{array}{l}
(A(x) \lambda, \lambda) \geq \alpha|\lambda|^{2}, \tag{2.3}\\
|A(x) \lambda| \leq \beta \lambda,
\end{array}\right.
$$

for any $l \in \mathbb{R}^{n}$ and a.e. in Y and set, for any $\varepsilon>0$,

$$
\begin{equation*}
A^{\varepsilon}(x)=A(x / \varepsilon) \tag{2.4}
\end{equation*}
$$

Let h be an Y-periodic function such that

$$
\begin{equation*}
h \in L^{\infty}(\Gamma), \text { and } 0<h_{0}<h(y), y \text { a.e. in } \Gamma, \tag{2.5}
\end{equation*}
$$

for some $h_{0} \in \mathbb{R}_{+}^{*}$ and set

$$
\begin{equation*}
h^{\varepsilon}(x)=h\left(\frac{x}{\varepsilon}\right) . \tag{2.6}
\end{equation*}
$$

We introduce the space V^{ε} defined by

$$
V^{\varepsilon}:=\left\{u_{1}^{\varepsilon} \in H^{1}\left(\Omega_{1}^{\varepsilon}\right) \mid u_{1}^{\varepsilon}=0 \text { on } \partial \Omega\right\},
$$

equipped with the norm $\|u\|_{V^{\varepsilon}}:=\|\nabla v\|_{L^{2}\left(\Omega_{1}^{\varepsilon}\right)}$ and the space H_{0}^{ε} defined by

$$
H_{0}^{\varepsilon}:=\left\{u^{\varepsilon}=\left(u_{1}^{\varepsilon}, u_{2}^{\varepsilon}\right) \mid u_{1}^{\varepsilon} \in V^{\varepsilon} \quad \text { and } \quad u_{2}^{\varepsilon} \in H^{1}\left(\Omega_{2}^{\varepsilon}\right)\right\}
$$

equipped with the norm

$$
\left\|u^{\varepsilon}\right\|_{H_{0}^{\varepsilon}}^{2}:=\left\|\nabla u_{1}^{\varepsilon}\right\|_{L^{2}\left(\Omega_{1}^{\varepsilon}\right)}^{2}+\left\|\nabla u_{2}^{\varepsilon}\right\|_{L^{2}\left(\Omega_{2}^{\varepsilon}\right)}^{2}+\varepsilon\left\|u_{1}^{\varepsilon}-u_{2}^{\varepsilon}\right\|_{L^{2}\left(\Gamma^{\varepsilon}\right)}^{2} .
$$

Let us recall the following extension results in V^{ε}, due to D . Cioranescu and J. Saint Jean Paulin:

Lemma 2.1 ([8]). i) There exists a linear continuous extension operator P_{1} belonging to $\mathcal{L}\left(H^{1}\left(Y_{1}\right) ; H^{1}(Y)\right) \cap \mathcal{L}\left(L^{2}\left(Y_{1}\right) ; L^{2}(Y)\right)$ such that, for some positive constant C

$$
\left\{\begin{array}{l}
\left\|P_{1} v_{1}\right\|_{L^{2}(Y)} \leq C\left\|v_{1}\right\|_{L^{2}\left(Y_{1}\right)}, \\
\left\|\nabla P_{1} v_{1}\right\|_{L^{2}(Y)} \leq C\left\|\nabla v_{1}\right\|_{L^{2}\left(Y_{1}\right)}
\end{array}\right.
$$

for every $v_{1} \in H^{1}\left(Y_{1}\right)$.
ii) There exists an extension operator P_{1}^{ε} belonging to $\mathcal{L}\left(L^{2}\left(\Omega_{1}^{\varepsilon}\right) ; L^{2}(\Omega)\right) \cap$ $\mathcal{L}\left(V^{\varepsilon} ; H_{0}^{1}(\Omega)\right)$ such that, for some positive constant C (independent of ε)

$$
\left\{\begin{array}{l}
\left\|P_{1}^{\varepsilon} v_{1}\right\|_{L^{2}(\Omega)} \leq C\left\|v_{1}\right\|_{L^{2}\left(\Omega_{1}^{\varepsilon}\right)}, \\
\left\|\nabla P_{1}^{\varepsilon} v_{1}\right\|_{L^{2}(\Omega)} \leq C\left\|\nabla v_{1}\right\|_{L^{2}\left(\Omega_{1}^{\varepsilon}\right)},
\end{array}\right.
$$

for every $v_{1} \in V^{\varepsilon}$.

Observe that this lemma provides a Poincaré inequality in V^{ε} independent of ε, i.e. there exists a positive constant $C>0$ (independent of ε) satisfying

$$
\left\|v_{1}\right\|_{L^{2}\left(\Omega_{1}^{\varepsilon}\right)} \leq C\left\|\nabla v_{1}\right\|_{L^{2}\left(\Omega_{1}^{\varepsilon}\right)}, \quad \forall v_{1} \in V^{\varepsilon}
$$

Let $f_{1}^{\varepsilon} \in L^{2}\left(\Omega_{1}^{\varepsilon}\right), f_{2}^{\varepsilon} \in L^{2}\left(\Omega_{2}^{\varepsilon}\right)$ and g be given in $H^{-1}(\Omega)$. Our aim is to study the correctors for the following problem

$$
\begin{cases}-\operatorname{div}\left(A^{\varepsilon} \nabla u_{1}^{\varepsilon}\right)=f_{1}^{\varepsilon}+P_{1}^{\varepsilon}(g) & \text { in } \Omega_{1}^{\varepsilon} \tag{2.7}\\ -\operatorname{div}\left(A^{\varepsilon} \nabla u_{2}^{\varepsilon}\right)=f_{2}^{\varepsilon} & \text { in } \Omega_{2}^{\varepsilon}, \\ A^{\varepsilon} \nabla u_{1}^{\varepsilon} \cdot n_{1}^{\varepsilon}=-A^{\varepsilon} \nabla u_{2}^{\varepsilon} \cdot n_{2}^{\varepsilon} & \text { on } \Gamma^{\varepsilon}, \\ A^{\varepsilon} \nabla u_{1}^{\varepsilon} \cdot n_{1}^{\varepsilon}=-\varepsilon^{\gamma} h^{\varepsilon}\left(u_{1}^{\varepsilon}-u_{2}^{\varepsilon}\right) & \text { on } \Gamma^{\varepsilon}, \\ u_{1}^{\varepsilon}=0 & \text { on } \partial \Omega,\end{cases}
$$

where n_{i}^{ε} is the unitary outward normal to $\Omega_{i}^{\varepsilon}, i=1,2$ and $P_{1}^{\varepsilon *}$ is the adjoint operator of the extension operator P_{1}^{ε} given by Lemma 2.1. By definition, $P_{1}^{\varepsilon *}$ is in $\mathcal{L}\left(H^{-1}(\Omega) ; V_{\varepsilon}^{\prime}\right)$ and for $g \in H^{-1}(\Omega), P_{1}^{\varepsilon *}(g)$ is given by

$$
P_{1}^{\varepsilon *} g: v \in V_{\varepsilon} \longrightarrow<g, P_{1}^{\varepsilon} v>_{H^{-1}(\Omega), H_{0}^{1}(\Omega)}
$$

We will suppose that

$$
\begin{cases}\text { i) } \widetilde{f_{1}^{\varepsilon}} \rightharpoonup \theta_{1} f_{1} & \text { weakly in } L^{2}(\Omega) \tag{2.8}\\ \text { ii) } \widetilde{f_{2}^{\varepsilon}} \rightharpoonup \theta_{2} f_{2} & \text { weakly in } L^{2}(\Omega)\end{cases}
$$

Then, the variational formulation of problem (2.7) is:

$$
\left\{\begin{array}{l}
\text { Find } u^{\varepsilon}=\left(u_{1}^{\varepsilon}, u_{2}^{\varepsilon}\right) \text { in } H_{0}^{\varepsilon} \text { such that } \tag{2.9}\\
\int_{\Omega_{1}^{\varepsilon}} A^{\varepsilon} \nabla u_{1}^{\varepsilon} \nabla v_{1} d x+\int_{\Omega_{2}^{\varepsilon}} A^{\varepsilon} \nabla u_{2}^{\varepsilon} \nabla v_{2} d x+\varepsilon^{\gamma} \int_{\Gamma^{\varepsilon}} h^{\varepsilon}\left(u_{1}^{\varepsilon}-u_{2}^{\varepsilon}\right)\left(v_{1}-v_{2}\right) d \sigma \\
=\int_{\Omega_{1}^{\varepsilon}} f_{1}^{\varepsilon} v_{1} d x+<g, P_{1}^{\varepsilon} v_{1}>_{H^{-1}(\Omega), H_{0}^{1}(\Omega)}+\int_{\Omega_{2}^{\varepsilon}} f_{2}^{\varepsilon} v_{2} d x, \forall\left(v_{1}, v_{2}\right) \in H_{0}^{\varepsilon} .
\end{array}\right.
$$

The existence and uniqueness of the solution u^{ε} of (2.9) for every $\varepsilon>0$ is a consequence of the Lax-Milgram theorem and of the following proposition (see [17]):

Proposition 2.2 ([17]). The norm of H_{0}^{ε} is equivalent to the norm of $V^{\varepsilon} \times H^{1}\left(\Omega_{2}^{\varepsilon}\right)$. Moreover, there exist two positive constant C_{1}, C_{2}, independent of ε, such that

$$
C_{1}\|v\|_{H_{0}^{\varepsilon}} \leq\|v\|_{V^{\varepsilon} \times H^{1}\left(\Omega_{2}^{\varepsilon}\right)} \leq C_{2}\|v\|_{H_{0}^{\varepsilon}}, \quad \forall v \in H_{0}^{\varepsilon}
$$

Let us recall the following homogenization result given in [10], concerning the case $-1<\gamma \leq 1$:

Theorem 2.3 ([10]). Let A^{ε} and h^{ε} be defined by (2.3)-(2.6). Suppose that f_{1}^{ε} and f_{2}^{ε} satisfy (2.8) and let g be given in $L^{2}(\Omega)$. Let $-1<\gamma \leq 1$ and u^{ε} be the solution of problem (2.7). Then, there exists a positive constant C is independent of ε and an extension operator $P_{1}^{\varepsilon} \in \mathcal{L}\left(V^{\varepsilon} ; H_{0}^{1}(\Omega)\right)$ such that

$$
\begin{cases}\text { i) } P_{1}^{\varepsilon} u_{1}^{\varepsilon} \rightharpoonup u_{1} & \text { weakly in } H_{0}^{1}(\Omega) \tag{2.10}\\ \text { ii) } A^{\varepsilon} \nabla u_{1}^{\varepsilon} \rightharpoonup A^{0} \nabla u_{1} & \text { weakly in }\left[L^{2}(\Omega)\right]^{n} \\ \text { iii) }\left\|u_{1}^{\varepsilon}-u_{2}^{\varepsilon}\right\|_{L^{2}\left(\Gamma^{\varepsilon}\right)}<C \varepsilon^{-\gamma / 2}, & \end{cases}
$$

and the following convergences hold:

$$
\begin{cases}\text { i) } \widetilde{u_{2}^{\varepsilon}} \rightharpoonup u_{2} & \text { weakly in } L^{2}(\Omega) \tag{2.11}\\ \text { ii) } & A^{\varepsilon} \nabla u_{2}^{\varepsilon} \\ & \text { weakly in }\left[L^{2}(\Omega)\right]^{n}\end{cases}
$$

The function u_{1} is the unique solution in $H_{0}^{1}(\Omega)$ of the problem

$$
\begin{cases}-\operatorname{div}\left(A^{0} \nabla u_{1}\right)=\theta_{1} f_{1}+\theta_{2} f_{2}+g & \text { in } \Omega \tag{2.12}\\ u_{1}=0 & \text { on } \partial \Omega\end{cases}
$$

with $\theta_{i}, i=1,2$, given by (2.2). The homogenized matrix A^{0} is defined by

$$
\begin{equation*}
A^{0} l=\frac{1}{|Y|} \int_{Y_{1}} A \nabla \widehat{w}_{\lambda} d y \tag{2.13}
\end{equation*}
$$

where $\widehat{w}_{\lambda} \in H^{1}\left(Y_{1}\right)$ is the solution, for any $l \in \mathbb{R}^{n}$, of

$$
\begin{cases}-\operatorname{div}\left(A \nabla \widehat{w}_{\lambda}\right)=0 & \text { in } Y_{1} \tag{2.14}\\ \left(A \nabla \widehat{w}_{\lambda}\right) \cdot n_{1}=0 & \text { on } \Gamma \\ \widehat{w}_{\lambda}-\lambda \cdot y & Y \text {-periodic } \\ m_{Y_{1}}\left(\widehat{w}_{\lambda}-\lambda \cdot y\right)=0 & \end{cases}
$$

Moreover, for $-1<\gamma<1$, one has

$$
\left\{\begin{array}{l}
\text { i) } u_{2}=\theta_{2} u_{1} \tag{2.15}\\
\text { ii) }\left\|P_{1}^{\varepsilon} u_{1}^{\varepsilon}-u_{2}^{\varepsilon}\right\|_{L^{2}\left(\Omega_{2}^{\varepsilon}\right)}^{2} \rightarrow 0
\end{array}\right.
$$

while, for $\gamma=1$,

$$
\begin{equation*}
u_{2}=\theta_{2}\left(u_{1}+c_{h}^{-1} f_{2}\right) \tag{2.16}
\end{equation*}
$$

where $c_{h}=\frac{1}{\left|Y_{2}\right|} \int_{\Gamma} h(y) d \sigma_{y}$.

Remark 2.4. In [10] this result has been proved in the case where $g=0$ and $f_{1}^{\varepsilon}=f_{\mid \Omega_{1}^{\varepsilon}}, f_{2}^{\varepsilon}=f_{\mid \Omega_{2}^{\varepsilon}}$ for some $f \in L^{2}(\Omega)$, so that $\theta_{1} f_{1}+\theta_{2} f_{2}=f$. Nevertheless, it easily seen that the results is still valid if the data are chosen as in Theorem 2.3. Indeed, the proof in this case follows exactly the same outlines of that given in [10]. One only needs to use, in the terms where g appears, the fact that for any sequence $\left\{v^{\varepsilon}\right\}$ in $H_{0}^{1}(\Omega)$ (see Lemma 2.1 of [2]) the following implication holds:
(2.17) $\left(v^{\varepsilon} \rightharpoonup v \quad\right.$ weakly in $\left.H_{0}^{1}(\Omega)\right) \Longrightarrow\left(P_{\varepsilon}^{1}\left(\left.v^{\varepsilon}\right|_{\Omega_{\varepsilon}}\right) \rightharpoonup v \quad\right.$ weakly in $\left.H_{0}^{1}(\Omega)\right)$.

The main result of this paper is the following corrector result, which completes the convergence results given by Theorem 2.3.

ThEOREM 2.5 (correctors for the case $-1<\gamma \leq 1$). Let $\left(e_{i}\right)_{i=1}^{n}$ be the canonical basis of \mathbb{R}^{n} and $\widehat{w}_{i} \in H^{1}\left(Y_{1}\right)$ the solution of problem (2.14) for $\lambda=e_{i}$, $i=1, \ldots, n$. Define the corrector matrix $C^{\varepsilon}=\left(C_{i j}^{\varepsilon}\right)_{1 \leq i, j \leq n}$ by

$$
\begin{cases}C_{i j}^{\varepsilon}(x)=\widetilde{C_{i j}}\left(\frac{x}{\varepsilon}\right) \quad \text { a.e. on } \Omega \tag{2.18}\\ C_{i j}(y)=\frac{\partial \widehat{w}_{j}}{\partial y_{i}}(y) \quad \text { a.e. on } Y_{1}\end{cases}
$$

where here \sim denotes the zero extension to the whole of Y.
Let us suppose that the assumptions of Theorem 2.3 are satisfied. If $\gamma=1$, we also suppose ∂Y_{2} of class C^{2} and $f_{2}^{\varepsilon}=f_{2 \mid \Omega_{2}^{\varepsilon}}$, with f_{2} given in $L^{2}(\Omega)$.

Then, one has the following convergences:

$$
\left\{\begin{array}{l}
\text { i) } \lim _{\varepsilon \rightarrow 0}\left\|\nabla u_{1}^{\varepsilon}-C^{\varepsilon} \nabla u_{1}\right\|_{L^{1}\left(\Omega_{1}^{\varepsilon}\right)^{n}}=0 \tag{2.19}\\
\text { ii) } \lim _{\varepsilon \rightarrow 0}\left\|\nabla u_{2}^{\varepsilon}\right\|_{L^{2}\left(\Omega_{2}^{\varepsilon}\right)^{n}}=0 \\
\text { iii) } A^{\varepsilon} \widetilde{\nabla u_{2}^{\varepsilon}} \rightarrow 0 \quad \text { strongly in }\left[L^{2}(\Omega)\right]^{n}
\end{array}\right.
$$

Moreover, if $C \in\left(L^{r}\left(Y_{1}\right)\right)^{n \times n}$ for some r such that $2 \leq r \leq \infty$ and $\nabla u_{1} \in$ $\left(L^{s}(\Omega)\right)^{n}$ for some s such that $2 \leq s<\infty$, then

$$
\lim _{\varepsilon \rightarrow 0}\left\|\nabla u_{1}^{\varepsilon}-C^{\varepsilon} \nabla u_{1}\right\|_{L^{t}\left(\Omega_{1}^{\varepsilon}\right)^{n}}=0
$$

where $t=\min \left\{2, \frac{r s}{r+s}\right\}$.

This result will be proved in Section 4. Its proof makes use of the asymptotic behaviour of the energy associated to problem (2.7), which here is not immediate, since one has to take into account the boundary term in the energy. The three cases $-1<\gamma<1, \gamma=1$ and $\gamma>1$ need to be treated separately, the more delicate one being the case $\gamma=1$. They are studied in Section 3.

REmARK 2.6. The corrector result for the component u_{1}^{ε} is the same as that obtained by D. Cioranescu and J. Saint Jean Paulin ([8], see also [9]) for the homogenization of the Laplace problem in the perforated domain Ω_{1}^{ε}, with a Neumann condition on the boundary of the holes. Convergence ii) shows that $\widetilde{\nabla u_{2}^{\varepsilon}}$ is strongly converging to zero in $L^{2}(\Omega)$. This easily implies that actually convergence (2.11)ii) is also strong, that is (2.19)iii) holds.

Let us recall that in the case $\gamma>1$ (see [14]) one cannot expect boundedness of the solutions. To overcome this difficulty and in order to have a non-trivial limit behaviour, one can consider the following problem

$$
\begin{cases}-\operatorname{div}\left(A^{\varepsilon} \nabla u_{1}^{\varepsilon}\right)=f_{1}^{\varepsilon}+P_{1}^{\varepsilon}(g) & \text { in } \Omega_{1}^{\varepsilon} \tag{2.20}\\ -\operatorname{div}\left(A^{\varepsilon} \nabla u_{2}^{\varepsilon}\right)=\varepsilon^{\frac{\gamma-1}{2}} f_{2}^{\varepsilon} & \text { in } \Omega_{2}^{\varepsilon} \\ A^{\varepsilon} \nabla u_{1}^{\varepsilon} \cdot n_{1}^{\varepsilon}=-A^{\varepsilon} \nabla u_{2}^{\varepsilon} \cdot n_{2}^{\varepsilon} & \text { on } \Gamma^{\varepsilon} \\ -A^{\varepsilon} \nabla u_{1}^{\varepsilon} \cdot n_{1}^{\varepsilon}=\varepsilon^{\gamma} h^{\varepsilon}\left(u_{1}^{\varepsilon}-u_{2}^{\varepsilon}\right) & \text { on } \Gamma^{\varepsilon} \\ u_{1}^{\varepsilon}=0 & \text { on } \partial \Omega\end{cases}
$$

where, as before, $f_{1}^{\varepsilon} \in L^{2}\left(\Omega_{1}^{\varepsilon}\right)$ and $f_{2}^{\varepsilon} \in L^{2}\left(\Omega_{2}^{\varepsilon}\right), g$ is given in $H^{-1}(\Omega)$ and $P_{1}^{\varepsilon *}$ is the adjoint operator of the extension operator P_{1}^{ε} given by Lemma 2.1. The variational formulation of (2.20) is then

$$
\left\{\begin{array}{l}
\text { Find } u^{\varepsilon}=\left(u_{1}^{\varepsilon}, u_{2}^{\varepsilon}\right) \text { in } H_{0}^{\varepsilon} \text { such that } \tag{2.21}\\
\int_{\Omega_{1}^{\varepsilon}} A^{\varepsilon} \nabla u_{1}^{\varepsilon} \nabla v_{1} d x+\int_{\Omega_{2}^{\varepsilon}} A^{\varepsilon} \nabla u_{2}^{\varepsilon} \nabla v_{2} d x+\varepsilon^{\gamma} \int_{\Gamma^{\varepsilon}} h^{\varepsilon}\left(u_{1}^{\varepsilon}-u_{2}^{\varepsilon}\right)\left(v_{1}-v_{2}\right) d \sigma \\
=\int_{\Omega_{1}^{\varepsilon}} f_{1}^{\varepsilon} v_{1} d x+<g, P_{1}^{\varepsilon} v_{1}>_{H^{-1}(\Omega), H_{0}^{1}(\Omega)}+\varepsilon^{\frac{\gamma-1}{2}} \int_{\Omega_{2}^{\varepsilon}} f_{2}^{\varepsilon} v_{2} d x, \\
\forall\left(v_{1}, v_{2}\right) \in H_{0}^{\varepsilon} .
\end{array}\right.
$$

The asymptotic behaviour of this system in given by the following result, proved in [10]:

Theorem 2.7 ([10]). Let A^{ε} and h^{ε} be defined by (2.3)-(2.6). Suppose that f_{1}^{ε} and f_{2}^{ε} satisfy (2.8) and let g be given in $L^{2}(\Omega)$. Let $\gamma>1$ and u^{ε} be the solution of problem (2.20). Then, there exists an extension operator $P_{1}^{\varepsilon} \in$ $\mathcal{L}\left(V^{\varepsilon}, H_{0}^{1}(\Omega)\right)$ such that

$$
\begin{cases}\text { i) } P_{1}^{\varepsilon} u_{1}^{\varepsilon} \rightharpoonup u_{1} & \text { weakly in } H_{0}^{1}(\Omega), \tag{2.22}\\ \text { ii) } A^{\varepsilon} \nabla u_{1}^{\varepsilon} \rightharpoonup A^{0} \nabla u_{1} & \text { weakly in }\left[L^{2}(\Omega)\right]^{n} \\ \text { iii) }\left\|u_{1}^{\varepsilon}-u_{2}^{\varepsilon}\right\|_{L^{2}\left(\Gamma^{\varepsilon}\right)}<C \varepsilon^{-\gamma / 2}, & \end{cases}
$$

where C is independent of ε and u_{1} is the unique solution of the problem

$$
\begin{cases}-\operatorname{div}\left(A^{0} \nabla u_{1}\right)=\theta_{1} f_{1}+g & \text { in } \Omega, \tag{2.23}\\ u_{1}=0 & \text { on } \partial \Omega\end{cases}
$$

with A^{0} given by (2.13) and (2.14).
Moreover,

$$
\begin{equation*}
A^{\varepsilon} \widetilde{\nabla u_{2}^{\varepsilon}} \rightharpoonup 0 \quad \text { weakly in }\left[L^{2}(\Omega)\right]^{n} \tag{2.24}
\end{equation*}
$$

Remark 2.8. In [10] this result has been proved in the case where $g=0$ and $f_{1}^{\varepsilon}=f_{\mid \Omega_{1}^{\varepsilon}}, f_{2}^{\varepsilon}=f_{\mid \Omega_{2}^{\varepsilon}}$ for some $f \in L^{2}(\Omega)$. Nevertheless, the results is still valid under the above assumptions on the data (see also Remark 2.4 above).

Theorem 2.9 (Corrector for the case $\gamma>1$). Let $C^{\varepsilon}=\left(C_{i j}^{\varepsilon}\right)_{1 \leq i, j \leq n}$ be the corrector matrix defined by (2.14) and (2.18).

Under the assumptions of Theorem 2.7, one has the following convergence:

$$
\lim _{\varepsilon \rightarrow 0}\left\|\nabla u_{1}^{\varepsilon}-C^{\varepsilon} \nabla u_{1}\right\|_{L^{1}\left(\Omega_{1}^{\varepsilon}\right)^{n}}=0
$$

Moreover, if $C \in\left(L^{r}\left(Y_{1}\right)\right)^{n \times n}$ for some r such that $2 \leq r \leq \infty$ and $\nabla u_{1} \in$ $\left(L^{s}(\Omega)\right)^{n}$ for some s such that $2 \leq s<\infty$, then

$$
\lim _{\varepsilon \rightarrow 0}\left\|\nabla u_{1}^{\varepsilon}-C^{\varepsilon} \nabla u_{1}\right\|_{L^{t}\left(\Omega_{1}^{\varepsilon}\right)^{n}}=0
$$

where $t=\min \left\{2, \frac{r s}{r+s}\right\}$.

This result will be proved in Section 4. Its proof makes use of the asymptotic behaviour of the energy of the first component u_{1}^{ε} of the solution of problem (2.20), which will be studied in Section 3.

Remark 2.10. The possible strong convergence to zero in $L^{2}(\Omega)$ is here an open question. This is related to the fact that we do not know the weak limit behaviour in $L^{2}(\Omega)$ of the (bounded) sequence $\varepsilon^{\frac{\gamma-1}{2}} \widetilde{u_{2}^{\varepsilon}}$ (see also Remark 3.6 below).

3 - The asymptotic behaviour of the energies

In this section we study the limit behaviour of the energies associated to problems (2.7) and (2.20). The three cases $-1<\gamma<1, \gamma=1$ and $\gamma>1$ need to be treated separately.

Proposition 3.1 (case $-1<\gamma<1$). Let $-1<\gamma<1$. Under the assumptions of Theorem 2.5 one has the following convergence of the energy:

$$
\left\{\begin{array}{l}
\lim _{\varepsilon \rightarrow 0}\left(\int_{\Omega_{1}^{\varepsilon}} A^{\varepsilon} \nabla u_{1}^{\varepsilon} \nabla u_{1}^{\varepsilon} d x+\int_{\Omega_{2}^{\varepsilon}} A^{\varepsilon} \nabla u_{2}^{\varepsilon} \nabla u_{2}^{\varepsilon} d x+\varepsilon^{\gamma} \int_{\Gamma^{\varepsilon}} h^{\varepsilon}\left(u_{1}^{\varepsilon}-u_{2}^{\varepsilon}\right)^{2} d \sigma\right) \tag{3.1}\\
=\int_{\Omega} A^{0} \nabla u_{1} \nabla u_{1} d x
\end{array}\right.
$$

where A^{0} and u_{1} are given by Theorem 2.3.

Proof. Let us choose $u^{\varepsilon}=\left(u_{1}^{\varepsilon}, u_{2}^{\varepsilon}\right)$ in the variational formulation (2.9). One has

$$
\left\{\begin{array}{l}
\int_{\Omega_{1}^{\varepsilon}} A^{\varepsilon} \nabla u_{1}^{\varepsilon} \nabla u_{1}^{\varepsilon} d x+\int_{\Omega_{2}^{\varepsilon}} A^{\varepsilon} \nabla u_{2}^{\varepsilon} \nabla u_{2}^{\varepsilon} d x+\varepsilon^{\gamma} \int_{\Gamma^{\varepsilon}} h^{\varepsilon}\left(u_{1}^{\varepsilon}-u_{2}^{\varepsilon}\right)^{2} d \sigma \tag{3.2}\\
=\int_{\Omega_{1}^{\varepsilon}} f_{1}^{\varepsilon} u_{1}^{\varepsilon} d x+<g, P_{1}^{\varepsilon} u_{1}^{\varepsilon}>_{H^{-1}(\Omega), H_{0}^{1}(\Omega)}+\int_{\Omega_{2}^{\varepsilon}} f_{2}^{\varepsilon} u_{2}^{\varepsilon} d x
\end{array}\right.
$$

Observe now that from (2.8), (2.10) and (2.15) one has

$$
\lim _{\varepsilon \rightarrow 0} \int_{\Omega_{2}^{\varepsilon}} f_{2}^{\varepsilon} u_{2}^{\varepsilon} d x=\int_{\Omega} \widetilde{f_{2}^{\varepsilon}} P_{1}^{\varepsilon} u_{1}^{\varepsilon} d x+\int_{\Omega_{2}^{\varepsilon}} f_{2}^{\varepsilon}\left(P_{1}^{\varepsilon} u_{1}^{\varepsilon}-u_{2}^{\varepsilon}\right) d x=\int_{\Omega} \theta_{2} f_{2} u_{1} d x
$$

Hence, again from (2.8) and (2.10) and in view of the limit equation (2.12) we obtain

$$
\left\{\begin{array}{l}
\lim _{\varepsilon \rightarrow 0}\left(\int_{\Omega_{1}^{\varepsilon}} f_{1} u_{1}^{\varepsilon} d x+<g, P_{1}^{\varepsilon} u_{1}^{\varepsilon}>_{H^{-1}(\Omega), H_{0}^{1}(\Omega)}+\int_{\Omega_{2}^{\varepsilon}} f_{2} u_{2}^{\varepsilon} d x\right) \\
=\lim _{\varepsilon \rightarrow 0}\left(\int_{\Omega} \widetilde{f_{1}^{\varepsilon}} P_{1}^{\varepsilon} u_{1}^{\varepsilon} d x+<g, P_{1}^{\varepsilon} u_{1}^{\varepsilon}>_{H^{-1}(\Omega), H_{0}^{1}(\Omega)}\right)+\int_{\Omega} \theta_{2} f_{2} u_{1} d x \\
=\int_{\Omega} \theta_{1} f_{1} u_{1}+\theta_{2} f_{2} u_{1} d x+<g, u_{1}>_{H^{-1}(\Omega), H_{0}^{1}(\Omega)}=\int_{\Omega} A^{0} \nabla u_{1} \nabla u_{1} d x
\end{array}\right.
$$

This, together with (3.2), gives convergence (3.1).

The case $\gamma=1$ is more delicate and we can only prove the following inequality:

Proposition 3.2 (case $\gamma=1$). Let $\gamma=1$. Under the assumptions of Theorem 2.5 one has the following asymptotic behaviour of the energy:

$$
\left\{\begin{array}{l}
\limsup _{\varepsilon \rightarrow 0}\left(\int_{\Omega_{1}^{\varepsilon}} A^{\varepsilon} \nabla u_{1}^{\varepsilon} \nabla u_{1}^{\varepsilon} d x+\int_{\Omega_{2}^{\varepsilon}} A^{\varepsilon} \nabla u_{2}^{\varepsilon} \nabla u_{2}^{\varepsilon} d x \leq\right. \tag{3.3}\\
\leq \int_{\Omega} A^{0} \nabla u_{1} \nabla u_{1} d x,
\end{array}\right.
$$

where A^{0} and u_{1} are given by Theorem 2.2.
To prove Proposition 3.2 we need to use two technical lemmas. The first one is an adaptation to the case of a disconnected set of Lemma 3.1 of [6] (see also [10], Lemma 3.1 for $p=2$).

Lemma 3.3. Suppose that Γ is of class C^{2}. Let $g \in L^{\infty}(\Gamma)$ and set $c_{g}:=$ $\frac{1}{\left|Y_{2}\right|} \int_{\Gamma} g(y) d \sigma_{y}$. Let v_{ε}, for every ε, be a function in $W^{1,1}\left(\Omega_{2}^{\varepsilon}\right)$ such that for some positive constant c one has

$$
\begin{equation*}
\left\|v_{\varepsilon}\right\|_{W^{1,1}\left(\Omega_{2}^{\varepsilon}\right)} \leq c \tag{3.4}
\end{equation*}
$$

Then,

$$
\liminf _{\varepsilon \rightarrow 0} \varepsilon \int_{\Gamma^{\varepsilon}} g(x / \varepsilon) v_{\varepsilon}(x) d \sigma=\liminf _{\varepsilon \rightarrow 0} c_{g} \int_{\Omega_{2}^{\varepsilon}} v_{\varepsilon}(x) d x
$$

Proof. We adapt to our case the proof of Lemma 3.1 of [6]. Let $\psi_{g} \in$ $W^{1, \infty}\left(Y_{2}\right)$ be the unique solution of the problem

$$
\begin{cases}-\triangle \psi_{g}=-c_{g} & \text { in } Y_{2}, \\ \nabla \psi_{g} \cdot n_{2}=g & \text { on } \Gamma, \\ m_{Y}\left(\psi_{g}\right)=0, & \end{cases}
$$

where n_{2} denotes the unit outward normal to Y_{2}. Observe that the regularity of Γ implies that ψ_{g} exists and is in $W^{1, \infty}\left(Y_{2}\right)$. Then, still denoting ψ_{g} the extension by periodicity of ψ_{g} to $\bigcup_{k \in Z^{n}} Y_{2}^{k}$, by a change of scale one has

$$
\begin{equation*}
\varepsilon \int_{\Gamma^{\varepsilon}} g(x / \varepsilon) v(x) d \sigma=\varepsilon \int_{\Omega_{2}^{\varepsilon}} \nabla_{y} \psi_{g}(x / \varepsilon) \nabla_{x} v(x) d x+c_{g} \int_{\Omega_{2}^{\varepsilon}} v(x) d x \tag{3.5}
\end{equation*}
$$

for every $v \in W^{1,1}\left(\Omega_{2}^{\varepsilon}\right)$. On the other hands, from (3.4) one has

$$
\lim _{\varepsilon \rightarrow 0} \varepsilon \int_{\Omega_{2}^{\varepsilon}} \nabla_{y} \psi_{g}(x / \varepsilon) \nabla_{x} v_{\varepsilon}(x) d x=0
$$

Then, choosing $v=v_{\varepsilon}$ in (3.5) and passing to the limit inferior as $\varepsilon \rightarrow 0$, one has the result.

The second lemma has been proved in [11].

Lemma 3.4 ([11]). Let \mathcal{O} be an open set of \mathbb{R}^{n} and $\left\{\mathcal{O}_{\varepsilon}\right\}_{\varepsilon} \subset \mathcal{O}$ a sequence of open subsets of \mathcal{O}. Suppose that $\left\{v_{\varepsilon}\right\}_{\varepsilon} \subset L^{p}\left(\mathcal{O}_{\varepsilon}\right), p>1$, is such that, as $\varepsilon \rightarrow 0$,

$$
\begin{cases}\chi_{\mathcal{O}_{\varepsilon}} \rightharpoonup \chi_{0}, & \text { in } L^{\infty}(\mathcal{O}) \text { weakly } *, \\ \widetilde{v_{\varepsilon}} \rightharpoonup \chi_{0} v & \text { weakly in } L^{p}(\mathcal{O})\end{cases}
$$

Then

$$
\liminf _{\varepsilon \rightarrow 0} \int_{\mathcal{O}_{\varepsilon}}\left|v_{\varepsilon}\right|^{p} d x \geq \int_{\mathcal{O}} \chi_{0}|v|^{p} d x
$$

Proof of Proposition 3.2. Let us choose $u^{\varepsilon}=\left(u_{1}^{\varepsilon}, u_{2}^{\varepsilon}\right)$ in the variational formulation (2.9). Using (2.8)i) and the fact that $f_{2}^{\varepsilon}=f_{2 \mid \Omega_{2}^{\varepsilon}}$, together with (2.16), (2.10), (2.11) and the limit equation (2.12), one has

$$
\begin{aligned}
& \limsup _{\varepsilon \rightarrow 0}\left(\int_{\Omega_{1}^{\varepsilon}} A^{\varepsilon} \nabla u_{1}^{\varepsilon} \nabla u_{1}^{\varepsilon} d x+\int_{\Omega_{2}^{\varepsilon}} A^{\varepsilon} \nabla u_{2}^{\varepsilon} \nabla u_{2}^{\varepsilon} d x\right) \\
& =\limsup _{\varepsilon \rightarrow 0}\left(-\varepsilon \int_{\Gamma^{\varepsilon}} h^{\varepsilon}\left(u_{1}^{\varepsilon}-u_{2}^{\varepsilon}\right)^{2} d \sigma\right) \\
& \quad+\lim _{\varepsilon \rightarrow 0}\left(\int_{\Omega_{1}^{\varepsilon}} f_{1}^{\varepsilon} u_{1}^{\varepsilon} d x+<g, P_{1}^{\varepsilon} u_{1}^{\varepsilon}>_{H^{-1}(\Omega), H_{0}^{1}(\Omega)}+\int_{\Omega_{2}^{\varepsilon}} f_{2} u_{2}^{\varepsilon} d x\right) \\
& =\limsup _{\varepsilon \rightarrow 0}\left(-\varepsilon \int_{\Gamma^{\varepsilon}} h^{\varepsilon}\left(u_{1}^{\varepsilon}-u_{2}^{\varepsilon}\right)^{2} d \sigma\right) \\
& \quad+\lim _{\varepsilon \rightarrow 0}\left(\int_{\Omega} \widetilde{f_{1}^{\varepsilon}} P_{1}^{\varepsilon} u_{1}^{\varepsilon} d x+<g, P_{1}^{\varepsilon} u_{1}^{\varepsilon}>_{H^{-1}(\Omega), H_{0}^{1}(\Omega)}+\int_{\Omega} f_{2} \widetilde{u_{2}^{\varepsilon}} d x\right) \\
& =-\liminf _{\varepsilon \rightarrow 0}\left(\varepsilon \int_{\Gamma^{\varepsilon}} h^{\varepsilon}\left(u_{1}^{\varepsilon}-u_{2}^{\varepsilon}\right)^{2} d \sigma\right)+\int_{\Omega} \theta_{1} f_{1} u_{1} d x \\
& \quad+<g, u_{1}>_{H^{-1}(\Omega), H_{0}^{1}(\Omega)}+\int_{\Omega} f_{2} \theta_{2}\left(u_{1}+c_{h}^{-1} f_{2}\right) d x \\
& =-\liminf _{\varepsilon \rightarrow 0}\left(\varepsilon \int_{\Gamma^{\varepsilon}} h^{\varepsilon}\left(u_{1}^{\varepsilon}-u_{2}^{\varepsilon}\right)^{2} d \sigma\right)+\int_{\Omega} A^{0} \nabla u_{1} \nabla u_{1} d x \\
& \quad+\int_{\Omega} \theta_{2} c_{h}^{-1} f_{2}^{2} d x .
\end{aligned}
$$

Hence, to prove (3.3), it will be sufficient to show that

$$
\begin{equation*}
\liminf _{\varepsilon \rightarrow 0}\left(\varepsilon \int_{\Gamma^{\varepsilon}} h^{\varepsilon}\left(u_{1}^{\varepsilon}-u_{2}^{\varepsilon}\right)^{2} d \sigma\right) \geq \int_{\Omega} \theta_{2} c_{h}^{-1} f_{2}^{2} d x \tag{3.6}
\end{equation*}
$$

To do that, we make use of Lemmas 3.3 and 3.4. First, we apply Lemma 3.3 with $p=1, g=h$ and $v_{\varepsilon}=\left(P_{1}^{\varepsilon} u_{1}^{\varepsilon}-u_{2}^{\varepsilon}\right)^{2}$. We obtain

$$
\left\{\begin{array}{l}
\liminf _{\varepsilon \rightarrow 0}\left(\varepsilon \int_{\Gamma^{\varepsilon}} h^{\varepsilon}\left(u_{1}^{\varepsilon}-u_{2}^{\varepsilon}\right)^{2} d \sigma\right)=\liminf _{\varepsilon \rightarrow 0}\left(\varepsilon \int_{\Gamma^{\varepsilon}} h^{\varepsilon}\left(P_{1}^{\varepsilon} u_{1}^{\varepsilon}-u_{2}^{\varepsilon}\right)^{2} d \sigma\right) \tag{3.7}\\
=\liminf _{\varepsilon \rightarrow 0} c_{h} \int_{\Omega_{2}^{\varepsilon}}\left(P_{1}^{\varepsilon} u_{1}^{\varepsilon}-u_{2}^{\varepsilon}\right)^{2} d x .
\end{array}\right.
$$

Observe now that, thanks to (2.10), (2.11) and (2.16), we have

$$
\left(\widetilde{\left.P_{1}^{\varepsilon} u_{1}^{\varepsilon}\right|_{\Omega_{2}^{\varepsilon}}}\right)-\widetilde{u_{2}^{\varepsilon}}=\chi_{\Omega_{2}^{\varepsilon}} P_{1}^{\varepsilon} u_{1}^{\varepsilon}-\widetilde{u_{2}^{\varepsilon}} \rightharpoonup-\theta_{2} c_{h}^{-1} f_{2}, \quad \text { weakly in } L^{2}(\Omega)
$$

Consequently, we can apply Lemma 3.4 with $p=2, \mathcal{O}_{\varepsilon}=\Omega_{2}^{\varepsilon}$, $\chi_{0}=\theta_{2}, v_{\varepsilon}=$ $P_{1}^{\varepsilon} u_{1_{\Omega_{2}^{\varepsilon}}^{\varepsilon}}-u_{2}^{\varepsilon}$ and $v=-c_{h}^{-1} f_{2}$. We have

$$
\liminf _{\varepsilon \rightarrow 0} c_{h} \int_{\Omega_{2}^{\varepsilon}}\left(\left.P_{1}^{\varepsilon} u_{1}^{\varepsilon}\right|_{\Omega_{2}^{\varepsilon}}-u_{2}^{\varepsilon}\right)^{2} d x \geq c_{h} \int_{\Omega} \theta_{2}\left(-c_{h}^{-1} f_{2}\right)^{2} d x=\int_{\Omega} \theta_{2} c_{h}^{-1} f_{2}^{2} d x
$$

This, together with (3.7), gives (3.6) and concludes the proof.
Proposition 3.5 (case $\gamma>1$). Let $\gamma>1$. Under the assumptions of Theorem 2.9 one has the following convergence:

$$
\left\{\begin{array}{l}
\lim _{\varepsilon \rightarrow 0}\left(\int_{\Omega_{1}^{\varepsilon}} A^{\varepsilon} \nabla u_{1}^{\varepsilon} \nabla u_{1}^{\varepsilon} d x+\varepsilon^{\gamma} \int_{\Gamma^{\varepsilon}} h^{\varepsilon}\left(u_{1}^{\varepsilon}-u_{2}^{\varepsilon}\right) u_{2}^{\varepsilon} d \sigma\right) \tag{3.8}\\
=\int_{\Omega} A^{0} \nabla u_{1} \nabla u_{1} d x
\end{array}\right.
$$

where A^{0} and u_{1} are given by Theorem 2.7.
Proof. Choosing $u^{\varepsilon}=\left(u_{1}^{\varepsilon}, 0\right)$ in the variational formulation (2.21) gives

$$
\begin{aligned}
& \int_{\Omega_{1}^{\varepsilon}} A^{\varepsilon} \nabla u_{1}^{\varepsilon} \nabla u_{1}^{\varepsilon} d x+\varepsilon^{\gamma} \int_{\Gamma^{\varepsilon}} h^{\varepsilon}\left(u_{1}^{\varepsilon}-u_{2}^{\varepsilon}\right) u_{2}^{\varepsilon} d \sigma \\
& =\int_{\Omega_{1}^{\varepsilon}} f_{1}^{\varepsilon} u_{1}^{\varepsilon} d x+<g, P_{1}^{\varepsilon} u_{1}^{\varepsilon}>_{H^{-1}(\Omega), H_{0}^{1}(\Omega)} .
\end{aligned}
$$

Then, using (2.8) and (2.22), one gets

$$
\left\{\begin{array}{l}
\lim _{\varepsilon \rightarrow 0}\left(\int_{\Omega_{1}^{\varepsilon}} A^{\varepsilon} \nabla u_{1}^{\varepsilon} \nabla u_{1}^{\varepsilon} d x+\varepsilon^{\gamma} \int_{\Gamma^{\varepsilon}} h^{\varepsilon}\left(u_{1}^{\varepsilon}-u_{2}^{\varepsilon}\right) u_{2}^{\varepsilon} d \sigma\right) \\
=\int_{\Omega_{1}^{\varepsilon}} \theta_{1} f_{1} u_{1} d x+<g, u_{1}>_{H^{-1}(\Omega), H_{0}^{1}(\Omega)} .
\end{array}\right.
$$

This, using u_{1} as test function in the limit problem (2.23), gives the result.

Remark 3.6. Here we can only study the behaviour of the first component of the energy. Indeed, since we do not know the weak limit behaviour in $L^{2}(\Omega)$ of the (bounded) sequence $\left\{\varepsilon^{\left.\frac{\gamma-1}{2} \widetilde{u_{2}^{\varepsilon}}\right\} \text {, we cannot compute the limit of }}\right.$ $\int_{\Omega_{2}^{\varepsilon}} A^{\varepsilon} \nabla u_{2}^{\varepsilon} \nabla u_{2}^{\varepsilon} d x$.

4 - Proof of the corrector results

The proof of Theorem 2.5 is based on the convergence of the energies given in Section 3 and on the following main result:

Proposition 4.1. Under the assumptions of Theorem 2.5, there exists a positive constant c independent of ε such that for any $\Phi \in(\mathcal{D}(\Omega))^{n}$, one has

$$
\limsup _{\varepsilon \rightarrow 0}\left(\left\|\nabla u_{1}^{\varepsilon}-C^{\varepsilon} \Phi\right\|_{L^{2}\left(\Omega_{1}^{\varepsilon}\right)}+\left\|\nabla u_{2}^{\varepsilon}\right\|_{L^{2}\left(\Omega_{2}^{\varepsilon}\right)}\right) \leq c\left\|\nabla u_{1}-\Phi\right\|_{L^{2}(\Omega)} .
$$

Proof. Let $\Phi=\left(\Phi_{1}, \ldots \Phi_{n}\right) \in(\mathcal{D}(\Omega))^{n}$. From (2.3) and (2.4) one gets

$$
\begin{align*}
& \alpha\left\|\nabla u_{1}^{\varepsilon}-C^{\varepsilon} \Phi\right\|_{L^{2}\left(\Omega_{1}^{\varepsilon}\right)}^{2}+\left\|\nabla u_{2}^{\varepsilon}\right\|_{L^{2}\left(\Omega_{2}^{\varepsilon}\right)}^{2} \\
& \leq \int_{\Omega_{1}^{\varepsilon}} A^{\varepsilon}\left(\nabla u_{1}^{\varepsilon}-C^{\varepsilon} \Phi\right)\left(\nabla u_{1}^{\varepsilon}-C^{\varepsilon} \Phi\right) d x+\int_{\Omega_{2}^{\varepsilon}} A^{\varepsilon} \nabla u_{2}^{\varepsilon} \nabla u_{2}^{\varepsilon} d x \\
&= \int_{\Omega_{1}^{\varepsilon}} A^{\varepsilon} \nabla u_{1}^{\varepsilon} \nabla u_{1}^{\varepsilon} d x-\int_{\Omega_{1}^{\varepsilon}} A^{\varepsilon} \nabla u_{1}^{\varepsilon}\left(C^{\varepsilon} \Phi\right) d x-\int_{\Omega_{1}^{\varepsilon}} A^{\varepsilon}\left(C^{\varepsilon} \Phi\right) \nabla u_{1}^{\varepsilon} d x \tag{4.1}\\
&+\int_{\Omega_{1}^{\varepsilon}} A^{\varepsilon}\left(C^{\varepsilon} \Phi\right)\left(C^{\varepsilon} \Phi\right) d x+\int_{\Omega_{2}^{\varepsilon}} A^{\varepsilon} \nabla u_{2}^{\varepsilon} \nabla u_{2}^{\varepsilon} .
\end{align*}
$$

We want to pass to the limit for $\varepsilon \rightarrow 0$ in each term. Concerning the energy terms, we use Proposition 3.1 for $-1<\gamma<1$ and Proposition 3.2 for $\gamma=1$. In the first case this gives

$$
\left\{\begin{array}{l}
\limsup _{\varepsilon \rightarrow 0}\left(\int_{\Omega_{1}^{\varepsilon}} A^{\varepsilon} \nabla u_{1}^{\varepsilon} \nabla u_{1}^{\varepsilon} d x+\int_{\Omega_{2}^{\varepsilon}} A^{\varepsilon} \nabla u_{2}^{\varepsilon} \nabla u_{2}^{\varepsilon} d x\right) \leq \tag{4.2}\\
\leq \lim _{\varepsilon \rightarrow 0}\left(\int_{\Omega_{1}^{\varepsilon}} A^{\varepsilon} \nabla u_{1}^{\varepsilon} \nabla u_{1}^{\varepsilon} d x+\int_{\Omega_{2}^{\varepsilon}} A^{\varepsilon} \nabla u_{2}^{\varepsilon} \nabla u_{2}^{\varepsilon} d x+\right. \\
\left.+\varepsilon^{\gamma} \int_{\Gamma^{\varepsilon}} h^{\varepsilon}\left(u_{1}^{\varepsilon}-u_{2}^{\varepsilon}\right)^{2} d \sigma\right)=\int_{\Omega} A^{0} \nabla u_{1} \nabla u_{1} d x,
\end{array}\right.
$$

the second limit superior being a limit since $\gamma<1$.

Observe now that, from the definition (2.18) of C^{ε}, one can write

$$
\begin{align*}
& \lim _{\varepsilon \rightarrow 0} \int_{\Omega_{1}^{\varepsilon}} A^{\varepsilon} \nabla u_{1}^{\varepsilon}\left(C^{\varepsilon} \Phi\right) d x=\sum_{i=1}^{n} \lim _{\varepsilon \rightarrow 0} \int_{\Omega_{1}^{\varepsilon}} A^{\varepsilon} \nabla u_{1}^{\varepsilon}\left(\Phi_{i} \nabla \widehat{w}_{i}^{\varepsilon}\right) d x \tag{4.3}\\
& =\sum_{i=1}^{n}\left(\lim _{\varepsilon \rightarrow 0} \int_{\Omega_{1}^{\varepsilon}} A^{\varepsilon} \nabla u_{1}^{\varepsilon} \nabla\left(\Phi_{i} \widehat{w}_{i}^{\varepsilon}\right) d x-\lim _{\varepsilon \rightarrow 0} \int_{\Omega_{1}^{\varepsilon}} A^{\varepsilon} \nabla u_{1}^{\varepsilon} \nabla \Phi_{i} \widehat{w}_{i}^{\varepsilon} d x\right) .
\end{align*}
$$

Set, for $i=1, \ldots, n$,

$$
\begin{equation*}
\widehat{\chi}_{i}(y)=-\widehat{w}_{i}(y)+y_{i}, \quad \text { in } Y_{1} \tag{4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\widehat{w}_{i}^{\varepsilon}(x)=x_{i}-\varepsilon\left(P_{1}\left(\widehat{\chi}_{i}^{\varepsilon}\right)(x / \varepsilon)\right), \quad \text { in } \Omega, \tag{4.5}
\end{equation*}
$$

where the extension operator P_{1} is defined in Lemma 2.1. By a change of scales one has

$$
\begin{equation*}
\int_{\Omega_{1}^{\varepsilon}} A^{\varepsilon} \nabla \widehat{w}_{i}^{\varepsilon} \nabla v d x=0, \quad \forall v \in H_{0}^{1}(\Omega) \tag{4.6}
\end{equation*}
$$

and, by standard arguments

$$
\begin{cases}\widehat{w}_{i}^{\varepsilon} \rightarrow x_{i} & \text { weakly in } H^{1}(\Omega) \tag{4.7}\\ \widehat{w}_{i}^{\varepsilon} \rightarrow x_{i} & \text { strongly in } L^{2}(\Omega) \\ \widehat{\eta}_{i}^{\varepsilon} \doteq \chi_{\Omega_{i}^{\varepsilon}} A^{\varepsilon} \nabla \widehat{w}_{i}^{\varepsilon} \rightharpoonup A^{0} e_{i} & \text { weakly in }\left[L^{2}(\Omega)\right]^{n}\end{cases}
$$

Then, choosing $v_{1}=\Phi_{i} \widehat{w}_{i}^{\varepsilon}$ and $v_{2}=\Phi_{i} x_{i}$ as test function in (2.9), one has

$$
\left\{\begin{array}{l}
\int_{\Omega_{1}^{\varepsilon}} A^{\varepsilon} \nabla u_{1}^{\varepsilon} \nabla\left(\Phi_{i} \widehat{w}_{i}^{\varepsilon}\right) d x=-\int_{\Omega_{2}^{\varepsilon}} A^{\varepsilon} \nabla u_{2}^{\varepsilon} \nabla\left(\Phi_{i} x_{i}\right) d x \tag{4.8}\\
-\varepsilon^{\gamma} \int_{\Gamma^{\varepsilon}} h^{\varepsilon}\left(u_{1}^{\varepsilon}-u_{2}^{\varepsilon}\right) \Phi_{i}\left(\widehat{w}_{i}^{\varepsilon}-x_{i}\right) d \sigma+\int_{\Omega_{1}^{\varepsilon}} f_{1}^{\varepsilon} \Phi_{i} \widehat{w}_{i}^{\varepsilon} d x \\
+<g, P_{1}^{\varepsilon}\left(\left.\Phi_{i} \widehat{w}_{i}^{\varepsilon}\right|_{\Omega_{1}^{\varepsilon}}\right)>_{H^{-1}(\Omega), H_{0}^{1}(\Omega)}+\int_{\Omega_{2}^{\varepsilon}} f_{2}^{\varepsilon} \Phi_{i} x_{i} d x
\end{array}\right.
$$

Now, observe that from (2.10)iii), (4.5) and a change of scales it results

$$
\begin{aligned}
\varepsilon^{\gamma} \int_{\Gamma^{\varepsilon}} h^{\varepsilon}\left(u_{1}^{\varepsilon}-u_{2}^{\varepsilon}\right) \Phi_{i}\left(\widehat{w}_{i}^{\varepsilon}-x_{i}\right) d \sigma & \leq \varepsilon^{\gamma}\left\|u_{1}^{\varepsilon}-u_{2}^{\varepsilon}\right\|_{L^{2}\left(\Gamma^{\varepsilon}\right)}\left\|\varepsilon \widehat{\chi}_{i}^{\varepsilon}(x / \varepsilon)\right\|_{L^{2}\left(\Gamma^{\varepsilon}\right)} \\
& \leq c \varepsilon^{\gamma+1} \varepsilon^{-\gamma / 2} \varepsilon^{-1 / 2}=c \varepsilon^{(\gamma+1) / 2}
\end{aligned}
$$

where c is independent of ε. Consequently

$$
\lim _{\varepsilon \rightarrow 0} \varepsilon^{\gamma} \int_{\Gamma^{\varepsilon}} h^{\varepsilon}\left(u_{1}^{\varepsilon}-u_{2}^{\varepsilon}\right) \Phi_{i}\left(\widehat{w}_{i}^{\varepsilon}-x_{i}\right) d \sigma=0,
$$

since $\gamma>-1$. Then, passing to the limit in (4.8) as $\varepsilon \rightarrow 0$ and using (2.11)ii), (2.17), (4.7), (2.8) and the fact that $f_{2}^{\varepsilon}=f_{2 \mid \Omega_{2}^{\varepsilon}}$ if $\gamma=1$, one derives

$$
\left\{\begin{array}{l}
\lim _{\varepsilon \rightarrow 0} \int_{\Omega} A^{\varepsilon} \nabla u_{1}^{\varepsilon} \nabla\left(\Phi_{i} \widehat{w}_{i}^{\varepsilon}\right) d x=\int_{\Omega} \theta_{1} f_{1} \Phi_{i} x_{i} d x \\
+<g, \Phi_{i} x_{i}>_{H^{-1}(\Omega), H_{0}^{1}(\Omega)}+\int_{\Omega} \theta_{2} f_{2} \Phi_{i} x_{i} d x
\end{array}\right.
$$

This, together with (4.3) and convergences (2.10)ii) and (4.7), gives

$$
\left\{\begin{array}{l}
\lim _{\varepsilon \rightarrow 0} \int_{\Omega_{1}^{\varepsilon}} A^{\varepsilon} \nabla u_{1}^{\varepsilon}\left(C^{\varepsilon} \Phi\right) d x \tag{4.9}\\
=\sum_{i=1}^{n}\left(\int_{\Omega} \theta_{1} f_{1} \Phi_{i} x_{i} d x+<g, \Phi_{i} x_{i}>_{H^{-1}(\Omega), H_{0}^{1}(\Omega)}\right. \\
\left.+\int_{\Omega} \theta_{2} f_{2} \Phi_{i} x_{i} d x-\int_{\Omega} A^{0} \nabla u_{1} \nabla \Phi_{i} x_{i} d x\right)
\end{array}\right.
$$

Since

$$
\int_{\Omega} A^{0} \nabla u_{1} \nabla \Phi_{i} x_{i} d x=\int_{\Omega} A^{0} \nabla u_{1} \nabla\left(\Phi_{i} x_{i}\right) d x-\int_{\Omega} A^{0} \nabla u_{1} \nabla \Phi_{i} e_{i} d x
$$

using $\Phi_{i} x_{i}$ as test function in (2.12) we obtain from (4.9) that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \int_{\Omega_{1}^{\varepsilon}} A^{\varepsilon} \nabla u_{1}^{\varepsilon}\left(C^{\varepsilon} \Phi\right) d x=\int_{\Omega} A^{0} \nabla u_{1} \Phi d x \tag{4.10}
\end{equation*}
$$

To treat the third term of the right-hand side of (4.1), let us take $\Phi_{i} u_{1}^{\varepsilon}$ as test function in (4.6). We obtain, by taking into account (4.6), (2.10)i) and (4.7)

$$
\begin{align*}
& \lim _{\varepsilon \rightarrow 0} \int_{\Omega_{1}^{\varepsilon}} A^{\varepsilon}\left(C^{\varepsilon} \Phi\right) \nabla u_{1}^{\varepsilon} d x=\sum_{i=1}^{n} \lim _{\varepsilon \rightarrow 0} \int_{\Omega_{1}^{\varepsilon}} A^{\varepsilon} \nabla \widehat{w}_{i}^{\varepsilon} \nabla u_{1}^{\varepsilon} \Phi_{i} d x \\
& =\sum_{i=1}^{n} \lim _{\varepsilon \rightarrow 0}\left(\int_{\Omega_{1}^{\varepsilon}} \widehat{\eta}_{i}^{\varepsilon} \nabla\left(\Phi_{i} u_{1}^{\varepsilon}\right) d x-\int_{\Omega_{1}^{\varepsilon}} \widehat{\eta}_{i}^{\varepsilon} \nabla \Phi_{i} u_{1}^{\varepsilon} d x\right) \tag{4.11}\\
& =\sum_{i=1}^{n} \lim _{\varepsilon \rightarrow 0} \int_{\Omega_{1}^{\varepsilon}} \widehat{\eta}_{i}^{\varepsilon} \nabla \Phi_{i} u_{1}^{\varepsilon} d x=-\sum_{i=1}^{n} \int_{\Omega} A^{0} e_{i} \nabla \Phi_{i} u_{1} d x \\
& =\int_{\Omega} A^{0} \Phi \nabla u_{1} d x .
\end{align*}
$$

For the last term in (4.1) we now choose $\Phi_{i} \Phi_{j} \widehat{w}_{j}^{\varepsilon}$ as test function in (4.6). A standard computation gives

$$
\begin{align*}
& \lim _{\varepsilon \rightarrow 0} \int_{\Omega_{1}^{\varepsilon}} A^{\varepsilon}\left(C^{\varepsilon} \Phi\right)\left(C^{\varepsilon} \Phi\right) d x=\sum_{i, j=1}^{n} \lim _{\varepsilon \rightarrow 0} \int_{\Omega_{1}^{\varepsilon}} A^{\varepsilon} \nabla \widehat{w}_{i}^{\varepsilon} \nabla \widehat{w}_{j}^{\varepsilon} \Phi_{i} \Phi_{j} d x \\
& =\sum_{i, j=1}^{n} \lim _{\varepsilon \rightarrow 0}\left(\int_{\Omega_{1}^{\varepsilon}} \widehat{\eta}_{i}^{\varepsilon} \nabla\left(\Phi_{i} \Phi_{j} \widehat{w}_{j}^{\varepsilon}\right) d x-\int_{\Omega_{1}^{\varepsilon}} \widehat{\eta}_{i}^{\varepsilon} \nabla\left(\Phi_{i} \Phi_{j}\right) \widehat{w}_{j}^{\varepsilon} d x\right) \tag{4.12}\\
& =-\sum_{i, j=1}^{n} \int_{\Omega} A^{0} e_{i} \nabla\left(\Phi_{i} \Phi_{j}\right) x_{j} d x=\int_{\Omega} A^{0} \Phi \Phi d x .
\end{align*}
$$

We can now pass to the limit superior in (4.1). Thanks to (3.3), (4.2), (4.10)(4.12) we obtain

$$
\begin{aligned}
& \limsup _{\varepsilon \rightarrow 0}\left(\alpha\left\|\nabla u_{1}^{\varepsilon}-C^{\varepsilon} \Phi\right\|_{L^{2}\left(\Omega_{1}^{\varepsilon}\right)}^{2}+\left\|\nabla u_{2}^{\varepsilon}\right\|_{L^{2}\left(\Omega_{2}^{\varepsilon}\right)}^{2}\right) \\
& \leq \int_{\Omega} A^{0} \nabla u_{1} \nabla u_{1} d x-\int_{\Omega} A^{0} \nabla u_{1} \Phi d x-\int_{\Omega} A^{0} \Phi \nabla u_{1} d x \\
& \quad+\int_{\Omega} A^{0} \Phi \Phi d x=\int_{\Omega} A^{0}\left(\nabla u_{1}-\Phi\right)\left(\nabla u_{1}-\Phi\right) d x
\end{aligned}
$$

which gives the result, since A^{0} is a constant matrix.
Proof of Theorem 2.5. The result follows from a density argument and from Proposition 4.1. Let $\delta>0$ and $\Phi_{\delta} \in(\mathcal{D}(\Omega))^{n}$ such that

$$
\left\|\nabla u_{1}-\Phi_{\delta}\right\|_{L^{2}(\Omega)} \leq \delta
$$

From (2.18) and Proposition (4.1) one obtain

$$
\begin{aligned}
& \underset{\varepsilon \rightarrow 0}{\limsup }\left(\left\|\nabla u_{1}^{\varepsilon}-C^{\varepsilon} \nabla u_{1}\right\|_{L^{1}\left(\Omega_{1}^{\varepsilon}\right)}+\left\|\nabla u_{2}^{\varepsilon}\right\|_{L^{2}\left(\Omega_{2}^{\varepsilon}\right)}\right) \\
& \leq \limsup _{\varepsilon \rightarrow 0}\left[\left\|\nabla u_{1}^{\varepsilon}-C^{\varepsilon} \Phi_{\delta}\right\|_{L^{1}\left(\Omega_{1}^{\varepsilon}\right)}+\left\|\nabla u_{2}^{\varepsilon}\right\|_{L^{2}\left(\Omega_{2}^{\varepsilon}\right)}+\left\|C^{\varepsilon} \Phi_{\delta}-C^{\varepsilon} \nabla u_{1}\right\|_{L^{1}(\Omega)}\right] \\
& \leq \limsup _{\varepsilon \rightarrow 0}\left[c_{1}\left\|\nabla u_{1}^{\varepsilon}-C^{\varepsilon} \Phi_{\delta}\right\|_{L^{2}(\Omega)}+\left\|\nabla u_{2}^{\varepsilon}\right\|_{L^{2}\left(\Omega_{2}^{\varepsilon}\right)}\right]+c_{2}\left\|\nabla u_{1}-\Phi_{\delta}\right\|_{L^{2}(\Omega)} \\
& \leq c c_{1}\left\|\nabla u_{1}-\Phi_{\delta}\right\|_{L^{2}(\Omega)}+c_{2} \delta \leq c_{3} \delta .
\end{aligned}
$$

This gives convergences i) and ii) in (2.19), while convergence iii) is an immediate consequence of ii) and (2.3)-(2.4). Finally, the last statement follows by a standard argument (see for instance [7, Chapter 8]), using a similar computation and the Hölder inequality.

Proof of Theorem 2.9. The proof of Theorem 2.9 makes use of similar arguments as that used in the proof of Theorem 2.5, once one has proved that there exists a constant $c>0$, independent of ε, such that for any $\Phi \in(\mathcal{D}(\Omega))^{n}$,

$$
\begin{equation*}
\limsup _{\varepsilon \rightarrow 0}\left\|\nabla u_{1}^{\varepsilon}-C^{\varepsilon} \Phi\right\|_{L^{2}\left(\Omega_{1}^{\varepsilon}\right)} \leq c\left\|\nabla u_{1}-\Phi\right\|_{L^{2}(\Omega)} . \tag{4.13}
\end{equation*}
$$

To show that, let $\Phi=\left(\Phi_{1}, \ldots \Phi_{n}\right) \in(\mathcal{D}(\Omega))^{n}$. From (2.3) and (2.4) one gets

$$
\begin{align*}
& \alpha\left\|\nabla u_{1}^{\varepsilon}-C^{\varepsilon} \Phi\right\|_{L^{2}\left(\Omega_{1}^{\varepsilon}\right)}^{2} \leq \int_{\Omega_{1}^{\varepsilon}} A^{\varepsilon}\left(\nabla u_{1}^{\varepsilon}-C^{\varepsilon} \Phi\right)\left(\nabla u_{1}^{\varepsilon}-C^{\varepsilon} \Phi\right) d x \\
& = \tag{4.14}\\
& \quad \int_{\Omega_{1}^{\varepsilon}} A^{\varepsilon} \nabla u_{1}^{\varepsilon} \nabla u_{1}^{\varepsilon} d x-\int_{\Omega_{1}^{\varepsilon}} A^{\varepsilon} \nabla u_{1}^{\varepsilon}\left(C^{\varepsilon} \Phi\right) d x \\
& \quad-\int_{\Omega_{1}^{\varepsilon}} A^{\varepsilon}\left(C^{\varepsilon} \Phi\right) \nabla u_{1}^{\varepsilon} d x+\int_{\Omega_{1}^{\varepsilon}} A^{\varepsilon}\left(C^{\varepsilon} \Phi\right)\left(C^{\varepsilon} \Phi\right) d x .
\end{align*}
$$

From Proposition 3.5, Theorem 2.7 and convergence (4.12) one has

$$
\begin{align*}
& \lim _{\varepsilon \rightarrow 0}\left(\int_{\Omega_{1}^{\varepsilon}} A^{\varepsilon} \nabla u_{1}^{\varepsilon} \nabla u_{1}^{\varepsilon} d x-\int_{\Omega_{1}^{\varepsilon}} A^{\varepsilon}\left(C^{\varepsilon} \Phi\right) \nabla u_{1}^{\varepsilon} d x+\int_{\Omega_{1}^{\varepsilon}} A^{\varepsilon}\left(C^{\varepsilon} \Phi\right)\left(C^{\varepsilon} \Phi\right) d x\right) \tag{4.15}\\
& =\int_{\Omega} A^{0} \nabla u_{1} \nabla u_{1} d x-\int_{\Omega} A^{0} \Phi \nabla u_{1} d x+\int_{\Omega} A^{0} \Phi \Phi d x,
\end{align*}
$$

where for passing to the limit in the second term of the left-hand side we used the same argument as that used to prove (4.11).

It remains now to pass to the limit in the second term on the right-hand side of (4.14). As in the proof of Theorem 2.5, we write this term as follows:

$$
\left\{\begin{array}{l}
\lim _{\varepsilon \rightarrow 0} \int_{\Omega_{1}^{\varepsilon}} A^{\varepsilon} \nabla u_{1}^{\varepsilon}\left(C^{\varepsilon} \Phi\right) d x=\sum_{i=1}^{n} \lim _{\varepsilon \rightarrow 0} \int_{\Omega_{1}^{\varepsilon}} A^{\varepsilon} \nabla u_{1}^{\varepsilon}\left(\Phi_{i} \nabla \widehat{w}_{i}^{\varepsilon}\right) d x \tag{4.16}\\
=\sum_{i=1}^{n}\left(\lim _{\varepsilon \rightarrow 0} \int_{\Omega_{1}^{\varepsilon}} A^{\varepsilon} \nabla u_{1}^{\varepsilon} \nabla\left(\Phi_{i} \widehat{w}_{i}^{\varepsilon}\right) d x-\lim _{\varepsilon \rightarrow 0} \int_{\Omega_{1}^{\varepsilon}} A^{\varepsilon} \nabla u_{1}^{\varepsilon} \nabla \Phi_{i} \widehat{w}_{i}^{\varepsilon} d x\right) .
\end{array}\right.
$$

Let $\widehat{w}_{i}^{\varepsilon}$ be defined by (4.5). Choosing here $v_{1}=\Phi_{i} \widehat{w}_{i}^{\varepsilon}$ and $v_{2}=0$ as test function in (2.21), one has

$$
\left\{\begin{array}{l}
\int_{\Omega_{1}^{\varepsilon}} A^{\varepsilon} \nabla u_{1}^{\varepsilon} \nabla\left(\Phi_{i} \widehat{w}_{i}^{\varepsilon}\right) d x=-\varepsilon^{\gamma} \int_{\Gamma^{\varepsilon}} h^{\varepsilon}\left(u_{1}^{\varepsilon}-u_{2}^{\varepsilon}\right) \Phi_{i} \widehat{w}_{i}^{\varepsilon} d \sigma+\int_{\Omega_{1}^{\varepsilon}} f_{1}^{\varepsilon} \Phi_{i} \widehat{w}_{i}^{\varepsilon} d x \tag{4.17}\\
+<g, P_{1}^{\varepsilon}\left(\left.\Phi_{i} \widehat{w}_{i}^{\varepsilon}\right|_{\Omega_{1}^{\varepsilon}}\right)>_{H^{-1}(\Omega), H_{0}^{1}(\Omega)} .
\end{array}\right.
$$

Now, observe that from (2.22)iii), (4.5) and a change of scales one has

$$
\begin{aligned}
\varepsilon^{\gamma} \int_{\Gamma^{\varepsilon}} h^{\varepsilon}\left(u_{1}^{\varepsilon}-u_{2}^{\varepsilon}\right) \Phi_{i} \widehat{w}_{i}^{\varepsilon} d \sigma & \leq \varepsilon^{\gamma}\left\|u_{1}^{\varepsilon}-u_{2}^{\varepsilon}\right\|_{L^{2}\left(\Gamma^{\varepsilon}\right)}\left\|\widehat{w}_{i}^{\varepsilon}\right\|_{L^{2}\left(\Gamma^{\varepsilon}\right)} \\
& \leq c \varepsilon^{\gamma} \varepsilon^{-\gamma / 2} \varepsilon^{-1 / 2}=c \varepsilon^{(\gamma-1) / 2}
\end{aligned}
$$

where c is independent of ε. Consequently, we have

$$
\lim _{\varepsilon \rightarrow 0} \varepsilon^{\gamma} \int_{\Gamma^{\varepsilon}} h^{\varepsilon}\left(u_{1}^{\varepsilon}-u_{2}^{\varepsilon}\right) \Phi_{i}\left(\widehat{w}_{i}^{\varepsilon}-x_{i}\right) d \sigma=0
$$

since here $\gamma>1$. Then, passing to the limit in (4.17) as $\varepsilon \rightarrow 0$ and using (2.22)ii), (2.17) and (4.7) one derives

$$
\lim _{\varepsilon \rightarrow 0} \int_{\Omega} A^{\varepsilon} \nabla u_{1}^{\varepsilon} \nabla\left(\Phi_{i} \widehat{w}_{i}^{\varepsilon}\right) d x=\int_{\Omega} \theta_{1} f_{1} \Phi_{i} x_{i} d x+<g, \Phi_{i} x_{i}>_{H^{-1}(\Omega), H_{0}^{1}(\Omega)} .
$$

Thanks to (4.16) and convergences (2.22)ii) and (4.7), this gives

$$
\left\{\begin{array}{l}
\lim _{\varepsilon \rightarrow 0} \int_{\Omega_{1}^{\varepsilon}} A^{\varepsilon} \nabla u_{1}^{\varepsilon}\left(C^{\varepsilon} \Phi\right) d x \\
=\sum_{i=1}^{n}\left(\int_{\Omega} \theta_{1} f_{1} \Phi_{i} x_{i} d x+<g, \Phi_{i} x_{i}>_{H^{-1}(\Omega), H_{0}^{1}(\Omega)}\right. \\
\left.-\int_{\Omega} A^{0} \nabla u_{1} \nabla \Phi_{i} x_{i} d x\right)
\end{array}\right.
$$

From this equality, using $\Phi_{i} x_{i}$ as test function in (2.23), we have

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \int_{\Omega_{1}^{\varepsilon}} A^{\varepsilon} \nabla u_{1}^{\varepsilon}\left(C^{\varepsilon} \Phi\right) d x=\int_{\Omega} A^{0} \nabla u_{1} \Phi d x \tag{4.18}
\end{equation*}
$$

This, together with (4.14) and (4.15) gives (4.13) and concludes the proof.

REFERENCES

[1] J. L. Auriault - H. Ene: Macroscopic modelling of heat transfer in composites with interfacial thermal barrier, Internat. J. Heat and Mass Transfer, 37 (1994), 2885-2892.
[2] M. Briane - A. Damlamian - P. Donato: H-convergence in perforated domains, Nonlinear partial Differential Equations and Their Applications, Collège de France seminar vol. XIII, D. Cioranescu \& J.-L. Lions eds., Pitman Research Notes in Mathematics Series, Longman, New York, 391, 1998, 62-100.
[3] E. Canon - J. N. Pernin: Homogenization of diffusion with interfacial barrier, C.R. Acad. Sci. Paris 325, série I, (1997), 123-126.
[4] E. Canon - J. N. Pernin: Homogenization of diffusion in composite media with interfacial barrier, Rev. Roumaine Math. Pures Appl., 44 no. 1 (1999), 23-36.
[5] H. S. Carslaw - J. C. Jaeger: Conduction of Heat in Solids, Oxford, At the Clarendon Press, 1947.
[6] D. Cioranescu - P. Donato: Homogénéisation du problème de Neumann non homogène dans des ouverts perforés, Asymp. An. 1, North-Holland, (1988), 115138.
[7] D. Cioranescu - P. Donato: An Introduction to Homogenization, Oxford Lecture Series in Mathematics and Its Applications, 17 (1999).
[8] D. Cioranescu - J. Saint Jean Paulin: Homogenization in open sets with holes, J. of Math. An. and Appl., 71 (1979), 590-607.
[9] D. Cioranescu - J. Saint Jean Paulin: Homogenization of Reticulated Structures, Appl. Math. Sci., 139, Springer-Verlag, New York, 1999.
[10] P. Donato - S. Monsurrò: Homogenization of two heat conductors with an interfacial contact resistance, Analysis and Applications, 2 no. 3 (2004), 247-273.
[11] P. Donato - A. Nabil: Approximate Controllability of linear parabolic equations in perforated domains, ESAIM: Control, Optimization and Calculus of Variations, 6 (2001), 21-38.
[12] H. I. Ene: On the microstructure models of porous media, Rev. Roumaine Math. Pures Appl., 46 2-3 (2001), 289-295.
[13] H. I. Ene - D. Polisevski: Model of diffusion in partially fissured media, ZAMP, 53 (2002), 1052-1059.
[14] H. C. Hummel: Homogenization for Heat Transfer in Polycristals with Interfacial Resistances, Appl. An., 75 (3-4) (2000), 403-424.
[15] R. Lipton: Heat conduction in fine scale mixtures with interfacial contact resistance, Siam J. Appl. Math., 58 n. 1 (1998), 55-72.
[16] R. Lipton - B. Vernescu: Composite with imperfect interface, Proc. Soc. Lond., A 452 (1996), 329-358.
[17] S. Monsurrò: Homogenization of a two-component composite with interfacial thermal barrier, Adv. in Math. Sci. and Appl., 13 no. 1 (2003), 43-63.
[18] J. N. Pernin: Homogénéisation d'un problème de diffusion en milieu composite à deux composantes, C.R. Acad. Sci. Paris, série I, 321 (1995), 949-952.

Lavoro pervenuto alla redazione il 22 febbraio 2006 ed accettato per la pubblicazione il 1 marzo 2006.

Bozze licenziate il 10 maggio 2006

INDIRIZZO DELL'AUTORE:

Patrizia Donato - Université de Rouen - Laboratoire de Mathématiques Raphaël Salem - UMR 6085 CNRS - Avenue de l'Université, BP 12 - 76801 Saint Etienne de Rouvray - France E-mail : patrizia.donato@univ-rouen.fr and - Université Paris VI - Laboratoire Jacques-Louis Lions - Boîte courrier 187 - 75252 Paris Cedex - France

[^0]: Key Words and Phrases: Homogenization - Correctors - Perforated domains Jump boundary conditions.
 A.M.S. Classification: 35B27-35J20-35J25

