On a problem of Lesniak, Polimeni, and Vanderjagt

IGOR E. ZVEROVICH

Abstract: We give almost complete solution to the following problem: for a fixed S, what is the minimum value $p=\mu_{H}(S)$ such that a pair (S, p) has a Hamiltonian realization? We give a criterion for a pair (S, p) to have a Hamiltonian realization.

1 - Introduction

The degree set of a graph G, D_{G}, is the set of all distinct vertex degrees of G. The graph G is called a realization of D_{G}. Let S be a set of non-negative integers, and let p be a positive integer. A realization of a pair (S, p) is a graph G such that $D_{G}=S$ and $|V(G)|=p$. We consider the following problem.

Problem 1 (Lesniak, Polimeni, and Vanderjagt [4]). For a fixed S, what is the minimum value $p=\mu_{H}(S)$ such that the pair (S, p) has a Hamiltonian realization?

Note that necessary and sufficient conditions for realizability a set S and a pair (S, p) by an arbitrary graph were found by Kapoor, Polimeni, and Wall [3] and Sipka [5], respectively.

We shall consider a set of integers S in following form:

$$
S=\left\{k_{1}, k_{2}, \ldots, k_{n}\right\}, \quad \text { where } \quad \leq k_{1}<k_{2}<\cdots<k_{n}
$$

Theorem 1 (Lesniak, Polimeni, and Vanderjagt [4]). $\mu_{H}(S)$ exists if and only if $k_{1} \geq 2$.

Key Words and Phrases: Degree sets - Hamiltonian graphs.
A.M.S. Classification: 05C35-05C45

Another result of Lesniak, Polimeni, and Vanderjagt [4] is that

$$
k_{n}+1 \leq \mu_{H}(S) \leq \sum_{i=1}^{n}\left(k_{i}+1\right)
$$

Some particular results on $\mu_{H}(S)$ were obtained by Chernyak [1], but they are far from the exact value.

Theorem 2.

(i) If $k_{1} \geq 3$ then $\mu_{H}(S)=k_{n}+1$.
(ii) If $k_{1} \geq 2$ then $k_{n}+1 \leq \mu_{H}(S) \leq k_{n}+2$.
(iii) If $k_{1}=2$ then $\mu_{H}(S)=k_{n}+1$ for each odd n, and $\mu_{H}(S)$ may take the both values $k_{n}+1$ or $k_{n}+2$ for each even n.

Concerning Hamiltonian realizations of pairs, we have the following result.
Theorem 3. A pair (S, p) has a Hamiltonian realization if and only if $k_{1} \geq 2, p \geq \mu_{H}(S)$, the number $p k_{1} k_{2} \cdots k_{n}$ is even, and $(S, p) \neq(\{3,2 t\}, 2 t+2)$ for all integers $t \geq 4$.

This result can be applied to Eulerian realizations of pairs.
Corollary 1. A pair (S, p) has a Eulerian realization if and only if $p \geq$ $k_{n}+1$ and all $k_{1}, k_{2}, \ldots, k_{n}$ are even.

Note also that a criterion for realizability a pair (S, p) of Sipka [5] easily follows from Theorem 3.

2 - Proofs

We shall use the following well-known facts, see Harary [2].
FACT 1. The complete graph $K_{2 n+1}$ can be represented as disjoint union of n Hamiltonian cycles.

FACT 2. The complete graph $K_{2 n}$ can be represented as disjoint union of $n-1$ Hamiltonian cycles and a perfect matching.

Fact 1 and Fact 2 imply that there exists a regular Hamiltonian graph of degree r and order p for $2 \leq r<p$ such that $r p$ is even. We denote any such graph by $H_{r, p}$. Also $H(S, p)$ (respectively, $H(S)$) will denote a Hamiltonian realization of a pair (S, p) (respectively, a set S). First we prove the statements (i) and (ii) of Theorem 2 .

Proof. (i) Let $k_{1} \geq 3$ in S. Clearly, $\mu_{H}(S) \geq k_{n}+1$. We use induction on n to show that there exists a graph L_{n} of type $H\left(S, k_{n}+1\right)$. For $n=1$ and $n=2$, we may choose $L_{1}=K_{k_{1}+1}$ and $L_{2}=K_{k_{1}-2}+C_{k_{2}-k_{1}+3}$. Here and below

$$
G+H=\overline{\bar{G} \cup \bar{H}}
$$

Let $n \geq 3$. We construct an auxiliary set $S^{\prime}=\left\{k_{1}^{\prime}, k_{2}^{\prime}, \ldots, k_{n-2}^{\prime}\right\}$, where $k_{i}^{\prime}=k_{i+1}-k_{1}+2, i=1,2, \ldots, n-2$. By the inductive hypothesis, S^{\prime} has a Hamiltonian realization, say H, of order $k_{n-1}^{\prime}+1$.

Suppose that we have a Hamiltonian graph F. If we delete all edges of a Hamiltonian cycle from F, the resulting graph will be denoted by F^{o}. We define

$$
\begin{equation*}
L_{n}=\overline{\left(\overline{H^{o} \cup O_{j}}\right)^{o} \cup O_{t}}, \tag{1}
\end{equation*}
$$

$l=k_{1}-2, j=k_{n}-k_{n-1}$, and O_{n} denotes the edgeless graph of order n.
(ii) It is sufficient to consider the case of $k_{1}=2$. If $S=\{2\}$ then $\mu_{H}(S)=3$, and the result follows. Suppose that $n \geq 2$. We denote $S_{1}=S \backslash\{2\}$. By (i), there exists a graph R of type $H\left(S_{1}, k_{n}+1\right)$. It remains to subdivide an edge of a Hamiltonian cycle in R.

The statement (iii) of Theorem 2 will be proved below.
FACt 3. If $k_{1}=2$ in S and $p \geq \mu_{H}(S)$, then the pair (S, p) has a Hamiltonian realization.

Proof. It is sufficient to do the subdivision described above exactly $p-k_{n}-1$ times.

A graph G is called traceable if G has a Hamiltonian path P. We say that P traces G.

FACT 4. If $k_{1}=2$ in S and $p \geq \mu_{H}(S)$, then the pair ($\left.S, p\right)$ has a Hamiltonian realization.

Proof. It is sufficient to consider the case of $i=m$. We use induction on n as in the proof of Theorem 2(i). The graphs L_{1} and L_{2} are uniquely defined. For $n \geq 3$, the graph L_{n} [see (1)] is not uniquely defined: it depends on choice of Hamiltonian cycles. Suppose that a Hamiltonian realization H of S^{\prime} satisfies Fact 4, i.e., H has a complete subgraph M of order k_{m-1}^{\prime} and a Hamiltonian cycle C^{1} that traces M. We delete C^{1} when constructing H^{o}. Let us fix an edge $e=u v \in E\left(C^{1}\right) \backslash E(M)$. The vertices of O_{j} will be denoted by $w_{1}, w_{2}, \ldots, w_{j}$. A Hamiltonian cycle C^{2} in the graph $\overline{H^{o} \cup O_{j}}$ [see (1)] we choose in the following way:

$$
C^{2}=\left(E\left(C^{1}\right) \backslash e\right) \cup\left\{u, w_{1}\right\} \cup\left(\bigcup_{i=1}^{j-1} w_{t} w_{t+1}\right) \cup\left\{w_{j} v\right\}
$$

Deleting C^{2} produces $\left(\overline{H^{o} \cup O_{j}}\right)^{o}$. Then the graph L_{n} can be constructed. The graph L_{n} contains a complete subgraph $G_{m}=M \cup K_{l}$ of order k_{m}. Also, there is a Hamiltonian cycle in L_{n} that traces G_{m}.

Lemma 1. Let $a \geq 3$ be an odd integer, and let $p \geq a+2$. The set $\{a, a+2\}$ has a traceable realization H such that

- $|V(H)|=p$,
- exactly $a+1$ vertices of H have degree a, and
- the end-vertices of a Hamiltonian path have degrees a.

Proof. A graph G admits a switching $d=(u, v, w, x)$, where vertices $u, v, w, x \in V(G)$ are pairwise distinct, if $u v, w x \in E(G)$ and $v w, x u \notin E(G)$. A switching d is deleting the edges $u v, w x$, and creating edges $v w, x u$.

It is sufficient to prove the lemma for $a+2 \leq p \leq 2 a+3$. Indeed, let G satisfies Lemma 1, and let $u v$ be an edge of a Hamiltonian path in G. We construct G^{\prime} by applying switching $d=(u, v, w, x)$, where $w x$ is an edge of K_{a+2}. The graph G^{\prime} also satisfies Lemma 1, and $\left|V\left(G^{\prime}\right)\right|=|V(G)|+a+2$.

Now we consider five possible cases.
CASE 1. $p=2 a+3$.
We construct the graphs G^{\prime} described above for $G=K_{a+1}$, uv being an arbitrary edge of G.

CASE 2. $p=2 a+2$.
Let $H_{1}=H_{2}=K_{a+1}$ and $V\left(H_{i}\right)=\left\{v_{j}^{i}: i=1,2\right.$ and $\left.j=1,2, \ldots, a+1\right\}$. We delete a perfect matching from H_{1} [see Fact 2], and we add edges $v_{j}^{1} v_{j}^{2}$ for all $j=1,2, \ldots, a+1$.

Case 3. $p=2 a+1$.
Let $H_{1}=K_{a+1}, H_{2}=K_{a}, V\left(H_{1}\right)=\left\{v_{1}, v_{2}, \ldots, v_{a+1}\right.$, and $V\left(H_{2}\right)=$ $\left\{u_{1}, u_{2}, \ldots, u_{a}\right.$. We delete the edges $v_{i} v_{i+1}, i=1,2, \ldots, a$, from H_{1}, and we add edges $u_{j} v_{j}$ and $u_{j} v_{j+1}, j=1,2, \ldots, a$.

Case 4. $p=2 a$.
In the complete bipartite graph $K_{a-1, a+1}$ one of the parts has exactly $a+1$ vertices. We construct a 1-regular graph in this part.

CASE 5. $a+2 \leq p \leq 2 a-1$.
In the complete graph K_{a+1} there are $(a-1) / 2$ disjoint Hamiltonian cycles and a perfect matching. We consider each of the $(a-1) / 2$ Hamiltonian cycles as a disjoint union of two perfect matchings. Thus, we have represented K_{a+1} as a disjoint union of a Hamiltonian cycle and $a-2$ perfect matchings. Now we construct a Hamiltonian graph H by deleting i perfect matchings from K_{a+1}, $i=1,2, \ldots, a-2$. As a required graph, we take $H+O_{i}$.

Lemma 2. If $k_{1} \geq 2$ in S, at least one of the numbers $k_{1}, k_{2}, \ldots, k_{m}$ is even, where $m=\lfloor(n+1) / 2\rfloor$, and $p \geq \mu_{H}(S)$, then the pair (S, p) has a Hamiltonian realization.

Proof. For $k_{1}=2$, the statement follows from Fact 2 . Let $k_{1} \geq 3$. It is sufficient to consider the case of $p \geq k_{n}+2$. If k_{i} is odd for some $i \in\{1,2, \ldots m\}$, then we consider the graph described in Fact 4. We denote it by $G_{i}, V\left(G_{i}\right)=$ $\left\{v_{1}, v_{2}, \ldots, v_{k_{i}}\right\}$. Let v_{1} and v_{2} be the end-vertices of a Hamiltonian path in G_{i}. We delete edges from G_{i}. By Lemma 1, we can realize the set $\left\{k_{i}-1, k_{i}\right\}$ on $p-k_{n}+k_{i}-1$ vertices. Now we identify the vertices of degree $k_{i}-1$ in this realization with the vertices $v_{1}, v_{2}, \ldots, v_{k_{i}}$ in such a way that the end-vertices of the Hamiltonian path coincide with v_{1} and v_{2}.

We write $(S, p) \in \mathcal{A}$ if $|S|=n=2 m, k_{1} \geq 3$, all $k_{1}, k_{2}, \ldots, k_{m}$ are odd, all $k_{m+1}, k_{m+2}, \ldots, k_{n}$ are even, and $p \geq k_{n}+2$.

Lemma 3. Let $(S, p) \notin \mathcal{A}$, and let $k_{1} \geq 2$ in S. The pair (S, p) has a Hamiltonian realization if and only if $p \geq \mu_{H}(S)$ and the number $p k_{1} k_{2} \cdots k_{n}$ is even.

Proof. Necessity is obvious.
Sufficiency. We may assume that $p \geq k_{n}+2, k_{1}, k_{2}, \ldots, k_{m}$ are odd, and $k_{1} \geq 3$. We set

$$
k_{i}^{\prime}=p-k_{n-i+1}+1, i=1,2, \ldots, n
$$

and $S^{\prime}=\left\{k_{1}^{\prime}, k_{2}^{\prime}, \ldots, k_{n}^{\prime}\right\}$. Clearly, $k_{1}^{\prime} \geq 3$ and $p \geq k_{n}^{\prime}+2$. We show that at least one of $k_{1}^{\prime}, k_{2}^{\prime}, \ldots, k_{m}^{\prime}$ is even for $(S, p) \notin \mathcal{A}$.

If p is odd then there is an even integer among $k_{m+1}, k_{m+2}, \ldots, k_{n}$. Therefore at least one of $k_{1}^{\prime}, k_{2}^{\prime}, \ldots k_{m}^{\prime}$ is even. If p is even and n is odd, then $k_{m}^{\prime}=p-k_{m}+1$ is even. If both p and n are odd, then there is an odd integer among $k_{m+1}, k_{m+2}, \ldots, k_{n}$ [otherwise $(S, p) \in \mathcal{A}$]. We denote such a number by $k_{r}, m+1 \leq r \leq n$. Then $k_{n-r+1}^{\prime}=p-k_{r}+1$ is even, and $1 \leq n-r+1 \leq m$.

According to Lemma 2, $\left(S^{\prime}, p\right)$ has a Hamiltonian realization H. It is easy to check that $\overline{H^{o}}$ is a Hamiltonian realization for the pair (S, p).

It remains to consider the case of $(S, p) \in \mathcal{A}$. Note that Lemma 3 does not hold for $(S, p) \in \mathcal{A}$.

Lemma 4. Let $(S, p) \in \mathcal{A}$, and let $k_{1} \geq 2$ in S. The pair (S, p) has a Hamiltonian realization if and only if $(S, p) \neq(\{3,2 t\}, 2 t+2)$ for all $t \geq 4$.

Proof. We consider eight possible cases.
Case 1. $p \geq k_{n}+k_{1}+3$.
We put

$$
S^{\prime}=S \backslash\left\{k_{1}\right\}, p^{\prime}=p-k_{1}-1,
$$

and we construct a graph of type $H\left(S^{\prime}, p^{\prime}\right)$ by Lemma 3. We choose an edge $u v$ in this graph, and an edge $w x$ in the complete graph $K_{k_{1}+1}$. It remains to do the switching (u, v, w, x).

CASE 2. $p=k_{n}+k_{1}+1$ and $k_{2}-k_{1} \geq 3$.
We put

$$
S^{\prime}=\left\{k_{3}-k_{1}+1, k_{4}-k_{1}+1, \ldots, k_{n}-k_{1}+1,\right\}, p^{\prime}=k_{n}-2
$$

and we construct a graph of type $H\left(S^{\prime}, p^{\prime}\right)$.

Fig. 1: The graph B.
Finally, we connect all vertices of this graph with $v_{1}, v_{2}, \ldots, v_{k_{1}+1}$ of the graph B shown in fig. 1 .

CASE 3. $p=k_{n}+k_{1}+1$ and $k_{2}-k_{1}=2$.
It is possible if $n \geq 4$ only. We put

$$
S^{\prime}=\left\{k_{3}-k_{1}+1, k_{4}-k_{1}+1, \ldots, k_{n}-k_{1}+1\right\}, p^{\prime}=k_{n}-2,
$$

and we construct a graph of type $H\left(S^{\prime}, p^{\prime}\right)$. Finally, we connect all vertices of this graph with the vertices $v_{1}, v_{2}, \ldots, v_{k_{1}+1}$ of the graph B^{\prime} that is obtained from B [see fig. 1] by deleting the edge $u_{1} v_{1}$ and adding edges $u_{1} u_{2}$ and $u_{2} v_{1}$.

CASE 4. $p=k_{n}+k_{1}+1$ and $k_{2}-k_{1}=1$.
It is possible if $S=\{t, t+1\}, p=2 t+2$, and $t \geq 3$ is odd only. We take adjacent vertices u and v. One half of vertices of $H_{t-1,2 t}$ we connect with u, and the other half is connected with v.

CASE 5. $p=k_{n}+k_{1}+1$ and $k_{1} \geq 5$.
We put

$$
S^{\prime}=\left\{k_{2}-k_{1}+1, k_{3}-k_{1}+1, \ldots k_{n}-k_{1}+1,\right\}, p^{\prime}=k_{n}-2 .
$$

We connect two vertices of degree $k_{1}-1$ in the graph $K_{2, k_{1}-1}$, and we connected all vertices of degree two with all vertices of a graph of type $H\left(S^{\prime}, p^{\prime}\right)$.

CASE 6. $k_{n}+2 \leq p \leq k_{n}+k_{1}-3$ and $k_{1} \geq 5$.
We put

$$
i=p-k_{n}, S^{\prime}=\left\{k_{1}-i, k_{2}-i, \ldots, k_{n-1}-i\right\}, p_{i}=k_{n}
$$

We construct a graph of type $H\left(S_{i}, p_{i}\right)+O_{i}$.
CASE 7. $p=k_{n}+2, k_{1}=3$, and $n \geq 4$.
It is possible if $S=\{3,2 t\}, p=2 t+2$, and $t \geq 2$ only. It is straightforward to check that a required realization exists if and only if $t=2$ or $t=3$.

CASE 8. $p=k_{n}+2, k_{1}=3$, and $n \geq 4$.
We put

$$
S^{\prime}=\left\{k_{2}-2, k_{3}-2, \ldots, k_{n-1}-2\right\}, p^{\prime}=k_{n}-2 .
$$

Clearly, $\left(S^{\prime}, p^{\prime}\right) \in \mathcal{A}$. Excluding

$$
\begin{equation*}
k_{2}=5, k_{n}=k_{n-1}+2, \tag{2}
\end{equation*}
$$

we can construct a graph of type $H\left(S^{\prime}, p^{\prime}\right)$ using Cases $1-7$. Now we delete an edge $u v$ from K_{4}, and connect u, v with all vertices of a graph of type $H\left(S^{\prime}, p^{\prime}\right)$.

If the condition (2) holds, then this construction gives inductive step. Base of induction: the set $S=\{3,5, t, t+2\}$ has a Hamiltonian realization of order $t+4$ for all even $t \geq 6$. Indeed, we connect all vertices of a graph of type $H_{t-4, t-2}$ with the vertices u, v, w, x of the graph C shown in fig. 2 .

Fig. 2: The graph C.

Lemma 3 and Lemma 4 imply Theorem 3.
Now we prove Corollary 1.
Proof. Lesniak, Polimeni, and Vanderjagt [4] proved that a set S has a Eulerian realization if and only if all k_{i} are even. Moreover, the minimum order of a Eulerian realization is $k_{n}+1$. Thus, it is sufficient to note that if all k_{i} are even, then the pair (S, p) can be realized by a connected graph for all $p \geq k_{n}+2$. It follows immediately from Theorem 3 , since $k_{n}+2 \geq \mu_{H}(S)$.

It remains to prove Theorem 2(iii).
Proof. (iii) Let $S=\left\{k_{1}=2, k_{2}, \ldots, k_{n}\right\}$. If $n=1$ then $\mu_{H}(S)=3$. For $n=2$, Lesniak, Polimeni, and Vanderjagt [4] showed that $\mu_{H}(\{2, t\})=t+2$ if $t \geq 4$, and $\mu_{H}(\{2,4\})=4$.

We use induction on n to show that $\mu_{H}(S)=k_{n}+1$ for each odd n. The statement holds for $n=1$ and $n=2$. Let $n \geq 3$. We consider the following two constructions.
($2,2, k_{n}$)-Construction. We choose a Hamiltonian realization H of order $p^{\prime}=k_{n}-2$ of the set $S^{\prime}=\left\{k_{1}=2, k_{2}, \ldots, k_{n-1}-1\right\}$. Then we do a switching ($u_{1}, u_{2}, v_{1}, v_{2}$), where $u_{1} u_{2}$ is an edge of K_{3} and $v_{1} v_{2}$ is an edge of a Hamiltonian cycle of H. We connect the third vertex of the K_{3}, u_{3}, with all the vertices of H. As a result, we obtain a graph of type $H\left(S, k_{n}+1\right)$.

The $\left(2,2, k_{n}\right)$-Construction cannot be implemented in the following two situation only:

$$
\begin{equation*}
k_{n}=k_{n-1}+1, \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
k_{2}, k_{3}, \ldots, k_{n-1} \text { are even, but } k_{n} \text { is odd. } \tag{4}
\end{equation*}
$$

$\left(2, k_{n}, k_{n}\right)$-Construction. We choose a Hamiltonian realization H of order $p^{\prime}=k_{n}-2$ of the set $S^{\prime}=\left\{k_{2}-2, k_{3}-2, \ldots, k_{n-1}-2\right\}$. Then we connect all the vertices of H with two vertices of K_{3}. As a result, we obtain a graph of type $H\left(S, k_{n}+1\right)$.

The $\left(2, k_{n}, k_{n}\right)$-Construction cannot be implemented in the following two situation only:

$$
\begin{equation*}
k_{2}=3 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
k_{2}, k_{3}, \ldots, k_{n} \text { are odd. } \tag{6}
\end{equation*}
$$

As it follows from (3), (4), (5), and (6), there is the following unconsidered case, namely $S=\left\{2,3, k_{3}, \ldots, k_{n-2}, k_{n}-1, k_{n}\right\}$, where $n \geq 3$ is odd. For $n=3$, we have $S=\{2,3,4\}$ and $\mu_{H}(S)=5$. If $n \geq 5$, we propose additional constructions that give induction step.

1) Let $V\left(K_{4}\right)=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$. We delete the edge $u_{1} u_{2}$. Then we construct a Hamiltonian realization of order $p^{\prime}=k_{n}-3$ of $S^{\prime}=\left\{k_{3}-2, k_{4}-2, \ldots, k_{n-2}-2\right\}$ [using either Theorem 3 or the inductive hypothesis]. Finally we connect all vertices of the graph with u_{2} and u_{3}. This construction cannot be done only if

$$
\begin{equation*}
k_{3}, k_{4}, \ldots, k_{n-2} \text { are odd, but } k_{n} \text { is even. } \tag{7}
\end{equation*}
$$

2) Let $V\left(K_{5}\right)=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$. We delete the edges $u_{1} u_{2}$ and $u_{1} u_{3}$. Then we construct a Hamiltonian realization of order $p^{\prime}=k_{n}-4$ of $S^{\prime}=\left\{k_{3}-3, k_{4}-\right.$ $\left.3, \ldots, k_{n-2}-3\right\}$ [using either Theorem 3 or the inductive hypothesis]. Finally we connect all vertices of the graph with u_{3}, u_{4} and u_{5}. This construction cannot be implemented only if

$$
\begin{equation*}
k_{3}=4 \tag{8}
\end{equation*}
$$

or

$$
\begin{equation*}
k_{3}, k_{4}, \ldots k_{n-2} \text { are even, but } k_{n} \text { is odd. } \tag{9}
\end{equation*}
$$

Since the family of sets defined by (7) is disjoint from the family of sets defined by (8) and (9), the proof for even n is complete.

Similar constructions show that $\mu_{H}(S)=k_{n}+1$ if $k_{1}=2, k_{2} \geq 5$ and n is even.

Finally, we note that $\mu_{H}(S)=k_{n}+2$ for $S=\{2,3, \ldots, j, 2 j+2,2 j+$ $3, \ldots, 3 j\}$. It is easy to see that such a set has no a Hamiltonian realization of order $3 j+1$.

REFERENCES

[1] Zh. A. Chernyak: Hamiltonian unigraphs, Vestsi Akad. Navuk Belarusi Ser. Fiz.-Mat. Navuk, (1) (1981) 23-29, 138 (in Russian).
[2] F. Harary: Graph Theory, Addison-Wesley Publishing Co., Reading, Mass.Menlo Park, Calif.-London, 1969, ix+274 pp.
[3] S. F. Kapoor - A. D. Polimeni - C. E. Wall: Degree sets for graphs, Fund. Math., 95 (3) (1977), 189-194.
[4] L. Lesniak - A. D. Polimeni - D. W. Vanderjagt: Degree set and traversability, Rend Mat., 10 (2-3) (1977), 193-204.
[5] T. A. Sipka: The orders of graphs with prescribed degree sets, J. Graph Theory, 4 (3) (1980), 301-307.

Lavoro pervenuto alla redazione il 23 giugno 2003 ed accettato per la pubblicazione il 14 dicembre 2005.

Bozze licenziate il 10 maggio 2006

Igor E. Zverovich - RUTCOR - Rutgers Center for Operations Research - Rutgers - The State University of New Jersey - 640 Bartholomew Road - Piscataway, NJ 08854-8003 - USA
E-mail: igor@rutcor.rutgers.edu

