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On a problem of Lesniak, Polimeni, and Vanderjagt

IGOR E. ZVEROVICH

Abstract: We give almost complete solution to the following problem: for a
fixed S, what is the minimum value p = µH(S) such that a pair (S, p) has a Hamiltonian
realization? We give a criterion for a pair (S, p) to have a Hamiltonian realization.

1 – Introduction

The degree set of a graph G, DG, is the set of all distinct vertex degrees of
G. The graph G is called a realization of DG. Let S be a set of non-negative
integers, and let p be a positive integer. A realization of a pair (S, p) is a graph
G such that DG = S and |V (G)| = p. We consider the following problem.

Problem 1 (Lesniak, Polimeni, and Vanderjagt [4]). For a fixed S, what
is the minimum value p = µH(S) such that the pair (S, p) has a Hamiltonian
realization?

Note that necessary and sufficient conditions for realizability a set S and a
pair (S, p) by an arbitrary graph were found by Kapoor, Polimeni, and Wall [3]
and Sipka [5], respectively.

We shall consider a set of integers S in following form:

S = {k1, k2, . . . , kn}, where ≤ k1 < k2 < · · · < kn.

Theorem 1 (Lesniak, Polimeni, and Vanderjagt [4]). µH(S) exists if and
only if k1 ≥ 2.
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Another result of Lesniak, Polimeni, and Vanderjagt [4] is that

kn + 1 ≤ µH(S) ≤
n∑

i=1

(ki + 1).

Some particular results on µH(S) were obtained by Chernyak [1], but they are
far from the exact value.

Theorem 2.
(i) If k1 ≥ 3 then µH(S) = kn + 1.
(ii) If k1 ≥ 2 then kn + 1 ≤ µH(S) ≤ kn + 2.
(iii) If k1 = 2 then µH(S) = kn +1 for each odd n, and µH(S) may take the both

values kn + 1 or kn + 2 for each even n.

Concerning Hamiltonian realizations of pairs, we have the following result.

Theorem 3. A pair (S, p) has a Hamiltonian realization if and only if
k1 ≥ 2, p ≥ µH(S), the number pk1k2 · · · kn is even, and (S, p) �= ({3, 2t}, 2t+2)
for all integers t ≥ 4.

This result can be applied to Eulerian realizations of pairs.

Corollary 1. A pair (S, p) has a Eulerian realization if and only if p ≥
kn + 1 and all k1, k2, . . . , kn are even.

Note also that a criterion for realizability a pair (S, p) of Sipka [5] easily
follows from Theorem 3.

2 – Proofs

We shall use the following well-known facts, see Harary [2].

Fact 1. The complete graph K2n+1 can be represented as disjoint union of
n Hamiltonian cycles.

Fact 2. The complete graph K2n can be represented as disjoint union of
n− 1 Hamiltonian cycles and a perfect matching.

Fact 1 and Fact 2 imply that there exists a regular Hamiltonian graph of
degree r and order p for 2 ≤ r < p such that rp is even. We denote any such graph
by Hr,p. Also H(S, p) (respectively, H(S)) will denote a Hamiltonian realization
of a pair (S, p) (respectively, a set S). First we prove the statements (i) and (ii)
of Theorem 2.
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Proof. (i) Let k1 ≥ 3 in S. Clearly, µH(S) ≥ kn + 1. We use induction
on n to show that there exists a graph Ln of type H(S, kn + 1). For n = 1 and
n = 2, we may choose L1 = Kk1+1 and L2 = Kk1−2 +Ck2−k1+3. Here and below

G + H = G ∪H.

Let n ≥ 3. We construct an auxiliary set S′ = {k′1, k′2, . . . , k′n−2}, where
k′i = ki+1 − k1 + 2, i = 1, 2, . . . , n − 2. By the inductive hypothesis, S′ has
a Hamiltonian realization, say H, of order k′n−1 + 1.

Suppose that we have a Hamiltonian graph F . If we delete all edges of a
Hamiltonian cycle from F , the resulting graph will be denoted by F o. We define

(1) Ln = (Ho ∪Oj)o ∪Ot,

l = k1 − 2, j = kn − kn−1, and On denotes the edgeless graph of order n.
(ii) It is sufficient to consider the case of k1 = 2. If S = {2} then µH(S) = 3,

and the result follows. Suppose that n ≥ 2. We denote S1 = S \ {2}. By (i),
there exists a graph R of type H(S1, kn + 1). It remains to subdivide an edge of
a Hamiltonian cycle in R.

The statement (iii) of Theorem 2 will be proved below.

Fact 3. If k1 = 2 in S and p ≥ µH(S), then the pair (S, p) has a Hamil-
tonian realization.

Proof. It is sufficient to do the subdivision described above exactly p−kn−1
times.

A graph G is called traceable if G has a Hamiltonian path P . We say that
P traces G.

Fact 4. If k1 = 2 in S and p ≥ µH(S), then the pair (S, p) has a Hamilto-
nian realization.

Proof. It is sufficient to consider the case of i = m. We use induction on
n as in the proof of Theorem 2(i). The graphs L1 and L2 are uniquely defined.
For n ≥ 3, the graph Ln [see (1)] is not uniquely defined: it depends on choice
of Hamiltonian cycles. Suppose that a Hamiltonian realization H of S′ satisfies
Fact 4, i.e., H has a complete subgraph M of order k′m−1 and a Hamiltonian
cycle C1 that traces M . We delete C1 when constructing Ho. Let us fix an edge
e = uv ∈ E(C1) \ E(M). The vertices of Oj will be denoted by w1, w2, . . . , wj .
A Hamiltonian cycle C2 in the graph Ho ∪Oj [see (1)] we choose in the following
way:

C2 = (E(C1) \ e) ∪ {u,w1} ∪
(

j−1⋃

i=1

wtwt+1

)
∪ {wjv}.
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Deleting C2 produces (Ho ∪Oj)
o. Then the graph Ln can be constructed. The

graph Ln contains a complete subgraph Gm = M ∪Kl of order km. Also, there
is a Hamiltonian cycle in Ln that traces Gm.

Lemma 1. Let a ≥ 3 be an odd integer, and let p ≥ a+2. The set {a, a+2}
has a traceable realization H such that

• |V (H)| = p,
• exactly a + 1 vertices of H have degree a, and
• the end-vertices of a Hamiltonian path have degrees a.

Proof. A graph G admits a switching d = (u, v, w, x), where vertices
u, v, w, x ∈ V (G) are pairwise distinct, if uv,wx ∈ E(G) and vw, xu �∈ E(G). A
switching d is deleting the edges uv,wx, and creating edges vw, xu.

It is sufficient to prove the lemma for a + 2 ≤ p ≤ 2a + 3. Indeed, let
G satisfies Lemma 1, and let uv be an edge of a Hamiltonian path in G. We
construct G′ by applying switching d = (u, v, w, x), where wx is an edge of Ka+2.
The graph G′ also satisfies Lemma 1, and |V (G′)| = |V (G)| + a + 2.

Now we consider five possible cases.

Case 1. p = 2a + 3.

We construct the graphs G′ described above for G = Ka+1, uv being an
arbitrary edge of G.

Case 2. p = 2a + 2.

Let H1 = H2 = Ka+1 and V (Hi) = {vij : i = 1, 2 and j = 1, 2, . . . , a + 1}.
We delete a perfect matching from H1 [see Fact 2], and we add edges v1

j v
2
j for

all j = 1, 2, . . . , a + 1.

Case 3. p = 2a + 1.

Let H1 = Ka+1, H2 = Ka, V (H1) = {v1, v2, . . . , va+1, and V (H2) =
{u1, u2, . . . , ua. We delete the edges vivi+1, i = 1, 2, . . . , a, from H1, and we
add edges ujvj and ujvj+1, j = 1, 2, . . . , a.

Case 4. p = 2a.

In the complete bipartite graph Ka−1,a+1 one of the parts has exactly a+1
vertices. We construct a 1-regular graph in this part.

Case 5. a + 2 ≤ p ≤ 2a− 1.

In the complete graph Ka+1 there are (a− 1)/2 disjoint Hamiltonian cycles
and a perfect matching. We consider each of the (a − 1)/2 Hamiltonian cycles
as a disjoint union of two perfect matchings. Thus, we have represented Ka+1

as a disjoint union of a Hamiltonian cycle and a− 2 perfect matchings. Now we
construct a Hamiltonian graph H by deleting i perfect matchings from Ka+1,
i = 1, 2, . . . , a− 2. As a required graph, we take H + Oi.
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Lemma 2. If k1 ≥ 2 in S, at least one of the numbers k1, k2, . . . , km is even,
where m = �(n + 1)/2�, and p ≥ µH(S), then the pair (S, p) has a Hamiltonian
realization.

Proof. For k1 = 2, the statement follows from Fact 2. Let k1 ≥ 3. It is
sufficient to consider the case of p ≥ kn+2. If ki is odd for some i ∈ {1, 2, . . .m},
then we consider the graph described in Fact 4. We denote it by Gi, V (Gi) =
{v1, v2, . . . , vki}. Let v1 and v2 be the end-vertices of a Hamiltonian path in Gi.
We delete edges from Gi. By Lemma 1, we can realize the set {ki − 1, ki} on
p − kn + ki − 1 vertices. Now we identify the vertices of degree ki − 1 in this
realization with the vertices v1, v2, . . . , vki

in such a way that the end-vertices
of the Hamiltonian path coincide with v1 and v2.

We write (S, p) ∈ A if |S| = n = 2m, k1 ≥ 3, all k1, k2, . . . , km are odd, all
km+1, km+2, . . . , kn are even, and p ≥ kn + 2.

Lemma 3. Let (S, p) �∈ A, and let k1 ≥ 2 in S. The pair (S, p) has a
Hamiltonian realization if and only if p ≥ µH(S) and the number pk1k2 · · · kn is
even.

Proof. Necessity is obvious.

Sufficiency. We may assume that p ≥ kn + 2, k1, k2, . . . , km are odd, and
k1 ≥ 3. We set

k′i = p− kn−i+1 + 1, i = 1, 2, . . . , n,

and S′ = {k′1, k′2, . . . , k′n}. Clearly, k′1 ≥ 3 and p ≥ k′n + 2. We show that at
least one of k′1, k

′
2, . . . , k

′
m is even for (S, p) �∈ A.

If p is odd then there is an even integer among km+1, km+2, . . . , kn. There-
fore at least one of k′1, k

′
2, . . . k

′
m is even. If p is even and n is odd, then

k′m = p− km + 1 is even. If both p and n are odd, then there is an odd integer
among km+1, km+2, . . . , kn [otherwise (S, p) ∈ A]. We denote such a number by
kr, m + 1 ≤ r ≤ n. Then k′n−r+1 = p− kr + 1 is even, and 1 ≤ n− r + 1 ≤ m.

According to Lemma 2, (S′, p) has a Hamiltonian realization H. It is easy
to check that Ho is a Hamiltonian realization for the pair (S, p).

It remains to consider the case of (S, p) ∈ A. Note that Lemma 3 does not
hold for (S, p) ∈ A.

Lemma 4. Let (S, p) ∈ A, and let k1 ≥ 2 in S. The pair (S, p) has a
Hamiltonian realization if and only if (S, p) �= ({3, 2t}, 2t + 2) for all t ≥ 4.
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Proof. We consider eight possible cases.

Case 1. p ≥ kn + k1 + 3.

We put
S′ = S \ {k1}, p′ = p− k1 − 1,

and we construct a graph of type H(S′, p′) by Lemma 3. We choose an edge uv
in this graph, and an edge wx in the complete graph Kk1+1. It remains to do
the switching (u, v, w, x).

Case 2. p = kn + k1 + 1 and k2 − k1 ≥ 3.

We put

S′ = {k3 − k1 + 1, k4 − k1 + 1, . . . , kn − k1 + 1, }, p′ = kn − 2,

and we construct a graph of type H(S′, p′).
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Fig. 1: The graph B.

Finally, we connect all vertices of this graph with v1, v2, . . . , vk1+1 of the
graph B shown in fig. 1.

Case 3. p = kn + k1 + 1 and k2 − k1 = 2.

It is possible if n ≥ 4 only. We put

S′ = {k3 − k1 + 1, k4 − k1 + 1, . . . , kn − k1 + 1}, p′ = kn − 2,

and we construct a graph of type H(S′, p′). Finally, we connect all vertices of
this graph with the vertices v1, v2, . . . , vk1+1 of the graph B′ that is obtained
from B [see fig. 1] by deleting the edge u1v1 and adding edges u1u2 and u2v1.



[7] On a problem of Lesniak, Polimeni, and Vanderjagt 217

Case 4. p = kn + k1 + 1 and k2 − k1 = 1.

It is possible if S = {t, t + 1}, p = 2t + 2, and t ≥ 3 is odd only. We take
adjacent vertices u and v. One half of vertices of Ht−1,2t we connect with u, and
the other half is connected with v.

Case 5. p = kn + k1 + 1 and k1 ≥ 5.

We put

S′ = {k2 − k1 + 1, k3 − k1 + 1, . . . kn − k1 + 1, }, p′ = kn − 2.

We connect two vertices of degree k1−1 in the graph K2,k1−1, and we connected
all vertices of degree two with all vertices of a graph of type H(S′, p′).

Case 6. kn + 2 ≤ p ≤ kn + k1 − 3 and k1 ≥ 5.

We put

i = p− kn, S
′ = {k1 − i, k2 − i, . . . , kn−1 − i}, pi = kn.

We construct a graph of type H(Si, pi) + Oi.

Case 7. p = kn + 2, k1 = 3, and n ≥ 4.

It is possible if S = {3, 2t}, p = 2t+ 2, and t ≥ 2 only. It is straightforward
to check that a required realization exists if and only if t = 2 or t = 3.

Case 8. p = kn + 2, k1 = 3, and n ≥ 4.

We put

S′ = {k2 − 2, k3 − 2, . . . , kn−1 − 2}, p′ = kn − 2.

Clearly, (S′, p′) ∈ A. Excluding

(2) k2 = 5, kn = kn−1 + 2,

we can construct a graph of type H(S′, p′) using Cases 1 – 7. Now we delete an
edge uv from K4, and connect u, v with all vertices of a graph of type H(S′, p′).

If the condition (2) holds, then this construction gives inductive step. Base
of induction: the set S = {3, 5, t, t + 2} has a Hamiltonian realization of order
t+4 for all even t ≥ 6. Indeed, we connect all vertices of a graph of type Ht−4,t−2

with the vertices u, v, w, x of the graph C shown in fig. 2.

�
�

�

�

�
�

�
�

�

���������

�
�

�
�

�
�

�
�
�

���������

�
�

�

���������

�
�
�

�
�

�
�

�
�
u v

w

x

Fig. 2: The graph C.



218 IGOR E. ZVEROVICH [8]

Lemma 3 and Lemma 4 imply Theorem 3.
Now we prove Corollary 1.

Proof. Lesniak, Polimeni, and Vanderjagt [4] proved that a set S has a
Eulerian realization if and only if all ki are even. Moreover, the minimum order
of a Eulerian realization is kn + 1. Thus, it is sufficient to note that if all ki are
even, then the pair (S, p) can be realized by a connected graph for all p ≥ kn +2.
It follows immediately from Theorem 3, since kn + 2 ≥ µH(S).

It remains to prove Theorem 2(iii).

Proof. (iii) Let S = {k1 = 2, k2, . . . , kn}. If n = 1 then µH(S) = 3. For
n = 2, Lesniak, Polimeni, and Vanderjagt [4] showed that µH({2, t}) = t + 2 if
t ≥ 4, and µH({2, 4}) = 4.

We use induction on n to show that µH(S) = kn + 1 for each odd n. The
statement holds for n = 1 and n = 2. Let n ≥ 3. We consider the following two
constructions.

(2, 2, kn)-Construction. We choose a Hamiltonian realization H of order
p′ = kn − 2 of the set S′ = {k1 = 2, k2, . . . , kn−1 − 1}. Then we do a switching
(u1, u2, v1, v2), where u1u2 is an edge of K3 and v1v2 is an edge of a Hamiltonian
cycle of H. We connect the third vertex of the K3, u3, with all the vertices of
H. As a result, we obtain a graph of type H(S, kn + 1).

The (2, 2, kn)-Construction cannot be implemented in the following two sit-
uation only:

(3) kn = kn−1 + 1,

and

(4) k2, k3, . . . , kn−1 are even, but kn is odd.

(2, kn, kn)-Construction. We choose a Hamiltonian realization H of order
p′ = kn − 2 of the set S′ = {k2 − 2, k3 − 2, . . . , kn−1 − 2}. Then we connect all
the vertices of H with two vertices of K3. As a result, we obtain a graph of type
H(S, kn + 1).

The (2, kn, kn)-Construction cannot be implemented in the following two
situation only:

(5) k2 = 3,

and

(6) k2, k3, . . . , kn are odd.
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As it follows from (3), (4), (5), and (6), there is the following unconsidered case,
namely S = {2, 3, k3, . . . , kn−2, kn − 1, kn}, where n ≥ 3 is odd. For n = 3, we
have S = {2, 3, 4} and µH(S) = 5. If n ≥ 5, we propose additional constructions
that give induction step.

1) Let V (K4) = {u1, u2, u3, u4}. We delete the edge u1u2. Then we construct a
Hamiltonian realization of order p′ = kn−3 of S′ = {k3−2, k4−2, . . . , kn−2−2}
[using either Theorem 3 or the inductive hypothesis]. Finally we connect all
vertices of the graph with u2 and u3. This construction cannot be done only if

(7) k3, k4, . . . , kn−2 are odd, but kn is even.

2) Let V (K5) = {u1, u2, u3, u4, u5}. We delete the edges u1u2 and u1u3. Then
we construct a Hamiltonian realization of order p′ = kn − 4 of S′ = {k3 − 3, k4 −
3, . . . , kn−2 − 3} [using either Theorem 3 or the inductive hypothesis]. Finally
we connect all vertices of the graph with u3, u4 and u5. This construction cannot
be implemented only if

(8) k3 = 4

or

(9) k3, k4, . . . kn−2 are even, but kn is odd.

Since the family of sets defined by (7) is disjoint from the family of sets defined
by (8) and (9), the proof for even n is complete.

Similar constructions show that µH(S) = kn + 1 if k1 = 2, k2 ≥ 5 and n is
even.

Finally, we note that µH(S) = kn + 2 for S = {2, 3, . . . , j, 2j + 2, 2j +
3, . . . , 3j}. It is easy to see that such a set has no a Hamiltonian realization of
order 3j + 1.
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