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On a problem of Lesniak, Polimeni, and Vanderjagt

IGOR E. ZVEROVICH

ABSTRACT: We give almost complete solution to the following problem: for a
fized S, what is the minimum value p = pu (S) such that a pair (S, p) has a Hamiltonian
realization? We give a criterion for a pair (S,p) to have a Hamiltonian realization.

1 — Introduction

The degree set of a graph G, D¢, is the set of all distinct vertex degrees of
G. The graph G is called a realization of Dg. Let S be a set of non-negative
integers, and let p be a positive integer. A realization of a pair (S,p) is a graph
G such that Dg = S and |V (G)| = p. We consider the following problem.

PROBLEM 1 (Lesniak, Polimeni, and Vanderjagt [4]). For a fixed S, what
is the minimum value p = ppy(S) such that the pair (S, p) has a Hamiltonian
realization?

Note that necessary and sufficient conditions for realizability a set S and a
pair (S, p) by an arbitrary graph were found by Kapoor, Polimeni, and Wall [3]
and Sipka [5], respectively.

We shall consider a set of integers .S in following form:

S:{kl,kg,...7]€n}, where < ki <ko<---<k,.

THEOREM 1 (Lesniak, Polimeni, and Vanderjagt [4]). pm(S) exists if and
only if k1 > 2.

KEY WORDS AND PHRASES: Degree sets — Hamiltonian graphs.
A.M.S. CLASSIFICATION: 05C35 — 05C45



212 IGOR E. ZVEROVICH 2]

Another result of Lesniak, Polimeni, and Vanderjagt [4] is that
ko + 1< pa(S) <Y (ki +1).
i=1

Some particular results on iy (S) were obtained by Chernyak [1], but they are
far from the exact value.

THEOREM 2.
(1) If k1 > 3 then pu(S) =k, + 1.
(ii) If k1 > 2 then ky + 1 < pp(S) < ky + 2.
(iil) If k1 =2 then pp(S) = kn+1 for each odd n, and p(S) may take the both
values k, + 1 or k,, + 2 for each even n.

Concerning Hamiltonian realizations of pairs, we have the following result.

THEOREM 3. A pair (S,p) has a Hamiltonian realization if and only if
k1> 2, p> pn(S), the number pkiks - - - ky, is even, and (S,p) # ({3, 2t}, 2t +2)
for all integers t > 4.

This result can be applied to Eulerian realizations of pairs.

COROLLARY 1. A pair (S,p) has a Eulerian realization if and only if p >
kn+ 1 and all kv, ks, ...k, are even.

Note also that a criterion for realizability a pair (S,p) of Sipka [5] easily
follows from Theorem 3.

2 — Proofs
We shall use the following well-known facts, see Harary [2].

FactT 1. The complete graph Ko, 11 can be represented as disjoint union of
n Hamiltonian cycles.

FAacT 2. The complete graph Ks, can be represented as disjoint union of
n — 1 Hamiltonian cycles and a perfect matching.

Fact 1 and Fact 2 imply that there exists a regular Hamiltonian graph of
degree r and order p for 2 < r < p such that rp is even. We denote any such graph
by H, ,. Also H(S, p) (respectively, H(S)) will denote a Hamiltonian realization
of a pair (S, p) (respectively, a set S). First we prove the statements (i) and (ii)
of Theorem 2.
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PROOF. (i) Let ky > 3 in S. Clearly, pug(S) > k, + 1. We use induction
on n to show that there exists a graph L, of type H(S,k, + 1). For n = 1 and
n = 2, we may choose L1 = Ky, 41 and Ly = Ky, 9+ Cg,_, +3. Here and below

G+H=GUH.

Let n > 3. We construct an auxiliary set S' = {k|, k5, ... Kk, _5}, where
k= kiy1 —k1+2,i=1,2,...,n— 2. By the inductive hypothesis, S’ has
a Hamiltonian realization, say H, of order k/,_; + 1.

Suppose that we have a Hamiltonian graph F. If we delete all edges of a
Hamiltonian cycle from F', the resulting graph will be denoted by F°. We define

(1) L, = (H°0U0,)°UOs,

l=k —2, 7=k, —k,_1, and O, denotes the edgeless graph of order n.

(ii) It is sufficient to consider the case of ky = 2. If S = {2} then puy(S) = 3,
and the result follows. Suppose that n > 2. We denote S; = S\ {2}. By (i),
there exists a graph R of type H(S1, k, + 1). It remains to subdivide an edge of
a Hamiltonian cycle in R. 0

The statement (iii) of Theorem 2 will be proved below.

Fact 3. If ky =2 in S and p > pg(S), then the pair (S,p) has a Hamil-
tonian realization.

PROOF. It is sufficient to do the subdivision described above exactly p—k,, —1
times. 0

A graph G is called traceable if G has a Hamiltonian path P. We say that
P traces G.

Facr 4. If ky =2 in S and p > ug(S), then the pair (S, p) has a Hamilto-
nian realization.

PROOF. It is sufficient to consider the case of ¢ = m. We use induction on
n as in the proof of Theorem 2(i). The graphs L; and Ly are uniquely defined.
For n > 3, the graph L, [see (1)] is not uniquely defined: it depends on choice
of Hamiltonian cycles. Suppose that a Hamiltonian realization H of S’ satisfies
Fact 4, i.e., H has a complete subgraph M of order k!, _; and a Hamiltonian
cycle C! that traces M. We delete C' when constructing H°. Let us fix an edge
e=uv € E(C')\ E(M). The vertices of O; will be denoted by w1, ws, ... ,w;j.
A Hamiltonian cycle C? in the graph H° U O; [see (1)] we choose in the following
way:

j—1

C? = (B(CY)\ e) U {u,w }U <U wtth) U {wjv}.

i=1
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Deleting C? produces (H° U O,)°. Then the graph L,, can be constructed. The
graph L,, contains a complete subgraph G,,, = M U K of order k,,. Also, there
is a Hamiltonian cycle in L,, that traces G,,. 0

LEMMA 1. Let a > 3 be an odd integer, and let p > a+2. The set {a,a+ 2}
has a traceable realization H such that

o [V(H)| =p,
e cxactly a + 1 vertices of H have degree a, and
e the end-vertices of a Hamiltonian path have degrees a.

PROOF. A graph G admits a switching d = (u,v,w,z), where vertices
u,v,w,z € V(G) are pairwise distinct, if uv, wz € F(G) and vw,zu ¢ E(G). A
switching d is deleting the edges uv, wz, and creating edges vw, zu.

It is sufficient to prove the lemma for a +2 < p < 2a + 3. Indeed, let
G satisfies Lemma 1, and let uv be an edge of a Hamiltonian path in G. We
construct G’ by applying switching d = (u, v, w, x), where wz is an edge of K, 2.
The graph G’ also satisfies Lemma 1, and |V(G")| = |[V(G)| + a + 2.

Now we consider five possible cases.

CAse 1. p=2a+ 3.

We construct the graphs G’ described above for G = K,11, uv being an
arbitrary edge of G.

CASE 2. p=2a+2.

Let Hy = Hy = Koyq and V(H;) = {v; ci=1,2and j=1,2,...,a+ 1}
We delete a perfect matching from H; [see Fact 2], and we add edges vjv7 for
all j=1,2,... ;a+ 1.

CASE 3. p=2a+1.

Let H1 = Ka+1, H2 = Ka, V(Hl) = {1}171}2,... s Va+1, and V(Hz) =
{ui,ug,... ,u,. We delete the edges v;v;41, i = 1,2,... ,a, from H;, and we
add edges u;v; and u;vj41, j = 1,2,... ,a.

CASE 4. p = 2a.

In the complete bipartite graph K,_1 4,41 one of the parts has exactly a+1
vertices. We construct a 1-regular graph in this part.

CASE 5. a+2<p<2a-—1.

In the complete graph K, there are (a — 1)/2 disjoint Hamiltonian cycles
and a perfect matching. We consider each of the (a — 1)/2 Hamiltonian cycles
as a disjoint union of two perfect matchings. Thus, we have represented K1
as a disjoint union of a Hamiltonian cycle and a — 2 perfect matchings. Now we
construct a Hamiltonian graph H by deleting ¢ perfect matchings from K1,
i=1,2,...,a— 2. As a required graph, we take H + O;. 0



[5] On a problem of Lesniak, Polimeni, and Vanderjagt 215

LEMMA 2. Ifky > 2 in S, at least one of the numbers k1, ko, ... , kpy, is even,
where m = [(n+1)/2], and p > pp(S), then the pair (S,p) has a Hamiltonian
realization.

PRrOOF. For ki = 2, the statement follows from Fact 2. Let k; > 3. It is
sufficient to consider the case of p > k,, +2. If k; is odd for some i € {1,2,...m},
then we consider the graph described in Fact 4. We denote it by G;, V(G;) =
{v1,v2,... v, }. Let v; and vy be the end-vertices of a Hamiltonian path in G;.
We delete edges from G;. By Lemma 1, we can realize the set {k; — 1, k;} on
p — k, + k; — 1 vertices. Now we identify the vertices of degree k; — 1 in this
realization with the vertices vi,va,... , vy, in such a way that the end-vertices
of the Hamiltonian path coincide with v and vs. 0

We write (S,p) € Aif |S| =n=2m, ky >3, all ki, ko, ..., ky, are odd, all
km+1s Km42, .., kn are even, and p > k,, + 2.

LEMMA 3. Let (S,p) € A, and let kv > 2 in S. The pair (S,p) has a
Hamiltonian realization if and only if p > pm(S) and the number pkiks - -k, is
even.

PRrROOF. Necessity is obvious.
Sufficiency. We may assume that p > k, + 2, k1, ko, ... , k,, are odd, and
k1 > 3. We set

kz/':p_kn—i+1+17i:172a"' ) 1,

and S" = {k{,k},... ,kl}. Clearly, kf > 3 and p > k|, + 2. We show that at
least one of k7, kb, ... Kk, is even for (S,p) & A.

If p is odd then there is an even integer among k., 41, km+2, - - . , kn. There-
fore at least one of ki,k5,...k,, is even. If p is even and n is odd, then
k!, =p—kn +1is even. If both p and n are odd, then there is an odd integer
among k41, km+2, ... , kn [otherwise (S, p) € A]. We denote such a number by
k., m+1<r <n. Then k;_TH:pfkTJrl iseven,and 1 <n—r+1<m.

According to Lemma 2, (S’,p) has a Hamiltonian realization H. It is easy

to check that H¢ is a Hamiltonian realization for the pair (S, p). 0

It remains to consider the case of (S,p) € A. Note that Lemma 3 does not
hold for (S, p) € A.

LEMMA 4. Let (S,p) € A, and let ky > 2 in S. The pair (S,p) has a
Hamiltonian realization if and only if (S,p) # ({3,2t},2t + 2) for all t > 4.
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PROOF. We consider eight possible cases.

Case 1. p >k, + ki + 3.
We put
S/:S\{kl}vplzp_kl_lv

and we construct a graph of type H(S’,p’) by Lemma 3. We choose an edge uv
in this graph, and an edge wz in the complete graph Ky, 1. It remains to do
the switching (u, v, w, ).

CASE 2p:kn+k1+1andk2—k123
We put

S/:{kg—k1+1,k4—k‘1+1,...,kn—kjl—l—l,},pI:k‘n—Q,

and we construct a graph of type H(S',p’).

V1 ()
o————0
(75} u9
L] L] L]
U3 V4 Vky Vk+1
Fig. 1: The graph B.
Finally, we connect all vertices of this graph with vy, va,... , vk, 41 of the

graph B shown in fig. 1.
CASE 3. p=ky+ ki +1and ko — k1 = 2.
It is possible if n > 4 only. We put
Slz{k3—k1+1,/€4—k1+1,... ,kn—k1+1},p/:kn—27

and we construct a graph of type H(S’,p’). Finally, we connect all vertices of
this graph with the vertices vy, va,... , vk, 1 of the graph B’ that is obtained
from B [see fig. 1] by deleting the edge ujv; and adding edges ujug and ugv;.
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Case 4. p=k,+ki+1and kg — ky = 1.

Tt is possible if S = {t,t + 1}, p = 2t + 2, and t > 3 is odd only. We take
adjacent vertices v and v. One half of vertices of H;_; o; we connect with u, and
the other half is connected with v.

CASE 5. p=Fk,+ ki +1and k; > 5.

We put

S = {kg—k1+17k3—k‘1+17...kn—k1+17},p/:]€n—2.
We connect two vertices of degree k; —1 in the graph K5 1, —1, and we connected
all vertices of degree two with all vertices of a graph of type H(S’,p’).
CASE 6. k,+2<p<k,+k —3and k; >5.
We put
i:p_kn7sl = {kl _iakQ _’L7 aknfl _i}7pi = kn
We construct a graph of type H(S;,p;) + O;.

CASE 7. p=k,+2,k =3, and n > 4.

It is possible if S = {3,2t}, p =2t + 2, and ¢t > 2 only. It is straightforward
to check that a required realization exists if and only if t = 2 or t = 3.

CASE 8. p=k, +2, k1 =3, and n > 4.

We put

Sl = {kQ —2,]'(}3—2,... ;kn—l —2},p/ :k;n—2
Clearly, (S',p') € A. Excluding
(2) ke =5,ky = kn—1+2,
we can construct a graph of type H(S’,p’) using Cases 1 — 7. Now we delete an
edge uv from Ky, and connect u, v with all vertices of a graph of type H(S’,p’).

If the condition (2) holds, then this construction gives inductive step. Base

of induction: the set S = {3,5,¢,t + 2} has a Hamiltonian realization of order

t+4 for all even t > 6. Indeed, we connect all vertices of a graph of type Hy_4 ;2
with the vertices u, v, w,z of the graph C shown in fig. 2.

Fig. 2: The graph C.
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Lemma 3 and Lemma 4 imply Theorem 3.
Now we prove Corollary 1.

PROOF. Lesniak, Polimeni, and Vanderjagt [4] proved that a set S has a
Eulerian realization if and only if all k; are even. Moreover, the minimum order
of a Eulerian realization is k,, + 1. Thus, it is sufficient to note that if all k; are
even, then the pair (S, p) can be realized by a connected graph for all p > k,, + 2.
It follows immediately from Theorem 3, since k,, + 2 > pug(.S). 0

It remains to prove Theorem 2(iii).

ProoF. (iii) Let S = {k; = 2,ko,... ,kp}. If n =1 then py(S) = 3. For
n = 2, Lesniak, Polimeni, and Vanderjagt [4] showed that py({2,t}) =t + 2 if
t >4, and py({2,4}) = 4.

We use induction on n to show that pp(S) = k, + 1 for each odd n. The
statement holds for n =1 and n = 2. Let n > 3. We consider the following two
constructions.

(2,2, ky,)-CONSTRUCTION. We choose a Hamiltonian realization H of order
p' = ky — 2 of the set 8" = {k; = 2,ka,... ,kn_1 — 1}. Then we do a switching
(u1,ug, v1,vs), where ujus is an edge of K3 and vyvs is an edge of a Hamiltonian
cycle of H. We connect the third vertex of the K3, ug, with all the vertices of
H. As a result, we obtain a graph of type H(S, k, + 1).

The (2, 2, ky,, )-Construction cannot be implemented in the following two sit-
uation only:

(3) kn - kn—l + 1a
and
(4) ko,ks,... , k,_1 are even, but k, is odd.

(2, kp, by )-CONSTRUCTION. We choose a Hamiltonian realization H of order
p =k, — 2 of the set S" = {ko —2,ks —2,... ,k,_1 — 2}. Then we connect all
the vertices of H with two vertices of K3. As a result, we obtain a graph of type
H(S k, +1).

The (2, ky,, ky,)-Construction cannot be implemented in the following two
situation only:

(6) ko, ks, ...k, are odd.
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As it follows from (3), (4), (5), and (6), there is the following unconsidered case,
namely S = {2,3, ks, ... ,kn_2,k, — 1, k,}, where n > 3 is odd. For n = 3, we
have S = {2,3,4} and ugy(S) = 5. If n > 5, we propose additional constructions
that give induction step.

1) Let V(K4) = {u1, u2, us,us}. We delete the edge ujus. Then we construct a
Hamiltonian realization of order p’ = k, —3 of 8" = {ks —2,ks—2,... ,kp_o—2}
[using either Theorem 3 or the inductive hypothesis]. Finally we connect all
vertices of the graph with uo and ws. This construction cannot be done only if

(7) ks, kq, ..., k,_o are odd, but k,, is even.

2) Let V(K5) = {u1, ua, us, uq, us . We delete the edges ujus and ujuz. Then
we construct a Hamiltonian realization of order p’ = k,, —4 of S’ = {ks — 3, ks —
3,... ,kn_o — 3} [using either Theorem 3 or the inductive hypothesis|. Finally
we connect all vertices of the graph with ug, us and us. This construction cannot
be implemented only if

(8) ks =4
or
(9) ks, k4, ...k,—_o are even, but k, is odd.

Since the family of sets defined by (7) is disjoint from the family of sets defined
by (8) and (9), the proof for even n is complete.

Similar constructions show that ug(S) =k, +1if k1 =2, ko > 5 and n is
even.

Finally, we note that pugy(S) = k, + 2 for S = {2,3,...,75,25 + 2,25 +
3,...,3j}. It is easy to see that such a set has no a Hamiltonian realization of
order 35 + 1. O
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