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A spline optimization problem from robotics

Dedicated to Laura Gori on the occasion of her 70th birthday

WALTER HOFFMANN – TOMAS SAUER

Abstract: We consider the problem of a robot manipulator moving along a pre-
scribed trajectory in as short as possible time while maintaining certain physical con-
straints concerning acceleration and velocity. Modelling the motion by cubic spline
curves, this corresponds to varying the knots of the spline curve for which we describe
a simple but efficient algorithm.

1 – Introduction

A classical problem in robot motion planning is to determine a motion pro-
file that allows a robot to follow a given trajectory within a certain accuracy in
shortest possible time. That the determination of the time optimal solution is a
complicated process results from the presence of physical side conditions which
limit, for example, the acceleration and the maximal speed of the system. In
this paper, we consider a particular case of motion planning for an experimen-
tal hydraulic two–joint robot at the department of Control Engineering at the
University of Erlangen.

A simplified geometry of the robot is shown in fig. 1 below. The two angles
ϕ1 and ϕ2 are controlled by varying the hydraulic drives and by doing so the
working point WP can reach each point in the so–called working area. This part
of the plane is determined by the length and the movability of the robot arms.
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Fig. 1: Geometric configuration of the robot.

The kinematic transformation for a robot geometry relates the Cartesian
coordinates of the working point to the robot coordinates, i.e., the controllable
quantities of the robot, in our case the angles ϕ1 and ϕ2 at the joints. In the
case of fig. 1, those equations simply look as follows:

xWP = L1 cos(ϕ1) + L2 cos(ϕ1 + ϕ2)

yWP = L1 sin(ϕ1) + L2 sin(ϕ1 + ϕ2).

It is easy to see that in general a given position for the work point in the plane
can be reached using two different robot coordinates, just imagine an “elbow up”
and an “elbow down” position. Consequently, without further restrictions the
kinematic transformation cannot be bijective. However, the technical constraints
on the hydraulic drives restrict the angles to be chosen within the bounds

25◦ ≤ ϕ1 ≤ 106◦,

48◦ ≤ ϕ2 ≤ 150◦,

for which the kinematic transform is one–to–one. In addition, this restriction also
guarantees that the velocity bound for the maximal feed rate of the robot can
never be reached, not even by full acceleration from one end of the working area
to the other. For a detailed description of the robot and its control techniques
see [4].
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2 – Splines in motion

Due to the two–dimensional nature of the robot, a trajectory is now a curve
x : R → R2, where x(t) denotes the position of the hand point at the time t.
Assuming, for convenience, that the robot starts at time t = 0, we can consider
the trajectory on the interval I = [0, t∗] where it is assumed that at the time t∗

the robot has reached its end position. Since, in addition, we want to start from
and end in a resting position, we get the side conditions

(1) ẋ(0) = ẋ(t∗) = ẍ(0) = ẍ(t∗) = 0

requiring zero velocity and acceleration at the beginning and end point. Due to
the nature of the hydraulic valves, any curve that can be realized by the robot
must be at least twice continuously differentiable. On the other hand, the third
derivative, usually called the jerk in Control Engineering, may very well have
discontinuities. This makes it natural to model the curve x by means of cubic
B–splines, cf. [1], [2], [3], writing it as

(2) x(t) =
N∑

j=0

xj N
3
j (· |T )

with respect to the knot sequence

T = {t0, . . . , tN+4}.

Here we employ the notation from [7], where the knots have to satisfy

tj ≤ tj+1, j = 0, . . . , N + 3, tj < tj+1, j = 3, . . . , N,

which permits multiple knots, but limits the multiplicity to the local polynomial
degree of the spline. Moreover, recall that the B–splines are normalized such
that they form a partition of unity, that is

N∑

j=0

N3
j (x |T ) = 1, x ∈ [t3, tN+1].

Like in [7] we also make the assumptions that

(3) t0 = t1 = t2 = t3 = 0, tN+1 = tN+2 = tN+3 = tN+4 = t∗,

i.e., that at both endpoints we have quadruple knots, as this automatically guar-
antees that (1) is satisfied.
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Given a prescribed contour y : R → R2, usually a C2 curve, the approx-
imating spline curve is generated by sampling y at points sj , j = 0, . . . , N ,
giving

xj = y(sj), j = 0, . . . , N.

These points can be simply equidistributed or be chosen in an adaptive way, for
example according to curvature information on the curve y. The spline curve

x(t) =
N∑

j=0

xj N
3
j (t |T ) =

N∑

j=0

y(sj)N
3
j (t |T )

can then be expected to be a good approximation to y. Indeed, when the sj are
chosen as the so–called Greville abscissae

sj =
1

3
(tj + tj+1 + tj+2), j = 0, . . . , N,

then a classical result for spline “quasi interpolants”, cf. [3], [6], says that

(4) ‖x− y‖ ≤ C ‖ÿ‖h2, h = max
j=0,... ,N

tj+1 − tj ,

where
‖x− y‖ := max

x∈[t3,tN+1]
|x(t) − y(t)|,

| · | being any norm on R2, denotes the parametric distance between the curves,
i.e., the distance based on parameterizing the two curves identically. Conse-
quently, the “true” distance between these curves, usually measured in a Haus-
dorff norm, will be even smaller.

The quality of approximation of the initial approximating curve x depends
only of how fine we sample y: suppose that y is defined on [0, 1], then we choose
the knots as

t0 = · · · = t3 = 0, tN−1 = · · · = tN+2 = 1, tj =
j − 3

N − 4
, j = 4, . . . , N−2,

yielding an accuracy of O(N−2) by (4), while the multiplicity of the knots guar-
antees that the initial and terminal conditions (1) are satisfied at t = 0 and
t = t∗ = 1, respectively. This initial approximant x, however, may fail to sat-
isfy the velocity and acceleration constraints ‖ẋ‖ ≤ V and ‖ẍ‖ ≤ A, in which
case we enlarge the distance between the knots by a simple scaling tj = t∗ tj ,
j = 0, . . . , N , enlarging t∗ > 1 until the constraints are satisfied eventually.
The resulting curve x∗ = x(·/t∗), now mapping [0, t∗] → Rd, is then a good
approximant to y∗ = y(·/t∗) : [0, t∗] → Rd since

max
0≤t≤t∗

|x∗(t) − y∗(t)| = max
0≤t≤1

|x∗(t∗ t) − y∗(t∗t)| = ‖x− y‖.
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The determination of the “sampling rate” N , on the other hand, depends essen-
tially on the curvature of y the precise representation of which depends on the
application context. Typically, it can be a spline curve itself, though possibly
of much higher order, or it could be composed of lines and arc segments as for
example in [4].

Writing Nk
j for the B–spline of order k, the well–known derivative formulae

for spline curves, see again [3], can be applied to our cubic spline curve

x =
N∑

j=0

xj N
3
j (· |T ).

Taking into account the multiplicity of the end knots, we then get

(5) ẋ = 3
N∑

j=1

x
(1)
j N2

j (· |T ), x
(1)
j =

xj − xj−1

tj+3 − tj
, j = 1, . . . , N,

as well as

(6) ẍ = 6
N∑

j=2

x
(2)
j N1

j (· |T ), x
(2)
j =

x
(1)
j − x

(1)
j−1

tj+2 − tj
, j = 2, . . . , N.

Note that since the spline curve ẍ is a linear one, we immediately have that

(7) ‖ẍ‖ := max
t∈[t3,tN+1]

|ẍ(t)| = max
j=2,... ,N

|x(2)
j |.

Thus, the time optimal motion planning problem can be formulated as follows:

Given a velocity bound V and an acceleration bound A, determine
knots t0 = · · · = t3 < · · · < tN+1 = · · · = tN+4 such that tN+1−t3
is minimized under the side conditions

‖ẋ‖ ≤ V, ‖ẍ‖ ≤ A.

Equations (5) and (6) make it clear that this is a highly nonlinear problem in
the free parameters which are the knots t4 < · · · < tN+1. Taking into account

that also ‖ẋ‖ ≤ 3 · maxj |x(1)
j |, we can focus on the following, slightly simpler

problem:

(8) min tN − t3, max
j=1,... ,N

|x(1)
j | ≤ 1

3
V, max

j=2,... ,N
|x(2)| ≤ 1

6
A, tj < tj+1.

As simple consequence of the above observations is then as follows.
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Theorem 1. A solution of (8) is a time optimal spline curve if

(9) |x(1)
j | < 1

3
V, j = 1, . . . , N.

In this case, we have that

(10)
3∏

k=0

(1

6
A− |x(2)

j+k|
)

= 0, j = 2, . . . , N,

that is, equality must be assumed at least one of any four consecutive acceleration
constraints.

Proof. Note that x
(1)
j depends on the knots tj and tj+3 while x

(2)
j depends

on tj−1, tj , tj+2, tj+3, more precisely, on the differences tj+2 − tj , tj+3 − tj and
tj+2 − tj−1. Suppose that (9) holds true. By continuity of (5) with respect to
the knots, (9) remains valid for a sufficiently small perturbation of the knots.
Now assume in addition that (10) were not true and let j be the smallest index

such that |x(2)
j+k| < 1

6A, k = 0, . . . , 3. Then there exists some ε > 0 such that
after replacement of T by T ∗, defined as

t∗k =

{
tk, k = 0, . . . , j + 2,

tk − ε, k = j + 3, . . . , N + 2,

we still have that

(11) |x(2)
j+k| ≤

1

6
A, k = 0, . . . , 3.

In fact, ε can be chosen optimally in such a way that equality is assumed in

at least one of the inequalities in (11). Since the constraints |x(2)
k | ≤ 1

6A, k <
j, depend only on the knots {t∗0, . . . , t∗j+2} = {t0, . . . , tj+2}, they still remain

satisfied with T being replaced by T ∗. On the other hand, the constraints |x(2)
k | ≤

1
6A, k > j + 3, involve differences between knots of the form

t∗k+3 − t∗k = tk+3 − ε− tk + ε = tk+3 − tk, k ≥ j + 3,

and

t∗k+2 − t∗k = tk+2 − tk, k ≥ j + 4,

and thus also remain valid. Thus, passing from T to T ∗ we obtain an improved
solution of the optimization problem (8) and thus T was no optimal solution.
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The proof of Theorem 1 already indicates the main idea for our algorithm
to obtain a time–optimal profile: we begin with an arbitrary distribution of
knots and then try to get any two successive knots as close as possible while still
maintaining the velocity and acceleration constraints.

To illustrate this idea, we briefly look at the simple case of trajectory plan-
ning by means of quadratic splines, bounded only by the first order velocity
constraints

max
t∈[t2,tN ]

|ẋ(t)| = 3 max
j=1,... ,N

|x(1)
j | ≤ V.

By means of the respective variant of (5) for quadratic splines, the side conditions
can even be met at any of these equations if we choose

(12) tj+2 = max
{
tj+1, tj +

|xj − xj−1|
V

}
, j = 1, . . . , N,

which leads to the time optimal solution and results from directly solving |x(1)
j | =

V . Note that this does not exclude the generation of multiple knots; we will
return to this issue later.

3 – A knot-shifting algorithm

Unfortunately, the simple approach for velocity–constrained quadratic spline
trajectories does no more apply in the case of cubic splines with acceleration

constraints. The reason is that the equations |x(2)
j | = V are now highly nonlinear

with respect to the knots and that, as seen in the proof of Theorem 1, there are
always four knots involved in such an identity. Due to these difficulties, the
motion profile will be determined by an iterative algorithm that we describe
next.

One step of the algorithm will consist of modifying the knot vector T (k)

in such a way that the constraints are still satisfied, but that the new knot

vector T (k+1) improves upon T (k) in the sense that t
(k+1)
N+1 < t

(k)
N+1. As an initial

knot vector T (0) one can choose, for example, an equidistant distribution that is
uniformly stretched such that ‖ẍ‖ ≤ A. It is easy to see that replacing T by λT ,
λ > 0, yields that ‖ẍ‖ is scaled by a factor of λ−2.

The core part of such an iteration step is to modify a knot, say tj , j =

4, . . . , N , such that 6|x(2)
j−2| ∈ [A − ε,A] for some prescribed tolerance ε > 0.

This is done by considering |x(2)
j−2| as a function in tj and numerically finding an

approximate solution to the nonlinear equation

(13) |x(2)
j−2(·)| −

A

6
= 0,



228 WALTER HOFFMANN – TOMAS SAUER [8]

to determine the value of tj . Though the Newton method would provide faster
convergence, we have to rely on bisection here since we need a one sided approx-
imation to the solution in order not to exceed the constraints, and this feature is
automatically offered by bisection. Since the B–splines which do not vanish at tj
are precisely Nj−3, . . . , Nj−1, the variation of tj does not affect the curve of the
left of tj – this is the well–known local control property of B–splines. Therefore,

we shift tj to the left until either 6|x(2)
j−2| ∈ [A − ε, A] or tj − tj−1 ≤ η for some

small constant η > 0 that describes how fast the machine control can react;
usually the order of this quantity is about 5ms. However, the fact that the knot
tj can be shifted arbitrarily close to tj−1 means that the control point xj lies on
the line connecting xj−1 and xj+1. This, on the other hand, allows us to remove
the knot tj together with the control point xj without significantly changing the
trajectory since in this region the curve is a straight line.

Once the knot tj is either moved such that the constraint is assumed with
equality or has been removed, we increase j by one and thus pass to the next knot.
Since the process only moves knots to the left, it is clear that it only improves
the knot sequence. However, due to the overlap of knots in the eq. (13), a single
adaption step of this sort cannot give an optimal solution, so that we have to
iterate the knot adaption process. Since every such iteration step reduces the
last knot tN+1, this iteration converges and thus leads to a limit knot profile.

Since this limit profile is obtained by a local modification process, we cannot
expect it to be a global solution of the optimization problem (8), and indeed this
can be verified with the examples provided in [5]. But, as paradox as it may
seem, the above algorithm often leads to solutions that are significantly better
that those that are obtained by the standard nonlinear optimization routines in
Matlab. The reason is simple: many prescribed trajectories contain segments
that are approximately linear and thus offer a potential for knot removement. It
even turns out that knot removal smoothes the trajectory in the sense that it
keeps the oscillations of the second derivatives (which usually cause mechanical
problems) lower than what is obtained by standard optimization methods.

A simple example and its solution is shown in fig. 2. A reference path in
shape of a triangle was programmed with 30 control points in Cartesian coor-
dinates. After the kinematic transformation the reference positions of the path
in machine coordinates is shown in the upper right figure. The second deriva-
tive of the angle is a measure for the forces that affect to the axe of the robot.
The computed solution shows the adapted velocity along the path of the pro-
grammed contour. At about 0.3 and 0.8 seconds the edges of the triangle can
be identified. This Algorithm was designed for an offline–look–ahead func-
tionality. But an online–solution is feasible due to the fact of the discrete
computations.

Further details of this comparison and plots of the velocity and acceleration
profiles for standard example curves can be found in [5].
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Control points and spline in cartesian coord.
(the points that were deleted are marked)

Control points and spline in machine coord.
(the points that were deleted are marked)
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Fig. 2: Solution for a simple example. Upper left figure shows the programmed positions
in Cartesian coordinates; upper right figure shows them in machine coordinates; the last picture
shows the adapted velocity along the path.

4 – Conclusions

Motion profiles using variable speed provide a productivity superior to those
with constant speed by adapting the velocity of the work point to the geometry
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of the curve. We have presented a method to compute such a profile under the
assumption that only the acceleration constraints matter for the profile planning.
The method is based on adapting the knot distribution of a cubic spline to
the curve and to remove knots where the trajectory is practically linear and
often leads to results that are better than what can be obtained by standard
optimization methods.
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