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Approximations of set-valued functions

based on the metric average

NIRA DYN – ALONA MOKHOV

Abstract: This paper investigates the approximation of set-valued functions with
compact images (not necessarily convex), by adaptations of the Schoenberg spline opera-
tors and the Bernstein polynomial operators. When replacing the sum between numbers
in these operators, by the Minkowski sum between sets, the resulting operators approx-
imate only set valued functions with compact-convex images [10]. To obtain operators
which approximate set-valued functions with compact images, we use the well known
fact that both types of operators for real-valued functions can be evaluated by repeated
binary weighted averages, starting from pairs of function values. Replacing the binary
weighted averages between numbers by a binary operation between compact sets, intro-
duced in [1] and termed in [4] the “metric average”, we obtain operators which are
defined for set-valued functions. We prove that the Schoenberg operators so defined
approximate set-valued functions which are Hölder continuous, while for the Bernstein
operators we prove approximation only for Lipschitz continuous set-valued functions
with images in R all of the same topology. Examples illustrating the approximation
results are presented.

1 – Introduction

We present in this paper a method for adapting to set-valued functions
(multifunctions) certain well known linear positive approximation operators for
real-valued functions. We study two types of linear operators, the Schoenberg
spline operators and the Bernstein polynomial operators. Both types of opera-
tors, when adapted by the usual method of replacing sums between numbers by
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Minkowski sums of sets, approximate in the Hausdorff metric only multifunctions
with compact-convex images [10]. It is shown in [5] that such Bernstein mul-
tipolynomials of a set-valued function F with compact images, converge in the
Hausdorff metric, with growing degree, to the set-valued function whose images
are the convex hulls of the images of F . This implies that the use of Minkowski
sums cannot yield approximation of set-valued functions with general (not nec-
essarily convex) compact images. Thus a different operation between sets is
applied in this paper.

Our adaptation method is taken from [4], where the approximation op-
erators were limits of spline subdivision schemes. Here we apply the method
successfully to the Schoenberg operators. We use the de Boor algorithm for the
evaluation of the Schoenberg operators in terms of repeated binary weighted
averages, and replace the binary weighted average between two numbers by a
binary operation between sets, introduced in [1], and termed in [4] the “met-
ric average”. We prove that with this procedural definition of the Schoenberg
operators for multifunctions, the Schoenberg operators approximate a Hölder
continuous set-valued function in a rate which equals the Hölder exponent of the
multifunction.

For the Bernstein operators we use the de Casteljau algorithm for the eval-
uation of a Bernstein polynomial in terms of repeated binary weighted averages,
and replace the average between two numbers by the metric average of two sets.
We prove for F Lipschitz continuous with images in R all of the same topology,
that its Bernstein multipolynomial of large enough degree m approximates F
with an error bound proportional to m−1/2.

The approximation results for both types of operators are illustrated by
examples.

We conclude the Introduction by an outline of the paper. In Section 2 we
give basic definitions and notations. In particular we discuss the metric average
and its relevant properties. In Section 3 the Schoenberg spline operators for real-
valued functions are defined, and their evaluation in terms of the de Boor algo-
rithm is briefly reviewed. The procedural definition of the Schoenberg operators
for set-valued functions is given in Section 4, together with the approximation
results, their proofs and examples. Section 5 discusses the Bernstein polynomials
of real-valued functions and their evaluation in terms of the de Casteljau algo-
rithm. In Section 6 the Bernstein operators for set-valued functions are defined,
and the proof of the approximation result together with an example are given.

2 – Preliminaries

In this section we introduce some definitions and notation. The collection
of all nonempty compact subsets of Rn is denoted by K(Rn). By Co(Rn) we
denote the collection of all convex sets in K(Rn), and by coA we denote the
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convex hull of A. The Euclidean distance from a point a to a set B ∈ K(Rn) is
defined as

dist(a,B) = inf
b∈B

|a− b|,

where | · | is the Euclidean norm in Rn.
The Hausdorff distance between two sets A,B ∈ K(Rn) is defined by

haus(A,B) = max
{

sup
a∈A

dist(a,B), sup
b∈B

dist(b, A)
}
.

The set of all projections of a ∈ Rn into a set B ∈ K(Rn) is

ΠB(a) = {b ∈ B : |a− b| = dist(a,B)}.

For A,B ∈ K(Rn) the projection of A on B is the set

ΠB(A) = {ΠB(a) : a ∈ A}.

A linear Minkowski combination of two sets A and B from K(Rn) is

λA + µB = {λa + µb, a ∈ A, b ∈ B},

with λ, µ ∈ R. The Minkowski sum corresponds to a linear Minkowski combina-
tion with λ = µ = 1.

Definition 2.1. Let A,B ∈ K(Rn) and 0 ≤ t ≤ 1. The t-weighted metric
average of A and B is

(1) A⊕ t B = {ta + (1− t)ΠB(a) : a ∈ A}
⋃
{tΠA(b) + (1− t)b : b ∈ B}.

The most important properties of the metric average are presented below [4]:
for A,B ∈ K(Rn) and 0 ≤ t ≤ 1, 0 ≤ s ≤ 1

1. A⊕ 0 B = B, A⊕ 1 B = A, A⊕ t B = B ⊕ 1−t A

2. A⊕ t A = A

3. A
⋂

B ⊆ A⊕ t B ⊆ tA + (1− t)B ⊆ co(A
⋃

B)

4. haus(A⊕ t B,A⊕ s B) = | t− s| haus(A,B)

5. A⊕ t B = tA + (1− t)B, A,B ∈ Co(R).

It follows from properties 1 and 4 that

(2) haus(A⊕ t B,A) = (1− t) haus(A,B), haus(A⊕ t B,B) = t haus(A,B).
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3 – Schoenberg operators for real-valued functions, and their evalua-
tion by repeated binary averages

The m-th order Schoenberg spline operator (Schoenberg’s variation dimin-
ishing spline approximation) Smf to a continuous function f on R is given by

Smf =
∑

i∈Z

f(i)Bm

(
· −i

)
,

where Bm(t) is the B-spline of order m with integer knots and support [0,m] [3].
For the knot sequence hZ, with small h, we consider the operator

(3) Sm,hf =
∑

i∈Z

f(ih)Bm

( ·
h
− i

)
.

For f ∈ C(R) limh→0 Sm,hf(t) = f(t) t ∈ R [3].
Sm,hf can be evaluated by an algorithm (known as the de Boor algorithm)

for the computation of a spline function given in terms of the B-spline basis,
based on the recurrence formula for B-splines.

For j ≤ t < j + 1, (3) can be written as

(4) Sm,hf(th) =

j∑

i=j−m+k+1

akiBm−k

(
t− i

)
,

with 0 ≤ k ≤ m− 1 and

(5)

a0
i = f(ih), i = j −m + 1, . . . , j

aki =
i + m− k − t

m− k
ak−1
i−1 +

t− i

m− k
ak−1
i , i = j −m + k + 1, . . . , j.

Introducing the notation

(6) λk
i =

i + m− k − t

m− k
, i = j −m + k + 1, . . . , j , k = 1, . . . ,m− 1,

we observe that aki is a convex combination of ak−1
i−1 and ak−1

i with coefficients

λk
i , 1− λk

i . The case k = m− 1 yields

(7) Sm,hf(th) = am−1
j .

Remark 3.1. It follows from (4) with k = 0 that Sm,hf(th) at t ∈ [j, j+1)
depends only on f(ih) i = j − m + 1, . . . , j. A better approximation is the
symmetric Schoenberg operator:

(8) S̃m,hf =
∑

i∈Z

f(ih)B̃m

( ·
h
− i

)
, where B̃m(t) = Bm

(
t− m

2

)
.
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For t ∈ [j, j + 1) S̃m,hf(th) is a convex combination of values of f at a set of

symmetric points relative to (jh, (j + 1)h). For even m the evaluation of S̃m,hf
is similar to that of Sm,hf .

In this work we study the operator Sm,h for set-valued functions.

4 – Schoenberg operators for set-valued functions

Let F : R → K(Rn) be a set-valued function. We define the set-valued
Schoenberg operator of order m in terms of its evaluation according to the
de Boor algorithm, using the metric average as the basic binary operation and
the initial sets {F 0

i = F (i), i ∈ Z}. To calculate the spline operator Sm,hF (th)
at t ∈ [j, j + 1) we use an extension of (5) and (7) with the average between two
numbers replaced by the metric average of two sets. Thus for k = 1, . . . ,m− 1
we define recursively the sets

(9) F k
i = F k−1

i−1 ⊕
λk
i
F k−1
i ,

with λk
i given by (6) and as in (7), determine Sm,hF (th) to be

(10) Sm,hF (th) = Fm−1
j .

First we prove some basic results, which are used in the proof of the approxima-
tion theorem.

Lemma 4.1. Given an initial sequence of compact sets {F 0
i , i ∈ Z} ⊂

K(Rn), we define the sets at level k by repeated application of (9). Let

(11) dk = sup
i∈Z

haus(F k
i−1, F

k
i ).

Then

dk ≤ m− k − 1

m− 1
d0, k = 1, . . . ,m− 2.

Proof. It follows from (9) and (2) that

haus(F k
i , F

k−1
i ) = haus(F k−1

i−1 ⊕
λk
i
F k−1
i , F k−1

i ) =

= λk
i haus(F k−1

i−1 , F k−1
i ) ≤ i + m− k − t

m− k
dk−1.

Thus

(12) haus(F k
i , F

k−1
i ) ≤ i + m− k − t

m− k
dk−1.
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In the same way we obtain

haus(F k−1
i , F k

i+1) = haus(F k−1
i , F k−1

i ⊕
λk
i+1

F k−1
i+1 ) =

= (1− λk
i+1) haus(F k−1

i , F k−1
i+1 ) ≤ t− i− 1

m− k
dk−1.

Therefore

(13) haus(F k−1
i , F k

i+1) ≤
t− i− 1

m− k
dk−1.

By the triangle inequality and using the estimates (11) and (12) we get:

haus(F k
i , F

k
i+1) ≤ haus(F k−1

i , F k
i ) + haus(F k−1

i , F k
i+1) ≤

m− k − 1

m− k
dk−1.

This leads to

(14) dk ≤ m− k − 1

m− k
dk−1.

Now, using (13) repeatedly, we obtain the claim of the lemma

dk ≤ m− k − 1

m− k
dk−1 ≤ m− k − 1

m− k
· m− (k − 1)− 1

m− (k − 1)
· · ·

· · · m− 2− 1

m− 2
· m− 1− 1

m− 1
d0 =

=
m− k − 1

m− 1
d0.

Lemma 4.2. Let Sm,hF , be define by (9) and (10). Then for any point
t ∈ [j, j + 1)

(15) haus(Sm,hF (th), F 0
j ) ≤ d0m

2
.

Proof. By (10), the triangle inequality, (11) and Lemma 4.1

haus(Sm,hF (th), F 0
j ) = haus(Fm−1

j , F 0
j ) ≤

m−1∑

k=1

haus(F k−1
j , F k

j ) ≤

≤
m−1∑

k=1

m− k + j − t

m− k
dk−1 ≤

≤
m−1∑

k=1

m− k + j − t

m− k
· m− (k − 1)− 1

m− 1
d0 =
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=
d0

m− 1

m−1∑

k=1

(m− k + j − t) =

= d0
(
m + j − t− 1

m− 1

m−1∑

k=1

k
)

= d0
(
m + j − t− m

2

)
.

Finally we obtain

haus(Sm,hF (th), F 0
j ) ≤ d0

(m
2

+ j − t
)
≤ d0m

2
.

As a consequence of the last lemma, we get the approximation result.

Theorem 4.1. Let the set-valued function F : [0, 1] → K(Rn) be Hölder
continuous with exponent ν ∈ (0, 1],

haus(F (x), F (z)) ≤ Cν |x− z| ν , x, z ∈ [0, 1].

Let F 0
i = F (ih), i = 0, 1, . . . , N with hN = 1, and F 0

i = {0} otherwise. Then
for any x ∈ [h(m− 1), 1]

(16) haus(Sm,hF (x), F (x)) ≤
(m

2
+ 1

)
Cνh

ν .

Proof. For x ∈ [(m − 1)h, 1], let lx ∈ Z be such that x ∈ [lxh, (lx + 1)h).
Note that for such x, the value Sm,hF (x) depends on values F 0

i for i ∈ {lx −
m + 1, lx −m + 2, . . . , lx} ⊂ {0, 1, . . . , N}.

By the triangle inequality we have

haus(Sm,hF (x), F (x)) ≤ haus(Sm,hF (x), F 0
lx) + haus(F 0

lx , F (x)).

Hence by Lemma 4.2 we obtain

(17) haus(Sm,hF (x), F (x)) ≤ d0m

2
+ haus(F 0

lx , F (x)).

Now, by the Hölder continuity of F ,

d0 ≤ Cνh
ν

and
haus(F 0

lx , F (x)) = haus(F (lxh), F (x)) ≤ Cνh
ν .

This together with (16) leads to the claim of the theorem.
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Example 4.1. We construct Schoenberg approximations to the multifunc-
tion F (x) defined by

(18)
F (x) =

{
y : max{0, (r/2)2 − (x− 0.5)2} ≤ y2 ≤ r2 − (x− 0.5)2

}
,

r = 0.5, x ∈ [0, 1].

(a) Approximation with S3, hF .

The original set-valued function is presented in gray on the left-hand side
of fig. 1, 40 cross-sections of the reconstructed shape, S3, 0.01F , is depicted in
black. The graph of

eh(x) = haus(S3,hF (x), F (x))

at x = 0.425 as function of h, is shown on the right-hand side of fig. 1.

e  (0.425)h

0.05671

0.01 h

Fig. 1: (a) F - in gray. Forty cross-sections of S3, 0.01F - in black. (b) Error between
the original and the reconstructed cross-sections at x = 0.425 as function of h.

We note that eh(0.425) changes almost linearly with h. This is in accordance
with Theorem 4.1, since at x = 0.425 F is Lipschitz continuous (ν = 1).

The graph of the maximal error between cross-sections of the reconstructed
shape, S3, hF and the corresponding cross-sections of (17) as a function of h is
presented in fig. 2 (a). The maximal error is obtained at the points of change of
topology of the cross-sections of (17), which are depicted in fig. 2 (b).

To verify that the decay of the error in this figure is in accordance with
Theorem 4.1, we show that F in (17) is Hölder continuous with exponent 1/2,
at points of change of topology.
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||e  ( )||∞h
.

0.839898

0.01 h

Fig. 2: (a) Maximal error between the original and the reconstructed cross-sections as
function of h. (b) Points of change of topology, where the maximal error is attained.

Consider the boundary of the ring in 2D determined by (17). Locally near the
points of change of topology of cross-sections the boundary can be described
by a scalar function y = f(x), or by x = g(y). One can see easily that the
derivative of f tends to infinity at points of change of topology (see fig. 2 (b)).
Let x = g(y) be the inverse function of f and let (x0, y0) be a point of topology
change. Since g′(y0) = 1/f ′(x0) = 0, we get by the Taylor expansion of degree 2
of g(y) about y0,

g(y)− g(y0) = (∆y)
2 · g

′′(y0)

2
+ R3, ∆y = y − y0.

Thus for |x−x0|=h and since |R3|/|∆y|2 = o(|∆y|), we obtain ∆y≈
√

2h/g′′(y0),
from which it can be concluded that F is Hölder continuous with exponent 1/2
at the points of change of topology.

(b) Approximation with S̃4, hF.

Fig. 3 is similar to fig. 1 but with S̃4, hF replacing S3, hF . It is easy to
observe that the behavior of the error function is almost quadratic in h. We
conjecture that F is smooth enough at x = 0.425 in a sense yet to be defined,
and that

(19) ẽh(x) = haus(F (x), S̃4, hF (x)) = O(h2),

in points of smoothness of F . Moreover, we conjecture that (18) holds for S̃
2m̃, h

F

for all m̃ ≥ 2. This is an improvement over the approximation rate in Theo-
rem 4.1, as in the case of real-valued functions.
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e  (0.425)~
h

7.84E-4

0.01 h

Fig. 3: (a) F - in gray. Forty cross-sections of S̃4, 0.01F - in black. (b) Error between
the original and the reconstructed cross-sections at x = 0.425 as function of h.

5 – Bernstein polynomials of real-valued functions and their evalua-
tion by repeated binary averages

For f ∈ C[0, 1], the Bernstein polynomial of degree m is

(20) Bm(f, u) =

m∑

i=0

(
m

i

)
ui(1− u)m−if

( i

m

)
.

The value Bm(f, u) can be calculated recursively by using the de Casteljau al-
gorithm [9] in terms of repeated binary averages. The algorithm is based on the
following recurrence relation,

(21) Bi,m(u) = (1− u)Bi,m−1(u) + uBi−1,m−1(u),

where Bi,m(u) =
(
m
i

)
ui(1− u)m−i.

Bm(f, u) in (19) for u ∈ [0, 1] can be presented by a repeated application
of (20) as:

(22) Bm(f, u) =

m∑

i=0

(
m

i

)
ui(1− u)m−if0

i =

m−k∑

i=0

(
m− k

i

)
ui(1− u)m−k−ifk

i ,

with the values fk
i given recursively by

(23) fk
i = (1− u)fk−1

i + u fk−1
i+1 , i = 0, 1, . . . ,m− k, k = 1, . . . ,m,

and with f0
i = f(i/m), i = 0, 1, . . . ,m.
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Comparing formulas (22) with formulas (5) one can easily see that the
de Boor algorithm is a generalization of the de Casteljau algorithm.

Taking k = m in (21) we obtain Bm(f, u) = fm
0 . Thus the Bernstein

polynomial of a real-valued function can be defined by repeated binary averages.

6 – Bernstein operators for set-valued functions

Let F : [0, 1] → K(Rn) be a set-valued function with compact images. Let
F 0
i = F (i/m) be the initial cross-sections, F 0

i ∈ K(Rn), i = 0, 1, . . . ,m. Con-
sider the Bernstein polynomial of a set-valued function, having the form of the
Bernstein polynomial of a real-valued function with sums of numbers replaced
by Minkowski sums of sets,

(24) BM
m (F, u) =

m∑

i=0

(
m

i

)
ui(1− u)m−iF

( i

m

)
.

It is shown in [5] that the limit of BM
m (F, u), for a fixed u ∈ (0, 1), when m→∞,

is the convex hull of F (u). Therefore, the set-valued polynomial (23) is a good
approximation for functions with convex compact images. To obtain an op-
erator, which does not convexify the initial data, we define constructively the
Bernstein approximation of F in terms of the de Casteljau algorithm with the
metric average as the basic binary operation. Thus to calculate the value of the
Bernstein polynomial of degree m at the point u ∈ [0, 1], Bm(F, u), we use the
following extension of (22):

(25) F k
i = F k−1

i ⊕ 1−u F k−1
i+1 , i = 0, 1, . . . ,m− k, k = 1, . . . ,m

and define

(26) Bm(F, u) = Fm
0 .

First we show,

Lemma 6.1. Let F k = {F k
i , i = 0, . . . ,m− k} be define as above, and let

(27) dk = sup
i∈Z

⋂
[1,m−k]

haus(F k
i−1, F

k
i ), k = 0, 1, . . . ,m− 1.

Then

dk ≤ d0, k = 1, . . . ,m− 1.
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Proof. From (24) and (2)

(28)
haus(F k

i , F
k−1
i ) = haus(F k−1

i , F k−1
i ⊕ 1−u F k−1

i+1 ) =

= u haus(F k−1
i , F k−1

i+1 ) ≤ u dk−1.

In the same way we obtain

(29)
haus(F k−1

i , F k
i−1) = haus(F k−1

i−1 ⊕ 1−u F k−1
i , F k−1

i ) =

= (1− u) haus(F k−1
i−1 , F k−1

i ) ≤ (1− u) dk−1.

Now, by the triangle inequality, (27) and (28) we get,

haus(F k
i−1, F

k
i ) ≤ haus(F k−1

i , F k
i−1) + haus(F k−1

i , F k
i ) ≤

≤ (1− u)dk−1 + u dk−1 = dk−1.

Thus
dk ≤ dk−1,

which implies the claim of the lemma.

We do not have a proof of the convergence of Bm(F, u) to F (u) as m→∞.
Yet we have a proof in the case of set-valued functions with cross-sections in R
all of the same topology. Our proof is based on the following result from [10]:

Result 6.1. For F : [0, 1] → Co(Rn) Lipschitz continuous

haus(BM
m (F, u), F (u)) ≤ C/

√
m, u ∈ [0, 1],

where BM
m (F, u) is defined by (23) and the constant C depends only on the

Lipschitz constant of F.

Any set A in R consists of a number of disjoint intervals, some possibly
with empty interior. Thus A can be written in the form A =

⋃J
j=1 Aj with Aj ,

j = 1, . . . , J ordered and disjoint intervals, namely aj < aj+1 for any aj ∈ Aj

and aj+1 ∈ Aj+1, j = 1, . . . , J − 1. We denote this by A1 < . . . < AJ .
We introduce a measure of separation of such a set with J > 1:

(30) s(A) = inf
l,j∈{1,... ,J}, l �=j

{dist(a,Aj) : a ∈ Al}.

In the following we assume that J is finite. We discuss only the case J > 1, since
J = 1 is a special case of Result (6.1).

Definition 6.1. Two sets A,B ∈ K(R) are called topologically equivalent
if each is a union of the same number of disjoint intervals, namely

(31) A =
J⋃

j=1

Aj , B =

J⋃

j=1

Bj ,

with Aj , j = 1, . . . , J and Bj , j = 1, . . . , J disjoint ordered intervals.
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Definition 6.2. Let A,B ∈ K(R) be topologically equivalent. The sets
A,B are called metrically equivalent if

(32) ΠB(Aj) ⊂ Bj and ΠA(Bj) ⊂ Aj , j = 1, . . . , J.

This relation between the two sets is denoted by A ∼ B.

Lemma 6.2. Let A,B ∈ K(R) be topologically equivalent. If

(33) haus(A,B) <
min(s(A), s(B))

2

then A and B are metrically equivalent.

Proof. Assume the opposite, i.e. that (32) holds, but A,B are not metri-
cally equivalent, namely there exists a subset Bl ∈ B such that two points from
Bl have their closest points in A in two subsets of A, say Aj and Aj+1. By

the continuity of the projection mapping there exists a point b̃ ∈ Bl such that
{a1, a2} ⊂ ΠA(̃b), a1 ∈ Aj , a2 ∈ Aj+1.

By the triangle inequality,

(34) dist(a1, a2) ≤ dist(̃b, a1) + dist(̃b, a2) = 2 dist(̃b, A).

Now, by the definition of the Hausdorff distance, (33) and (29) we obtain:

haus(A,B) ≥ dist(̃b, A) ≥ 1

2
dist(a1, a2) ≥

1

2
s(A)

in contradiction to assumption (32). Thus ΠA(Bl) ⊂ Aj , and by symmetry
ΠB(Aj) ⊂ Bk. It remains to prove that k = l.

Let a ∈ Aj and bl ∈ Bl be such that a ∈ ΠA(bl). Let bk ∈ Bk be such that
bk ∈ ΠB(a). By the triangle inequality and by the definition of the Hausdorff
distance

(35)
dist(bl, bk) ≤ dist(bl, a) + dist(a, bk) ≤

≤ dist(bl, A) + dist(a,B) ≤ 2 haus(A,B).

Now by (29) we have if k �= l that

s(B) ≤ dist(bl, bk).

This together with (34) contradicts (32). Hence ΠA(Bl) ⊂ Aj and ΠB(Aj) ⊂ Bl.
Since A and B are both of the form (30), we conclude that l = j. Thus A ∼ B.
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Corollary 6.1. The metric average of two topologically equivalent sets A
and B, satisfying (32), is given by

(36) A⊕ t B =

J⋃

j=1

Aj ⊕ t Bj .

Lemma 6.3. Let {F 0
i ⊂ R, i = 0, 1, . . . ,m} be topologically equivalent, of

the form

F 0
i =

J⋃

j=1

F 0
i,j ,

with F 0
i,j , j = 1, . . . , J disjoint ordered intervals. Define {F k

i } and dk by (24)
and (26) respectively, and define

(37) sk = min{s(F k
i ) : i = 0, 1, . . . ,m− k}, k = 0, 1, . . . ,m− 1.

If d0 < s0/2, then

(38) dk < sk/2, k = 1, . . . ,m− 1,

and the sets {F k
i , i = 0, . . . ,m− k, k = 0, . . . ,m} are topologically equivalent.

Proof. We prove the lemma by induction. We assume that the sets
{F l

i : i = 0, . . . ,m− l , l = 0, . . . , k − 1} are topologically equivalent and that
dk−1 ≤ sk−1/2. Note that the induction hypothesis is satisfied for k = 1. Since
two consecutive sets of {F k−1

i } are metrically equivalent, by the induction hy-
pothesis and by Lemma 6.2, we get by Corollary 6.1 that

(39) F k
i =

J⋃

j=1

F k−1
i,j ⊕ 1−u F k−1

i+1,j , i = 0, . . . ,m− k.

Now, by property 5 of the metric average (see Section 2)

(40) F k−1
i,j ⊕ 1−u F k−1

i+1,j = (1− u)F k−1
i,j + uF k−1

i+1,j = Iki,j ,

where Iki,j is an interval.
First we show that

(41) σk
i = min{|c1 − c2| : c1 ∈ Iki,j , c2 ∈ Iki,j+1, j ∈ {1, . . . , J − 1}} ≥ sk−1.

Let σk
i = |c∗1 − c∗2|. By (38) and (39), we have

c∗l = (1− u)al + u bl, l = 1, 2
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with a1 ∈ F k−1
i, j , b1 ∈ F k−1

i+1, j and a2 ∈ F k−1
i, j+1, b2 ∈ F k−1

i+1, j+1 for some j ∈
{1, . . . , J − 1}. Thus,

|c∗1 − c∗2| = |(1− u)(a1 − a2) + u(b1 − b2)|.

Since the differences (a1 − a2) and (b1 − b2) have the same sign, we can write
|c∗1 − c∗2| = (1− u)|a1 − a2|+ u|b1 − b2)|. Finally, using (29) we obtain:

σk
i = |c∗1 − c∗2| = (1− u)|a1 − a2|+ u|b1 − b2| ≥
≥ (1− u) s(F k−1

i ) + u s(F k−1
i+1 ) ≥ min(s(F k−1

i ), s(F k−1
i+1 )) ≥ sk−1.

It follows from (40) that Iki, j
⋂

Iki, j+1 = ∅ for j ∈ {1, . . . , J − 1}, and in view

of (38) and (39) we conclude that F k
i is topologically equivalent to F k−1

i , F k−1
i+1 .

Moreover by (40) sk = mini σ
k
i , and

sk ≥ sk−1.

This together with Lemma 6.1 and the induction hypothesis leads to

dk ≤ dk−1 < sk−1/2 ≤ sk/2.

Thus the induction hypothesis holds for k which concludes the proof of the
lemma.

Lemmas 6.3 and 6.2 lead to

Corollary 6.2. Let the sets {F k
i : i = 0, . . . ,m− k , k = 0, . . . ,m− 1} be

as in Lemma 6.3. Then F k
i ∼ F k

i−1 , i = 1, . . . ,m− k , k = 0, . . . ,m− 1.

Now we can prove,

Theorem 6.1. Let the set-valued function F : [0, 1] → K(R) be Lipschitz

continuous, such that for each t ∈ [0, 1], F (t) =
⋃J

j=1 Fj(t), with J > 1, where
{Fj(t)} are disjoint ordered intervals. Then for m large enough

(42) haus(Bm(F, u), F (u)) ≤ C̃/
√
m, u ∈ [0, 1].

Proof. Let m be such that for F 0
i = F (i/m), i = 0, . . . ,m,

d0 < s∗/2,

with d0 defined by (26) and

s∗ = inf
0≤t≤1

s(F (t)) > 0.
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Such m exists since F is Lipschitz continuous. In fact m has to be large enough.
Obviously s∗ ≤ s0, where s0 is defined in (36). Thus d0 ≤ s0/2. Now, by Corol-
lary 6.1 and Property 5 of the metric average we get

Bm(F, u) =

J⋃

j=1

BM
m (Fj , u).

Therefore

haus(F (u), Bm(F, u)) = max
1≤j≤J

haus(Fj(u), BM
m (Fj , u)),

and (41) follows from Result 6.1.

Example 6.1. To illustrate Theorem 6.1, we consider the function F (x)
defined by

(43)
F (x) =

{
{y : 1 ≤ y ≤ 0.06x2 + 2}

⋃

⋃
{y : 0.1x2 + 2.5 ≤ y ≤ 13.5}

}
, x ∈ [0, 10].

This function is depicted in gray in (a), (b), (c) of fig. 4. Fifty cross-sections
of the reconstructed shapes, B12(F, u), B13(F, u) and B30(F, u), are colored by
black and presented in (a), (b) and (c) of fig. 4 respectively. Note that (32)
does not hold for m = 12, while for m = 13 and m = 30 (32) holds. Fig. 6.1
shows that for m = 12 there is no approximation, while B13(F, u) is already
approximating the shape. The approximation by B30(F, u) is better than that
by B13(F, u).

Fig. 4: (a) F (x) - in gray. Fifty cross-sections of B12(F, u) - in black. (b) F (x) - in
gray. Fifty cross-sections of B13(F, u) - in black. (c) F (x) - in gray. Fifty cross-sections of
B30(F, u) - in black.
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7 – Conclusion

We expect that the approximation methods studied in this paper will be-
come useful for practical applications. This requires, an effective algorithm for
the evaluation of the metric average. An algorithm for computing the metric av-
erage of two compact sets in R, which has linear complexity in the total number
of intervals, is presented in [2]. This algorithm can be applied to the reconstruc-
tion of 2D shapes from their 1D cross-sections. The computation of the metric
average of compact sets in R2, required for the reconstruction of 3D objects
from their 2D cross-sections, is much more complicated. As a first attempt,
[???] presents an algorithm for the computation of the metric average of two
intersecting convex polygons, having linear complexity in the number of vertices
of the two polygons. This algorithm is generalized for the case of two intersecting
regular polygons, but with quadratic computation time [???].

The authors stipulate that the lack of a general approximation result in
the case of the Bernstein operators in contrast to the cases of the Schoenberg
operators studied here, and spline subdivision operators studeied in [4], is due
to the global nature of the Bernstein operators. In the Bernstein operators the
approximation at a point depends on values of the approximated function over
all the interval of approximation, while in the two other operators it depends on
a finite number of samples of the approximated function near the point. This
failure of the adaptation method, based on the metric average, lead the authors
to extend the metric average to a new set-operation acting on a finite sequence
of compact sets. With this operation, most known approximation methods for
real-valued functions, are adapted to set-valued functions successfully [6]. Yet
at this stage the results are mainly theoretical.
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