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Geometric construction of generalized cubic splines

PAOLO COSTANTINI – CARLA MANNI

Abstract: We study the Bézier-like, geometric properties of four dimensional
spaces of the form span < uk,P1, vk >, where uk and vk are subject to general condi-
tions, and describe the geometric construction of the corresponding spline spaces

1 – Introduction

If we ask a mathematician the definition of a spline we probably have nowa-
days as answer – a piecewise function which has a certain degree of smoothness
at the break points – which is much wider than the original idea contained the
Shoenberg’s pioneering papers (see e.g. [2] and [8]). Indeed, several kinds of
function spaces have substituted polynomials to form the pieces of new classes
of splines: exponential, trigonometric, rational, Tchebycheffian splines are only
some of the most famous names (see, e.g., [5], [4], [6], [9]). As usual, these
researches have been motivated both by theoretical and by practical reasons.
Among the last ones, we want to concentrate on the solicitations induced by their
applications in data interpolation and approximation and in computer aided de-
sign. The limit of polynomial splines in data approximation or interpolation
relies essentially in the lack of reproduction of the shape of the data set. The
consequences of this drawback can be serious and the first attempt to avoid them
led to the so-called tension splines (see, e.g., [4], [5], [10] and references quoted
therein) which can be forced to assume a piecewise linear shape. On the other
hand, the necessity of an easy description and manipulation of real objects by
means of curves and surfaces has led to other extensions of classical splines.
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representation.
A.M.S. Classification: 65D07 – 65D17 – 41A15



328 PAOLO COSTANTINI – CARLA MANNI [2]

In our opinion, the trend of the recent researches (especially those motivated
by the two fields of applications described above) seems to indicate that any new
class of spline functions should possess two main properties: to have a geometric
construction and to have an adaptive shape.

One of the main advantages of polynomial splines (see, e.g., [3]) is that the
Bernstein-Bézier control points (which give the representation of the polynomial
pieces in term of the Bernstein basis) can be obtained via convex combinations
of the de Boor control points (which give the representation of the spline in term
of the B-spline basis). In addition, both the Bernstein and the B-spline basis are
totally positive and sum up to one, so that the (difficult) task of controlling the
shape of the polynomials pieces is basically reduced to the (much easier) control
of the shape of the de Boor control polygon (the polygonal line connecting the
de Boor control points).

At the same time, there are several applications in which we wish to model
objects or phenomena with parts of completely different shape; therefore we
would like to incorporate in our CAD or approximation tools different function
spaces – trigonometric, exponential, variable degree polynomials etc. – still
maintaining the simplicity of the original polynomial structure.

With regard to this, several results on splines with segments in particular
function spaces have been established (see e.g. [4], [5], [6], [7]). However, an
unified approach to the geometric construction and analysis of properties of
such spline spaces seems of interest but not yet available.

Recently, as a first step in this direction, in [1] the main properties of n-
degree Bernstein polynomials, which form a basis of the space Pn = span <
(1− t)n,Pn−2, t

n >, have been extended to suitable bases of spaces of the form
span < u(t), Pn−2, v(t) >, where the functions u and v are subject to very general
constraints.

The aim of the present paper is to give a further contribution in the same
direction. Given a sequence of knots {x0, . . . , xn}, we study with more details
the geometric properties of cubic-like spaces of the form span < uk,P1, vk >
and provide the geometric construction for the corresponding adaptive shape,
cubic-like splines (uk and vk can vary in each subinterval).

The content is divided in four sections. In the next one we analyze a gen-
eralized Bézier-Bernstein representation for the elements of the space span <
uk,P1, vk > and in Section 3 we develop the geometric spline construction. Sec-
tion 4 is then dedicated to final examples.

2 – Generalized Bézier representation

Let us consider the space

(1) Pu,v := span < 1, t, u(t); v(t) >, t ∈ [0, 1]
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where we assume that u, v ∈ C2([0, 1]),

(2) dim(Pu,v) = 4 ,

and, denoting by ψ any element of Pu,v,

(3) if ψ′′(t1) = ψ′′(t2) = 0, t1, t2 ∈ [0, 1], t1 �= t2, then ψ′′(t) = 0, t ∈ [0, 1] .

We notice that, considering (2), (3) is the same as saying that {u′′, v′′} is a
Tchebycheff system in [0, 1].

Thanks to (3), in the following we assume, without loss of generality, that

(4) u(1) = u′(1) = u′′(1) = 0, u(0) = 1 ,

(5) v(0) = v′(0) = v′′(0) = 0, v(1) = 1 .

Lemma 1. Let u, v be the unique elements in Pu,v satisfying (4) and (5)
respectively. Then

(6) u′(t) < 0, u′′(t) > 0t ∈ [0, 1), v′(t) > 0, v′′(t) > 0; t ∈ (0, 1] .

Moreover,

(7) u′(0) < −1, v′(1) > 1, 1− 1

v′(1)
> − 1

u′(0)
.

Proof. From

(8) −1 =

∫ 1

0

u′(s)ds

we have that u′(t) < 0 for some t ∈ (0, 1). If there exists t1 ∈ [0, 1) such that
u′(t1) ≥ 0 then u′ has at least one zero in (0, 1). Since u′(1) = 0, we have that u′′

has at least one zero in (0, 1). That contradicts (3) since u′′(0) = 0 and u′′ �≡ 0.
Thus u′(t) < 0, t ∈ [0, 1). Similarly we obtain the remaining inequalities of (6).

Now, from (6), u′ is strictly increasing in (0, 1) so, from (8) we obtain the
first inequality of (7). Similarly we conclude for the second one.

Finally, let us consider the function

g(t) := t− u(t)

u′(0)
− v(t)

v′(1)
∈ Pu,v .



330 PAOLO COSTANTINI – CARLA MANNI [4]

From (4), (5), (6), and the first two inequalities of (7) we have

g(0) = − 1

u′(0)
, g(1) = 1− 1

v′(1)
, g′(0) = 0, g′(1) = 0, g′′(0) > 0, g′′(1) < 0 .

If g(1) ≤ g(0) the previous inequalities imply that g′′ has at least three distinct
zeros in (0, 1) and that contradicts (3) since g′′ �≡ 0. Thus the last inequality in
(7) holds.

Following [1], we have that the space Pu,v has a generalized Bernstein basis
{B0, B1, B2, B3}. The elements of the basis form a partition of unity, are strictly
positive in (0, 1) and characterized by the following relations

B0(0) = 1, B0(1) = B′
0(1) = B′′

0 (1) = 0 ,

B1(0) = 0, B′
1(0) = −u′(0), B1(1) = B′

1(1) = 0 ,

B2(0) = B′
2(0) = 0, B2(1) = 0, B′

2(1) = −v′(1) ,

B3(0) = B′
3(0) = B′′

3 (0) = 0, B3(1) = 1 ,

so that

B0 = u, B3 = v .

With some computation we obtain the following

Theorem 1. Let B0, B1, B2, B3 the elements of the generalized Bernstein
basis of Pu,v constructed according to [1]. Thus

t ≡
3∑

i=0

τiBi(t)

where

τ0 := 0, τ1 := − 1

u′(0)
, τ2 := 1− 1

v′(1)
, τ3 := 1 .

Let

ψ(t) =
3∑

i=0

biBi(t)

be any element of Pu,v. We will refer to the coefficients bj , j = 0, 1, 2, 3 as the
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generalized Bézier coefficients of ψ and to the polygonal line having vertices

(
τj
bj

)
, j = 0, 1, 2, 3

as the generalized Bézier control polygon of ψ.
For notational convenience let us denote

ξ := τ1, η := 1− τ2, ν := 1− ξ − η .

From Theorem 1 we have 0 < ξ; ν; η < 1. Moreover, with some additional
computations we obtain

Corollary 1. Let ψ(t) =
∑3

i=0 biBi(t) be any element of Pu,v expressed
with respect to the generalized Bernstein basis of the space. Then,

ψ(0) = b0 ψ(1) = b3 ,

ψ′(0) = (b1 − b0)
1

ξ
, ψ′(1) = (b3 − b2)

1

η
,

ψ′′(0)=u′′(0)[(b2 − b1)
ξ

ν
− (b1 − b0)], ψ′′(1)=v′′(1)

[
(b3 − b2)− (b2 − b1)

η

ν

]
.

In the remaining part of this section we give a de Casteljau like algorithm.
It is well known that any cubic polynomial p can be evaluated – starting from
its Bézier coefficients b0, b1, b2, b3 – using the de Casteljau algorithm, which, in
matrix form, can be expressed as

p(t) = (1− tt)

(
1− t t 0

0 1− t t

)


1− t t 0 0
0 1− t t 0
0 0 1− t t







b0
b1
b2
b3


 .

Similarly, for the elements of the general space Pu,v, it is simple to check the
following result.

Theorem 2. Let ψ ∈ Pu,v, with ψ =
∑3

i=0 biBi. Then, for any t ∈ [0, 1],

(9) ψ(t) = (1− tt)

(
1− t t 0

0 1− t t

)


m1,1 m1,2 m1,3 0
0 m2,2 m2,3 0
0 m3,2 m3,3 m3,4







b0
b1
b2
b3
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where

m1,1 =
u(t)

(1− t)2
, m3,4 =

v(t)

t2

m1,2 =
1

u′(0)v′(1)− u′(0) + v′(1)

(
u′(0)(1− v′(1))

(
u(t)

(1− t)2
− 1

))
− t

m1,3 = − 1

u′(0)v′(1)− u′(0) + v′(1)

(
v′(1)

(
u(t)

(1− t)2
− 1

))
+ t

m2,2 = (1− t)− 1

2

u′(0) + v′(1)

u′(0)v′(1)− u′(0) + v′(1)

m2,3 = t +
1

2

u′(0) + v′(1)

u′(0)v′(1)− u′(0) + v′(1)

m3,2 =
1

u′(0)v′(1)− u′(0) + v′(1)

(
u′(0)

(
v(t)

t2
− 1

))
+ (1− t)

m3,3 = − 1

u′(0)v′(1)− u′(0) + v′(1)

(
v′(1)(1 + u′(0))

(
v(t)

t2
− 1

))
− (1− t) .

Note that, because of (4), (5) and (7), the elements mi,j are well defined,
continuous functions of t ∈ [0, 1]. It is easy to check that

(10)
4∑

j=1

mi,j = 1, i = 1, 2, 3 ;

but the elements of the matrix are, in general not positive. Now, as it happens in
many interesting examples, assume that the functions u and v smoothly depend
on a parameter α, possibly scaled so that α ∈ [0,∞), that is

u = u(t) = u(t;α), v = v(t) = v(t;α)

and, in addition to properties (4), (5), (6), assume that they satisfy the following
conditions:

−∂u(0, α)

∂t
=

∂v(1, α)

∂t
= ω > 0 ;(11)

lim
α→∞

u(t, α) = 0, 0 < a ≤ t ≤ 1; lim
α→∞

v(t, α) = 0, 0 ≤ t ≤ b < 1 ;(12)

u(t, 0) = (1− t)3, v(t, 0) = t3 ;(13)

∂u(t, α)

∂α
≤ 0,

∂v(t, α)

∂α
≤ 0 .(14)
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Then the elements of the matrix used in algorithm (9) are

(15) m1,1 =
u(t, α)

(1− t)2
, m3,4 =

v(t, α)

t2

(16) m1,2 =
ω − 1

ω − 2

(
1− u(t, α)

(1− t)2

)
− t

(17) m1,3 =
1

ω − 2

(
u(t, α)

(1− t)2
− 1

)
+ t

(18) m2,2 = (1− t), m2,3 = t

(19) m3,2 =
1

ω − 2

(
v(t, α)

t2
− 1

)
+ (1− t)

(20) m3,3 =
ω − 1

ω − 2

(
1− v(t, α)

t2

)
− (1− t)

and we have the following result.

Theorem 3. Let the functions u = u(t) = u(t, α) and v = v(t) = v(t, α)
satisfy properties (11)-(14) and let the elements mi,j be defined by (15)-(20).
Then mi,j ≥ 0.

Proof. Using (11)-(14) we have ω ≥ 3 and

(21)

m1,2 = m1,2(t, α) =
ω − 1

ω − 2

(
1− u(t, α)

(1− t)2

)
− t ≥

≥ ω − 1

ω − 2

(
1− u(t; 0)

(1− t)2

)
− t =

=
ω − 1

ω − 2
(1− (1− t))− t =

1

ω − 2
t ≥ 0 .

Let us now consider m1,3 = m1,3(t;α). From (4), (5), (6) and (12) we have

−∂2u(0;α)

∂t∂α
=

∂2v(1;α)

∂t∂α
=

dω

dα
≥ 0

and m1,3(t; 0) = 0. Thus, m1,3(t;α) ≥ 0 since from (14)

∂m1,3(t;α)

∂α
= −dω

dα

1

(ω − 2)2
1

(1− t)2
∂u(t;α)

∂α
≥ 0 .

Similar arguments hold, respectively, for m3,2 and m3,3.
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Remark 1. Theorem 3 and equality (10) guarantee that the intermediate
control points given at the k-th step (matrix multiplication) of the scheme (9)
are obtained as a convex combination of the intermediate control points of step
k − 1.

Remark 2. Assume that u(t) = v(1 − t) (which implies (11)); then (12),
(13) and (14) describe the usual tension properties that are required for the
construction of cubic-like tension splines.

Remark 3. For the special case u(t) = (1 − t)α, v(t) = tα we have the
results stated in Subsection 6.1 of [1].

3 – Generalized cubic B-splines

Let us consider the (extended) sequence of knots

x−3 < . . . < x0 < . . . < xn < . . . < xn+3 ,

and the corresponding grid-spacings

hk := xk+1 − xk, k = −3, . . . , n + 2 .

For any k = −3, . . . , n + 2 let us consider a pair of functions

uk(t), vk(t), t ∈ [0, 1]

and the corresponding spaces Puk,vk
(see (1)) so that hypotheses (2) and (3)

are satisfied. Let us denote by U(V) the collection of functions uk(vk), k =
−3, . . . , n + 2 respectively.

Finally, let us consider the space of functions of class C2 in [x−3, xn+3]
belonging “piecewise” to Puk,vk

, that is

SU,V := {s ∈ C2[x−3, xn+3] s.t. sj[xk,xk+1](x) := sk((x− xk)/hk),

sk ∈ Puk,vk
, k = −3, . . . , n + 2} .

For each segment [xk, xk+1] we have

s(x) = sk(t) =

3∑

i=0

bi,kBi,k(t)

where t = (x − xk)/hk and Bj,k, j = 0, 1, 2, 3 denote the elements of the gen-
eralized Bernstein basis in Puk,vk

. Obviously, s is continuous in xk if and only
if

b3,k−1 = b0,k .
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Setting

ξk := − 1

u′
k(0)

, ηk :=
1

v′k(1)
, νk := 1− ξk − ηk ,

from Corollary 1 we have that s′(x−
k ) = s′(x+

k ) if and only if

(b3,k−1 − b2,k−1)
1

hk−1ηk−1
= (b1,k − b0,k)

1

hkξk
,

while s′′(x−
k ) = s′′(x+

k ) if and only if

v′′k−1(1)

h2
k−1

[
(b3,k−1 − b2,k−1)− (b2,k−1 − b1,k−1)

ηk−1

νk−1

]
=

=
u′′
k(0)

h2
k

[
(b2,k − b1,k)

ξk
νk
− (b1,k − b0,k)

]
.

Finally, we set

γ+
k :=

hk−1

hk

ξk
νk

u′′
k(0)γk, γ−

k :=
hk

hk−1

ηk−1

νk−1
v′′k−1(1)γk ,

γk :=
hk−1ηk−1 + hkξk

v′′k−1(1)hkηk−1 + u′′
k(0)hk−1ξk

,

and define the sequence

σk := xk + ξkhk − γ+
k hkνk = xk − ηk−1hk−1 + γ−

k hk−1νk−1 .

Note that, since xk + ξkhk < xk+1 − ηkhk and both γ+
k hkνk and γ−

k+1hkνk are
positive, for all k, σk < σk+1. We can associate to any element s of the space
SU,V a polygonal line (the generalized de Boor control polygon) with vertices

(22) Pk :=

(
σk

Pk

)
,

where Pk are real numbers, so that the Bézier coefficients of s can be deduced
from (22) according to the following rules (see also fig. 1)

b2,k−1 = Pk

1 + γ+
k−1

1 + γ+
k−1 + γ−

k

+ Pk−1
γ−
k

1 + γ+
k−1 + γ−

k

,

b1,k = Pk

1 + γ−
k+1

1 + γ−
k+1 + γ+

k

+ Pk+1
γ+
k

1 + γ−
k+1 + γ+

k

,

b3,k−1 = b0,k = b2,k−1
hkξk

ξkhk + ηk−1hk−1
+ b1,k

hk−1ηk−1

ξkhk + ηk−1hk−1
.
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The family of functions {B(i), i = −1, . . . , n + 1} determined by the polygons
with vertices

Pk :=

(
σk

0

)
, k = −3, . . . , n + 3, k �= i, Pi :=

(
σk

1

)
,

has the usual properties of the family of C2 cubic B-splines so they will be
referred to as generalized cubic B-splines. In particular we have

B(i)(x) ≥ 0, x ∈ [x−3, xn+3] ,

B(i)(x) = 0, x �∈ (xi−2, xi+2) ,

n+1∑

i=−1

B(i)(x) ≡ 1, x ∈ [x0, xn] .

4 – Examples

In this section we present two examples to illustrate the geometric aspects
of the construction of generalized cubic B-splines and the graphical behavior of
the obtained functions. In the first example (see fig. 1) we have considered the
sequence of knots [x0 x1 x2 x3 x4] := [0 2 3 3.5 5] and we have juxtaposed in
the various subintervals classical cubic polynomials and exponential functions.
More precisely, we have considered the following spaces Puk,vk

Pu0,v0
= Pu3,v3

:= span < 1, t, (1− t)3, t3 >

Pu1,v1 := span < 1, t, exp(2t), exp(−2t) >

Pu2,v2
:= span < 1, t, exp(4t), exp(−4t) > .

Fig. 1 refers to the corresponding function B(2). On the left we have its general-
ized de Boor control polygon and the geometric construction of the generalized
Bézier control polygon where, for notational convenience we put

αk :=
hkξk

ξkhk + ηk−1hk−1
.

The right part of the figure shows the graph of B(2) with its control polygons.
In the second example (see fig. 2) we have considered again the same se-

quence of knots but a different four dimensional space of functions, verifying (3),
for each subinterval. More precisely,

Pu0,v0 := span < 1, t, (cos(3t), sin(3t) >

Pu1,v1 := span < 1, t, (1− t)3, t3 >

Pu2,v2 := span < 1, t, exp(6t), exp(−6t) >

Pu3,v3 := span < 1, t, (1− t)10, t3 > .
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Fig. 1: Example 1: geometric construction of a generalized cubic B-spline. Left: gen-
eralized de Boor (dotted line) and Bézier control polygon. Right: control polygons and the
corresponding B-spline.
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Fig. 2: Example 2: generalized (top) and classical (bottom) cubic B-spline and its first
and second derivative.

The first line of fig. 2 shows the corresponding generalized cubic B-spline
B(2) and its first and second derivatives. For the sake of comparison the second
line of the figure shows the corresponding graphs for the classical cubic spline
on the same sequence of knots.
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