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Finite geometry and permutation groups:

some polynomial links

PETER J. CAMERON

Abstract: Any set of points in a finite projective space PG(n, q) defines a ma-
troid which is representable over GF(q). The Tutte polynomial of the matroid is a
two-variable polynomial which includes a lot of numerical information about the con-
figuration of points. For example, it determines the weight enumerator of the code
associated with the point set, and hence the cardinalities of hyperplane sections of the
set.
Another polynomial used in enumeration is the cycle index of a permutation group,
which includes information about the number of orbits of the group on various config-
urations. This is the subject of a well-developed theory.
The aim (not yet realised) of the research reported here is to combine the Tutte poly-
nomial of a matroid with the cycle index of any group acting on the matroid to obtain
a more general polynomial which tells us about the number of orbits of the group on
configurations counted by the Tutte polynomial.
The paper includes an introductory exposition of all these topics.

1 – Introduction

A set of points in a finite projective space can be regarded as a matroid M
(with no dependent set of size 2) together with a vector representation of M over
a finite field. Many geometric properties of the point set, such as the cardinalities
of subspace interesections, can be read off from the matroid, or from its Tutte
polynomial.
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In addition, a (linear) code over a finite field gives rise to a matroid on the
set of coordinate positions of the code. According to a theorem of Greene, the
weight enumerator of the code is a specialisation of the Tutte polynomial of the
matroid.

For example, from this point of view, Segre’s problems about arcs in pro-
jective spaces have been re-interpreted as problems about representations of
uniform matroids, or about linear MDS codes. But the principle applies much
more widely.

A linear code also gives rise to a special type of permutation group, a so-
called IBIS group. The cycle index of this group is equivalent (under a simple
transformation) to the weight enumerator of the code. Every IBIS group acts
on a matroid, and in the case of the groups derived from linear codes, the cycle
index is a specialisation of the Tutte polynomial. However, there are other IBIS
groups for which the cycle index determines the Tutte polynomial of the matroid.
These facts suggest that a common generalisation exists.

In this paper, I consider the general situation of a group G of automorphisms
of a matroid M . The aim is to find a polynomial which determines both the cycle
index of G and the Tutte polynomial of M , and which extends the role of the
cycle index in orbit-couting to various configurations enumerated by the Tutte
polynomial. A candidate for such a polynomial is proposed, but its properties
have not been determined yet.

2 – Codes and weight enumerators

A linear code C of length n over GF(q) is simply a subspace of the vector
space GF(q)n. Each element c of C has weight wt(c), the number of non-zero
coordinates of C. The weight enumerator of C is the polynomial

WC(X,Y ) =
∑

c∈C

Xn−wt(c)Y wt(c) =

n∑

i=0

AiX
n−iY i ,

where Ai is the number of words of C of weight i. Although it is really a
polynomial in a single variable, it is customary to write it as a homogeneous
polynomial in two variables, as done here.

As is well known, codes are used for error correction. The Hamming distance
between two codewords is the number of places where they differ. If two words
v, w have Hamming distance at least 2e+ 1, and at most e symbols are received
incorrectly when v is transmitted, then the received word will be closer to v than
to w. Thus, if we use a code C with minimum distance at least 2e + 1, then
e errors can be corrected. If C is linear, then its minimum distance is equal to
the minimal weight of a non-zero codeword, and can be read off from the weight
enumerator of C.
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We say that C is an [n, k, d] code over GF(q) if it has length n, dimension k,
and minimum distance d.

We call two linear codes equivalent if one can be obtained from the other by
a monomial transformation (a permutation of the coordinates followed by mul-
tiplication of the coordinates by possibly different non-zero scalars). In the case
q = 2, the only non-zero scalar is 1, and equivalence involved merely a coordinate
permutation. Note that equivalent codes have the same weight enumerator (but
not conversely, as the next example shows).

Example 1. Here are two binary codes (that is, codes over the field GF(2)).

000000 000000
110000 110000
001100 101000
000011 011000

+ complements + complements

Both codes have length 6 and dimension 3, and it is easy to see that they
both have weight enumerator X6 + 3X4Y 2 + 3X2Y 4 + Y 6. In fact they are not
equivalent (under permutation of coordinates), as we will see.

The dual code C⊥ of a code C is defined by

C⊥ = {v ∈ GF(q)n : v · c = 0 for all c ∈ C} .

If C has length n and dimension k, then C⊥ has dimension n − k. More sur-
prisingly, MacWilliams’ theorem shows that the weight enumerator of C⊥ is
determined by that of C:

Theorem 2.1. Let C be a linear code. Then

WC⊥(X,Y ) =
1

|C|WC(X + (q − 1)Y,X − Y ) .

In coding theory, there is a tension between the minimum distance and
cardinality of a code; they cannot both be too large. One result along these lines
is the Singleton bound, stated here just for linear codes:

Theorem 2.2. If C is an [n, k, d] code, then k ≤ n− d + 1.

A code attaining this bound is called maximum distance separable, or an
MDS code.
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3 – Matroids and Tutte polynomials

Matroids were introduced by Whitney to model the notion of linear inde-
pendence in a vector space. A matroid consists of a pair (E,J ), where J is a
non-empty set of subsets (called independent sets) of the ground set E satisfying
the two conditions

(M1) J is closed downwards, that is, if J ⊆ I ∈ J , then J ∈ J .

(M2) The exchange axiom: if I1, I2 ∈ J and |I2| > |I1|, then there exists
x ∈ I2 \ I1 such that I1 ∪ {x} ∈ J .

It follows that any two bases (maximal independent sets) have the same
cardinality, called the rank of the matroid. More generally, the rank rank ρ(A)
of a subset A of E is the size of a maximal independent subset of A. Matroids
can be axiomatised in terms of the bases or their rank function (or indeed in
various other ways).

A family of vectors in a vector space V forms a matroid, where independence
is linear independence. Such a matroid is called a vector matroid. If all sets of size
at most 2 in such a matroid are independent, then each 1-dimensional subspace
contains at most one vector in E. In this case, the matroid represents a subset
of the projective space based on V . We call such a matroid a projective matroid.

Matroids arise in many other situations too. For example:

• E is a subset of an algebraically closed field, and independence is algebraic
independence over the prime subfield (this is an algebraic matroid);

• E indexes a family of sets, and a subset of E is independent if it indexes a
subfamily possessing a transversal (this is a transversal matroid);

• E is the edge set of an undirected graph, and a subset is independent if it
contains no cycle (this is a graphic matroid).

An important though easy example of a matroid is the uniform matroid
Uk,n, whose independent sets are all subsets of cardinality at most k of the
ground set of size n.

The dual M∗ of a matroid M is the matroid whose bases are the comple-
ments of the bases of M .

Associated with a matroid M on E, with rank function ρ, is a two-variable
polynomial called the Tutte polynomial of the matroid, defined as follows:

T (M ;x, y) =
∑

A⊆E

(x− 1)ρ(E)−ρ(A)(y − 1)|A|−ρ(A) .

(This is not Tutte’s original definition, but is essentially due to Whitney; it is
not at all trivial to prove the equivalence of the two definitions.) It is easy to
see that T (M∗, x, y) = T (M ; y, x).
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In the case of a matroid representing a subset E of a projective space,
the Tutte polynomial encodes a lot of geometric information about E, such as
cardinalities of its intersections with subspaces of the projective space.

4 – Matroids and codes

Let A be a k× n matrix over GF(q) with linearly independent rows. There
are two natural objects we can obtain from A:

• The row space of A is a linear code C with length n and dimension k.

• The columns of A are vectors in GF(q)k, and so define a vector matroid M
of rank k and cardinality n.

Row operations on A don’t change C, and merely change the basis of the vec-
tor space in which M is represented. Monomial transformations on the columns
replace C by an equivalent code and merely re-label the points of M . Thus ei-
ther of these combinatorial objects is a natural invariant for matrices under the
equivalence relation generated by these operations.

The code C and the matroid M which correspond in this way have closely
related properties. Here are a couple of examples.

• The dual matroid M∗ corresponds to the dual code C⊥.

• M is projective if and only if C⊥ has minimum weight at least 3.

• M is represented by an n-arc in PG(k − 1, q) (a set of n points, no k + 1
contained in a hyperplane) if and only if C is an MDS code of length n and
dimension k. Thus Segre’s fundamental problems [6] on arcs in projective
space are equivalent to problems about the existence of linear MDS codes,
or about vector representations of uniform matroids. I refer to [1] or to
Hirschfeld’s article in these Proceedings for further details.

Curtis Greene greene proved that the weight enumerator of C is a speciali-
sation of the Tutte polynomial of M :

Theorem 4.1. If the code C and matroid M are associated as above, then

WC(X,Y ) = (X − Y )n−kY kT

(
M ;

X + (q − 1)Y

X − Y
,
X

Y

)
.
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Note that Greene’s theorem, together with the above observation about du-
ality, can be used to give a purely combinatorial proof of MacWilliams’ theorem.
(The original proof involved character sums.)

The Tutte polynomial is not a complete invariant of matroids; there exist
non-isomorphic matroids with the same Tutte polynomial. Nevertheless, it is
more discriminating than the weight enumerator. For example, the two codes in
Example 1 have different Tutte polynomials, and so are not equivalent. Indeed,
we find that the first has eight bases while the second has ten.

5 – Permutation groups and cycle index

The cycle index of a permutation group is the multivariate probability gen-
erating function for cycle lengths of a random element of the group. That is,
the cycle index Z(G) is a polynomial in the indeterminates s1, . . . , sn (where n
is the degree) given by

Z(G) =
1

|G|
∑

g∈G

s
c1(g)
1 · · · scn(g)

n ,

where ci(g) is the number of i-cycles of the permutation g.
As an indication of its use, I state the Cycle Index theorem. Suppose that

we are given a set F of figures with non-negative integer weights, where ai is the
number of figures of weight i. Let A(x) =

∑
aix

i be the generating function for
these numbers.

Now let G be a permutation group on E. We wish to count orbits of G on
the set of functions from E to F by weight, where the weight of a function φ is the
sum of the weights of its values, and the G-action is given by (φg)(x) = φ(xg−1).
Let bi be the number of orbits on functions of weight i, and B(x) =

∑
bix

i its
generating function. The Cycle Index theorem asserts that

B(x) = Z(G; si ← A(xi)) ,

where F (si ← ti) denotes the result of substituting ti for si in F , for all i.
For example, Z(G; si ← 1 + xi) is the generating function for the numbers

of orbits of G on k-sets, for all k. (Take two figures, with weights 1 and 0; now
functions from E to F are characteristic functions of subsets of E, and the weight
of a function is the cardinality of the set.)

Example 2 below shows that a permutation group is not determined up to
permutation ismorphism by its cycle index. (Indeed, it is not even determined
up to group isomorphism.)

One result we require later is the Shift theorem. In this theorem, PE/G
denotes a set of representatives of the orbits of G on the power set of E, and
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G(A) denotes the permutation group induced on the set A by its setwise stabiliser
in G.

Theorem 5.1. For any permutation group G on a set E, we have

∑

A∈PE/G

Z(G(A)) = Z(G; si ← si + 1) .

This theorem is the basis for extending the cycle index to infinite permu-
tation groups. The definition of cycle index fails for infinite groups. But the
expression on the left-hand side of the equation in the theorem (where the sum-
mation is over orbit representatives of finite sets) is well-defined if and only if
the permutation group is oligomorphic, that is, has only finitely many orbits on
n-sets for all n. But that is another story!

6 – Comparisons

In this section, we meet two special situations where a permutation group
and a matroid are associated with each other. In the first case, the Tutte poly-
nomial determines the cycle index but not the other way round; in the second
case, the reverse is true.

6.1 – Groups from codes

Let C be a linear code of length n and dimension k over GF(q). We represent
the additive group of C as a permutation group on the set E = {1, . . . , n}×GF(q)
as follows: the codeword c = c1 . . . cn induces the permutation

(i, x) �→ (i, x + ci) .

There is a matroid defined on the set E, by blowing up the matroid on {1, . . . , n}
associated with C (replacing each point i by q pairwise dependent points (i, x)
for x ∈ GF(q)). We will see later a procedure for obtaining the matroid directly
from the permutation group.

It is easy to see that the weight enumerator of the code and the cycle index
of the group are related by

Z(G) =
1

|C|WC(sq1, s
q/p
0 ) ,

where p is the characteristic of GF(q).

Example 2. The binary dual repetition code {000, 011, 101, 110} of length 3
corresponds to the permutation group of degree 6 consisting of the identity
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and the three permutations (3, 4)(5, 6), (1, 2)(5, 6), and (1, 2)(3, 4). We have
WC(X,Y ) = X3 + 3XY 2 and Z(G) = 1

4 (s6
1 + 3s2

1s
2
2).

Note that there is another permutation group which has the same cycle
index, namely the group consisting of the identity and the three permutations
(1, 2)(3, 4), (1, 3)(2, 4), and (1, 4)(2, 3) (all fixing 5 and 6). This group does not
arise from a binary code.

6.2 – Base-transitive groups

A base for a permutation group is a sequence of points of the domain whose
pointwise stabiliser is the identity. A base is irredundant if no point is fixed
by the pointwise stabiliser of its predecessors. A permutation group is called
base-transitive if it permutes its irredundant bases transitively.

Examples of base-transitive groups include the symmetric and alternating
groups, and the general linear and affine groups. For example, in the general
linear group GL(d, q), the bases are precisely the vector space bases of GF(q)d.

The bases of a base-transitive group are the bases of a matroid. (This is
not the case for arbitrary permutation groups; later we will examine the class of
groups for which it holds.) This matroid is a perfect matroid design: that is, the
cardinality of a flat of rank k (a maximal subset of rank k) depends only on k.
Mphako [5] showed that the Tutte polynomial of a perfect matroid design is
determined by the cardinalities of the flats.

A base-transitive group of rank 1 is simply a regular permutation group
(possibly with some global fixed points). Using the Classification of Finite Simple
Groups, Maund [4] determined all the finite base-transitive groups of rank at
least 2.

Example 3. There are two permutation groups which are base-transitive
and whose associated matroid is U2,3 with each point blown up to a pair of
points:

• the symmetric group S4, acting on the set of unordered pairs from {1, 2, 3, 4};
• the rotation group of the cube, acting on the set of faces of the cube.

Both are abstractly isomorphic to S4, but the actions are non-isomorphic
and the cycle indices are unequal. In the first group, an element of order 4 has
a 2-cycle and a 4-cycle; in the second, such an element has two fixed points and
a 4-cycle.

7 – IBIS groups

Recall the definition of an irredundant base for a permutation group. The
following was shown by Cameron and Fon-Der-Flaass [3]:
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Theorem 7.1. For a permutation group G, the following are equivalent :

• all irredundant bases have the same size;
• the irredundant bases are preserved by re-ordering;
• the irredundant bases are the bases of a matroid.

A group satisfying these conditions is called an IBIS group (an acronym for
“Irredundaant Bases of Invariant Size”).

The IBIS groups form a special class of permutation groups connected
with matroids which includes both classes (groups derived from codes and base-
transitive groups) described earlier.

In the case of a permutation group G from a code C, the matroid associ-
ated with G as IBIS group coincides with the one obtained by blowing up the
matroid of C. Thus, in this case, the cycle index is a specialisation of the Tutte
polynomial. By contrast, in the base-transitive groups of Example 3, the Tutte
polynomial is determined by the cardinalities of the fixed-point sets, and so is
determined by the cycle index (but not conversely).

The two permutation groups with the same cycle index in Example 2 are
both IBIS groups, but with different rank, and corresponding to very different
matroids: in the first case, a blow-up of U2,3, and in the second case, U1,4 with
two added loops (elements of rank 0).

Thus, in all three cases, the Tutte cycle index suffices to distinguish the
groups concerned.

There are many other IBIS groups: for example, all Frobenius or Zassenhaus
groups, symplectic and unitary groups (acting on their natural vector spaces).
The classification problem for these groups, or even for the associated matroids,
is open.

8 – A generalisation

In this section, there are some speculations about constructing a polynomial
associated with a group G acting on a matrooid M . We want a polynomial with
the following properties:

• it specialises to both the Tutte polynomial of M and the cycle index of G;
• for each “standard” enumeration problem solved by a specialisation of the

Tutte polynomial, the problem of counting G-orbits should be solved by a
specialisation of the new polynomial.

This aim has not yet been realised!

8.1 – Equivariant Tutte polynomial

Let G be a group of automorphisms of the matroid M . The equivariant
Tutte polynomial T (M,G) is obtained in the manner suggested by the Orbit-
counting lemma: we average, for g ∈ G, the terms in the summation for the
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Tutte polynomial corresponding to sets fixed by g. That is,

T (M,G;x, y) =
1

|G|
∑

g∈G

∑

A⊆E
Ag=A

(x− 1)ρ(E)−ρ(A)(y − 1)|A|−ρ(A) =

=
1

|G|
∑

A⊆E

∑

g∈GA

(x− 1)ρ(E)−ρ(A)(y − 1)|A|−ρ(A) =

=
1

|G|
∑

A∈PE/G

|G|
|GA|

|GA|(x− 1)ρ(E)−ρ(A)(y − 1)|A|−ρ(A) =

=
∑

A∈PE/G

(x− 1)ρ(E)−ρ(A)(y − 1)|A|−ρ(A) .

Thus, an alternative description of the equivariant Tutte polynomial is that
it contains the terms in the usual Tutte polynomial but summed over orbit
representatives only.

It is clear that, if we substitute (1, 1), (1, 2), (2, 1) or (2, 2) into the equivari-
ant Tutte polynomial, we obtain the number of orbits of G on bases, independent
sets, spanning sets, and arbitrary subsets of E.

Unfortunately, not all specialisations work so nicely. It is not true that the
substitution which gives the chromatic polynomial of a graph from its Tutte
polynomial, when applied to the equivariant Tutte polynomial, gives the gener-
ating function for the number of orbits on colourings. A similar remark applies
to the weight enumerator of a code.

So the equivariant Tutte polynomial is not the one we are looking for. We
will see, however, that it does arise as a specialisation of the Tutte cycle index
introduced below.

Example. Let M be the uniform matroid U2,3 (the cycle matroid of the
triangle graph K3), and G the symmetric group S3. Then

T (M) = (x− 1)2 + 3(x− 1) + 3 + (y − 1) = x2 + x + y ,

T (M,G) = (x− 1)2 + (x− 1) + 1 + (y − 1) = x2 − x + y .

The chromatic polynomial of K3 is

P (k) = kT (M ; 1− k, 0) = k(k − 1)(k − 2) ,

and no colouring is invariant under any non-identity permutation, so the number
of orbits on k-colourings is obtained by dividing by 6. However,

kT (M,G; 1− k, 0) = k2(k − 1) .
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8.2 – The Tutte cycle index

The Tutte cycle index is defined as follows:

ZT (M,G) =
∑

A∈PE/G

uρ(E)−ρ(A)v|G:GA|Z(G(A)) .

It has the following specialisations:

• Put u ← 1, v ← 1: we obtain Z(G; si ← si + 1 for all i), by the Shift
theorem.

• Differentiate with respect to v and put v ← 1, si ← ti for all i. Since
|G : GA| is the size of the orbit of A, we obtain the sum over all of PE;
moreover, Z(G(A); si ← ti) = t|A|. So we obtain

tρ(E)
∑

A⊆E

t|A|−ρ(A)(u/t)ρ(E)−ρ(A) = tρ(E)T (M ;x← u/t + 1, y ← t + 1) .

• Put v ← 1, si ← ti (without differentiating): as in the preceding item, we
obtain the equivariant Tutte polynomial (with the same substitution).

I do not know whether the Tutte cycle index has the other desirable prop-
erties listed earlier.

Remark. The Tutte cycle index given here is essentially the same as the
one given in [2], but in a more general situation. Note that, if G is an IBIS
group and M the corresponding matroid, then the rank function of M is given
by ρ(A) = b(G)− b(G(A)), where G(A) is the pointwise stabiliser of A, and b(G)
denotes the minimum base size of the permutation group G. So in this case
the entire definition can be written in terms of the permutation group, without
mentioning the matroid.
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