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On the motion of a convex body interacting

with a perfect gas in the mean-field approximation

GUIDO CAVALLARO

Abstract: We consider a convex body in R3, moving along the x-axis, immersed
in an infinitely extended perfect gas in the mean-field approximation. We assume that
the gas particles interact with the body by means of elastic collisions. Giving to the body
an initial velocity V0, we prove that, for |V0| small enough, |V (t)| ≈ C t−5 for large t,
being C a positive constant depending on the medium and on the shape of the obstacle.
The power law approach to the equilibrium V = 0, instead of the exponential one (typical
in viscous friction problems), is due to the long memory effect of the recollisions. This
paper completes the analysis made in previous papers (see [7] and [8]), in which for
simplicity the body was assumed to be a disk.

1 – Introduction

We study the behavior of the motion of a body immersed in a homogeneous
fluid. We want to present a model which describes the macroscopic features of
this physical system, from a microscopic point of view.

We assume the medium to be an infinitely extended perfect gas, taken in
the mean-field approximation. Such approximation consists in taking the limit
in which the mass of the particles constituting the free gas goes to zero, while
the number of particles per unit volume diverges, in such a way that the mass
density stays finite. Such a limit is well known for interacting particle systems
in case of finite total mass ([1], [9], [13], [14]), and for one-dimensional particle
systems with unbounded mass ([3]).
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We assume here that the body has a general convex shape, and its inter-
action with the gas particles happens by means of elastic collisions. We want
to generalize the analysis made in previous papers (see [7] and [8]) in which the
shape of the obstacle was assumed for simplicity to be a disk. In Ref. [7] it is
present also an external constant force which acts on the disk, while in Ref. [8]
it is considered the case in which the external force is absent (as in the present
paper), and the case in which the external force is of elastic type.

The techniques here used are the same as in Refs. [7]-[8], with some non
trivial difficulties due to the more general geometry of the body. In fact in case
that the body is a disk orthogonal to the x-axis and moving along the same axis,
the velocity component of a gas particle parallel to the disk is conserved after
one or several collisions with the disk, while it is not so in case that the body has
a convex shape, due to different orientations of the tangent plane to the body at
different points of collision. In particular the convex shape determines a different
coefficient in the upper bound (2.19) with respect to Ref. [8] (γ7 instead of γ5).
We have not thought to a possible proof which includes also concave shapes,
because of some further difficulties. In fact the convex shape of the body allows
us to obtain inequality (3.10), which is widely used in the proof of the result of
the present paper. Moreover a convex shape allows us to separate contributions
between left and right recollisions, since a particle which hits the body on its left
(or right) face the first time will always hit the same face, and this is not true
in case of a concave shape.

The result of the present paper, as that of Refs. [7] and [8], is somehow
surprising. If the initial velocity of the body is sufficiently close to its limiting
velocity V∞ (here V∞ = 0), then for large t,

(1.1) |V (t) − V∞| ≈ C

td+2
,

where the constant C depends on the medium and on the shape of the obstacle,
and d = 1, 2, 3 is the dimension of the physical space.

This unexpected behavior, instead of the exponential approach to V∞, con-
sidered in viscous friction problems, is due to the recollisions between the gas par-
ticles and the obstacle, which produce a long memory effect during the motion.
Neglecting recollisions we obtain an exponential approach to the equilibrium.
The probability that a gas particle delivers multiple collisions with the obstacle
depends on the data of the physical system, considering that, to have multiple
collisions, the velocity of a gas particle has to be close to the velocity of the body.
Hence, to have an important effect of recollisions, the root mean square velocity
of the gas particles (proportional to the square root of the temperature) has to
be close to the velocity of the body.

We conjecture also that this memory effect is destroyed if the medium is
an interacting particle system. In this case it is reasonable that the asymptotic
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approach to the equilibrium is exponential, but we expect that the power law
remains valid as a transient long-time behavior.

We address the reader to Ref. [11] for heuristic considerations related to
the subject of the present paper, and to Refs. [2], [4], [5], [6], for the rigorous
analysis of models similar to the one here considered. In particular the model
of the present paper has been previously introduced in connection with the so
called piston problem (see [10] and also [12], and references quoted therein).

The plan of the paper is the following. In Section 2 we introduce the model
and we state the result, and we prove it in Section 3.

2 – Model and results

We consider a bounded convex solid, Ω, in R3. We take for simplicity Ω
with unitary mass and constant density. Let us denote by R the diameter of
Ω (i.e. the maximum distance between two points on its boundary ∂Ω) and by
X(t) the position of its center of mass at time t. We constrain the center of
mass to move along the x-axis, and we impose that the solid cannot undergo
any kind of rotation. If the solid has a rotational symmetry around the x-axis,
these constraints are superfluous, for the symmetry of the problem we are going
to present. The outward unit normal to ∂Ω is denoted by n̂. We require that
n̂(ξ), with ξ ∈ ∂Ω, is a continuous function for almost every ξ ∈ ∂Ω. We denote
by ∂Ω+ the right face of the solid, on which n̂ · x̂ ≥ 0 (being x̂ the unit vector
of the x-axis), and by ∂Ω− the left face of the solid, on which n̂ · x̂ < 0, and we
assume that there exists a subset of ∂Ω+, and a subset of ∂Ω−, having positive
measure, on which n̂ · x̂ �= 0.

The solid is immersed in a perfect gas in equilibrium at inverse temperature
proportional to β and with constant density ρ. The gas is also assumed in the
mean-field approximation.

We assign to the solid an initial small velocity, and we want to investigate
how its velocity vanishes in time. Clearly the solid modifies the equilibrium of
the gas, which starts to evolve according to the free transport equation: denoting
by f(x, v; t) the mass density in the phase space of each particle of the gas, it
evolves according to:

(2.1) (∂t + v · ∇x)f(x, v; t) = 0, for x /∈ Ω(t) .

Here Ω(t) denotes the domain of R3 occupied by the solid at time t.
Together with equation (2.1) we consider the boundary conditions, requiring

the continuity of f along the trajectories with elastic reflection on ∂Ω(t). A
necessary condition for which a gas particle with velocity v hits the solid at time
t is that, at the collision point P ∈ ∂Ω(t), it results

(2.2) vn ≤ Vn(t) ,
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denoting by vn = v · n̂, and by Vn(t) = V (t) n̂ · x̂, where V (t) = Ẋ(t) and n̂
is calculated at P . Imposing elastic reflection in P , we have for the outgoing
velocity v′:

(2.3) v′n = 2Vn(t) − vn, v′n⊥ = vn⊥ ,

denoting by vn⊥ = v − vnn̂. The collision law (2.3) takes into account the fact
that the ratio between the mass of the gas particle and the mass of the solid is
negligible, and for a derivation of it see Ref. [7]. We set

(2.4) f+(x, v′; t) = f−(x, v; t), for x ∈ ∂Ω(t)

where

(2.5) f±(x, v; t) = lim
ε→0+

f(x ± εv, v; t ± ε), for x ∈ ∂Ω(t) .

Equation (2.4) describes the continuity of f along the collisions.
Coupled to equation (2.1) we consider the evolution equation for the body:

(2.6)
Ẋ(t) = V (t), V̇ (t) = −F (t) ,

X(0) = 0, V (0) = V0 ,

where the action of the gas on the body is described by the viscous friction term

(2.7)

F (t) = 2

∫

∂Ω+

dσ

∫

vn≤Vn(t)

dv (Vn(t) − vn)2 n̂ · x̂ f−(x, v; t)

+ 2

∫

∂Ω−
dσ

∫

vn≤Vn(t)

dv (Vn(t) − vn)2 n̂ · x̂ f−(x, v; t) ,

being dσ the surface element on ∂Ω. equation (2.7) takes into account the
transfer of momentum from the gas particles to the body (from right and left
collisions), and for a heuristic derivation of it see Refs. [7] and [8]. Notice that
in (2.7) it appears the scalar product n̂·x̂, since we have to consider the projection
of the force along the x-axis. Moreover, the first integral in (2.7) is positive
(n̂ · x̂ ≥ 0 on ∂Ω+) and the second one is negative (n̂ · x̂ < 0 on ∂Ω−).

As initial state for the gas distribution we assume the thermal equilibrium,
namely

(2.8)
f+(x, v; 0) = ρ

(
β

π

)3/2

e−βv2

, for x /∈ Ω(0) ,

f+(x, v; 0) = 0, for x ∈ Ω(0) ,

for β > 0.
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Summarizing, we define a solution to our problem any pair (f, V ) where
V = V (t) solves, for almost all t ∈ R+, equations (2.6)-(2.7) and f satisfies
equation (2.9) below

(2.9)
d

dt
f(x + vt, v; t) = 0 a.e. (x, v) ,

together with boundary conditions (2.4) and initial condition (2.8).
We first observe that equation (2.1) can be solved by means of characteris-

tics. More precisely, knowing the evolution of the body X(t), V (t), we can trace
back the time evolution of position and velocity of the gas particle x(s, t;x, v),
v(s, t;x, v) at time s ≤ t, having position and velocity x, v at time t. Such
backward evolution is the free motion up to the last instant τ < t at which the
particle hits the body. On the surface of the body we impose the elastic collision
(2.3). Then we continue backward in time, up to the previous collision, impose
again the reflection condition and so on. At the end we obtain

F (t) = k

∫

∂Ω+

dσ

∫

vn≤Vn(t)

dv (Vn(t) − vn)2 n̂ · x̂ e−βv2(0,t;x,v)

+ k

∫

∂Ω−
dσ

∫

vn≤Vn(t)

dv (Vn(t) − vn)2 n̂ · x̂ e−βv2(0,t;x,v) ,

where k = 2ρ(β/π)3/2. Note that to compute F (t) we need to evaluate v(0, t;x, v)
and hence to know all the previous history {X(s), V (s), s < t}. On the other
hand, if a light particle goes back without undergoing any collision, then

v(0, t;x, v) = v .

In this case we say, for obvious reasons, that the gas particle has no recollisions.
In absence of recollisions the friction term is easily computed:

(2.10)

F0(V ) = k

∫

∂Ω+

dσ

∫

vn≤Vn

dv (Vn − vn)2 n̂ · x̂ e−βv2

+ k

∫

∂Ω−
dσ

∫

vn≤Vn

dv (Vn − vn)2 n̂ · x̂ e−βv2

.

We will show in Lemma 2.1 that F0 is an increasing function, null in zero.
Let us show that, without recollisions, our problem can be trivially solved.

Indeed replacing F by F0 in equation (2.6) we have:

(2.11)
Ẋ(t) = V (t), V̇ (t) = −F0(V (t)) = −K(t)V (t) ,

X(0) = 0, V (0) = V0 ,
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where

(2.12) K(t) =
F0(V (t))

V (t)
.

We take, without loss of generality, V0 > 0 (the case V0 < 0 is the symmetrical
one). It results, for V ∈ [0, V0],

(2.13) C2 ≤ K(t) ≤ C1

where
0 < min

V ∈[0,V0]
F ′

0(V ) = C2 < C1 = max
V ∈[0,V0]

F ′
0(V ) .

The solution to equation (2.11) can be almost explicitly computed. It can be
easily proved that V is decreasing in time and by a comparison argument

(2.14) V0 e−C1t ≤ V (t) ≤ V0 e−C2t .

The Vlasov equation (2.1) is then solved by characteristics.
In the full problem, where we include recollisions, the long memory effect

makes the problem much more difficult.
Let us rewrite the full friction term F as:

(2.15) F (t) = F0(V (t)) + r+(t) + r−(t)

where r+(t) and r−(t) are:

(2.16) r+(t) = k

∫

∂Ω+

dσ

∫

vn≤Vn(t)

dv (vn − Vn(t))2 n̂ · x̂ (e−βv2(0,t;x,v) − e−βv2

)

and

(2.17) r−(t) = −k

∫

∂Ω−
dσ

∫

vn≤Vn(t)

dv (vn−Vn(t))2 n̂·x̂ (e−βv2−e−βv2(0,t;x,v)) .

The quantities ρ, β, R and γ = V0 are the data of the problem.
We are now in the position to state the main result of the present paper.

Theorem 2.1. There exists γ0 = γ0(ρ, β, R) > 0 sufficiently small such
that, for any initial velocity V0 = γ ∈ (0, γ0) there exists at least one solution
(V (t), f(t)) to problem (2.1)-(2.9). Moreover there exist two positive constants
A1, A2 independent of γ, such that any solution (V (t), f(t)) satisfies the following
properties:

(i) for any t ≥ 0 it is:

(2.18) V (t) ≥ γ e−C1t − γ3 A1

(1 + t)d+2
,

(ii) there exists a sufficiently large t̄, depending on γ, such that for any t ≥ 0 :

(2.19) V (t) ≤ γ e−C2t − γ7 A2

td+2
χ({t ≥ t̄})

where χ({. . . }) is the characteristics function of the set {. . . }.
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Note that (2.19) establishes the power law approach to the equilibrium state.
We underline that in our model the body slows down its velocity in an

unexpected way, in spite of what intuition suggests. The velocity is initially
positive and it decreases to zero in a finite time, then V (t) becomes negative
and, from negative values, it tends asymptotically to zero (as it can be seen by
(2.19)). The fact that V (t) changes sign is due to the memory of the recollisions,
whose effect is contained in the terms r+(t) and r−(t).

We discuss now the announced properties of F0.

Lemma 2.1. F0 is an increasing function, null in zero.

Proof. With the previous definitions of vn and vn⊥ , defining

(2.20) G =

∫
dvn⊥ e−βv2

n⊥ ,

we have, by (2.10):

(2.21)

F0(V ) = k G

∫

∂Ω+

dσ n̂ · x̂
∫ Vn

−∞
dvn (Vn − vn)2e−βv2

n

+ k G

∫

∂Ω−
dσ n̂ · x̂

∫ Vn

−∞
dvn (Vn − vn)2e−βv2

n ,

(2.22)

F ′
0(V ) = 2k G

∫

∂Ω+

dσ (n̂ · x̂)2
∫ Vn

−∞
dvn (Vn − vn)e−βv2

n

+ 2k G

∫

∂Ω−
dσ (n̂ · x̂)2

∫ Vn

−∞
dvn (Vn − vn)e−βv2

n ,

from which it follows F0(0) = 0 (since
∫

∂Ω+ n̂ · x̂ dσ = −
∫

∂Ω− n̂ · x̂ dσ), and
F ′

0(V ) > 0 ∀V ∈ R.

3 – Proof of Theorem 2.1

In the sequel we will denote by C any positive constant, possibly depending
on β, ρ, R, but not on γ, which is our small parameter.

For any γ ∈ (0, γ0) with γ0 sufficiently small, we introduce an a.e. differ-
entiable function with bounded derivative, t → W (t), such that W (0) = V0,
limt→∞ W (t) = 0, and satisfying the following properties:

(i) W is decreasing in any time interval in which W (t) > 0.
(ii) There exist two positive constants A1, A2 such that, for any t ≥ 0, it is:
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(3.1) W (t) ≥ γ e−C1t − γ3 A1

(1 + t)5
≡ f1(t)

and

(3.2) W (t) ≤ γ e−C2t − γ7 A2

t5
χ({t ≥ t̄}) ≡ f2(t) .

The two constants A1 and A2, independent of each other and also of γ and
γ0, will be fixed later on. The time t̄ will be fixed in (3.16).

The idea of the proof of Theorem 2.1 is the following. We assign the velocity
W of the body with the properties just stated. We solve the free Vlasov equation
outside a body moving with velocity W and compute the terms r+

W and r−W
defined below. Then we solve equation (2.6) for the body with assigned r+

W and
r−W , finding a new velocity VW . The solution of our problem is the fixed point of
the map W → VW , thus we have to prove for VW the same properties established
above for W .

Let X(t) =
∫ t

0
W (τ)dτ be the position of the body at time t. Consider the

modified problem:

(3.3) V̇W (t) = −K(t) VW (t) − r+
W (t) − r−W (t) ,

where K(t) is the function introduced in (2.12) with W (t) in place of V (t).
We define

(3.4) r+
W (t) = k

∫

∂Ω+

dσ

∫

vn≤Wn(t)

dv (vn −Wn(t))2 n̂ · x̂ (e−βv2(0,t;x,v) − e−βv2

)

and

(3.5) r−W (t)= −k

∫

∂Ω−
dσ

∫

vn≤Wn(t)

dv(vn−Wn(t))2 n̂ · x̂(e−βv2 −e−βv2(0,t;x,v)) ,

where Wn(t) = W (t) n̂ · x̂. We notice that as long as W is decreasing r+
W (t) = 0,

so it appears only for negative velocities and moreover, by the collision law (2.3),
it is negative. The analysis of the sign of r−W (t) is more involved, and it will be
done later. We will show that, in any way, the sum of r+

W and r−W is positive.
The velocities of the light particles v(s, t;x, v), s < t, are computed accord-

ing to the evolution of the body moving with velocity W and to the law of elastic
reflection (2.3).

We may ask whether equation (3.3) is well posed. The following proposition,
proved in Ref. [7], shows that this dynamical system is well defined for almost
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all initial data and almost all t ∈ R+. More precisely we can neglect in the
sequel all the initial configurations giving rise to infinitely many or tangential
collisions, namely those for which there exists a time s < t such that x ∈ ∂Ω(t),
x(s, t;x, v) ∈ ∂Ω(s) and v(s, t;x, v) · n̂s = W (s) n̂s · x̂, being n̂s the normal
calculated in x(s, t;x, v).

Proposition 3.1. Consider the dynamics of the body with given velocity
W = W (t) and the fluid trajectories x(s, t;x, v), v(s, t;x, v) computed according
to the evolution of the body and the law of the elastic reflection (2.3). Assume
W differentiable for almost all t and such that

(3.6) ess supt∈R+(|W (t)| + |Ẇ (t)|) = L < +∞ .

Then the set of all t ∈ R+, x ∈ ∂Ω(t), v ∈ R3 for which x(s, t;x, v), v(s, t;x, v),
0 ≤ s < t, delivers infinitely many backward collisions, or has a tangential
collision, has vanishing Lebesgue measure.

We want to show now that VW behaves like W . To this aim we have to
estimate r±W .

For 0 ≤ s < t, we set

(3.7) 〈W 〉s,t =
1

t − s

∫ t

s

W (τ) dτ

and

(3.8) 〈W 〉0,t = 〈W 〉t .

We indicate by 〈Wn〉s,t and 〈Wn〉t the analogous expressions obtained by (3.7)
and (3.8) replacing W by Wn.

We want to establish preliminarily some necessary conditions for which a
gas particle can have recollisions with the body. Let s < t be the first backward
recollision time, and let us denote by P ∈ ∂Ω the collision point at time t, and
by Q ∈ ∂Ω the collision point at time s. The condition to have two subsequent
collisions is the following:

(3.9) vn(t − s) =
−→
QP · n̂ + 〈Wn〉s,t(t − s) ≥ 〈Wn〉s,t(t − s)

where n̂ is calculated at P and
−→
QP is the vector joining the points Q and P at

time s. In fact vn(t − s) is the space along the n̂ direction covered by the gas
particle in the time interval [s, t], 〈Wn〉s,t(t−s) is the space along the n̂ direction

covered by the body in the time interval [s, t], and
−→
QP · n̂ is the distance along

the n̂ direction between the two points Q and P at time s, which, by the convex
shape of the body, is always non-negative.
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Hence a first necessary condition to have a recollision is

(3.10) vn ≥ 〈Wn〉s,t .

Another necessary condition is the following:

(3.11) |vn⊥ | (t − s) ≤ 2R + |〈W 〉s,t| (t − s) .

In fact the r.h.s. of (3.11) collects the maximum displacement that a particle can
undergo along the x-direction, and along any direction orthogonal to the x-axis,
to have a recollision with the body. Then from (3.11) we obtain

(3.12) |vn⊥ | ≤
C

t − s
.

Summarizing, we have condition (3.10) on vn, and condition (3.12) on vn⊥ .
Let us estimate now r+

W (t), proving the following lemma:

Lemma 3.1. For any t ≥ 0

(3.13) 0 ≤ −r+
W (t) ≤ C

γ9A3
1

(1 + t)5
χ({t > t0})

where

(3.14) t0 = K0 log
1

γ

and K0 is a constant satisfying 1/C1 ≤ K0 < 2/C1.

Proof. First of all let us notice that r+
W (t) = 0 as far as W is decreasing

(i.e. as far as W (t) > 0), so let us give an upper and lower bound for the first
time t∗ for which W (t∗) = 0. For t = t0 it results

(3.15) f1(t0) = γ1+K0C1 − γ3 A1(
1 + K0 log

1

γ

)5 > 0 ,

the last inequality being satisfied by taking γ sufficiently small. By the properties
(i) and (ii) of the function W this implies that, for 0 ≤ t ≤ t0, W (t) ≥ W (t0) ≥
f1(t0) > 0. Let us set

(3.16) t̄ = K̄ log
1

γ
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where K̄ > 6/C2. Then it results

(3.17) f2(t̄) = γ1+K̄C2 − γ7 A2(
K̄ log

1

γ

)5 < 0

for γ sufficiently small. Then W (t) < 0 for t ≥ t̄, and so the first time t∗ for
which W (t∗) = 0 satisfies t∗ ∈ (t0, t̄); moreover W (t) ≤ 0 for t∗ ≤ t ≤ t̄.

This explains the characteristic function in (3.13). It is also evident from
the law of elastic reflection (2.3) that r+

W (t) ≤ 0, since it appears for negative
velocities. Let us establish then an upper bound for |r+

W (t)|. Recalling the
necessary condition on vn (3.10) to have a recollision, we have by (3.1):

(3.18)

〈W 〉s,t ≥
1

t − s

∫ t

s

(
γe−C1τ − γ3 A1

(1 + τ)5

)
dτ

≥ 1

t − s

∫ t

s

(
− γ3 A1

(1 + τ)5

)
dτ ≥ −CA1

γ3

1 + t

for s < t/2. By (3.4), (3.10), (3.12), and (3.18), putting

(3.19) χvn = χ

({
−CA1

γ3

1 + t
n̂ · x̂ ≤ vn ≤ Wn(t)

})
,

we have that a first contribution to the estimate of |r+
W (t)|, for s < t/2 and

t > t∗, is:

(3.20) C

∫

∂Ω+

dσ

∫
dvn (vn − Wn(t))2 χvn

∫

|vn⊥ |< C
t

dvn⊥ .

For s < t/2 we have

(3.21)

∫

|vn⊥ |< C
t

dvn⊥ ≤ C

(1 + t)2
,

so that,

(3.22)

(3.20) ≤ C

(1 + t)2

∫

∂Ω+

dσ

∫
dvn (vn − Wn(t))2 χvn

≤ C

(1 + t)2

(
W (t) +

CA1γ
3

1 + t

)3

≤ C
A3

1γ
9

(1 + t)5
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since W (t) < 0. Hence (3.22) constitutes the first contribution, for s < t/2, to
the estimate of |r+

W (t)|.
If s ≥ t/2 and t > t∗ we have by (3.1):

(3.23)

〈W 〉s,t ≥
1

t − s

∫ t

s

(
− γ3 A1

(1 + τ)5

)
dτ

≥ −C
A1γ

3

(1 + t)5
,

hence, by (3.4) and (3.10), the second contribution to the estimate of |r+
W (t)| is:

(3.24)

C

∫

∂Ω+

dσ

∫
dvn (vn − Wn(t))2 χ

({
−C

A1γ
3

(1 + t)5
n̂ · x̂ ≤ vn ≤ Wn(t)

})

≤ C

(
A1γ

3

(1 + t)5

)3

,

where we have used the fact that e−βv2(0,t;x,v) is integrably decreasing with
respect to v. This can be seen for example by using the conservation of the total
momentum of the system gas+solid, whose component along the x-axis is

(3.25) ρ

(
β

π

)3/2 ∫

R3

dx

∫

R3

dv vx e−βv2(0,t;x,v) + V (t) = V0 ,

being V0 the value that it takes at t = 0. Hence, by the boundedness of V (t),

the integral of e−βv2(0,t;x,v) with respect to v is bounded by a constant.
Collecting estimates (3.22) and (3.24) we finally achieve the proof of Lem-

ma 3.1.

For r−W (t) we have an upper bound expressed by the following lemma:

Lemma 3.2. For any t ≥ 0

(3.26) r−W (t) ≤ C
(γ + A1γ

3)3

(1 + t)5
.

Proof. We work here on ∂Ω−, and it is convenient to introduce the in-
ward normal û = −n̂. Hence the collision condition (2.2) becomes vu ≥ Wu(t),
recalling that on ∂Ω− û · x̂ > 0. By (3.10) (with û in place of n̂) and (3.2) we
obtain:

(3.27)

vu ≤ 〈Wu〉s,t ≤
û · x̂
t − s

∫ t

s

[
γ e−C2τ − γ7 A2

τ5
χ({τ ≥ t̄})

]
dτ

≤ û · x̂ γ

t − s

e−C2s − e−C2t

C2
,
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then we have

vu ≤ C
γ

1 + t
û · x̂ if s <

t

2
(3.28)

vu ≤ C γ e−C2t/2 û · x̂ if s ≥ t

2
.(3.29)

Hence a first contribution to the estimate of r−W (t) is, in case of condition (3.28),
recalling (3.1) and (3.21) for what concerns the integration over vn⊥ :

(3.30)

C

(1 + t)2

∫

∂Ω−
dσ

∫
dvu(vu − Wu(t))2 χ

({
Wu(t) ≤ vu ≤ Cγ û · x̂

1 + t

})

≤ C

(1 + t)2

( Cγ

1 + t
−W (t)

)3

≤ C

(1 + t)2

( Cγ

1 + t
− γe−C1t + γ3 A1

(1 + t)5

)3

≤ C
(γ + A1γ

3)3

(1 + t)5
.

If s ≥ t/2, using (3.29), we have the second contribution to the estimate of r−W (t):

(3.31)

C

∫

∂Ω−
dσ

∫
dvu(vu − Wu(t))2 χ({Wu(t) ≤ vu ≤ Cγe−C2t/2 û · x̂})

≤ C
(
Cγe−C2t/2 − W (t)

)3 ≤ C
(A1γ

3 + γ

(1 + t)5

)3

,

therefore, collecting (3.30) and (3.31), we obtain the thesis.

It follows, by the collision law (2.3), that r−W (t) ≥ 0 for any t ≤ t∗ (as long
as W (t) ≥ 0). Actually the positivity of r−W (t) for any t ≥ 0 is not obvious, since
for negative velocities of the body, r−W (t) could change sign. We can prove that
this is not the case. Moreover we can show that the sum (r+

W (t) + r−W (t)) is not
negative for any t ≥ 0, which is a key ingredient in the proof of Theorem 2.1.

Lemma 3.3. Suppose γ sufficiently small. Then, for t ≥ t0 we have:

(3.32) r−W (t) ≥ C
γ7

t5
.
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Proof. The “bad” contributions to r−W (t), i.e. those which tend to trans-
form r−W (t) into a negative quantity, come uniquely from those particles for which
at least one recollision with the disk happens at a time instant s < t at which W
is negative. Let s < t be the largest collision time for a particle having velocity
v at time t. For what said, we require W (s) < 0, and denoting by r̃−W (t) such
“bad” contributions, let us give an upper bound for |r̃−W (t)|. Considering the
inward normal û = −n̂, condition (3.10) becomes

(3.33) vu ≤ 〈Wu〉s,t < 0 ,

which is negative, since W (s) < 0, and so W is negative in the whole interval
[s, t]. Therefore, from the definition (3.5) of r−W (t) and using (3.1):

(3.34)

|r̃−W (t)| ≤ C

∫

∂Ω−
dσ

∫ 0

Wu(t)

(vu − Wu(t))2dvu ≤ C(−W (t))3

≤ C
(
− γe−C1t + γ3 A1

(1 + t)5

)3

≤ C
γ9A3

1

(1 + t)15
.

Up to now we could obviously write

(3.35) r−W (t) ≥ −|r̃−W (t)| .

To improve this lower bound, let us denote by r̂−W (t) a term which contains some
“good” contributions to r−W (t), namely those coming from recollisions in the past
that happen for some s < t such that W (s) > 0. Hence we have

(3.36) r−W (t) ≥ r̂−W (t) − |r̃−W (t)|

and the difficulty now shifts to get a lower bound for r̂−W (t). To this end we
restrict the analysis to a subset of the “good” contributions, as we are going to
see.

Let us fix s0 < t0. Then, for s ≤ s0 and for γ small enough, by (3.1) it is

(3.37) W (s) ≥ W (s0) ≥ Cγ .

Consider a light particle which hits the body on ∂Ω− at time t with velocity v,
and let s be the time of its previous collision with the body.

Once fixed the body, with the characteristics established at the beginning
of Section 2, we pick a point ξ0 ∈ ∂Ω−, such that û(ξ) is continuous at ξ = ξ0

and it results λ0 ≡ û(ξ0) · x̂ > 0. Let us restrict the velocities of the particles
hitting the body at time t to the following set:

(3.38) Γ=

{
(û, v) : 〈Wu〉s0,t ≤ vu ≤ 〈Wu〉t, |vn⊥ | ≤ C

γ

t
,
3λ0

4
< û·x̂ <

5λ0

4

}
.
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The set Γ is non-empty, and it generates, for each û ∈ Γ, a subfamily of charac-
teristics whose first backward recollision time s < t satisfies s ≤ s0.

To prove that Γ is non-empty, we have to show that 〈W 〉t − 〈W 〉s0,t > 0 for
t > s0. Indeed we have

(3.39)

〈W 〉t − 〈W 〉s0,t =
1

t

∫ t

0

W (τ) dτ − 1

t − s0

∫ t

s0

W (τ) dτ

=

(
1

t
− 1

t − s0

) ∫ t

0

W (τ) dτ +
1

t − s0

∫ s0

0

W (τ) dτ

=
s0

t − s0

[
1

s0

∫ s0

0

W (τ) dτ − 1

t

∫ t

0

W (τ) dτ

]

=
s0

t − s0
(〈W 〉s0

− 〈W 〉t) ,

moreover

(3.40)
d

dt
〈W 〉t = − 1

t2

∫ t

0

W (τ) dτ +
1

t
W (t) =

1

t
(W (t) − 〈W 〉t) < 0

as long as W is decreasing, that is for t < t∗ (defined just below (3.17)), therefore
the r.h.s. of (3.39) is positive for t ∈ (s0, t

∗). For t ≥ t∗, taking γ sufficiently
small and t∗ consequently large, by (3.2) and (3.37) we have

(3.41)

〈W 〉s0 − 〈W 〉t ≥ Cγ +
1

t

∫ t

0

(
−γe−C2τ

)
dτ

≥ Cγ − γ
1 − e−C2t

C2t
≥ Cγ ,

so that the r.h.s. of (3.39) is positive also for t ≥ t∗.
Let us show now that s ≤ s0. We have by (3.10), replacing n̂ by û = −n̂,

(3.42) vu ≤ 〈Wu〉s,t ,

and we are going to prove that, for s > s0, 〈Wu〉s,t < 〈Wu〉s0,t, obtaining thus a
contradiction with the fact that vu belongs to Γ, while for s ≤ s0 it is 〈Wu〉s0,t ≤
〈Wu〉s,t ≤ 〈Wu〉t. Since û · x̂ > 0 on ∂Ω−, we can consider W in place of
Wu = û · x̂ W .

Computing

(3.43)
d

ds
〈W 〉s,t =

1

t − s
[〈W 〉s,t − W (s)]
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we have that the r.h.s. of (3.43) is obviously negative for s < t ≤ t∗, since W is
decreasing. For s < t∗ (for which W (s) > W (t∗) = 0) and t > t∗, the r.h.s. of
(3.43) is also negative, in fact

(3.44)

〈W 〉s,t − W (s) =
1

t − s

(∫ t∗

s

W (τ) dτ +

∫ t

t∗
W (τ) dτ

)
− W (s)

=

[
1

t∗ − s

∫ t∗

s

W (τ) dτ − W (s)

]

+

[(
1

t − s
− 1

t∗ − s

) ∫ t∗

s

W (τ) dτ

]

+

[
1

t − s

∫ t

t∗
W (τ) dτ

]
< 0

since all the terms in square brackets in the r.h.s. of (3.44) are negative. Up to
now we have proved that 〈W 〉s,t is a decreasing function with respect to s for
s < t∗ (and obviously t > s). Finally, for s ≥ t∗, it results always 〈W 〉s,t <
〈W 〉s0,t, in fact by (3.1), for t > t∗,

(3.45)

〈W 〉s0,t =
1

t − s0

∫ t

s0

W (τ) dτ ≥ 1

t − s0

∫ ∞

s0

W (τ) dτ

≥ C

t − s0
(γ − A1γ

3)

which shows that 〈W 〉s0,t > 0 for γ suitably small; moreover 〈W 〉s,t < 0, since
W (τ) is negative for τ > t∗. This concludes the proof that s ≤ s0.

The remaining conditions on |vn⊥ | (to be compared with (3.12)) and û · x̂
appearing in (3.38) are due to the following reason. We will need to give a lower

bound of the term [e−βv2 − e−βv2(0,t;x,v)] appearing in the definition of r−, and
the previous conditions allow us to do this in a simple way, as we are going to
see. We have that, by (3.1) and (3.2), for v ∈ Γ,

(3.46) |v| ≤ C
γ

t
,

therefore, taking γ small enough, we obtain that the collision at time s happens
in a subset of ∂Ω− such that

(3.47)
λ0

2
< ûs · x̂ <

3λ0

2
,

where ûs denotes the inward normal at the collision point at time s. Let us put,
following the usual notation, vus = v · ûs, Wus(s) = ûs · x̂ W (s). Notice that,
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being v the outgoing velocity in the collision point at time s, by (2.2) and (2.3)
it satisfies vus ≤ Wus(s). By (3.46) and (3.47) we obtain a better condition,
that is

(3.48) vus ≤ 1

2
Wus(s) ,

in fact

(3.49) vus
≤ |v| ≤ C

γ

t
,

and, for t large, the r.h.s. of (3.49) is certainly smaller than 1/2 Wus(s), since,
by (3.37) and (3.47),

(3.50)
1

2
ûs · x̂ W (s) ≥ λ0

4
W (s0) ≥ Cγ .

Denoting by v(s−, t;x, v) the velocity of the gas particle just before hitting the
body at time s, for s ≤ s0 by (3.37), which shows that the velocity of the body
is positive, and by the collision law (2.3), we have

(3.51)
e−βv2 − e−βv2(0,t;x,v) ≥ e−βv2 − e−βv2(s−,t;x,v)

= e−βv2
[
1 − eβ(v2−v2(s−,t;x,v))

]
.

We give now lower and upper bounds for the quantity [v2 − v2(s−, t;x, v)], for
particles belonging to Γ. We easily obtain, by the collision law (2.3), (3.48)
and (3.47),

(3.52)

v2(s−, t;x, v) − v2 = (−vus + 2Wus(s))
2 − v2

us

≥ 2 (ûs · x̂)2 W 2(s) ≥ λ2
0

2
W 2(s) ,

moreover, using vus ≥ −|v| and (3.49),

(3.53)

v2(s−, t;x, v) − v2 = (−vus
+ 2Wus

(s))2 − v2
us

= 4Wus(s)(Wus(s) − vus)

≤ 4Wus(s)
(
Wus(s) + C

γ

t

)
.

Recalling that, in proving Lemma 3.3, we consider t large (namely t ≥ t0), we
can write, by (3.52) and (3.53),

(3.54) −8V 2
0 ≤ v2 − v2(s−, t;x, v) < 0 ,



140 GUIDO CAVALLARO [18]

and in this interval it results, by (3.52) and (3.37),

(3.55) 1 − eβ(v2−v2(s−,t;x,v)) ≥ −Cβ
(
v2 − v2(s−, t;x, v)

)
≥ CW 2(s) ≥ Cγ2 .

This bound will be used later on.
We consider now the restriction of r−W (t) to the set Γ, setting

(3.56) I(t) =

∫

∂Ω−
dσ

∫
dv (vu − Wu(t))2 û · x̂ (e−βv2 − e−βv2(0,t;x,v)) χ(Γ)

where dv = dvu dvn⊥ .
By definition of r̂−W (t) and (2.3) it results that r̂−W (t) is non-negative. More-

over it is Wu(t) < 〈Wu〉s0,t (we prove it just below), then it is obviously

(3.57) r̂−W (t) ≥ CI(t) .

Let us show that, for t > s0,

(3.58) W (t) − 〈W 〉s0,t < 0 .

We have, by (3.1) and (3.2), for t large enough,

(3.59)

W (t) − 〈W 〉s0,t = W (t) − 1

t − s0

∫ t

s0

ds W (s)

≤ γe−C2t +
1

t − s0

∫ t

s0

ds

[
−γe−C1s + γ3 A1

(1 + s)5

]

≤ γ

[
e−C2t − e−C1s0 − e−C1t

C1(t − s0)
+

1

t
CA1γ

2

]
.

For γ small enough, so that t0 is sufficiently large and A1γ
2 is small, we obtain

that the r.h.s. of (3.59) is negative for t > t0. For s0 < t ≤ t0 W (t) is decreasing,
so that (3.58) holds for any t > s0.

Let us go back to the investigation of I(t). It results

(3.60)

∫
dvn⊥ χ

({
|vn⊥ | ≤ C

γ

t

})
e−βv2

n⊥ ≥ C
γ2

t2
,

so that we have, by (3.51) and (3.55):

I(t) ≥ Cγ2

∫

∂Ω−
dσ

∫
dv (vu − Wu(t))2 û · x̂ e−βv2

χ(Γ)

≥ Cγ4

t2

∫

∂Ω−
dσ

∫ 〈Wu〉t

〈Wu〉s0,t

dvu (vu − Wu(t))2 e−βv2
u χ(Γ)

≥ Cγ4

t2

∫

∂Ω−
dσ

[
(〈Wu〉t − Wu(t))3 − (〈Wu〉s0,t − Wu(t))3

]
χ(Γ)
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By (3.39), (3.40), and (3.41), taking the integral over the set Γ, we obtain:

(3.61) I(t) ≥ Cγ4

t2

[
(〈W 〉t − 〈W 〉s0,t) (〈W 〉t − W (t))2

]
.

We now estimate both differences appearing in (3.61), showing that they are
both O( 1

t ). By (3.39) and (3.41) we obtain that

(3.62) 〈W 〉t − 〈W 〉s0,t ≥ C
γ

t
.

For the other term in (3.61), proceeding as in (3.59) we have:

(3.63) 〈W 〉t − W (t) ≥ −γ
[
e−C2t − 1 − e−C1t

C1t
+

1

t
CA1γ

2
]
,

therefore, for γ sufficiently small (so that A1γ
2 is small enough) and t large,

(3.64) 〈W 〉t − W (t) ≥ C
γ

t
.

Inserting estimates (3.62) and (3.64) in (3.61), by (3.57) we conclude that, for γ
sufficiently small, t0 consequently large, and t ≥ t0,

(3.65) r̂−W (t) ≥ C
γ7

t5
.

Recalling (3.36), for t ≥ t0 and γ sufficiently small, by (3.65) and (3.34),

(3.66) r−W (t) ≥ r̂−W (t) − |r̃−W (t)| ≥ C
γ7

t5
− C

γ9A3
1

(1 + t)15
,

so that, for γ2A3
1 small enough,

(3.67) r−W (t) ≥ C
γ7

t5
.

We remark that, from (3.13) and (3.32) it follows immediatly, for γ small
and any t,

(3.68) r+
W (t) + r−W (t) ≥ 0 .

We remark also that, due to the convex shape of the obstacle, more complex
compared with the simplified shape of a disk considered in Ref. [8], we obtain
the bound (2.19) with γ7, instead of γ5.
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Now we prove that the function VW (t) satisfying equation (3.3) enjoys, for γ
suitably small, the same properties as the function W , with the same constants
A1, A2. After this the proof of Theorem 2.1 will follow easily.

From now on we proceed as in Ref. [8], and we repeat here the argument
for the sake of completeness.

Proposition 3.2. Suppose γ sufficiently small. Then:

(i) t → VW (t) is an a.e. differentiable function with bounded derivative, de-
creasing in any time interval in which VW (t) > 0.

(ii) For any t ≥ 0 :

(3.69) VW (t) > γ e−C1t − γ3 A1

(1 + t)5
.

(iii) For any t > 0 :

(3.70) VW (t) < γ e−C2t − γ7 A2

t5
χ({t ≥ t̄}) .

Proof.

(i) From equation (3.3) and the Duhamel formula we have:

(3.71) VW (t) = γe
−

∫ t

0
K(τ)dτ −

∫ t

0

ds e
−

∫ t

s
K(τ)dτ

(r+
W (s) + r−W (s)) ,

and since r+
W (t) and r−W (t) are bounded, by (3.71) and (3.3) VW is a.e. differ-

entiable with bounded derivative. The fact that VW (t) is decreasing in any
time interval in which VW (t) > 0 is obvious by equation (3.3) and (3.68).

(ii) By (3.71), (3.13), and (3.26) it follows:

(3.72) VW (t) ≥ γe−C1t − C(γ + A1γ
3)3

∫ t

0

ds e−C2(t−s) 1

(1 + s)5
.

Let us evaluate the integral:
∫ t

0

ds
eC2s

(1 + s)5
=

∫ t
2

0

(·) ds +

∫ t

t
2

(·) ds

≤ eC2
t
2 − 1

C2
+

25

(2 + t)5
eC2t − eC2

t
2

C2
.
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Thus

(3.73)

∫ t

0

ds
e−C2(t−s)

(1 + s)5
≤ e−C2

t
2 − e−C2t

C2
+

25

(2 + t)5
1 − e−C2

t
2

C2

≤ 1

C2

(
e−C2

t
2 +

25

(2 + t)5

)
≤ C

(1 + t)5
.

To conclude, there exists a constants C̄ such that:

(3.74) VW (t) ≥ γe−C1t − C̄(γ + A1γ
3)3

1

(1 + t)5
,

hence, to achieve the thesis, it is sufficient that

(3.75) C̄(γ + A1γ
3)3 < A1γ

3 ,

which is satisfied, for instance, by choosing A1 = 2C̄ (this fixes A1) and γ
consequently small (also to satisfy the previous constraints on A1).

(iii) First, by (3.68) and (3.71), we have that, for any t ≥ 0,

(3.76) VW (t) ≤ γe−C2t .

By (3.71), (3.13), and (3.32), for γ suitably small and t ≥ t̄ > 2t0 (where t̄
is defined in (3.16) and t0 in (3.14)), it follows:

(3.77)

VW (t) ≤ γe−C2t +

∫ t

0

ds e
−

∫ t

s
K(τ)dτ

(
C

γ9

(1 + s)5
− C

γ7

s5

)
χ({s > t0})

≤ γe−C2t − Cγ7

∫ t

0

ds e
−

∫ t

s
K(τ)dτ 1

s5
χ({s > t0}) .

We have that

(3.78)

∫ t

0

ds e
−

∫ t

s
K(τ)dτ 1

s5
χ({s > t0}) ≥

∫ t

t0

ds e−C1(t−s) 1

s5

≥ 1 − e−C1(t−t0)

C1t5

≥ 1 − e−C1t0

C1t5
≥ 1

2C1t5
,

since t ≥ t̄ > 2t0.
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Then, by (3.77) and (3.78),

(3.79) VW (t) ≤ γe−C2t − C
γ7

t5
.

Last inequality enables us to choose A2, in such a way that (3.70) is satisfied.
This can be done in a consistent manner, since the constant C appearing in
(3.79) does not depend of A2. Actually it depends of A1, nevertheless A2

can be chosen independently of A1 for γ sufficiently small.

Using Proposition 3.2 we easily prove Theorem 2.1. We can construct a
sequence {Vn}∞n=1 defined by

(3.80) Vn = VVn−1 , n ≥ 2

setting V1 = W , being W any function with the properties established at the
beginning of this section. By Proposition 3.2 such properties hold for the whole
sequence (for suitable values of A1, A2, t̄ independent of n). By compactness
(the sequence is equibounded and equicontinuous), we can extract a subsequence
Vn′ converging to a limit point V = V (t). Moreover, for any n ≥ 1 we can
solve the free Vlasov equation with reflecting boundary conditions on the body
moving according to the velocity Vn′(t), by means of the characteristics which
are a.e. defined. The convergence of Vn′ implies the convergence of almost all
characteristics to a family of characteristics satisfying the reflecting boundary
conditions on the body moving with velocity V (t) (for a full explanation of this
fact see [7]). This yields a solution to the Vlasov equation (2.1) producing the
friction term (2.7). Therefore we have obtained a solution to the problem (2.1)-
(2.9).

Moreover, any solution to this problem satisfies bounds (2.18) and (2.19).
Consider in fact any solution (V, f) of the problem. By continuity of V there
exists a time interval in which inequalities (2.18)-(2.19) hold strictly. Let T be
the first time for which our strict inequalities are violated. The same arguments
used in Proposition 3.2 (replacing W by V ) show that (2.18)-(2.19) hold strictly
in the interval (0, T ], since in this interval V enjoys the same properties as W .
Then T must be infinite. This concludes the proof of Theorem 2.1.

We remark that the proof of the existence of a solution given above is not
complete, and it has to be improved by the use of the Schauder fixed point
theorem.
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