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A lower bound for the b-adic diaphony

LIGIA L. CRISTEA — FRIEDRICH PILLICHSHAMMER

ABSTRACT: The b-adic diaphony is a quantitative measure for the irregularity of
distribution of a point set in the s-dimensional unit cube. In this note we show that the
b-adic diaphony (for prime b) of a point set consisting of N points in the s-dimensional
unit cube is always at least of order (log N)<S*1)/2/N. This lower bound is best possible.

1 — Introduction

As the (classical) diaphony (see [25] or [8, Definition 1.29] or [16, Exer-
cise 5.27, p. 162]) the b-adic diaphony is a quantitative measure for the irregu-
larity of distribution of a sequence in the s-dimensional unit cube. This notion
was introduced by Hellekalek and Leeb [15] for b = 2 and later generalized by
Grozdanov and Stoilova [11] for general integers b > 2. The main difference to
the classical diaphony is that the trigonometric functions are replaced by b-adic
Walsh functions. Before we give the exact definition of the b-adic diaphony we
recall the definition of Walsh functions.

Let b > 2 be an integer. For a non-negative integer k with base b represen-
tation k = kq_10%" 1+ -+ + K1b+ Ko, with k; € {0,... ,b—1} and k,_1 # 0, we
define the Walsh function , waly : [0,1) — C by

bwalk(x) — eQ7ri(az:1ra0+~-+zan,,,_1)/b7

for 2 € [0,1) with base b representation = % 4 72 + --- (unique in the sense
that infinitely many of the z; must be different from b — 1).
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For dimension s > 2, x1,...,zs € [0,1) and k1,... ,ks € Ny we define
bwalkh“_ ko - [O, 1)S — C by

S

bwalkh_”yks (1’1, N ,(ES) = H bwalk]. ({L'])
j=1
For vectors k = (k1,... ,ks) € N§ and & = (z1,... ,25) € [0,1)° we write
bwalk(a:) = bwalkh,__’ks (azl, e ,xs) .

If it is clear which base we mean we simply write walg(x). It is clear from the
definitions that Walsh functions are piecewise constant. It can be shown that for
any integer s > 1 the system {walg : k € N} is a complete orthonormal system
in L2([0,1)%), see for example [1], [17] or [20, Satz 1]. For more information on
Walsh functions we refer to [1], [20], [24].

Now we give the definition of the b-adic diaphony (see [11] or [15]).

DEFINITION 1. Let b > 2 be an integer. The b-adic diaphony of a point set
Pns={xo,...,zNn_1} C[0,1)® is defined as

1/2
o\ Y/

1
Fb,N(PN,s) = m ;; Tb(k)
0

k#£0

1 N—-1
- Z bwalk(:ch)
N h=0

where for k = (k1,... ,ks) € N§, rp(k) := [[_; ro(k;) and for k € Z,

0 ® { 1 ifk=0,
r =
b b=2e  if b2 < k < b1 where a € Ny .

Note that the b-adic diaphony is scaled such that 0 < Fy y(Pys) < 1 for all
N € N, in particular we have Fy 1(P1s) = 1. If b = 2 we also speak of dyadic
diaphony.

The b-adic diaphony is a quantitative measure for the irregularity of distri-
bution of a sequence: a sequence w in the s-dimensional unit cube is uniformly
distributed modulo one if and only if limy_,o F v (wn) = 0, where wy is the
point set consisting of the first N points of w. This was shown in [15] for the
case b = 2 and in [11] for the general case. Further it is shown in [5] that the
b-adic diaphony is—up to a factor depending on b and s—the worst-case error
for quasi-Monte Carlo integration of functions from a certain Hilbert space of
functions.

More general notions of diaphony can be found in [10], [13], [14].
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Stoilova [22] proved that the b-adic diaphony of a (¢, m, s)-net in base b is
bounded by

(m—1)"7

Fb,N(P) S c(b,s)bt bm 3

where ¢(b,s) > 0 only depends on b and s. For the definition of (¢, m, s)-nets
in base b we refer to Niederreiter [18], [19]. These are point sets consisting of
N = b™ points in the s-dimensional unit cube with outstanding distribution
properties if the parameter ¢ € {0,... ,m} is small. However, the optimal value
t = 0 is not possible for all parameters s > 1 and b > 2. Niederreiter [18]
proved that if a (0, m, s)-net in base b exists, then we have s —1 < b. Faure [9]
provided a construction of (0, m, s)-nets in prime base p > s—1 and Niederreiter
[18] extended Faure’s construction to prime power bases p” > s — 1. Hence if
b > s —11is a prime power we obtain for any m € N the existence of N = p™
points in [0,1)® whose b-adic diaphony is bounded by

s—1
F,n(P) < c’(b, S)M ,
’ N

with ¢/(b,s) > 0. See also [6] where a similar bound on the dyadic diaphony of
digital (¢, m, s)-nets in base 2 (a subclass of (t,m, s)-nets) is shown.

The question for a general lower bound for the b-adic diaphony was pointed
out in [22], see also [12]. In the following section we show that for prime b,
the b-adic diaphony of an N-element point set in [0,1)® is always at least of

s—1
(log N) "2~
order ~

sible.

, which shows that the above given upper bounds are best pos-

2 — A general lower bound for the b-adic diaphony

In the following we prove a lower bound on the b-adic diaphony for prime b.
This is done using Roth’s lower bound on the £, discrepancy, which is another
measure for the distribution properties of a point set.

THEOREM 1. Let b be a prime. For any dimension s > 1 there ez-
ists a constant ¢(s,b) > 0, depending only on the dimension s and b, such
that the b-adic diaphony of any point set Py s consisting of N points in [0,1)°
satisfies
(logN)%

Fy n(Pn,s) > ©(s,b) N
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In the proof of our theorem below we use the generalized notion of weighted
Lo discrepancy, which was introduced in [23]. In the following let D denote the
indexset D = {1,2,...,s}and let v = (y1,72, . ..) be a sequence of non-negative
real numbers. For u C D let |u| be the cardinality of u and for a vector x € [0,1)®
let , denote the vector from [0,1) containing all components of = whose
indices are in u. Further let v, = [[;c, vj, d@u = [;¢, dz;, and let (zy, 1) be
the vector « from [0, 1)® with all components whose indices are not in u replaced
by 1. Then the weighted £, discrepancy of a point set Py s = {®o,... ,n_1}
is defined as

1/2
Lon(Pr) = [ X [ AlwaD)Pden|
uCD 01|“
w0
where An(lo 0.1
A(tlv"'ats): N([’I)X.“X[’S))_tl"'ts;

N
where 0 <t¢; <1 and An([0,t1) X ... X [0,ts)) denotes the number of indices n
with @, € [0,¢1) % ...x[0,ts). We can see from the definition of the weighted L,
discrepancy that the weights v, = [] jew Vi modify the importance of different
projections (see [7], [23] for more information on weights).

In [3] the authors considered point sets which are randomized in the follow-
ing sense: for b > 2 let x = - + 73 +--- and 0 = - + 73 + .-+ be the base b
representation of x and o. Then the digitally shifted point y = x & o is given
by y = % + % 4---, where y; = x;+0; € Zy. For vectors x and o we define the
digitally shifted point & @, o component wise. Obviously, the shift depends on
the base b. Now for Py s = {xo,... ,&ny-1} € [0,1)° and o € [0,1)°® we define
the point set Py s.o = {Zo @ 0, ... ,&N_1 Bp O}

PROOF. In [3] it was shown that if one chooses o uniformly from [0,1)°,
then the expected value of the weighted Lo discrepancy of a point set Py ¢ & is

given by
2

N—-1
1
E(L3 ,(Pn.s,o)) Z po(Y, K walg ()|
kENS h:O
k#O

where k = (kla e aks) S NS? Y= (71) e 7/78) S N87 pb(’Yak:) = Hj‘:l pb(rYJakj)7
and

1+% ifk=0,

ol 1

po(7, k) = if b < k < bt1 and

Kg = LbﬁaJ , where a € Ny
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If we take v; = 3b2, for j = 1,...,s we have, py(7;,0) = (1 +b*) = (1 + b*)r,(0)
and for k > 1 we have py(7;, k) = 3ry(k) <+ - %) Let us denote dj :=

sin? (247
1 1 . 2 3
ma,Xlg,{Sbfl (W — g) and Cp = maX{]. + b s §db}

For the above choice of the weights we have

»((30%), Hpb (3%, k;) <chrb =cry(k).

Hence from the definition of b-adic diaphony we obtain the inequality
(2) E(L3 (352) (PN,s.0)) < ey (1 +0)° = DE N (Prs).-

Roth [21] proved that for any dimension s > 1 there exists a constant ¢(s) > 0
such that for any point set consisting of N points in the s-dimensional unit cube
[0,1)® the classical Lo discrepancy of a point set satisfies

EQ(PN s) (5)%

Here we just note that the weights only change the constant ¢(s), but do not
change the convergence rate of the bound (see [2], [4], [23] for more information).
Hence, for any point set Py ¢ consisting of N points in the s-dimensional unit
cube there is a constant ¢(s, b), depending only on the dimension s, such that

~ (IOg N)s—l
Eg,(3b2)(PN,s) > ¢(s, b)T .

From (2) it follows that there is a constant ¢(s,b), depending only on the dimen-
sion and the prime number b, such that

(log N)*~!

Fin(Pys) > @ (s,b) RER

which completes the proof. O
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