A lower bound for the b-adic diaphony

LIGIA L. CRISTEA - FRIEDRICH PILLICHSHAMMER

AbSTRACT: The b-adic diaphony is a quantitative measure for the irregularity of distribution of a point set in the s-dimensional unit cube. In this note we show that the b-adic diaphony (for prime b) of a point set consisting of N points in the s-dimensional unit cube is always at least of order $(\log N)^{(s-1) / 2} / N$. This lower bound is best possible.

1 - Introduction

As the (classical) diaphony (see [25] or [8, Definition 1.29] or [16, Exercise 5.27 , p. 162]) the b-adic diaphony is a quantitative measure for the irregularity of distribution of a sequence in the s-dimensional unit cube. This notion was introduced by Hellekalek and Leeb [15] for $b=2$ and later generalized by Grozdanov and Stoilova [11] for general integers $b \geq 2$. The main difference to the classical diaphony is that the trigonometric functions are replaced by b-adic Walsh functions. Before we give the exact definition of the b-adic diaphony we recall the definition of Walsh functions.

Let $b \geq 2$ be an integer. For a non-negative integer k with base b representation $k=\kappa_{a-1} b^{a-1}+\cdots+\kappa_{1} b+\kappa_{0}$, with $\kappa_{i} \in\{0, \ldots, b-1\}$ and $\kappa_{a-1} \neq 0$, we define the Walsh function b_{b} wal $_{k}:[0,1) \rightarrow \mathbb{C}$ by

$$
b \operatorname{wal}_{k}(x):=\mathrm{e}^{2 \pi \mathrm{i}\left(x_{1} \kappa_{0}+\cdots+x_{a} \kappa_{a-1}\right) / b}
$$

for $x \in[0,1)$ with base b representation $x=\frac{x_{1}}{b}+\frac{x_{2}}{b^{2}}+\cdots$ (unique in the sense that infinitely many of the x_{i} must be different from $b-1$).

[^0]For dimension $s \geq 2, x_{1}, \ldots, x_{s} \in[0,1)$ and $k_{1}, \ldots, k_{s} \in \mathbb{N}_{0}$ we define ${ }_{b} \operatorname{wal}_{k_{1}, \ldots, k_{s}}:[0,1)^{s} \rightarrow \mathbb{C}$ by

$$
b \operatorname{wal}_{k_{1}, \ldots, k_{s}}\left(x_{1}, \ldots, x_{s}\right):=\prod_{j=1}^{s} b \operatorname{wal}_{k_{j}}\left(x_{j}\right)
$$

For vectors $\boldsymbol{k}=\left(k_{1}, \ldots, k_{s}\right) \in \mathbb{N}_{0}^{s}$ and $\boldsymbol{x}=\left(x_{1}, \ldots, x_{s}\right) \in[0,1)^{s}$ we write

$$
{ }_{b} \operatorname{wal}_{\boldsymbol{k}}(\boldsymbol{x}):={ }_{b} \operatorname{wal}_{k_{1}, \ldots, k_{s}}\left(x_{1}, \ldots, x_{s}\right) .
$$

If it is clear which base we mean we simply write $\operatorname{wal}_{\boldsymbol{k}}(\boldsymbol{x})$. It is clear from the definitions that Walsh functions are piecewise constant. It can be shown that for any integer $s \geq 1$ the system $\left\{\right.$ wal $\left._{\boldsymbol{k}}: \boldsymbol{k} \in \mathbb{N}_{0}^{s}\right\}$ is a complete orthonormal system in $L_{2}\left([0,1)^{s}\right)$, see for example [1], [17] or [20, Satz 1]. For more information on Walsh functions we refer to [1], [20], [24].

Now we give the definition of the b-adic diaphony (see [11] or [15]).
Definition 1. Let $b \geq 2$ be an integer. The b-adic diaphony of a point set $P_{N, s}=\left\{\boldsymbol{x}_{0}, \ldots, \boldsymbol{x}_{N-1}\right\} \subset[0,1)^{s}$ is defined as

$$
F_{b, N}\left(P_{N, s}\right):=\left(\frac{1}{(1+b)^{s}-1} \sum_{\substack{\boldsymbol{k} \in \mathbb{N}_{0}^{s} \\ \boldsymbol{k} \neq 0}} r_{b}(\boldsymbol{k})\left|\frac{1}{N} \sum_{h=0}^{N-1} b \operatorname{wal}_{\boldsymbol{k}}\left(\boldsymbol{x}_{h}\right)\right|^{2}\right)^{1 / 2}
$$

where for $\boldsymbol{k}=\left(k_{1}, \ldots, k_{s}\right) \in \mathbb{N}_{0}^{s}, r_{b}(\boldsymbol{k}):=\prod_{j=1}^{s} r_{b}\left(k_{j}\right)$ and for $k \in \mathbb{Z}$,

$$
r_{b}(k):= \begin{cases}1 & \text { if } k=0 \tag{1}\\ b^{-2 a} & \text { if } b^{a} \leq k<b^{a+1} \text { where } a \in \mathbb{N}_{0}\end{cases}
$$

Note that the b-adic diaphony is scaled such that $0 \leq F_{b, N}\left(P_{N, s}\right) \leq 1$ for all $N \in \mathbb{N}$, in particular we have $F_{b, 1}\left(P_{1, s}\right)=1$. If $b=2$ we also speak of dyadic diaphony.

The b-adic diaphony is a quantitative measure for the irregularity of distribution of a sequence: a sequence ω in the s-dimensional unit cube is uniformly distributed modulo one if and only if $\lim _{N \rightarrow \infty} F_{b, N}\left(\omega_{N}\right)=0$, where ω_{N} is the point set consisting of the first N points of ω. This was shown in [15] for the case $b=2$ and in [11] for the general case. Further it is shown in [5] that the b-adic diaphony is-up to a factor depending on b and s-the worst-case error for quasi-Monte Carlo integration of functions from a certain Hilbert space of functions.

More general notions of diaphony can be found in [10], [13], [14].

Stoilova [22] proved that the b-adic diaphony of a (t, m, s)-net in base b is bounded by

$$
F_{b, N}(P) \leq c(b, s) b^{t} \frac{(m-t)^{\frac{s-1}{2}}}{b^{m}}
$$

where $c(b, s)>0$ only depends on b and s. For the definition of (t, m, s)-nets in base b we refer to Niederreiter [18], [19]. These are point sets consisting of $N=b^{m}$ points in the s-dimensional unit cube with outstanding distribution properties if the parameter $t \in\{0, \ldots, m\}$ is small. However, the optimal value $t=0$ is not possible for all parameters $s \geq 1$ and $b \geq 2$. Niederreiter [18] proved that if a $(0, m, s)$-net in base b exists, then we have $s-1 \leq b$. Faure [9] provided a construction of $(0, m, s)$-nets in prime base $p \geq s-1$ and Niederreiter [18] extended Faure's construction to prime power bases $p^{r} \geq s-1$. Hence if $b \geq s-1$ is a prime power we obtain for any $m \in \mathbb{N}$ the existence of $N=b^{m}$ points in $[0,1)^{s}$ whose b-adic diaphony is bounded by

$$
F_{b, N}(P) \leq c^{\prime}(b, s) \frac{(\log N)^{\frac{s-1}{2}}}{N}
$$

with $c^{\prime}(b, s)>0$. See also [6] where a similar bound on the dyadic diaphony of digital (t, m, s)-nets in base 2 (a subclass of (t, m, s)-nets) is shown.

The question for a general lower bound for the b-adic diaphony was pointed out in [22], see also [12]. In the following section we show that for prime b, the b-adic diaphony of an N-element point set in $[0,1)^{s}$ is always at least of order $\frac{(\log N)^{\frac{s-1}{2}}}{N}$, which shows that the above given upper bounds are best possible.

2 - A general lower bound for the b-adic diaphony

In the following we prove a lower bound on the b-adic diaphony for prime b. This is done using Roth's lower bound on the \mathcal{L}_{2} discrepancy, which is another measure for the distribution properties of a point set.

Theorem 1. Let b be a prime. For any dimension $s \geq 1$ there exists a constant $\bar{c}(s, b)>0$, depending only on the dimension s and b, such that the b-adic diaphony of any point set $P_{N, s}$ consisting of N points in $[0,1)^{s}$ satisfies

$$
F_{b, N}\left(P_{N, s}\right) \geq \bar{c}(s, b) \frac{(\log N)^{\frac{s-1}{2}}}{N} .
$$

In the proof of our theorem below we use the generalized notion of weighted \mathcal{L}_{2} discrepancy, which was introduced in [23]. In the following let D denote the index set $D=\{1,2, \ldots, s\}$ and let $\gamma=\left(\gamma_{1}, \gamma_{2}, \ldots\right)$ be a sequence of non-negative real numbers. For $\mathfrak{u} \subseteq D$ let $|\mathfrak{u}|$ be the cardinality of \mathfrak{u} and for a vector $\boldsymbol{x} \in[0,1)^{s}$ let $\boldsymbol{x}_{\mathfrak{u}}$ denote the vector from $[0,1)^{|\mathfrak{u}|}$ containing all components of \boldsymbol{x} whose indices are in \mathfrak{u}. Further let $\gamma_{\mathfrak{u}}=\prod_{j \in \mathfrak{u}} \gamma_{j}, \mathrm{~d} \boldsymbol{x}_{\mathfrak{u}}=\prod_{j \in \mathfrak{u}} \mathrm{~d} x_{j}$, and let $\left(\boldsymbol{x}_{\mathfrak{u}}, 1\right)$ be the vector \boldsymbol{x} from $[0,1)^{s}$ with all components whose indices are not in \mathfrak{u} replaced by 1 . Then the weighted \mathcal{L}_{2} discrepancy of a point set $P_{N, s}=\left\{\boldsymbol{x}_{0}, \ldots, \boldsymbol{x}_{N-1}\right\}$ is defined as

$$
\mathcal{L}_{2, \gamma}\left(P_{N, s}\right)=\left(\sum_{\substack{\mathfrak{u} \subseteq D \\ \mathfrak{u \neq \emptyset}}} \gamma_{\mathfrak{u}} \int_{[0,1]^{|\mathfrak{u}|}} \Delta\left(\left(\boldsymbol{x}_{\mathfrak{u}}, 1\right)\right)^{2} \mathrm{~d} \boldsymbol{x}_{\mathfrak{u}}\right)^{1 / 2}
$$

where

$$
\Delta\left(t_{1}, \ldots, t_{s}\right)=\frac{A_{N}\left(\left[0, t_{1}\right) \times \ldots \times\left[0, t_{s}\right)\right)}{N}-t_{1} \cdots t_{s}
$$

where $0 \leq t_{j} \leq 1$ and $A_{N}\left(\left[0, t_{1}\right) \times \ldots \times\left[0, t_{s}\right)\right)$ denotes the number of indices n with $\boldsymbol{x}_{n} \in\left[0, t_{1}\right) \times \ldots \times\left[0, t_{s}\right)$. We can see from the definition of the weighted \mathcal{L}_{2} discrepancy that the weights $\gamma_{\mathfrak{u}}=\prod_{j \in \mathfrak{u}} \gamma_{j}$ modify the importance of different projections (see [7], [23] for more information on weights).

In [3] the authors considered point sets which are randomized in the following sense: for $b \geq 2$ let $x=\frac{x_{1}}{b}+\frac{x_{2}}{b^{2}}+\cdots$ and $\sigma=\frac{\sigma_{1}}{b}+\frac{\sigma_{2}}{b^{2}}+\cdots$ be the base b representation of x and σ. Then the digitally shifted point $y=x \oplus_{b} \sigma$ is given by $y=\frac{y_{1}}{b}+\frac{y_{2}}{b^{2}}+\cdots$, where $y_{i}=x_{i}+\sigma_{i} \in \mathbb{Z}_{b}$. For vectors \boldsymbol{x} and $\boldsymbol{\sigma}$ we define the digitally shifted point $\boldsymbol{x} \oplus_{b} \boldsymbol{\sigma}$ component wise. Obviously, the shift depends on the base b. Now for $P_{N, s}=\left\{\boldsymbol{x}_{0}, \ldots, \boldsymbol{x}_{N-1}\right\} \subseteq[0,1)^{s}$ and $\boldsymbol{\sigma} \in[0,1)^{s}$ we define the point set $P_{N, s, \boldsymbol{\sigma}}=\left\{\boldsymbol{x}_{0} \oplus_{b} \boldsymbol{\sigma}, \ldots, \boldsymbol{x}_{N-1} \oplus_{b} \boldsymbol{\sigma}\right\}$.

Proof. In [3] it was shown that if one chooses $\boldsymbol{\sigma}$ uniformly from $[0,1)^{s}$, then the expected value of the weighted \mathcal{L}_{2} discrepancy of a point set $P_{N, s, \sigma}$ is given by

$$
\mathbb{E}\left(\mathcal{L}_{2, \gamma}^{2}\left(P_{N, s, \boldsymbol{\sigma}}\right)\right)=\sum_{\substack{\boldsymbol{k} \in \mathbb{N}_{0}^{s} \\ \boldsymbol{k} \neq 0}} \rho_{b}(\boldsymbol{\gamma}, \boldsymbol{k})\left|\frac{1}{N} \sum_{h=0}^{N-1} \operatorname{wal}_{\boldsymbol{k}}\left(\boldsymbol{x}_{h}\right)\right|^{2}
$$

where $\boldsymbol{k}=\left(k_{1}, \ldots, k_{s}\right) \in \mathbb{N}_{0}^{s}, \boldsymbol{\gamma}=\left(\gamma_{1}, \ldots, \gamma_{s}\right) \in \mathbb{N}_{0}^{s}, \rho_{b}(\boldsymbol{\gamma}, \boldsymbol{k})=\prod_{j=1}^{s} \rho_{b}\left(\gamma_{j}, k_{j}\right)$, and

$$
\rho_{b}(\gamma, k)= \begin{cases}1+\frac{\gamma}{3} & \text { if } k=0 \\ \frac{\gamma}{2 b^{2(a+1)}}\left(\frac{1}{\sin ^{2}\left(\frac{\kappa_{a} \pi}{b}\right)}-\frac{1}{3}\right) & \text { if } b^{a} \leq k<b^{a+1} \text { and } \\ & \kappa_{a}=\left\lfloor\frac{k}{b^{a}}\right\rfloor, \text { where } a \in \mathbb{N}_{0}\end{cases}
$$

If we take $\gamma_{j}=3 b^{2}$, for $j=1, \ldots, s$ we have, $\rho_{b}\left(\gamma_{j}, 0\right)=\left(1+b^{2}\right)=\left(1+b^{2}\right) r_{b}(0)$ and for $k \geq 1$ we have $\rho_{b}\left(\gamma_{j}, k\right)=\frac{3}{2} r_{b}(k)\left(\frac{1}{\sin ^{2}\left(\frac{\kappa a \pi}{b}\right)}-\frac{1}{3}\right)$. Let us denote $d_{b}:=$ $\max _{1 \leq \kappa \leq b-1}\left(\frac{1}{\sin ^{2}\left(\frac{\kappa \pi}{b}\right)}-\frac{1}{3}\right)$ and $c_{b}:=\max \left\{1+b^{2}, \frac{3}{2} d_{b}\right\}$.

For the above choice of the weights we have

$$
\rho_{b}\left(\left(3 b^{2}\right), \boldsymbol{k}\right)=\prod_{i=1}^{s} \rho_{b}\left(3 b^{2}, k_{i}\right) \leq c_{b}^{s} \prod_{i=1}^{s} r_{b}\left(k_{i}\right)=c_{b}^{s} r_{b}(\boldsymbol{k}) .
$$

Hence from the definition of b-adic diaphony we obtain the inequality

$$
\begin{equation*}
\mathbb{E}\left(\mathcal{L}_{2,\left(3 b^{2}\right)}^{2}\left(P_{N, s, \boldsymbol{\sigma}}\right)\right) \leq c_{b}^{s}\left((1+b)^{s}-1\right) F_{b, N}^{2}\left(P_{N, s}\right) \tag{2}
\end{equation*}
$$

Roth [21] proved that for any dimension $s \geq 1$ there exists a constant $\widehat{c}(s)>0$ such that for any point set consisting of N points in the s-dimensional unit cube $[0,1)^{s}$ the classical \mathcal{L}_{2} discrepancy of a point set satisfies

$$
\mathcal{L}_{2}^{2}\left(P_{N, s}\right) \geq \widehat{c}(s) \frac{(\log N)^{s-1}}{N^{2}}
$$

Here we just note that the weights only change the constant $\widehat{c}(s)$, but do not change the convergence rate of the bound (see [2], [4], [23] for more information). Hence, for any point set $P_{N, s}$ consisting of N points in the s-dimensional unit cube there is a constant $\widetilde{c}(s, b)$, depending only on the dimension s, such that

$$
\mathcal{L}_{2,\left(3 b^{2}\right)}^{2}\left(P_{N, s}\right) \geq \widetilde{c}(s, b) \frac{(\log N)^{s-1}}{N^{2}}
$$

From (2) it follows that there is a constant $\bar{c}(s, b)$, depending only on the dimension and the prime number b, such that

$$
F_{b, N}^{2}\left(P_{N, s}\right) \geq \bar{c}^{2}(s, b) \frac{(\log N)^{s-1}}{N^{2}}
$$

which completes the proof.

REFERENCES

[1] H. E. Chrestenson: A class of generalized Walsh functions, Pacific J. Math., 5 (1955), 17-31.
[2] L. L. Cristea - J. Dick - F. Pillichshammer: On the mean square weighted \mathcal{L}_{2} discrepancy of randomized digital nets in prime base, J. Complexity, $\mathbf{2 2}$ (2006), 605-629.
[3] J. Dick - F. Kuo - F. Pillichshammer - I. H. Sloan: Construction algorithms for polynomial lattice rules for multivariate integration, Math. Comp., 74 (2005), 1895-1921.
[4] J. Dick - F. Pillichshammer: On the mean square weighted L_{2} discrepancy of randomized digital (t, m, s)-nets over \mathbb{Z}_{2}, J. Complexity, 21 (2005), 149-195.
[5] J. Dick - F. Pillichshammer: Diaphony, discrepancy, spectral test and worstcase error, Math. Comput. Simulation, 70 (2005), 159-171.
[6] J. Dick - F. Pillichshammer: Dyadic diaphony of digital nets over \mathbb{Z}_{2}, Monatsh. Math., 145 (2005), 285-299.
[7] J. Dick - I. H. Sloan - X. Wang - H. Woźniakowksi: Liberating the weights, J. Complexity, 20 (2004), 593-623.
[8] M. Drmota - R. F. Tichy: Sequences, discrepancies and applications, Lecture Notes in Mathematics, vol. 1651, Berlin, Heidelberg, New York, Springer.
[9] H. Faure: Discrépance de Suites Associées à un Système de Numération (en Dimension s), Acta Arith., 41 (1982), 337-351.
[10] V. Grozdanov: The weighted b-adic diaphony, J. Complexity, 22 (2006), 490513.
[11] V. Grozdanov - S. Stoilova: On the theory of b-adic diaphony, C. R. Acad. Bulgare Sci., 54 (2001), 31-34.
[12] V. Grozdanov - S. Stoilova: The b-adic diaphony, Rendiconti di Matematica, 22 (2002), 203-221.
[13] V. Grozdanov - S. Stoilova: The general diaphony, C. R. Acad. Bulgare Sci., 57 (2004), 13-18.
[14] V. Grozdanov - E. Nikolova - S. Stoilova: Generalized b-adic diaphony, C. R. Acad. Bulgare Sci., 56 (2003), 23-30.
[15] P. Hellekalek - H. Leeb: Dyadic diaphony, Acta Arith., 80 (1997), 187-196.
[16] L. Kuipers - H. Niederreiter: Uniform Distribution of Sequences, John Wiley, New York, 1974.
[17] K. Niederdrenk: Die endliche Fourier- und Walshtransformation mit einer Einführung in die Bildverarbeitung, Vieweg, Braunschweig, 1982.
[18] H. Niederreiter: Point sets and sequences with small discrepancy, Monatsh. Math., 104 (1987), 273-337.
[19] H. Niederreiter: Random Number Generation and Quasi-Monte Carlo Methods, CBMS-NSF Series in Applied Mathematics, vol. 63, SIAM Philadelphia, 1992.
[20] G. Pirsic: Schnell konvergierende Walshreihen über Gruppen, Master's Thesis, University of Salzburg, 1995 (in german); (Available at http://www.ricam.oeaw. ac.at/people/page/pirsic/).
[21] K. F. Roth: On irregularities of distribution, Mathematika, 1 (1959), 73-79.
[22] S. Stoilova: The b-adic diaphony of an arbitrary (t, m, s)-net, preprint 2004; (Available at http://www1.jinr.ru/Preprints/2004/107(e5-2004-107).pdf).
[23] I. H. Sloan - H. Woźniakowski: When are quasi-Monte Carlo algorithms efficient for high dimensional integrals?, J. Complexity, 14 (1998), 1-33.
[24] J. L. Walsh: A closed set of normal orthogonal functions, Amer. J. Math., 55 (1923), 5-24.
[25] P. Zinterhof: Über einige Abschätzungen bei der Approximation von Funktionen mit Gleichverteilungsmethoden, Sitzungsber, Österr. Akkad. Wiss. Math.-Natur. Kl. II, 185 (1976), 121-132 (in german).

Lavoro pervenuto alla redazione il 1 luglio 2006 ed accettato per la pubblicazione il 13 novembre 2006. Bozze licenziate il 14 maggio 2007

Indirizzo DEGLI Autori:

Ligia L. Cristea - Institut für Finanzmathematik - Universität Linz - Altenbergstraße 69 -A-4040 Linz, Austria
E-mail: ligia-loretta.cristea@jku.at
Friedrich Pillichshammer - Institut für Finanzmathematik - Universität Linz - Altenbergstraße 69 - A-4040 Linz, Austria
E-mail: friedrich.pillichshammer@jku.at

The authors are supported by the Austrian Research Foundation (FWF), Project S9609, that is part of the Austrian National Research Network "Analytic Combinatorics and Probabilistic Number Theory".

[^0]: Key Words and Phrases: b-adic diaphony - \mathcal{L}_{2} discrepancy - Uniform distribution of sequences.
 A.M.S. Classification: $11 \mathrm{~K} 06-11 \mathrm{~K} 38$

