
Rendiconti di Matematica, Serie VII
Volume 27, Roma (2007), 155-182

Zero-structured matrix modifications keeping essentially

unaltered sets of eigenvalues

SILVIA NOSCHESE – LIONELLO PASQUINI

Abstract: We show how to construct zero-structured matrices that modify a given
matrix A keeping essentially unaltered a selected set of eigenvalues. An accurate report
on a significant collection of numerical tests is included.
Applications to the study of the behavior of the inherent error are discussed.

1 – Introduction

In [14] we considered a matrix A ∈ Cn×n, and we showed how to determine
unit-norm matrices E, belonging to an assigned subspace S (i.e. having an as-
signed zero-structure), in such a way that A + α E keeps essentially unaltered a
selected set of simple eigenvalues of A for reasonably large values of α. We first
transformed the problem into that of finding nontrivial solutions to a suitable
linear homogeneous system which depends on the ν selected eigenvalues and on
the subspace S. Then we showed that nontrivial solutions to such a system exist
– no matter how the number ν of the eigenvalues (1 ≤ ν ≤ n), the eigenvalues
themselves and the subspace S have been singled out – if and only if

m = dim(S)

is large enough. A sufficient condition is m > ν. The necessary and sufficient
condition, which may turn out to be sensibly weaker, can be found below in

Key Words and Phrases: Eigenvalues – Structured matrix modifications – Con-
ditioning.
A.M.S. Classification: 65F15 – 65F30 – 65F50 (primary) – 65F35 (secondary)

156 SILVIA NOSCHESE – LIONELLO PASQUINI [2]

Theorem 2.1, which is here reported from [14] in the version that best fits the
contents of the present article.

Also, two draft algorithms having complementary qualities were defined.

In this paper we present substantially improved versions of the two algo-
rithms sketched in [14, Section 3]. Their MATLAB codes are available upon
request. Also, we discuss how to apply them to investigate the behavior of the
error arising in the computation of a selected simple eigenvalue λ when the inher-
ent error λ(A+α E)−λ(A) has been made negligible, and to analyze phenomena
which can be observed in case of ill-conditioning of λ.

The main motivation to our work is that [10, Section 1]:

There is a growing interest in structured perturbation analysis
due to the substantial development of algorithms for structured
problems.

Further reasons of interest are the following.

The first one consists in the characterization of the matrices E belonging
to an assigned subspace S and having, for ν eigenvalues of interest, the prop-
erty which is the opposite of the one enjoyed by the ν Wilkinson perturbation
matrices, that is to say by the ν matrices which lead to the individual condition
numbers of those ν eigenvalues [25], [3] (see Section 2 for some details). To be
more precise, the above mentioned property is exactly opposite to the one en-
joyed by the ν matrices in S that lead to the individual zero-structured condition
numbers of those ν eigenvalues [15].

The second reason consists in the opportunity of constructing in reality
and of using such matrices E. This is of interest, for instance, every time that
the problem under investigation enables one to modify m assigned entries in a
matrix A (for instance, the entries that are not machine numbers) and one wants
to change those entries finding out a matrix modification that does not perturb
“too much” ν selected eigenvalues (for instance, the eigenvalues closest to the
imaginary axis in a spectrum σ(A) that lies in the left half of the complex plane).

The third reason is that the opportunity of constructing and actually testing
the matrix solutions E allows for a deep understanding of how substantially a
selected subset of entries influences selected eigenvalues. In other words, it allows
knowing how large values of α are consistent with an assigned tolerance on the
ν eigenvalues if a certain zero-structure is chosen. For instance, a complete
understanding of such a problem led to results in [15], [13].

The outline of the paper is as follows.

In Section 2 we report from [14] on the underlying theory. Starting with
Wilkinson’s theory of the perturbation of a simple eigenvalue [25], [3], unit-norm
matrices E ∈ S that annihilate all of the coefficients of the first term in the
expansions of λh(A + α E) − λh(A), h = 1 : ν, in powers of α are characterized,
the λh’s being simple eigenvalues of A.

[3] Zero-structured matrix modifications keeping essentially etc. 157

In Sections 3 and 4 we present the improved algorithms. The algorithm
presented in Section 3 (Algorithm 1) solves a suitable direct search optimiza-
tion problem and uses the MATLAB functions mdsmax and nmsmax by
N. J. Higham [6]. The algorithm presented in Section 4 (Algorithm 2) solves
a set of equations formed by ν homogeneous linear equations in m unknowns
and by a nonlinear normalization equation.

Section 5 is devoted to report and comment on tests as well as to discuss
advantages and drawbacks of the two algorithms. The tests have been carried
out using matrices A taken from the literature [12], [22], [3, Section 13], [26, Sec-
tion 5], [4], [17], [23] or randomly generated. Remarks concerning the detection
of the inherent errors in the observed ones can also be found in that section.

Conclusions are drawn in Section 6.

2 – Report on theoretical results

We start with briefly reporting from the classical Wilkinson perturbation
theory [25], [3]. Then results from [14] and remarks are collected in Sections 2.2
and 2.3.

2.1 – Wilkinson’s perturbation theory of a simple eigenvalue

Let λ be a simple eigenvalue of a matrix A ∈ Cn×n and let x and y be
respectively the right and left eigenvector associated to λ with ‖x‖2 = ‖y‖2 = 1.
Following [25], [3], we can write, for ε > 0 small enough,

(A + ε E) x(ε) = λ(ε)x(ε), ‖E‖2 = 1 ,

where x and λ are differentiable functions such that λ(0) = λ and x(0) = x. It
can be proved that one has

(2.1)

∣∣∣∣
dλ

dε

∣∣∣∣
ε=0

=

∣∣∣∣
yHE x

yHx

∣∣∣∣ ≤
‖y‖2 ‖E‖2 ‖x‖2

|yHx| =
1

|yHx| ,

and that the upper-bound is attained if E = y xH .
Remark 2.1. It is worth noticing that in the above outlined theory the

Frobenius norm can replace everywhere the 2−norm.

In the sequel, the matrix y xH will be referred to as the Wilkinson pertur-
bation matrix and denoted by Wλ.

The inner product yHx is usually denoted by s(λ),

s(λ) := yHx ,

158 SILVIA NOSCHESE – LIONELLO PASQUINI [4]

while 1 /|s(λ)| is denoted by κ(λ) and called the condition number of λ,

κ(λ) :=
1

|yHx| =
1

|s(λ)| .

2.2 – Our idea

In this paper, instead of considering the matrix E that yields the worst
result in (2.1), we look for a unit-norm matrix E that annihilates the numerator
in the ratio

∣∣yHE x
/
yHx

∣∣. More in general we look for a unit-norm matrix E
that annihilates the numerators in the ratios

(2.2)
y(h)HE x(h)

y(h)Hx(h)
, h = 1 : ν ,

relevant to a set σ̃(A) ⊆ σ(A) of ν, 1 ≤ ν ≤ n, selected simple eigenvalues λh,
h = 1 : ν. Here x(h) and y(h), with

∥∥x(h)
∥∥

2
=

∥∥y(h)
∥∥

2
= 1, respectively are the

right and left eigenvector associated to λh.
Theorem 2.1 contains a result which is essential to define the two algorithms

we deal with in Sections 3 and 4.
To introduce the theorem we first consider the simpler case ν = 1, S = Cn×n.

In this case, to get
∣∣yHE x

/
yHx

∣∣ = 0, we have to solve one linear equation in
the n2 unknowns eij plus the nonlinear equation ‖E‖2 = 1. To clarify the matter
that follows, it is worth formally re-writing that linear equation in the form

(2.3)
n2∑

k=1

ck ξk = 0 ,

where the ξk are the unknowns eij arranged by columns in a n2-length vector ξ,

(2.4)
k = (j − 1)n + i; j =

k + n − i

n
, i = k − n(j − 1) ,

i, j = 1 : n, k = 1 : n2 ,

ξk = eij ,(2.5)

ck = ck(λ) =
yi xj

yHx
.(2.6)

Slightly more complicated is the case S ⊂ Cn×n, m = dim(S) < n2, which is the
one we are mainly interested in. In this case, again, we arrange the m entries
of E = [eij] by columns into a vector ξ, but we take account of the zeros in
the structure. So ξ = [ξ1 ξ2 . . . ξm]T is a vector of length m and equations (2.4)
become

(2.7)
k = (j − 1)n + i − ζ(i, j); j =

k + n − i + ζ(i, j)

n
,

i = k − n(j − 1) + ζ(i, j) , i, j = 1 : n, k = 1 : m ,

[5] Zero-structured matrix modifications keeping essentially etc. 159

where ζ(i, j) denotes the number of the zero entries in E that precede an eij that
has been enclosed in the set of the selected m entries. Equations (2.5) and (2.6)
remain unchanged whereas equation (2.3) becomes

(2.8)
m∑

k=1

ck ξk = 0 .

Finally in the general case we have 1 ≤ ν ≤ n and 1 ≤ m ≤ n2. Only the linear
equation (2.8), (2.6) changes and becomes the linear homogeneous system of ν
equations in m unknowns

m∑

k=1

chk ξk = 0, h = 1 : ν ,(2.9)

chk = chk(λh) =
y
(h)
i x

(h)
j

y(h)H x(h)
.(2.10)

Of course, we are looking for nontrivial solutions to (2.9), (2.10) to construct
and then normalize the corresponding nonzero matrix according to (2.7). Stan-
dard arguments of Linear Algebra say that a necessary and sufficient condition
for the existence of nontrivial solutions to (2.9), (2.10) is

(2.11) m > r ,

where r denotes the rank of the coefficient matrix C = [chk] in (2.9):

r = rank (C) .

Summarizing the above arguments leads to the following

Theorem 2.1. Unit-norm matrices E ∈ S that annihilate all of the ratios
in (2.2) exist if and only if condition (2.11) is satisfied. They are characterized
in terms of ξ as the ones satisfying the linear homogeneous system of ν equations
in m unknowns (2.9), (2.10) and the condition ‖E‖2 = 1.

Remark 2.2. It is worth stressing that the numbers ν and m in their
ranges, as well as the ν eigenvalues and the positions of the m entries, can be
arbitrarily selected.

Remark 2.3. Condition (2.11) is not satisfied when m = dim(S) is equal
to r. In this case, unit-norm matrices E that yield small enough values of the
ratios in (2.2) might give satisfactory results to our problem (see e.g. Test 8 in
Section 5.2.2).

160 SILVIA NOSCHESE – LIONELLO PASQUINI [6]

2.3 – Using the Frobenius norm

Interesting remarks, mainly concerning the conditioning of a simple eigen-
value, can be added in case the Frobenius norm is used (see Remark 2.1). They
are a consequence of Theorem 2.2 if, slightly modifying an idea in [18], we define
in the matrix space the inner product

(A, B) := trace (BHA) ,

which leads to the Frobenius norm.

Theorem 2.2. Let λ be a simple eigenvalue of A. Let x and y respectivel be
the right and left eigenvector associated to λ. Let ‖x‖2 = ‖y‖2 = 1. Let E = [eij]
belong to Cn×n. One has

yHE x =
∑

i,j=1:n

yi eij xj = trace(WH
λ E) = (E, Wλ) .

Proof. Standard arguments lead to the first equality. The second one easily
follows by observing that

∑

i,j=1:n

yi eij xj =
∑

i,j=1:n

(yi xj) eij =
∑

i,j=1:n

(x yH)ji eij =
∑

j=1:n

(WH
λ E)jj .

This concludes the proof.

The mentioned remarks are listed below.

Remark 2.4. We can read Theorem 2.2 saying that the matrices E that
annihilate yHE x are those orthogonal to the Wilkinson perturbation matrix Wλ

and that the closer a matrix E is to be orthogonal to Wλ, the smaller
∣∣yHE x

∣∣ is.

Remark 2.5. If λ is an ill-conditioned eigenvalue, a unit-norm matrix E
that makes

∣∣yHE x
/
yHx

∣∣ very small can be simply obtained by taking E = WH
λ .

In fact, Wλ and WH
λ are unit-norm matrices (both in the 2 and in the Frobenius

norm) and
∣∣∣∣
yHWH

λ x

yHx

∣∣∣∣ =

∣∣∣∣
yH x yHx

yHx

∣∣∣∣ = |s(λ)| =
1

κ(λ)
.

[7] Zero-structured matrix modifications keeping essentially etc. 161

Remark 2.6. A straightforward computation shows that

(WH
λ , Wλ) = s(λ)2 ,

so that the more the eigenvalue λ is ill-conditioned, the closer Wλ and WH
λ get

to being orthogonal to each other.

Remark 2.7. The limit case of a defective eigenvalue associated with a
unique Jordan block (s(λ) = 0) can be viewed as the case of orthogonality
between Wλ and WH

λ .

Remark 2.8. On the opposite, the case WH
λ = Wλ (i.e. Wλ Hermitian)

can be viewed as the case of a perfectly conditioned eigenvalue (|s(λ)| = 1).

3 – Algorithm 1

The first algorithm we present is the more elaborate of the two.

The basic idea is to use the MATLAB functions mdsmax and nmsmax by
Higham [6], [8]. The two codes are fully documented in their leading comment
lines. The latter function implements the Nelder-Mead simplex method for direct
search optimization [11]. The former implements the multidirectional search
method in [21]. Doing so we transform the problem of solving the nonlinear
system considered in Theorem 2.1 into a direct search optimization one. In fact,
both those functions attempt to maximize a real function fun prepared by the
user and referenced by a function handle. Our function fun computes

(3.1) 1

/
ν∑

h=1

∣∣∣∣∣
y(h)HẼ x(h)

y(h)Hx(h)

∣∣∣∣∣ ,

Ẽ being any unit-norm matrix belonging to S.

Besides functions mdsmax and fun [besides functions nmsmax and fun],
an algorithm that comes up to standard should be provided with

• two scripts,

– an opening one, acting as main program,

– a concluding one, managing the output,

• some further functions, each one corresponding to a basic zero-structure.

A brief description of a proposal including seven such functions is given
below. We begin showing the organization of the twelve files in Scheme 3.1.

162 SILVIA NOSCHESE – LIONELLO PASQUINI [8]

Fig. 1: Scheme 3.1.

3.1 – Script alg1

We divide this section into three parts.

3.1.1 – User’s interaction

The user interacts with our files by means of alg1. Script alg1 asks the
user to:

1. enter the matrix A,
2. select the eigenvalues to be preserved,
3. specify the zero-structure of the matrix E,
4. specify the kind (complex/real) of the guess vector required by the functions

mdsmax and nmsmax and mentioned in Section 3.2 below,
5. select one of the functions mdsmax and nmsmax.

To specify the ν eigenvalues, 1 ≤ ν ≤ n, the user is required to enter their
relevant indices as they appear in the list displayed by alg1. The list is yielded
by MATLAB’s eig function. We disabled the default balance function – that
implements a procedure in [16] – to avoid possible changes in the conditioning
of the eigenvalues of the matrix A and of the modified matrix A + F = A + α E.

To specify the zero-structure of the matrix E, the user is required to enter
one of the following nine strings: ‘trid’, ‘trizd’, ‘ubid’, ‘lbid’, ‘uhess’, ‘lhess’,
‘penta’, ‘full’, ‘sparse’.

[9] Zero-structured matrix modifications keeping essentially etc. 163

a) The first seven strings ‘trid’, ‘trizd’, ‘ubid’, ‘lbid’, ‘uhess’, ‘lhess’ and ‘penta’
correspond to the names of the seven functions in the second column of
Scheme 3.1 and stand for tridiagonal, tridiagonal with zero diagonal, up-
per bidiagonal, lower bidiagonal, upper Hessenberg, lower Hessenberg and
pentadiagonal zero-structure, respectively.

b) String ‘full’ stands for the full zero-structure.
c) String ‘sparse’ stands for any sparse zero-structure. The user is required to

enter the 2m−length vector containing the m couples of indices that define
the zero-structure of E.

In the cases in a) and b), the user is enabled to modify the previously
selected basic zero-structure. In fact, it is possible to eliminate p entries among
the m key ones, entering the relevant p couples of indices.

3.1.2 – Computation of the ν right and left eigenvectors

Besides the eigenvalues of the matrix A, MATLAB’s eig function produces
a full matrix whose columns are the corresponding right eigenvectors. Also,
applying such a function to the transposed and conjugated matrix AH , one gets
a full matrix whose columns are the left eigenvectors. We operated the right-left
eigenvector matching as follows:

[v, lam] = eig(A, ‘nobalance’);

lam = diag(lam);

[w, clam] = eig(A′, ‘nobalance’);

inds = input(‘Vector containing the indices of the selected eigenvalues:’);

X = cell(zeros(1, n));Y = cell(zeros(1, n));

for h = inds

[ignore, ind] = min(abs(lam(h) − conj(diag(clam))));

Y {h} = w(:, ind)/norm(w(:, ind));

X{h} = v(:, h)/norm(v(:, h));

end .

3.1.3 – Calls

If one of the seven strings ‘trid’, ‘trizd’, ‘ubid’, ‘lbid’, ‘uhess’, ‘lhess’, ‘penta’
has been entered (see a) in Section 3.1.1), script alg1 calls the relevant function
among the first seven in the second column of Scheme 3.1. Calls to mdsmax or
to nmsmax (user’s choice) and to script outputs follow in any case.

The function selected among the first seven in the second column of Scheme
3.1 returns a properly defined matrix B. As we shall see below in Section 3.2.1,
the B matrices play an important role in keeping the selected zero-structure
of E.

164 SILVIA NOSCHESE – LIONELLO PASQUINI [10]

3.2 – Interactions between Higham’s functions and fun

Both mdsmax and nmsmax call fun. They interact with it in order to
attempt to maximize the objective function (3.1) implemented in fun. The
attempt is achieved iteratively. At each iteration, fun computes the objective
function at the current data received by the calling routine. In detail, it derives a
unit-norm matrix Ẽ from the data and returns the current value of the function
in (3.1). Checks are carried out by mdsmax [by nmsmax] to verify whether
the iteration has to be stopped or not. The data are conveyed by an m-length
vector and by two parameters.

At first the m-length vector receives the guess vector required by mdsmax
and nmsmax to start. Then it bears the current value of the vector ξ defined
in Section 2. It is the only variable that changes during the iteration. The
mentioned guess vector (see point 4 in Section 3.1.1) is defined using MATLAB’s
rand function. The real and the possible imaginary parts of the components
range between -1 and 1. (The command rand (‘seed’,0) is inserted before to
make the tests repeatable.)

The first parameter passed by mdsmax [by nmsmax] to fun is a ma-
trix containing the right and left eigenvectors corresponding to the ν selected
eigenvalues.

To the second parameter is dedicated the next section. This second param-
eter depends on the three cases distinguished above (see Section 3.1.1).

Both mdsmax and nmsmax give in output the vector which yielded the
largest value of fun that had been found, the largest fun value found, and the
total number of required evaluations.

3.2.1 – The second parameter passed to fun

The second parameter is called struct and deserves some explanation since,
together with the above described m-length vector, it makes possible to keep the
required zero-structure of E.

In the case of c), struct is an m-length vector. It is derived from the 2m-
length vector which is entered by the user and contains the indices that define
the sparse zero-structure of E (see Section 3.1.1). The relationships among i, j
and k shown in Section 2 are used.

In the remaining cases, struct is a matrix B = B(S) ∈ Rn2×m whose role in
a general context is explained in [5], [20]. B is defined in such a way that

B ξ = vec (E) ,

where ξ is the current m-length vector, E ∈ S is the corresponding matrix, and
vec is the operator that stacks the columns of a matrix into one long column
vector.

In the cases in a), B is returned by the structuring function relevant to the
selected zero-structure (i.e. relevant to the selected string). We provide seven
structuring functions. They yield B matrices corresponding to:

[11] Zero-structured matrix modifications keeping essentially etc. 165

the tridiagonal zero-structure (function trid),
the lower and upper bidiagonal zero-structure (functions lbid and ubid),
the tridiagonal with zero diagonal entries zero-structure (function trizd),
the lower and upper Hessenberg zero-structure (functions lhess and uhess),
the pentadiagonal zero-structure (function penta).

In the case of b), B is defined in alg1 and it is the identity matrix In2 .
Finally, in both a) and b), p properly selected columns of B are dropped

if the user asked to eliminate p entries from the chosen zero-structure (see Sec-
tion 3.1.1). The resulting version of B is assigned to struct.

3.3 – Upper-bounds to the value of (3.1)

The iteration is terminated when a value of the objective function in (3.1)
equals or exceeds an assigned upper-bound.

In the case of ν > 1, we set such an upper-bound to 1/eps, eps being
MATLAB’s floating point relative accuracy.

In the case of ν = 1, we modified the function in (3.1) to avoid unnecessary
computations. We changed (3.1) in

1

|yHE x| ,

and then we divided the largest fun value found by κ(λ). As a consequence, we
set the upper-bound to κ(λ)/eps.

As we shall see below (Remark 3.2), different (lower) settings of the upper-
bound may turn out to be useful.

3.4 – Reshaping and normalization

Function mdsmax [function nmsmax] does not return unit-norm matrices
but the corresponding m-length vectors (see above for details about the output
arguments of mdsmax and nmsmax). As a consequence, starting with the
m-length vector and using struct too, both the reshaping procedure and the
normalization are carried out in fun (at each iteration) and in outputs (at the
end of the execution).

3.5 – Final remarks

We collect three concluding remarks. The first one deserves a particular
attention.

Remark 3.1. Algorithm 1 turns out to be useful also in case no unit-norm
matrix E satisfying the system in (2.9) exists. Even in such a case indeed, it can
be of interest to know the maximum value reached by the function in (3.1) and,

166 SILVIA NOSCHESE – LIONELLO PASQUINI [12]

if it is large enough, the unit-norm matrix E yielding it. We have a surprising
example on this subject (see Test 8 in Section 5).

Remark 3.2. In case a lower accuracy is required, one can run alg1 setting
upper-bounds to the value of (3.1) adequately lower than the default ones speci-
fied in Section 3.3. This, of course, reduces the computational complexity of the
whole procedure, which, normally, is quite expensive (there are O((m + ν)n2)
flops associated with each evaluation of fun).

Remark 3.3. An improvement is recommended in [6] to best exploit func-
tions mdsmax and nmsmax. It is advised in case unit-norm matrices E making
the value in (3.1) to equal or to exceed the assigned upper-bound have not been
found. It consists in repeating the whole procedure trying the function that
has not been used before and taking as input the output obtained in the first
application. Another trick consists in using the output obtained by the default
regular simplex as starting guess for a further application that uses the optional
right-angled simplex.

4 – Algorithm 2

This algorithm implements the most natural idea of finding a nontrivial
solution of the ν×m homogeneous linear system in (2.9) and then of normalizing
the matrix that corresponds to that nontrivial solution in order to get one of the
required matrices E. It works every time that a solution to our problem exists,
that is every time that there are nontrivial solutions of the ν × m homogeneous
linear system in (2.9).

Since

r = rank (C) ,

C = [chk] being the ν × m coefficient matrix of the system, must be less than
m (see Theorem 2.1), the above mentioned idea leads to solve a r ×m underde-
termined linear system. Thus, we decided to use a straightforward modification
of Algorithm 5.7.1 in [2]. The modification is simply due to the fact that our
system is homogeneous.

In detail, we start with applying to C the rank-revealing QR factorization
with column pivoting (see e.g. [2, Section 5.4.1]). We get

C P = Q R ,

P being the m × m permutation matrix generated during the factorization. A
standard argument shows that

[13] Zero-structured matrix modifications keeping essentially etc. 167

1. all the nontrivial solutions ξ of C ξ = 0 can be obtained by finding any
nontrivial solution η of

R η = 0

and then computing

ξ = P η

(there is a one-to-one correspondence, defined by the perturbation P , be-
tween the ξ’s and the η’s);

2. a nontrivial solution η to the homogeneous linear system R η = 0 can be
obtained by

(a) leaving out the last ν − r equations in the system,

(b) assigning arbitrary, not all vanishing, values to the last m−r unknowns,

(c) solving the reduced, nonsingular r × r non homogeneous triangular
linear system obtained this way.

The complete m−length vector solution ξ is spread by columns into a ma-
trix of the required zero-structure. Then this matrix is normalized yielding the
matrix E. (See Section 4.5 below.)

4.1 – Computational cost

The amount of required flops can be estimated by adding to that related
to Algorithm 5.7.1 and stated in [2, Section 5.4.1] an estimate of the number
of flops needed to compute the column vector of the known terms of the r × r
nonhomogeneous system in point 2 (c) above. An estimate of this number is
2 (r × m) and the addition yields the total amount of 2 r2 − r3/3 + 2 (r × m) =
2 r2(m − 1) + 2 r m − r3/3 flops.

4.2 – Sensitivity and stability

As far as we know, there is no procedure more reliable than the one we
adopted to find a solution to system (2.9). Indeed, many assertions, statements
and declarations in literature are in favor of the line we chose.

Concerning the conditioning of the final r×r nonhomogeneous linear system
in point 2 (c), the reader is referred to [7], [9, Chapter 8]. Here, promising
sentences are quoted from [24, p. 105] and [19, p. 150] to emphasize the high
accuracy that is frequently observed in practice in the solutions to triangular
linear systems and, what is more, it is shown that the use of column pivoting in
QR factorization applied to the solution of a linear system can greatly improve
the conditioning of the resulting triangular system.

Regarding to the stability of the procedure, the reference is to [2, Sec-
tion 5.7], [1, node42.html] and again to [7], [9, Chapter 8].

168 SILVIA NOSCHESE – LIONELLO PASQUINI [14]

4.3 – Script alg2

Our code is a MATLAB script named alg2.

4.3.1 – User’s interaction

Script alg2 asks the user to:

1. enter the matrix A (as in script alg1),
2. choose the eigenvalues to be preserved (as in script alg1),
3. select the zero-structure of the matrix E (as in script alg1),
4. specify the kind (complex/real) of the values to be assigned to the m − r

unknowns mentioned at the beginning of this Section 4 in point 2 (b).

In addition, an information on the conditioning of the r×r coefficient matrix
of the nonhomogeneous linear system in point 2 (c) is given upon request.

4.3.2 – Constructing and solving the reduced nonsingular r × r nonhomoge-
neous linear system mentioned in point 2 (c)

First the ν×m matrix C in the underdetermined homogeneous linear system
is computed taking into account the definition of the chk ’s in Section 2.

Secondly, the upper trapezoidal ν×m coefficient matrix R in the transformed
underdetermined homogeneous linear system R η = 0 is computed using the QR
factorization with column pivoting: [Q, R, P] = qr(C).

Subsequently, the rank-revealing property of the QR factorization with col-
umn pivoting is exploited to determine the rank r using a command strictly
analogous to the one in MATLAB’s rank function: r = sum(abs(diag(R)) >
m ∗ norm(C) ∗ eps).

Finally, in the case of r < ν, the last ν − r rows of R are dropped, getting
a full rank upper trapezoidal r × m matrix: R(r + 1 : ν, :) = [].

In order to transform the linear homogeneous system obtained this way into
the r × r nonhomogeneous system mentioned in point 2 (c), alg2 determines a
(m − r) – length random column vector η2 and constructs the column vector
b of the known terms: b = −R(:, r + 1 : m) ∗ η2. As usual, the command
rand(‘seed’,0) is inserted before to make the tests repeatable.

The resulting nonhomogeneous triangular linear system is solved by using
MATLAB’s \ function. It is worth noticing that, in this case, such a function
carries out the back substitution: η1 = R(:, 1 : r)\b.

An information on the conditioning of the coefficient matrix R(:, 1 : r) is
given upon request. MATLAB’s cond function is used.

4.3.3 – Constructing a solution matrix E

The vector η = [η1; η2] solves R η = 0 and the vector ξ = P η solves C ξ =
0. The matrix E that corresponds to ξ is a solution to our problem and it is
constructed in the following way.

[15] Zero-structured matrix modifications keeping essentially etc. 169

• E is initialized with 1′s in the m key-entries, and 0′s elsewhere.
• A vector aux is defined. It contains the indices in vec (E) of the m entries

defining the zero-structure of E.
• The components of ξ are put in the appropriate places in E: E(aux) = ξ.
• Finally E is normalized.

5 – Numerical tests

In this section we report on the tests we carried out. Both the algorithms
outlined in Sections 3 and 4 were checked under MATLAB 6.5 (R13). The com-
mand rand(‘seed’,0) (see Sections 3.2 and 4.3.2) allows the user to repeat tests.

A few tables summarize the results obtained in tests we singled out since
they exemplify significant issues. Each test is described by declaring the algo-
rithm that was used and specifying the interactions that occurred. To do this,
we strictly refer to the numbered items in User’s interaction sections (see Sec-
tions 3.1.1 and 4.3.1). Also, in each case, we report the condition numbers of
the considered eigenvalues, evaluated using a function of ours which we defined
on purpose to disable the balance default in eig. (The right-left eigenvec-
tor matching is operated as described in Section 3.1.2.) The information on the
eigenvalue conditioning will be useful below when we draw some conclusions con-
cerning relations between inherent and observed errors. Finally, we also report
the value in (3.1) [the moduli of the ratios in (2.2)] obtained using Algorithm 1
[Algorithm 2].

Matrices F = α E, with α large enough to make the inherent error become
the dominant part of the error, have been used. We have taken α = 10μeps, eps
being MATLAB’s floating point relative accuracy and μ a nonnegative integer.
Then, using a properly defined script along with spectral plots, we observed the
relevant induced perturbations |λ∗

h(A) − λ∗
h(A + α E)|. (Here and in the sequel

the superscript ∗ marks the computed version of an eigenvalue.) The values
assigned to the integer μ are reported in the first row of each table, while the
relevant induced perturbations are drawn up in columns, under the values of μ,
often roughly reporting only the negative exponent in their normalized expo-
nential representation. The first column shows the indices of the ν eigenvalues
that we selected as they appear in the list displayed by eig. Often tables report
in the last row, marked by “oths”, global information related to the other (non
selected) eigenvalues.

Algorithm 2 has been always extremely fast. Algorithm 1 has required a
number of iterations ranging from 20 to 348.

5.1 – Randomly generated matrices

Here we collect tests chosen among the ones we carried out working on
matrices generated by MATLAB’s rand function. Before defining the matrix A,
we inserted the command rand(‘seed’,0).

170 SILVIA NOSCHESE – LIONELLO PASQUINI [16]

5.1.1 – Real matrices

The two tests reported in this section both deal with matrices of quite large
dimension (n = 100). Thus, we rather used Algorithm 2 since it is cheaper than
the other one. The tables show a behavior of the observed errors λ∗

h(A)−λ∗
h(A+

α E) related to the selected eigenvalues. Such behavior is typical of the inherent
errors when the first term in the expansion in powers of α is extremely small, if
not even zero.

– Test 1.

Algorithm 2. A=toeplitz([r 2*(rand(1,3)-.5) zeros(1,96)], [r 2*(rand
(1,3)-.5) zeros(1,96)]), having previously defined r=2*(rand-.5). The eigenvalue
closest to zero (77th). ‘penta’. p = 0. Real.

κ(λ∗(77))=1.3651e+2. The modulus of the ratio in (2.2) is 7.e-18.

Table 1

μ/λ∗ 0↗9 10 11 12 13 14

77 -15,-14 5.e-12 5.e-10 5.e-8 5.e-6 5.e-4

oths -16→-9↗-10→-8 -9→-7 -8→-6 -7→-5 -6→-4 -5→-3

– Test 2

Algorithm 2. A = L+diag(2*(rand(100,1)-.5))+L.′, having previously
defined L=tril(2*(rand(100)-.5),-1). The closest to zero (52nd) and the largest
eigenvalue (100th). ‘trid’. p = 0. Real.

κ(λ∗(52))=κ(λ∗(100))=1 (A is a normal matrix). The 2-norm condition
number of the 2 × 2 coefficient matrix of the nonhomogeneous linear system
in Section 4, point 2 (c), is 1.47725e+0. The moduli of the ratios in (2.2)
respectively are 1.e-17 and 5.e-17.

Table 2

μ/λ∗ 0↗9 10 11 12 13 14 15

52 -16,-15 4.e-14 4.e-12 4.e-10 4.e-8 4.e-6 4.e-4

100 -15,-14 2.e-13 6.e-12 6.e-10 6.e-8 6.e-6 6.e-4

oths -16→-14↗-10→-8 -9→ -7 -8→-6 -7→-5 -6→-4 -6→-3 -4→-2

[17] Zero-structured matrix modifications keeping essentially etc. 171

5.1.2 – Complex matrices

Even this section reports two tests. Since the size of A is not too large
(n = 30), the first one has been carried out using both the algorithms, to make
a comparison between the two solutions E. Only Algorithm 2 has been used
in the second test (n = 100). Again, the results we obtained agree with those
theoretically predictable.

– Test 3

Algorithm 2. A=2*(rand(30)-.5+i*(rand(30)-.5)). The largest eigen-
value (1st). ‘full’. p = 0. Complex.

κ(λ∗(1))=2.2272e+0. The modulus of the ratio in (2.2) is 3.e-17.

Table 3

μ/λ∗ 0↗9 10 11 12 13 14 15

1 -15,-14 4.7e-13 4.8e-11 4.8e-9 4.8e-7 4.8e-5 4.7e-3

oths -15,-14↗-8,-7 -7,-6 -6,-5 -5,-4 -4,-3 -3,-2 -2,-1

Algorithm 1. As before. ‘mds’.
The value of the ratio in (3.1), reached in 51 iterations (116101 function

evaluations), is 1.e-16.

Table 3a

μ/λ∗ 0↗9 10 11 12 13 14 15

1 -15,-14 1.9e-13 1.9e-11 1.9e-9 1.9e-7 1.9e-5 2.0e-3

oths -15,-14↗-9→-7 -8→-6 -7→-5 -6→-4 -5→-3 -4→ -2 -3→-1

Comparison. In this case the two algorithms found two matrices E yielding
essentially equivalent results.

– Test 4

Algorithm 2. A=2*(rand(100)-.5+i*(rand(100)-.5)). The closest to zero
(99th) and the largest eigenvalue (1st). ‘trizd’. p = 0. Complex.

κ(λ∗(1))=2.1923e+0; κ(λ∗(99))=4.3074e+0. The 2-norm condition number
of the 2×2 coefficient matrix of the nonhomogeneous linear system in Section 4,

172 SILVIA NOSCHESE – LIONELLO PASQUINI [18]

point 2 (c), is 2.01301e+0. The moduli of the ratios in (2.2) respectively are
4.e-17 and 2.e-17.

Table 4

μ/λ∗ 0↗10 11 12 13 14 15 16

1 -14 6.4e-13 5.9e-11 5.9e-9 5.9e-7 5.8e-5 5.3e-3

99 –16,-15,-14 8.0e-12 8.0e-10 8.0e-8 8.0e-6 8.1e-4 9.6e-2

oths -15,-14↗-8,-7 -7,-6 -6,-5 -5,-4 -4,-3 -3,-2 –2,-1

5.2 – Matrices taken from the literature

Here we discuss tests on matrices taken from the literature. The Bessel
matrix and one of the famous Wilkinson matrices have been entered with the
commands shown below. The commands to enter the other matrices we treat
in this section have been taken from MATLAB’s toolbox “gallery – Higham test
matrices”.

5.2.1 – A brief miscellany

In this section we treat four matrices and deliberately deal with well-con-
ditioned eigenvalues.

– Test 5. Lesp matrix

This is a tridiagonal matrix with real, sensitive eigenvalues [12], [22]. The
sensitivities of the eigenvalues increase exponentially as the eigenvalues grow
more negative. The dimension of the matrix considered in this test is 15.

Algorithm 2. A=gallery(‘lesp’,15). The first eight eigenvalues in the list
displayed by eig. ‘lbid’. p = n. The diagonal entries. Real.

κ(λ∗(1))=1.3221e+0; κ(λ∗(2))=3.0356e+0; κ(λ∗(3))=8.2739e+0; κ(λ∗(4))
=2.2689e+1; κ(λ∗(5))=6.2254e+1; κ(λ∗(6))=1.6684e+2; κ(λ∗(7))=4.1721e+2;
κ(λ∗(8))=9.2481e+2. The 2-norm condition number of the 8× 8 coefficient ma-
trix of the nonhomogeneous linear system in Section 4, point 2 (c), is 8.94236e+0.
The moduli of the ratios in (2.2) respectively are 2.e-17, 3.e-17, 3.e-17, 5.e-17,
3.e-17, 1.e-18, 4.e-17 and 9.e-18.

[19] Zero-structured matrix modifications keeping essentially etc. 173

Table 5

μ/λ∗ 0↗9 10 11 12 13 14 15

1 -15,-14 -15 -14 -16 -15 -15 -14

2 -16,-15,-14 -14 -14 -16 -14 -14 4.3e-13

3 -16,-15,-14 -14 -15 -16 -14 5.e-13 5.e-11

4 -16,-15,-14 -14 -14 -14 4.4e-13 4.6e-11 4.5e-9

5 -16,-15,-14 -15 -15 3.1e-13 3.1e-11 3.1e-9 3.1e-7

6 -16,-15,-14 -15 1.4e-13 1.4e-11 1.4e-9 1.4e-7 1.4e-5

7 -16,-15,-14 -14 2.7e-12 2.7e-10 2.7e-8 2.7e-6 2.5e-4

8 -16,-15,-14 9.4e-13 9.4e-11 9.4e-9 9.4e-7 9.2e-5 7.6e-3

oths -16,-15↗-7,-6 -6,-5 -5,-4 -4,-3 -3,-2 -2,-1 -1,0

The eigenvalues we selected suffer from perturbations that, as soon as the
inherent errors become dominant, grow quadratically. The other eigenvalues
suffer from perturbations growing linearly. It is worth adding some details. We
observe that:

i) for all the selected eigenvalues, the inherent error becomes dominant when
the order of magnitude of the observed error is 10−13;

ii) what observed in i) happens for values of μ that decrease with the index of
the considered eigenvalue.

We infer from i) and ii) that:

a) the complement to the inherent error in the observed one has the same
order of magnitude no matter what the considered eigenvalue and μ (the
magnitude of the perturbation in A) are;

b) the coefficient of the quadratic term in the expansion of λ(A + α E)− λ(A)
in powers of α becomes larger with the index of the selected eigenvalue (this
seems to be linked with the observation that even the condition numbers do
the same);

c) in the case of the first eigenvalue, the coefficient in point b) is small enough
to make the inherent error not detectable in Table 5.

174 SILVIA NOSCHESE – LIONELLO PASQUINI [20]

Algorithm 1. As before. ‘mds’.
The value of the ratio in (3.1), reached in 348 iterations (12559 function evalua-
tions), is 2.e-13.

Table 5a

μ/λ∗ 0↗15

1:8 -16,-15,-14

oths -16,-15,-14↗-9→-1

Comparison. This time Algorithm 1 found a much better matrix E. This
highlights the opportunity of having at our disposal two algorithms.

– Test 6. Frank matrix

We treated this famous upper Hessenberg matrix of dimension 12 [24], [3,
Section 13], [26, Section 5] using both the algorithms.

Algorithm 2. A=gallery(‘frank’,12). The best conditioned eigenvalue
(4th). ‘uhess’. p = 0. Real.

κ(λ∗(4))=1.7109e+0. The modulus of the ratio in (2.2) is 6.e-17.

Table 6

μ/λ∗ 1↗10 11 12 13 14

4 -15,-14 4.9e-12 4.9e-10 4.9e-8 4.9e-6

oths -15→-8↗-8→-1 -7→-1 -6→-1 -5→-1 -4→0

Algorithm 1. As before. ‘mds’.
The value of the ratio in (3.1), reached in 20 iterations (7922 function evalua-
tions), is 4.e-17.

Table 6a

μ/λ∗ 1↗10 11 12 13 14

4 -16,-15,-14 9.8e-12 9.8e-10 9.8e-8 9.8e-6

oths -15→-8↗-9→-1 -8→-1 -7→-1 -6→-1 -5→-1

[21] Zero-structured matrix modifications keeping essentially etc. 175

Comparison. In this case the two algorithms found two matrices E yielding
essentially equivalent results. Both the tables show very satisfactory outcomes.
Notice that two digits in the mantissa remain unaltered, while the exponent has
a two-points decrease at each step.

– Test 7. Bessel matrix

The Bessel matrices are tridiagonal matrices associated with the Ordinary
Bessel Polynomials. In fact, their eigenvalues are the zeros of the OBP’s [4].
They differ from skew-symmetric tridiagonal matrices by the rank-one matrix
−e1 eT

1 , but, in spite of this, they have very badly conditioned eigenvalues [17].
Here the Bessel matrix of dimension 25 is considered. Its spectrum σ(A) lies in
the left half of the complex plane (see e.g. [4] or have a look at the squares in
the figures related to Test 11).

This test is reported from [14], adding in Table 7 details to the Table 7
therein. At that time we tried a m = ν case to bring an example of a test
that could not be treated with Algorithm 2. Now that Algorithm 2 has been
improved (it works if the rank r of R (see Section 4) is less than m), it deserves
to be tried.

Algorithm 1. A=full(gallery(‘tridiag’,1./sqrt (4*(1:24).̂ 2-1),[-1 zeros
(1,24)],-1./sqrt (4*(1:24).̂ 2-1))). The two complex eigenvalues closest to the
imaginary axis (1st, 2nd). ‘sparse’. [24 25 25 24]. Real. ‘mds’.

κ(λ∗(1)) = κ(λ∗(2)) =5.6256e+2. The value of the ratio in (3.1), reached
in 25 iterations (211 function evaluations), is 0.

Table 7

μ/λ∗ 0↗8 9 10 11 12 13 14

1,2 -16,-15 4.6e-13 4.6e-11 4.6e-9 4.6e-7 4.5e-5 2.0e-3

oths -15→-10↗-13→-4 -13→ -5 -11→-5 -9→-5 -7→-6 -5→-4 -3→-2

Again, our results agree with those theoretically predictable.

Algorithm 2. As before (except for ‘mds’). The moduli of the ratios
in (2.2) are both equal to 9.e-17.

The rank-revealing QR factorization with column pivoting says that the
rank r of R (see Section 4) is 1 (this makes it useless to compute the condition
number of the r × r coefficient matrix of the nonhomogeneous linear system in
Section 4, point 2 (c)). The table is identical to Table 7 and is omitted.

176 SILVIA NOSCHESE – LIONELLO PASQUINI [22]

Comparison. In this case both the algorithms yield a same (real) matrix
E. This is connected with the fact that, according to Theorem 2.1, the dimension
of the subspace of the solutions to the homogeneous linear system (2.9) is 1.

5.2.2 – A surprising test

Of course, Algorithm 2 does not work if r = m = ν since no matrix solution
E exists in this case (see Theorem 2.1). However, appreciable results might be
achieved in such situations by Algorithm 1. We refer the reader to [14, Table 8]
for an example.

Even in the test we report in this section, Algorithm 2 does not work (r =
m = ν = 4), but the results yielded by Algorithm 1 are very good.

– Test 8. Randhess matrix

This is a random, orthogonal upper Hessenberg matrix. Since MATLAB’s
rand function is used in the code that constructs the matrix A, we inserted
before the command rand(‘seed’,0) to make the test repeatable.

Algorithm 1. A=gallery(‘randhess’,50). The two complex and conjugate
pairs of eigenvalues closest to the imaginary axis (1st, 2nd, 32th, 33th). ‘sparse’.
[9 36 11 38 13 40 15 42]. Real. ‘mds’.

κ(λ∗(1))=κ(λ∗(2))=κ(λ∗(32))=κ(λ∗(33))=1 (A is a normal matrix). The
value of the ratio in (3.1), reached in 14 iterations (109 function evaluations), is
1.e-16.

Table 8

μ/λ∗ 0↗16

1,2 -16,-15

32,33 -16,-15

oths -16,-15↗-13→-3

An explanation for these surprising results can be found by having a look
at the weight distributions of the Wilkinson perturbation matrices Wλ(h) =

y(h) x(h)H , h = 1, 2, 32, 33 (see [15] for more).

5.3 – Ill-conditioned eigenvalues and observed error

The eigenvalues we selected in the tests discussed until now were in any case
quite well-conditioned. We made that choice to better document the consistency

[23] Zero-structured matrix modifications keeping essentially etc. 177

of the behavior of the observed errors with our theoretical results. As a matter of
fact, the ill-conditioning of a selected eigenvalue complicates the interpretation
of the outcome, since a classical Error Analysis result [3, Section 12, at the very
beginning] implies, in our context, that the algorithmic error can even reach,
approximately, the size κ(λ) eps ‖A‖. As a consequence of the large value of
κ(λ), sometimes the effects of the perturbation on A become observable only for
large values of μ.

Moreover, we actually annihilate (numerically) the coefficient r(0)=yHE x/
yHx of the linear term in the expansion in powers of α, at α = 0, of the inherent
error on λ. The more α grows, the farther the direction E we found is, in general,
from the direction which would yield r(α) = 0. This means that the more α
grows, the less the linear term in the expansion of the inherent error on the
eigenvalue λα of the matrix A + αE = A + 10μepsE is negligible. A usually
very large upper bound for |r(α)| can be estimated equal to κ(λα), which, in
general, has to be supposed less than or equal to κ(λ) (volcano effect, lava flow
rate). Sometimes, as a consequence of the large value of κ(λ) in case of ill-
conditioning, as soon as the inherent error becomes the principal part of the
error, |r(α)| assumes values so large that one observes a linear behavior of the
induced perturbation on λ that dominates the quadratic term.

– Test 9. Wilkinson matrix

This is one of the famous Wilkinson matrices. Its dimension is 10. The
zero-structure we considered generalizes the one discussed in an example in [23].

Algorithm 2. A=diag(10:-1:1)+diag(10*ones (9,1),1). The worst con-
ditioned eigenvalues (5th, 6th). ‘lhess’. p = n. The diagonal entries. Real.

κ(λ∗(5))=κ(λ∗(6)) =4.2810e+5. The 2-norm condition number of the 2× 2
coefficient matrix of the nonhomogeneous linear system in Section 4, point 2
(c), is 2.40584e+1. The moduli of the ratios in (2.2) respectively are 8.e-12 and
1.e-11.

Table 9

μ/λ∗ 0↗9 10 11 12 13

5 -11,-10 3.e-8 3.e-6 5.e-4 2.e-2

6 -11,-10 3.e-8 3.e-6 5.e-4 1.e-2

Algorithm 1. As before. ‘mds’.
The value of the ratio in (3.1), reached in 62 iterations (10099 function

evaluations), is 3.e-15.

178 SILVIA NOSCHESE – LIONELLO PASQUINI [24]

Table 9a

μ/λ∗ 0↗9 10 11 12 13 14

5 -11,-10 3.e-8 3.e-6 2.e-4 7.e-3 9.e-2

6 -11,-10 3.e-8 3.e-6 2.e-4 6.e-3 7.e-2

Comparison. In both the cases, the inherent error |λ(A)−λ(A+10μepsE)|
is negligible while μ ranges from 0 to 9. Then it can be appreciated, becoming
the principal part of the observed error, which grows quadratically in Table 9.
In Table 9a, the observed error behaves quadratically only for a while. Then,
apparently due to the reasons stated above, it goes linearly.

Some of the uncontrolled eigenvalues have a condition number slightly less
than that of the eigenvalues we selected. Sometimes, in similar situations, it
is very difficult to observe the behavior of the uncontrolled eigenvalues, due to
their high sensitivities. This is what happened in this case. Thus, we do not
report the row “oths”.

– Test 10. Frank matrix

As above, we treated it using both the algorithms.

Algorithm 2. A=gallery(‘frank’,12). The worst conditioned eigenvalue
(9th). ‘uhess’. p = 0. Real.

κ(λ∗(9))=3.8774e+7. The modulus of the ratio in (2.2) is 4.e-9.

Table 10

μ/λ∗ 1↗9 10 11 12 13 14 15 16

9 -10,-9,-8 4.6e-7 4.7e-6 4.7e-5 4.7e-4 4.7e-3 4.8e-2 5.e-1

oths -16→-9↗-9→-2 -8→-2 -7→-1 -6→-1 -5→-1 -4→0 -4→0 -2→0

Here the induced perturbation on the selected (strongly ill-conditioned)
eigenvalue becomes observable only for large values of μ, and the quadratic
behavior does not appear at all. We can note the moderate size of the induced
perturbation.

Even in this case uncontrolled eigenvalues are ill-conditioned. However, the
checks we carried out on them gave reliable results. So, in this case, we decided
to report even the row “oths”.

[25] Zero-structured matrix modifications keeping essentially etc. 179

Algorithm 1. As before. ‘mds’.

The value of the ratio in (3.1), reached in 27 iterations (9168 function eval-
uations), is 0.

In spite of the annihilation of the ratio in (3.1), the observed results, even if
qualitatively analogous to those reported above, are less satisfactory. So we do
not report the table.

– Test 11. Bessel matrix

As above, the Bessel matrix of dimension 25 is treated using both the algo-
rithms.

Algorithm 2. A=full(gallery(‘tridiag’,1./sqrt (4*(1:24).̂ 2-1),[-1 zeros
(1,24)],-1./sqrt (4*(1:24).̂ 2-1))). The worst conditioned eigenvalue (25th).
‘sparse’. [1 1 2 1 1 2]. Real.

κ(λ∗(25))=3.9411e+12. The modulus of the ratio in (2.2) is 0.

In this case, the best thing to do to illustrate the outcome is to report
some spectral plots. We selected eight plots. They concern the cases of μ =
4 : 1 : 11. The eigenvalues of A are marked with squares while the eigenvalues
of A + 10μepsE are marked with plus signs. The plots highlight how large
the perturbation on the uncontrolled eigenvalues is with respect to that on the
selected eigenvalue, which remains essentially unaltered.

Algorithm 1. As before. ‘nms’.

The value of the ratio in (3.1) is 0, reached in 161 (321 function evaluations)
iterations.

This time, results (and plots) are totally in line with those given by Algo-
rithm 2. Note that mdsmax fails in this case.

180 SILVIA NOSCHESE – LIONELLO PASQUINI [26]

6 – Conclusions

Given a matrix A ∈ Cn×n, we numerically construct zero-structured unit-
norm matrices E in such a way that A + α E keeps essentially unaltered a set of
ν simple eigenvalues of A for reasonably large values of α.

The ν eigenvalues and the zero-structure can be arbitrarily selected. Theo-
rem 2.1 states that such matrices E exist if and only if condition (2.11) holds.

It is shown, however, that we may construct satisfactory matrices E even
if, actually, no solution exists.

[27] Zero-structured matrix modifications keeping essentially etc. 181

We present improved versions of the two algorithms in [14]. They have
complementary qualities and drawbacks.

Algorithm 2 is quite cheap. It works efficiently every time solution matrices
E exist and even in case of large systems (2.9).

Algorithm 1 can be useful even when no solution exists (see, for an inter-
esting example, Test 8). It is theoretically able to carry out any test, provided
that, to keep the computational cost reasonable, n, m and ν are not too large.

The MATLAB codes of both the algorithms are available upon request.
Selected tests illustrate the behavior of the inherent and observed errors.
Our results agree with the theory outlined in Section 2, even in the case of

ill-conditioned eigenvalues. With regard to this last case, a significant example
is given by the spectral plots of the perturbed Bessel matrix (Test 11).

REFERENCES

[1] E. Anderson – Z. Bai – C. H. Bischof – S. Blackford – J. W. Demmel –
J. J. Dongarra – J. J. Du Croz – A. Greenbaum – S. J. Hammarling – A.
McKenney – D. C. Sorensen: LAPACK Users’ Guide, third edition, SIAM,
(1999), http://www.netlib.org//lapack/lug/.

[2] G. H. Golub – C. F. Van Loan: Matrix Computations, third edition, The Johns
Hopkins University Press, Baltimore and London, 1996.

[3] G. H. Golub – J. H. Wilkinson: Ill–conditioned eigensystems and the compu-
tation of the Jordan canonical form, SIAM Review, 18 (1976), 578-619.

[4] E. Grosswald: Bessel Polynomials, Lecture Notes in Mathematics, vol. 698,
Springer–Verlag, New York, 1978.

[5] D. J. Higham – N. J. Higham: Backward Error and Condition of Structured
Linear Systems, SIAM J. Matrix Anal. Appl., 13 (1) (1992), 162-175.

[6] N. J. Higham: The Matrix Computation Toolbox , http://www.ma.man.ac.uk/
h̃igham/mctool-box.

[7] N. J. Higham: The Accuracy of Solutions to Triangular Systems, SIAM J. Numer.
Anal., 26 5 (1989), 1252-1265.

[8] N. J. Higham: Optimization by direct search in matrix computations, SIAM J.
Matrix Anal. Appl., 14 (2) (1993), 317-333.

[9] N. J. Higham: Accuracy and Stability of Numerical Algorithms, second edition,
SIAM, Philadelphia, 2002.

[10] M. Karow – D. Kressner – F. Tisseur: Structured Eigenvalue Condition Num-
bers, SIAM J. Matrix Anal. Appl. 28(4) (2006), 1052-1068.

[11] C. T. Kelley: Iterative Methods for Optimization, Society for Industrial and
Applied Mathematics, Philadelphia, PA, 1999.

[12] H. W. J. Lenferink – M. N. Spijker: On the use of stability regions in the
numerical analysis of initial value problems, Math. Comp., 57 (1991), 221-237.

[13] S. Noschese – L. Pasquini: Eigenvalue Patterned Condition Numbers: Toeplitz
and Hankel Cases, to appear in J. Comput. Appl. Math.

182 SILVIA NOSCHESE – LIONELLO PASQUINI [28]

[14] S. Noschese – L. Pasquini: How to Find Matrix Modifications Keeping Essen-
tially Unaltered a Selected Set of Eigenvalues, in “Linear Algebra Proceedings”,
SIAM Conference on Applied Linear Algebra, Williamsburg, VA, July, 15-19, 2003;
CP5 in http://www.siam.org/meetings/la03/proceedings/.

[15] S. Noschese – L. Pasquini: Eigenvalue Condition Numbers: Zero-Structured
versus Traditional , J. Comput. Appl. Math., 185 (2006), 174-189.

[16] B. N. Parlett – C. Reinsch: Balancing a matrix for calculation of eigenvalues
and eigenvectors, Numer. Math., 13 (1969), 292-304; see also: Handbook for
Automatic Computation, Linear Algebra, J. H. Wilkinson and C. Reinsch, (eds.),
1971, Springer–Verlag, New York, pp. 315-326.

[17] L. Pasquini: Accurate Computation of the Zeros of the Generalized Bessel Poly-
nomials, Numer. Math., 86 (3) (2000), 507-538.

[18] A. Ruhe: Closest normal matrix finally found! , BIT, 27 (1987), 585-598.

[19] G. W. Stewart: Introduction to Matrix Computations, Academic Press, New
York, 1973.

[20] F. Tisseur: A Chart of Backward Errors for Singly and Doubly Structured Eigen-
value Problems, SIAM J. Matrix Anal. Appl., 24 (3) (2003), 877-897.

[21] V. J. Torczon: On the convergence of the multidirectional search algorithm,
SIAM J. Optimization, 1 (1991), 123-145.

[22] L. N. Trefethen: Pseudospectra of matrices, in “Numerical Analysis 1991”, D.
F. Griffiths and G. A. Watson (eds.), vol. 260, pp. 234-266, Longman, 1992.

[23] D. S. Watkins: Fundamentals of Matrix Computations, John Wiley and Sons,
New York, 1991.

[24] J. H. Wilkinson: Rounding errors in algebraic processes, Her Majesty’s Sta-
tionery Office, (1963).

[25] J. H. Wilkinson: The algebraic eigenvalue problem, Clarendon Press, Oxford,
England, 1965.

[26] J. H. Wilkinson: Sensitivity of eigenvalues, II, Utilitas Mathematica, 30 (1986),
243-286.

Lavoro pervenuto alla redazione il 13 novembre 2006
ed accettato per la pubblicazione il 4 dicembre 2006.

Bozze licenziate il 14 maggio 2007

INDIRIZZO DEGLI AUTORI:

S. Noschese – L. Pasquini – Dipartimento di Matematica “Guido Castelnuovo” – Università di
Roma “La Sapienza” – P.le A. Moro, 2 – 00185 Roma, Italy
E-mail: noschese@mat.uniroma1.it lionello.pasquini@uniroma1.it

This work has been performed within the activities of the National GNCS-INDAM
Research Project: “Algebra Lineare Numerica per matrici con struttura” and supported
by the related funds.

