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Notes on pluripotential theory

FILIPPO BRACCI – STEFANO TRAPANI

Abstract: These notes are an introduction to the theory of pluripotential, from
subharmonic to plurisubharmonic functions with a special emphasis on the complex
Monge-Ampére operator and invariant metrics.

Preface

These are the notes of a PhD course the first named author gave in 2005/06
at Università di Roma “Tor Vergata”. The main subject of this course was the
study of plurisubharmonic functions and their properties. These are very im-
portant tools in complex analysis because plurisubharmonic functions are pretty
much related to holomorphic functions but much more flexible to handle and to
be constructed. However, these notes contain very few applications of plurisub-
harmonic functions theory to complex analysis (for instance we included bound-
ary transversality properties of analytic discs as a consequence of Hopf’s lemma
and a few relations between the pluricomplex Green function and invariant dis-
tances).

The present material contains a first part about elementary properties of
(pluri-)subharmonic functions (chapters one, two and three), a second part
(chapter four) about elementary properties of currents (especially positive cur-
rents) and a third part (chapter five) about maximal plurisubharmonic functions
and the Monge-Ampère operator. This latter part has been developed in details
for smooth plurisubharmonic functions and only sketched for locally bounded
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ones. Also, in this last chapter there are two sections about the pluricomplex
Green function in bounded domains.

The reader – if any – of these notes is assumed to have a basic knowledge
of harmonic functions, analysis and geometry.

The PhD course itself and, as consequence these notes, are mainly based
on the wonderful books by Klimek [Kl] and Demailly [Dem]. It may happen
that some result is stated here in a more general form than in those books and
other material has been added from different sources. Some proofs have been
completely re-elaborated and might not be contained in the literature in this
form but of course we do not claim any original credit on this material.

1 – Subharmonic functions

1.1 – The sub-mean property and the maximum principle

Definition 1.1.1. Let Ω ⊂ Rm be a set. A function u : Ω → [−∞,∞) is
upper semicontinuous if for all c ∈ R the set {x ∈ Ω : u(x) < c} is open in Ω.

Notice that an upper semicontinuous function is measurable and is not al-
lowed to assume the value +∞ (while it may assume the value −∞). It is easy to
show that if K ⊂ Rm is a compact set and u : K → [−∞,∞) is upper semicon-
tinuous then it has a maximum on K, but in general it may have no minimum
(for instance let K = [−1, 1] and define u(x) = log |x| for x �= 0 and u(0) = 0.
Then u is upper semicontinuous on K but has no minimum).

Another useful property that we will use in the sequel is that if u is upper
semicontinuous on a compact set K then there exists a decreasing sequence
{uj} ⊂ C0(K) such that limj→∞ uj(x) = u(x) for all x ∈ K.

Moreover, if K is a compact set, then
∫

K
u is well defined (possibly = −∞)

for all upper semicontinuous functions u in K, and according to Beppo Levi’s
theorem on monotone convergence,

∫
K

u = limj→∞
∫

K
uj with {uj} ⊂ C0(K) a

sequence decreasing to u on K.

Theorem 1.1.2. Let Ω ⊂ Rm be a connected domain (not necessarily
bounded). Let u : Ω → [−∞,+∞) be a non-constant upper semicontinuous
function. Suppose that for all a ∈ Ω there exists R(a) > 0 with the following
property : for all balls B(a, r) of center a and radius 0 < r ≤ R(a) with B(a, r) ⊂ Ω
it holds

(1.1) u(a) ≤ 1

v(B(a, r))

∫

B(a,r)

u(x)dλ(x) .

Then for all z ∈ Ω
u(z) < sup

w∈Ω
u(w) .
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Moreover, if there exists R0 ∈ (0,+∞] such that R(a) > R0 for all a ∈ Ω then
u ∈ L1

loc(Ω).

Proof. Let α := supz∈Ω u(z). By hypothesis u does not assume the value
+∞ in Ω, thus, if α = +∞ the statement is correct. We can assume then that
α < +∞. Let us define

Ωα := {z ∈ Ω : u(z) ≥ α} .

Since u is upper semicontinuous then Ωα is closed in Ω and by the very definition
of α the set Ωα coincides with the set {z ∈ Ω : u(z) = α}. The theorem will
follow if we can prove that Ωα is empty. In order to do that, we show that if Ωα

were not empty then it would be open as well, which, by connectedness of Ω,
would imply u ≡ α against our hypothesis that u is not constant. Let assume
then that there exists a ∈ Ωα. Let B(a, r) ⊂ Ω be an open ball relatively compact
in Ω, r ≤ R(a). We want to show that B(a, r) ⊂ Ωα. If this is not the case then
there exists b ∈ B(a, r) such that u(b) < α and, since u is upper semicontinuous,
there exists an open set K ⊂ B(a, r) such that b ∈ K and u(x) < α for all x ∈ K.
Then

α = u(a) ≤ 1

v(B(a, r))

∫

B(a,r)

u(x)dλ(x) =

=
1

v(B(a, r))

[∫

B(a,r)\K

u(x)dλ(x) +

∫

K

u(x)dλ(x)

]
<

<
1

v(B(a, r))

[∫

B(a,r)\K

u(x)dλ(x) +

∫

K

αdλ(x)

]
≤

≤ α

v(B(a, r))

[∫

B(a,r)\K

dλ(x) +

∫

K

dλ(x)

]
= α,

that is, α < α, a contradiction. Then B(a, r) ⊂ Ωα and this latter set is open.
Now assume that R(a) ≥ R0 for all a ∈ Ω. Since u is upper semicontinuous,

on each compact subset K ⊂⊂ Ω it has a maximum. Moreover, if u(a) > −∞
and B(a, ρ) with R(a) ≥ ρ > 0 is relatively compact in Ω, then by (1.1) it follows
that u ∈ L1(B(a, r)) for all r ≤ ρ. Therefore the set W = {x ∈ Ω : ∃U � x, u ∈
L1

loc(U)} of points where u is locally integrable, is a non-empty open subset of
Ω. To show that u ∈ L1

loc(Ω) it is enough to prove that W is closed in Ω. Let
x0 ∈ ∂W ∩Ω. The condition that R(a) ≥ R0 for all a ∈ Ω guarantees that there
exists a point a ∈W with u(a) > −∞ and a number r > 0, r ≤ R(a), such that
U = B(a, r) is relatively compact in Ω and x0 ∈ B(a, r). Let c = maxz∈U u(z).
Then u− c ≤ 0 in U . Therefore for all compact subsets K ⊂ B(a, r)

−∞ < v(B(a, r))(u(a)− c) ≤
∫

B(a,r)

[u(x)− c]dλ(x) ≤
∫

K

[u(x)− c]dλ(x) ≤ 0 .
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Hence u ∈ L1(K) for all K ⊂⊂ B(a, r) and in particular x0 ∈ W showing that
W is closed in Ω and u ∈ L1

loc(Ω).

Remark 1.1.3. The condition on the existence of R0 > 0 which uniformly
bounds R(a) from below for each a ∈ Ω is actually not necessary for the con-
clusion that u ∈ L1

loc(Ω). However this will be a consequence of the equivalence
between (3) and (4) in Theorem 1.2.2.

Remark 1.1.4. The previous proof shows that Theorem 1.1.2 holds if one
substitutes the balls B(a, r) in (1.1) with any other basis of open sets.

Remark 1.1.5. Let Ω ⊂ Rm be a connected domain and let u : Ω →
[−∞,∞) be an upper semicontinuous function, u �≡ −∞. Define the function
ũ : Ω → [−∞,∞] as follows: ũ(x) := u(x) for x ∈ Ω and ũ(y) := lim sup

Ω�x→y
u(x)

for y ∈ ∂Ω. If ũ(y) < +∞ for all y ∈ ∂Ω then ũ is upper semicontinuous. In
this case we say that ũ is an upper semicontinuous extension of u to Ω. Notice
that ũ is the minimal upper semicontinuous extension of u to Ω, namely, if v is
another semicontinuous extension of u then ũ ≤ v.

Corollary 1.1.6. Let Ω ⊂ Rm be a connected bounded domain. Let
u : Ω → [−∞,+∞) be a non-constant upper semicontinuous function which
satisfies the sub-mean property (1.1). For y ∈ ∂Ω define u(y) := lim sup

Ω�x→y
u(x).

Then for all x ∈ Ω
u(x) < sup

y∈∂Ω
u(y) .

In particular, if u extends upper semicontinously on Ω (namely, if u(y) <∞ for
all y ∈ ∂Ω) then u(z) < maxy∈∂Ω u(y) for all z ∈ Ω.

1.2 – Definition and first properties

Let harm (Ω) be the space of harmonic functions on a domain Ω ⊂ Rm.
Definition 1.2.1. Let Ω ⊂ Rm be a connected domain. A function u :

Ω→ [−∞,∞) is called a subharmonic function, u ∈ subh(Ω) if

1. u �= −∞.
2. u is upper semicontinuous.
3. For all open set G ⊂⊂ Ω and all v ∈ harm(G)∩C0(G) such that u(y) ≤ v(y)

for all y ∈ ∂G it follows that u(x) ≤ v(x) for all x ∈ G.

By the very definition, subh(Ω) is a cone in the space of all real functions
on Ω.

Theorem 1.2.2. Let Ω ⊂ Rm be a domain. Let u : Ω → [−∞,∞) be an
upper semicontinuous function, u �≡ −∞. The following are equivalent :
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1. For all open ball B(a, r) relatively compact in Ω it follows

(1.2) u(a) ≤ 1

μ(∂B(a, r))

∫

∂B(a,r)

u(ζ)dσ(ζ) .

2. For all open ball B(a, r) relatively compact in Ω it follows

(1.3) u(a) ≤ 1

v(B(a, r))

∫

B(a,r)

u(x)dλ(x) .

3. For all a ∈ Ω there exists R(a) > 0 such that for all 0 < r < R(a) and open
balls B(a, r) relatively compact in Ω it follows

(1.4) u(a) ≤ 1

v(B(a, r))

∫

B(a,r)

u(x)dλ(x) .

4. u ∈ subh(Ω).

Proof. (1) implies (2) by integration on r and Fubini’s theorem. Obviously
(2) implies (3).

Assume (3) holds. Let G ⊂⊂ Ω be open and v ∈ harm(G) ∩C0(G) be such
that u ≤ v on ∂G. Then u−v has the sub-mean property and, by Theorem 1.1.6
it satisfies the maximum principle in G. Thus u − v has maximum on ∂G and
then u− v ≤ 0 in G proving that (4) holds.

Finally, assume (4) holds and let B(a, r) be an open ball relatively compact
in Ω. Since ∂B(a, r) is compact and u is upper semicontinuous on ∂B(a, r), there
exist a decreasing sequence {uj} ⊂ C0(∂B(a, r)) such that limj→∞ uj(x)→ u(x)

for all x ∈ ∂B(a, r). Let Uj ∈ harm(B(a, r)) ∩ C0(B(a, r)) be such that Uj = uj

on ∂B(a, r). Since u ∈ subh(Ω) and u ≤ Uj on ∂B(a, r) then u ≤ Uj in B(a, r)
for all j. Therefore for all j

u(a) ≤ Uj(a) =
1

μ(∂B(a, r))

∫

∂B(a,r)

uj(ζ)dσ(ζ) .

Thus, by Beppo Levi’s theorem on monotone convergence

u(a) ≤ lim
j→∞

1

μ(∂B(a, r))

∫

∂B(a,r)

uj(ζ)dσ(ζ) =

=
1

μ(∂B(a, r))

∫

∂B(a,r)

lim
j→∞

uj(ζ)dσ(ζ) =
1

μ(∂B(a, r))

∫

∂B(a,r)

u(ζ)dσ(ζ)

and (1) holds.

Remark 1.2.3. By the equivalence between (2) and (3) in Theorem 1.2.2
it follows that if u : Ω → [−∞,+∞) is a non-constant upper semicontinuous



202 FILIPPO BRACCI – STEFANO TRAPANI [6]

function which satisfies (1) then actually R(a) = +∞ for all a ∈ Ω and then
u ∈ L1

loc(Ω).

Corollary 1.2.4. Let Ω ⊂ Rm be a connected domain and let {Ωk} ⊂ Rm

be a sequence of connected domains such that Ωk ⊆ Ωk+1 and
⋃

k Ωk = Ω. For
each k, let uk ∈ subh(Ωk) be such that uk(x) ≥ uk+1(x) for all x ∈ Ωk and
for all k (that is, {uk} is a decreasing sequence). Let u(x) := limk→∞ uk(x) for
x ∈ Ω. Then either u ≡ −∞ or u ∈ subh(Ω).

Proof. Assume that u �≡ −∞. First of all, for c ∈ R and k ∈ N the
set {x ∈ Ωk : u(x) ≥ c} =

⋂
s≥k{x ∈ Ωs : us(x) ≥ c} is closed in Ωk and

thus u is upper semicontinuous in Ωk for all k which implies that u is upper
semicontinuous in Ω. Next, according to Theorem 1.2.2 we just need to prove
that u satisfies the sub-mean property. Let a ∈ Ω and let B(a, r) be an open ball
relatively compact in Ω. Then, since the uk’s are subharmonic by Beppo Levi’s
theorem one has

u(a) = lim
k→∞

uk(a) ≤ lim
k→∞

1

v(B(a, r))

∫

B(a,r)

uk(x)dλ(x) =

=
1

v(B(a, r))

∫

B(a,r)

u(x)dλ(x) ,

as wished.

Another important consequence of Theorem 1.2.2 is that subharmonicity is
a local property:

Proposition 1.2.5. Let Ω ⊂ Rm be a connected domain. Then a function
u ∈ subh(Ω) if and only if for all x ∈ Ω there exists an open neighborhood Vx ⊂ Ω
of x such that u ∈ subh(Vx).

Also

Corollary 1.2.6. Let Ω ⊂ Rm be a connected domain. Let u ∈ subh(Ω).
Then u ∈ L1

loc(Ω). Moreover, for all x ∈ Ω

u(x) < sup
w∈Ω

u(w) .

In particular, if Ω is bounded and u extends upper semi-continuously on Ω then
u(x) < maxy∈∂Ω u(y) for all x ∈ Ω.
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Remark 1.2.7. Corollary 1.2.6 says that a subharmonic function satisfies
the maximum principle, namely, if u ∈ subh(Ω) is not constant then for each
G ⊂ Ω open it follows u(z) < supw∈G u(w). The converse is however not true.
For instance consider Ω = {(x, y) ∈ R2 : x > 0, y > 0}. Let u : Ω → R be
given by u(x, y) :=

√
x + y. Then u satisfies the maximum principle (because

u is increasing in Ω with respect to the distance from the origin), but it is not
subharmonic (for instance we see that Δu < 0 and by Theorem 1.4.1 then u
cannot be subharmonic).

Also, since harmonic functions are continuous and satisfy the mean-value
property, it follows that

Proposition 1.2.8. Let Ω ⊂ Rm be a connected domain. Then harm(Ω) ⊂
subh(Ω). Moreover, if u ∈ subh(Ω) and −u ∈ subh(Ω) then u ∈ harm(Ω).

1.3 – Regularization

Let χ ∈ C∞(Rm) be such that χ ≥ 0, supp(χ) ⊆ B(O, 1), χ(x) = χ(‖x‖)
and

∫
Rm χ(x)dλ(x) = 1. Let ε > 0 and define

χε(x) :=
1

εm
χ(x/ε) .

Then supp(χε) ⊆ B(O, ε) and
∫

Rm χε(x)dλ(x) = 1.
For an open connected subset Ω ⊂ Rm let

Ωε = {x ∈ Ω : dist(x, ∂Ω) > ε} .

From now on, we assume without further comments that ε is so small that Ωε �= ∅.
If u ∈ L1

loc(Ω) then we let for x ∈ Ωε

uε(x) := u ∗ χε(x) :=

∫

Rm

u(x− y)χε(y)dλ(y) =

∫

Rm

u(y)χε(x− y)dλ(y) .

By Lebesgue’s dominated convergence theorem the functions uε ∈ C∞(Ωε) and
uε → u in the L1

loc(Ω)-topology as ε → 0 (and thus uε → u pointwise almost
everywhere).

Theorem 1.3.1. Let Ω ⊂ Rm be a connected domain. Let u ∈ subh(Ω).
Then uε ∈ C∞(Ωε)∩ subh(Ωε). Moreover, {uε} is decreasing as ε→ 0+ and for
all x ∈ Ω it follows limε→0 uε(x) = u(x).
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Proof. Let a ∈ Ω and B(a, r) an open ball relatively compact in Ωε. By
Fubini’s theorem and since u is subharmonic

(1.5)

1

v(B(a, r))

∫

B(a,r)

uε(x)dλ(x) =

=

∫

Rm

χε(y)

(
1

v(B(a, r))

∫

B(a,r)

u(x− y)dλ(x)

)
dλ(y) ≥

≥
∫

Rm

χε(y)u(a− y)dλ(y) = uε(a),

and thus by Theorem 1.2.2, uε ∈ subh(Ωε).
Next we show that uε is decreasing in ε. To this aim, for a ∈ Ω and r > 0

such that B(a, r) ⊂⊂ Ω we let

L(u, a, r) :=
1

μ(∂B(a, r)

∫

∂B(a,r)

u(ζ)dσ(ζ) .

We claim that r �→ L(u, a, r) is increasing. Indeed, let r1 < r2 and let {uj} ⊂
C0(∂B(a, r2)) be a decreasing sequence whose limit is u on ∂B(a, r2) (such a
sequence exists because u is upper semicontinuous on the compact set ∂B(a, r2)).
Let Uj ∈ harm(B(a, r2))∩C0(B(a, r2)) be such that Uj = uj on ∂B(a, r2). Since
u ≤ uj on ∂B(a, r2) then u ≤ Uj in B(a, r2) for all j. Therefore

L(u, a, r1) ≤ L(Uj , a, r1) = Uj(a) = L(Uj , a, r2) = L(uj , a, r2)

for all j. Thus by Beppo Levi’s theorem, L(u, a, r1) ≤ limj→∞ L(uj , a, r2) =
L(u, a, r2) proving that r �→ L(u, a, r) is increasing. Now, a direct computation
from the very definition shows that

(1.6) uε(x) = μ(∂B(O, 1))

∫ 1

0

χ(r)rm−1L(u, x, εr)dr

and since r �→ L(u, a, r) is increasing (and thus decreasing as r → 0+), ε �→ uε(x)
is decreasing for each fixed x ∈ Ω.

We have to show that uε → u pointwise as ε → 0. From (1.6), since
u(x) ≤ L(u, x, εr) for all ε > 0, it follows that u(x) ≤ uε(x) for all x ∈ Ωε. Let
first assume that u(x) �= −∞ and let C > 0. Since u is upper semicontinuous
there exists ε1 > 0 such that u(y) < u(x) + C for all y ∈ B(x, ε1). For ε < ε1,
since χε is supported in B(O, ε), we have

(1.7)

uε(x) =

∫

Rm

u(x− y)χε(y)dλ(y) =

∫

B(O,ε)

u(x− y)χε(y)dλ(y)

≤ (u(x) + C)

∫

B(O,ε)

χε(y)dλ(y) = u(x) + C
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and thus u(x) ≤ uε(x) ≤ u(x) + C. Therefore limε→0 uε(x) = u(x). Assume
now that u(x) = −∞. Then, since lim supw→x u(x) ≤ u(x) = −∞, for all C > 0
there exists ε1 > 0 such that u(y) ≤ −C for all y ∈ B(x, ε) and ε < ε1. Arguing
as in (1.7) we find that uε(x) ≤ −C for ε < ε1 and therefore uε(x) → −∞ as
ε→ 0.

Corollary 1.3.2. Let Ω ⊂ Rm be a connected domain. If u, v ∈ subh(Ω)
and u = v almost everywhere then u ≡ v.

Proof. Since u = v almost everywhere, then uε ≡ vε. Thus, by Theo-
rem 1.3.1, u(x) = limε→0 uε(x) = limε→0 vε(x) = v(x) for all x ∈ Ω.

Remark 1.3.3. Let Ω ⊂ Rm. Let u ∈ subh(Ω). Let B(x, r) be an open
ball relatively compact in Ω. Consider the function

A(x, u, r) :=
1

v(B(x, r))

∫

B(x,r)

udλ .

Then A(x, u, r) is increasing in r > 0. Indeed, in the proof of Theorem 1.3.1 we
proved that L(x, u, r) is increasing in r > 0 and

A(x, u, r) = m

∫ 1

0

tmL(x, u, tr)dt .

Proposition 1.3.4. Let Ω ⊂ Rm be a connected domain. Let {uj} ⊂
subh(Ω) be a sequence of subharmonic functions which are uniformly bounded
from above on compacta of Ω. Let

S({uj}) :=

{
x ∈ Ω:∃U open neighborhood of x,∃CU > 0: sup

j

∫

U

|uj |dλ ≤ CU

}
.

Then, either S({uj}) = ∅ or S({uj}) = Ω.

Proof. The set S({uj}) is clearly open. Since Ω is connected, it is enough to

show that it is also closed in Ω. Assume that S({uj}) �= ∅ and let y ∈ S({uj})∩Ω.
There exist x ∈ S({uj}) and r > 0 such that B(x, r) is relatively compact in Ω
and y ∈ B(x, r). In order to show that y ∈ S({uj}) (proving that Ω is closed) it
is enough to show that there exists M > 0 such that

(1.8) sup
j

∫

B(x,r)

|uj |dλ ≤M .

Since {uj} are uniformly bounded on compacta, there exists C ≥ 0 such that
uj(z) − C ≤ 0 for all j ∈ N and z ∈ B(x, r). Thus, we can assume that uj ≤ 0
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on B(x, r). By hypothesis, x ∈ S({uj}). Therefore, there exist 0 < r′ ≤ r and
M ′ > 0 such that

sup
j

∫

B(x,r′)
|uj |dλ = sup

j

(
−

∫

B(x,r′)
ujdλ

)
≤M ′ .

According to Remark 1.3.3, for all j ∈ N,

1

v(B(x, r))

∫

B(x,r)

|uj |dλ = −A(x, uj , r) ≤ −A(x, uj , r
′)

=
1

v(B(x, r′))

∫

B(x,r′)
|uj |dλ ≤ M ′

v(B(x, r′))
,

and we are done.

1.4 – Subharmonic functions and distributions

Theorem 1.4.1. Let Ω ⊂ Rm be a connected domain. If u ∈ subh(Ω) then
Δu ≥ 0 in the sense of distribution. Conversely, if u ∈ L1

loc(Ω) and Δu ≥ 0 in
the sense of distributions, then there exists v ∈ subh(Ω) such that v = u almost
everywhere.

Proof. First of all, we assume u ∈ C2(Ω). Suppose Δu ≥ 0. Let G ⊂⊂ Ω
and h ∈ harm(G) ∩ C0(G) be such that u ≤ h on ∂G. Fix ε > 0. Let R :=
max{‖z‖2 : z ∈ G}, 0 < δ < ε/R and

v(z) := u(z)− ε + δ‖z‖2 .

Notice that v < u in G and therefore v < h on ∂G. Let w(z) := v(z) − h(z).
Then w(z) < 0 on ∂G. We claim that w ≤ 0 in G. Let a ∈ G be such that
w(a) = maxz∈G w(z). Assume by contradiction that w(a) > 0. Since a ∈ G,
then there exists s > 0 such that (−s, s) � t �→ w(a + tej) has a maximum in
t = 0. Thus

∂2

∂x2
j

w(a) =
d2

dt2
w(a + tej)|t=0 ≤ 0 .

Therefore Δw(a) ≤ 0. But

Δw(a) = Δu(a) + δΔ‖z‖2|z=a −Δh(a) = Δu(a) + δ > 0 ,

contradiction. Thus v ≤ h in G. Hence, u ≤ h + ε − δ‖z‖2 < h + 2ε on G. By
the arbitrariness of ε we obtain u ≤ h in G and thus u ∈ subh(Ω). Now, if u ∈
C2(Ω)∩ subh(Ω) and Δu(a) < 0 then there exists an open ball B(a, r) ⊂ Ω such
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that Δu(x) ≤ 0 for all x ∈ B(a, r). Therefore Δ(−u) ≥ 0 in B(a, r) which, by the
previous part, implies that −u ∈ subh(B(a, r)). Therefore u,−u ∈ subh(B(a, r))
and then u ∈ harm(B(a, r)). But then Δu(a) = 0, contradicting Δu(a) < 0.
Thus the theorem holds for C2 functions.

Now assume u ∈ subh(Ω) (with no regularity assumptions). Let uε be the
regularization sequence given by Theorem 1.3.1. Then Δuε ≥ 0 for all ε > 0. If
ϕ ∈ C∞

0 (Ω), ϕ ≥ 0, then by the Lebesgue theorem and integration by parts
∫

Ω

uΔϕ = lim
ε→0

∫

Ω

uεΔϕ = lim
ε→0

∫

Ω

(Δuε)ϕ ≥ 0 ,

and thus Δu ≥ 0 in the sense of distributions.
Conversely, let u ∈ L1

loc be such that Δu ≥ 0 in the sense of distributions.
Let uε := u ∗ χε. Recall that uε → u in L1

loc(Ω) – and thus uε → u almost
everywhere. For small ε, test function ϕ ∈ C∞

0 (Ω) with ϕ ≥ 0 and by Fubini’s
theorem we have

∫

Ω

uε(x)Δϕ(x)dλ(x) =

∫

Rm

χε(y)

(∫

Ω

u(x− y)Δϕ(x)dλ(x)

)
dλ(y) ≥ 0 ,

therefore Δuε ≥ 0 (this is true in the sense of distributions and, since uε ∈
C2(Ωε), integrating by parts it is true for all x ∈ Ωε). Hence uε ∈ subh(Ωε). If we
show that {uε} is decreasing in ε, then by Corollary 1.2.4 the limit is subharmonic
(and, as we already noticed, it coincides with u out of a zero-measure set). In
order to see that {uε} is decreasing in ε, let ε1 < ε2. Then uε2 = limδ→0 uε2 ∗χδ.
By Fubini’s theorem uε2 ∗χδ = (u∗χε2)∗χδ = (u∗χδ)∗χε2 . The function u∗χδ

is subharmonic and by Theorem 1.3.1 the regularizing sequence approximating
it is decreasing in ε, namely (u ∗ χδ) ∗ χε2 ≥ (u ∗ χδ) ∗ χε1 . Thus

(1.9) uε2 = lim
δ→0

uε2 ∗ χδ ≥ lim
δ→0

uε1 ∗ χδ = uε1

as needed.

1.5 – Construction of subharmonic functions

Proposition 1.5.1. Let Ω ⊂ Rm be a domain. Let V ⊂ Ω be an open
subset. Let u ∈ subh(Ω) and let v ∈ subh(V ) be such that lim supz→y v(z) ≤ u(y)
for all y ∈ ∂V ∩ Ω. Then the function

w :=

{
max{u, v} in V

u in Ω \ V

is subharmonic in Ω. In particular, if V = Ω, namely if u, v ∈ subh(Ω), then
max{u, v} ∈ subh(Ω).
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Proof. Clearly w : Ω → [−∞,∞). We want to prove that w is upper
semicontinuous in Ω. By the very definition, w is upper semicontinuous in Ω\V .
Let x ∈ V ∩ Ω. If x ∈ V then

lim sup
Ω�z→x

w(z) ≤ max{u(x), v(x)} = w(x) ,

while, if x ∈ ∂V ∩ Ω then

lim sup
Ω�z→x

w(z) ≤ u(x) = w(x) ,

because lim supz→y v(z) ≤ u(y) for all y ∈ ∂V ∩Ω. Thus w is upper semicontin-
uous in Ω.

Now, let a ∈ Ω. If w(a) = u(a) then

1

v(B(a, r))

∫

B(a,r)

w(x)dλ(x) ≥ 1

v(B(a, r))

∫

B(a,r)

u(x)dλ(x) ≥ u(a) = w(a) .

If w(a) = v(a) > u(a) (and then necessarily a ∈ V ) then we can find R(a) > 0
such that B(a, r) ⊂ V for all 0 < r ≤ R(a). Thus

1

v(B(a, r))

∫

B(a,r)

w(x)dλ(x) ≥ 1

v(B(a, r))

∫

B(a,r)

v(x)dλ(x) ≥ v(a) = v(a) ,

and by Theorem 1.2.2, w ∈ subh(Ω).

A simple argument shows that

Proposition 1.5.2. Let Ω ⊂ Rm be a connected domain. Let {uj} ⊂
subh(Ω) be a sequence converging uniformly on compacta. Then the limit u ∈
subh(Ω).

Proposition 1.5.3. Let Ω ⊂ Rm be a connected domain. Let {uα}α∈J be a
family of subharmonic functions on Ω. Let u(x) = supα∈J uα(x). Assume that u
is locally bounded from above. Let u∗ be the upper semicontinuous regularization
of u, namely

u∗(x) := max

{
u(x), lim sup

Ω�w→x
u(w)

}
.

Then u∗ ∈ subh(Ω) and u = u∗ almost everywhere in Ω. Also, u∗ = limε→0 u∗χε.
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Proof. By the very definition u∗ : Ω→ [−∞,∞) and, since lim supΩ�w→x

u∗(w) = u∗(x) it is upper semicontinuous. Notice that

u∗ = inf{v upper semicontinuous : v ≥ u} .

In particular if v is upper semicontinuous and v ≥ u then v ≥ u∗. Let G ⊂⊂ Ω
be an open set and let v ∈ harm(G)∩C0(∂G) be such that v ≥ u∗ on ∂G. Thus
v ≥ u∗ ≥ u ≥ uα on ∂G for all α ∈ J . Since uα ∈ subh(Ω), v ≥ uα on G for all
α ∈ J . Thus v ≥ u on G. But v is (upper semi-)continuous and therefore v ≥ u∗

in G, proving that u∗ ∈ subh(Ω).
Now consider the convolutions uε := u∗χε ∈ C∞(Ωε). We know that uε → u

almost everywhere in Ω. Let B(a, r) be an open ball relatively compact in Ω.
Since for all α ∈ J

uα(a) ≤ 1

v((B(a, r))

∫

B(a,r)

uα(x)dλ(x) ≤ 1

v((B(a, r))

∫

B(a,r)

u(x)dλ(x)

then it follows that u(a) ≤ 1
v((B(a,r))

∫
B(a,r)

u(x)dλ(x). Arguing as in (1.5) we

find then that the uε’s have the sub-mean property and then uε ∈ subh(Ω).
Moreover, by Theorem 1.3.1, uα ≤ uα ∗ χε and then uα ≤ uα ∗ χε ≤ u ∗ χε = uε

for all α, showing that u ≤ uε for all ε and thus u∗ ≤ uε (since uε are C∞).
Arguing as in (1.9) we see that uε is decreasing in ε. Thus by Corollary 1.2.4
the limit v := limε→0 uε is subharmonic in Ω. Since v = u almost everywhere
in Ω, and u ≤ u∗ ≤ v then u = u∗ almost everywhere in Ω and u∗ = v by
Corollary 1.3.2.

Definition 1.5.4. Let Ω ⊂ Rm be a domain. A subset E ⊂ Ω is a polar set
if for each x ∈ E there exists an open set Vx ⊂ Ω with x ∈ Vx and v ∈ subh(Vx)
such that E ∩ Vx ⊆ {v = −∞}.

Since subharmonic functions are L1
loc, then every polar set E ⊂ Ω has zero

Lebesgue measure and its complementary Ω \ E is dense in Ω.

Corollary 1.5.5. Let Ω ⊂ Rm be a domain. Let v ∈ subh(Ω) and let E
be a closed polar set. Let u ∈ subh(Ω \ E) (respectively u ∈ harm(Ω \ E)) and
assume that u is bounded from above. Let

(1.10) U(x) =

{
u(x) if x ∈ Ω \ E

lim sup
Ω\E�y→x

u(y) if x ∈ E .

Then U is subharmonic (respectively harmonic) in Ω.
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Proof. Assume u ∈ subh(Ω\E). Since u is bounded from above, then U is
upper semicontinuous on Ω. Let x ∈ E and let Vx ⊂ Ω be an open neighborhood
of x such that there exists v ∈ subh(Vx) with E ∩ Vx ⊂ {v = −∞}. We are
going to show that U ∈ subh(Vx) and then, by arbitrariness of x ∈ E and by
Proposition 1.2.5 it will follow that U ∈ subh(Ω).

Let define Uε := u+ εv (here we consider Uε(x) = −∞ if v(x) = −∞) in Vx.
Then Uε ∈ subh(Ω). Let Ũ = supε Uε on Vx \E. According to Proposition 1.5.3
the upper semicontinuous regularization Ũ∗ of Ũ is subharmonic in Vx. By
construction U = Ũ∗ on Vx and thus U ∈ subh(Vx).

If u ∈ harm(Ω \ E), let V denotes the function defined as in (1.10) for −u.
Then U, V ∈ subh(Ω) and U + V = 0 in Ω \ E which is a set of full Lebesgue
measure. By Corollary 1.3.2 it follows that U +V ≡ 0 and thus U,−U ∈ subh(Ω)
which implies that U ∈ harm(Ω).

Theorem 1.5.6. Let Ω ⊂ Rm be an open set. Assume that one of the
following conditions is satisfied :

1. u, v ∈ harm(Ω) with v > 0 and φ : R→ R is a convex function;
2. u ∈ subh(Ω), v ∈ harm(Ω) with v > 0 and φ : R → R is an increasing

convex function;
3. u,−v ∈ subh(Ω), with u ≥ 0, v > 0 and φ : R → R+ is a positive convex

function with φ(0) = 0;

then vφ(u/v) ∈ subh(Ω).

Proof. We only give a proof of (2), the others being similar. First, being φ
increasing and convex, for x ∈ R, the tangent line to φ(x) is given by y = ax + b
with a ≥ 0 and b ∈ R. Let

Fa,b(x) := {ax + b : a ≥ 0, b ∈ R, at + b ≤ φ(t) ∀t ∈ R} .

By convexity φ(x) = supa≥0,b Fa,b(x). Now, v(au
v + b) = au + bv ∈ subh(Ω) for

a ≥ 0 and b ∈ R. Thus the upper semicontinuous regularization of vφ(u/v)(x) =
supa≥0,b Fa,b(au(x) + bv(x)) is subharmonic by Proposition 1.5.3. To have the
result we only need to show that vφ(u/v) is upper semicontinuous. But φ is
increasing and u/v is upper semicontinuous, thus

lim sup
x→x0

φ(u(x)/v(x)) ≤ φ(u(x0)/v(x0)) .

Corollary 1.5.7. Let Ω ⊂ Rm be an open set. If u ∈ subh(Ω) then
eu ∈ subh(Ω).
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Proof. By Theorem 1.5.6 with φ(x) = ex and v ≡ 1.

1.6 – Boundary behavior: the Hopf lemma

Theorem 1.6.1 (Hopf’s lemma). Let Ω ⊂ Rm be a domain. Let p ∈ ∂Ω
and suppose that ∂Ω has the inner ball property at p (for instance, if ∂Ω is C2

at p). Let U be an open neighborhood of p and let u ∈ subh(Ω ∩ U) be such that
limΩ�x→p u(x) = u(p) and u < u(p) in U ∩ Ω. Let ν ∈ Rm be a non-zero vector
which does not belong to Tp∂Ω and pointing outward. Then

lim sup
h→0

u(p− hν)− u(p)

h
< 0 .

Proof. Since Ω has the inner ball property at p, there exists a ball B ⊂ Ω∩U
such that ∂B is tangent to ∂Ω at p. We can assume with no loss of generality that
B = B(O, 1) and that u(p) = 0 and u < 0 in B \ {p}. Let v(x) := e−α‖x‖2 − e−α

for α > 2m. A direct computation shows that Δv = e−α‖x‖2

(4‖x‖2α2 − 2mα)
and v = 0 on ∂B. Thus, since α > 2m, v is subharmonic in {z : ‖z‖ > 1/2}.
Moreover,

∂v

∂ν

∣∣∣∣
x=p

= grad[v(p)] · ν = −2αe−αp · ν < 0 ,

since ν points outward, that is p ·ν > 0. Fix ε > 0. Let M be such that u ≤ −M
on ‖x‖ = 1/2. Now v > 0 in B, but, since e−α/4−e−α → 0 as α→∞, there exists
α� 1 such that v(x) < M/2ε for ‖x‖ = 1/2. Let V = B\{x ∈ Rm : ‖x‖2 ≤ 1/2}.
Then u + εv ∈ subh(V ). Moreover, by construction u + εv ≤ 0 on ∂V . By
the maximum principle, u + εv ≤ 0 in V and p ∈ ∂B is a maximum since
u(p) + εv(p) = 0. Let t0 > 0 be such that p− tν ∈ V for 0 < t ≤ t0. Then

lim sup
t→0+

(u + εv)(p− tν)

t
≤ 0 .

Now let {tk}, tk > 0, be any sequence converging to 0. Then for all k

0 ≥ (u + εv)(p− tkν)

tk
=

u(p− tkν)

tk
+ ε

v(p− tkν)

tk

and since limk→∞0
v(p−tkν)

tk
= − ∂v

∂ν (p) > 0 we obtain

lim sup
k→∞

u(p− tkν)

tk
≤ ε

∂v

∂ν
(p) < 0 ,

proving the statement.
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Hopf’s lemma can be used in analysis to prove uniqueness for the solution
of von Neumann-type problems. As a matter of example, we give the following:

Proposition 1.6.2 .Let Ω ⊂ Rm be a bounded domain with C2 boundary.
If u ∈ harm(Ω) ∩ C2(Ω) is such that ∂u

∂np
(p) = 0 for all p ∈ ∂Ω (here np is the

outer normal vector) then u = const.

Proof. Assume that u is not constant. By the maximum principle it has a
strict maximum at some p ∈ ∂Ω. Thus Hopf’s lemma implies that ∂u

∂np
(p) > 0,

against the hypothesis.

2 – Pluriharmonic functions

2.1 – Interlude on holomorphic functions

Consider the complex space Cn as a 2n-dimensional real space R2n. The
multiplication by i in Cn determines a complex structure J on R2n, called the
standard complex structure of R2n. More explicitly, if v ∈ Cn and we denote by
vR its image in R2n, then J(vR) := (iv)R. Let Ω ⊂ Cn be an open set. Then
TΩ = Ω×Cn and one can consider the real structure Ω×R2n with the standard
complex structure on each fiber which, being independent of z ∈ Ω, we still
denote by J . If we consider (TΩ)R ⊗R C ≈ Ω × C2n the operator J determines
an operator JC on (TΩ)R ⊗R C which has the property that (JC)2 = −I and
thus one has the decomposition (TΩ)R ⊗R C = T 1,0Ω ⊕ T 0,1Ω in terms of the
eigenspaces of JC. Namely, JCX = iX for all X ∈ T 1,0Ω and JCX = −iX for all
X ∈ T 0,1Ω. Accordingly, one can decompose the cotangent space (T ∗Ω)R⊗C =
(T ∗Ω)1,0⊕ (T ∗Ω)0,1. In general, given an R-linear map L : (TΩ)R → TC, then L
is C-linear (namely there exists a C-linear map l : TΩ→ TC such that lR = L)
if and only if L ◦ J = iL, that is, L commutes with the complex structures on
Ω and C respectively, while L is C-antilinear if L ◦ J = −iL. Notice that L
is C-linear (respectively C-antilinear) if and only if LC ∈ (T 1,0Ω)∗ (respectively
LC ∈ (T 0,1Ω)∗).

Now, let u ∈ C1(Ω, R). Considering R ⊂ C we can think of u : Ω→ C as a
function such that u = u. Thus du : (TΩ)R = Ω × R2n −→ TR ⊂ TC = C × C
is an R-linear morphism.

Lemma 2.1.1. Let Ω ⊂ R2m be an open set and let u ∈ C2(Ω, R).

1. The C-linear part of du is given by ∂u := 1
2 (du− idu ◦ J).

2. The C-antilinear part of du is given by ∂u := 1
2 (du + idu ◦ J).

The decomposition du = ∂u + ∂u is the unique decomposition in C-linear
and C-antilinear parts.
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Proof. Clearly du = ∂u + ∂u. Since

(du− idu ◦ J) ◦ J = (du ◦ J + idu) = i(du− idu ◦ J)

then ∂u is C-linear. Similarly one can prove that ∂u is C-antilinear. Finally, if
du = A + B is another decomposition in C-linear and C-antilinear parts, then
∂u−A = ∂u−B and thus

i(∂u−A) = (∂u−A) ◦ J = (∂u−B) ◦ J = −i(∂u−B) = −i(∂u−A)

forcing ∂u = A and ∂u = B.

In local coordinates zj = xj + iyj in Cn, we define dzj = dxj + idyj and
dzj = dxj − idyj . Also, we let ∂

∂zj
= 1

2 ( ∂
∂xj
− i ∂

∂yj
) and ∂

∂zj
= 1

2 ( ∂
∂xj

+ i ∂
∂yj

). A

direct computation shows that

∂u =
n∑

j=1

∂u

∂zj
dzj , ∂u =

n∑

j=1

∂u

∂zj
dzj .

Let us define

dc := i(∂ − ∂) .

Lemma 2.1.2. Let Ω ⊂ Cn be a domain. Let u ∈ C1(Ω, R). Then dcu =
−du ◦ J .

Proof. We have

dcu = i∂u− i∂u = −∂u ◦ J − ∂u ◦ J = −du ◦ J .

The classical Cauchy-Riemann equations can be read in terms of d, dc as
follows:

Theorem 2.1.3. Let Ω ⊂ Cn be a domain. A function f = u + iv ∈
C1(Ω, C) is holomorphic in Ω if and only if dcu = dv in Ω.
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Proof. Let fix coordinates {xj , yj} in Ω. The function f is holomorphic in
Ω if and only if the Cauchy-Riemann equations

⎧
⎪⎪⎨
⎪⎪⎩

∂u

∂xj
= ∂v

∂yj

∂u

∂yj
= − ∂v

∂xj

are satisfied. Now, writing ∂u
∂x := ( ∂u

∂x1
, . . . , ∂u

∂xn
) (and similarly for ∂u

∂y ) we have

du ◦ J =

(
∂u

∂x
,
∂u

∂y

)
·
(

0 −I
I 0

)
=

(
∂u

∂y
,−∂u

∂x

)
.

Thus Cauchy-Riemann equations become −du ◦ J = dv. By Lemma 2.1.2
Cauchy-Riemann equations are then equivalent to dcu = dv, proving the state-
ment.

2.2 – Pluriharmonic functions

Definition 2.2.1. Let Ω ⊂ Cn be a domain. A function u ∈ C2(Ω, R) is
pluriharmonic, u ∈ Ph(Ω), if for all p ∈ Ω and v ∈ Cn the function C � ζ �→
u(p + ζv) is harmonic for |ζ| � 1.

For a C2-real function u we define the complex Hessian (or the Levi form)
as the following (0, 2)-tensor:

L(u) :=
n∑

j,k=1

∂2u

∂zj∂zk
dzj ⊗ dzk

Notice that, since u = u then the matrix ( ∂2u
∂zj∂zk

) is Hermitian.

We have the following characterization of pluriharmonic functions in terms
of Levi form:

Proposition 2.2.2. Let Ω ⊂ Cn be a domain. A function u ∈ C2(Ω, R)
is pluriharmonic if and only if L(u) ≡ 0. Namely, u ∈ Ph(Ω) if and only if

∂2u
∂zj∂zk

(x) = 0 for all j, k = 1, . . . , n and x ∈ Ω.

Proof. Recall that in C with ζ-coordinate, Δ = 4 ∂
∂ζ

∂

∂ζ
. Therefore

(2.1)
1

4
Δu(p+ζv)|ζ=0 =

∂2u(p + ζv)

∂ζ∂ζ
|ζ=0 =

n∑

j,k=1

∂2u

∂zj∂zk
(p)vjvk = L(u)(v; v) .

Thus Δu(p + ζv)|ζ=0 = 0 for all p ∈ Ω and v ∈ Cn if and only if L(u) = 0.

Corollary 2.2.3. Let Ω ⊂ Cn be a domain. Then Ph(Ω) ⊂ harm(Ω). If
n > 1 the inclusion is proper.
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Proof. By Proposition 2.2.2 it follows that if u ∈ Ph(Ω) then L(u) = 0
which implies Δu = 0 and then u ∈ harm(Ω). For n > 1 let z0 �∈ Ω and consider
the function u(z) = ‖z − z0‖−2(n−1). Then Δu = 0 but ζ �→ u(p + ζe1) is not
harmonic.

Corollary 2.2.4. Let Ω ⊂ Cn be a domain. Let Ω′ ⊂ Cm be another
domain and let f : Ω′ → Ω be a holomorphic map. If u ∈ Ph(Ω) then u ◦ f ∈
Ph(Ω′).

Proof. In view of Theorem 2.2.2 it is enough to prove that L(u ◦ f) = 0.
By the chain rule, since df = ∂f

L(u ◦ f) = L(u) ◦ (df ⊗ df) = 0 ,

because L(u) = 0.

Summarizing these last two corollary, we can say that a harmonic function
is pluriharmonic if and only if it is harmonic under holomorphic changes of
coordinates.

Theorem 2.2.5. Let Ω ⊂ Cn be a domain.

1. If f is holomorphic in Ω then Ref, Imf ∈ Ph(Ω).
2. Suppose H1(Ω, R) = 0. If u ∈ Ph(Ω) then there exists v ∈ Ph(Ω) such that

u + iv is holomorphic in Ω.

Proof. (1) If f : Ω → C is holomorphic then for all p ∈ Ω the function
C � ζ �→ f(p+ ζv) is holomorphic for |ζ| � 1. Thus its real and imaginary parts
are harmonic and then Ref, Imf are pluriharmonic.

(2) Let ω := dcu. Then dω = 0 and since H1(Ω, R) = 0, Poincaré lemma
implies that ω is exact. Thus, there exists v ∈ C1(Ω) such that dv = ω. Hence
dcu = dv and the function u + iv is holomorphic in view of Theorem 2.1.3.

Remark 2.2.6 The previous theorem says that locally every pluriharmonic
function is the real part of a holomorphic function.

3 – Plurisubharmonic functions

3.1 – Definition and first properties

Definition 3.1.1. Let Ω ⊂ Cn be a connected domain. A function u :
Ω→ [−∞,∞) is plurisubharmonic, u ∈ Psh(Ω), if

1. u �≡ −∞.
2. u is upper semicontinuous.
3. For all p ∈ Ω and v ∈ Cn the function C � ζ �→ u(p + ζv) is either

subharmonic or ≡ −∞ for |ζ| � 1.
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Proposition 3.1.2. Let Ω ⊂ Cn be a domain. Let u ∈ C2(Ω). Then
u ∈ Psh(Ω) if and only if for all v ∈ Cn it follows

(3.1) L(u)(v; v) ≥ 0 .

Proof. By Theorem 1.4.1, u ∈ Psh(Ω) if and only if Δu(p + ζv)|ζ=0 ≥ 0
for all v ∈ Cn. By ((2.1) it follows that Δu(p + ζv)|ζ=0 ≥ 0 if and only if
L(u)(v; v) ≥ 0.

Corollary 3.1.2. Let Ω ⊂ Cn be a domain. Then

1. Ph(Ω) ⊂ Psh(Ω).
2. Psh(Ω) ∩ C2(Ω) ⊂ subh(Ω).

Proof. (1) By Proposition 2.2.2, if u ∈ Ph(Ω) it follows that L(u) = 0,
thus by Proposition 3.1.2 we have u ∈ Psh(Ω).

(2) Let u ∈ C2(Ω). If u ∈ Psh(Ω) then by Proposition 3.1.2 it follows that

L(u)(v; v) ≥ 0 for all v ∈ Cn, namely the matrix ( ∂2u
∂zj∂zk

) is positive semi-definite.

In particular its trace is ≥ 0. Since a direct computation shows that

Δu = 4tr(
∂2u

∂zj∂zk
) ≥ 0

it follows that u ∈ subh(Ω) in view of Theorem 1.4.1.

Definition 3.1.3. Let Ω ⊂ Cn be a domain. Let u ∈ C2(Ω). We say that
u is strictly plurisubharmonic if for all v ∈ Cn \ {O} it follows L(u)(v; v) > 0.

Remark 3.1.4. One could define strictly plurisubharmonic functions with-
out the requirement of C2-regularity. Namely, one can say that a function
u ∈ Psh(Ω) is strictly plurisubharmonic in the weak sense if for each p ∈ Ω
there exists c > 0 such that z �→ u(z)− c‖z‖2 is plurisubharmonic near p. Note
that u ∈ C2(Ω) is strictly plurisubharmonic in the weak sense if and only if it
is strictly plurisubharmonic in the sense of Definition 3.1.3. This follows easily
from the fact that (z, v) �→ L(u)(v; v) is continuous and thus it has a minimum
for (z, v) ∈ B(p, r)× ∂B(O, 1), where B(p, r) ⊂⊂ Ω is any open ball.

Lemma 3.1.5. Let Ω ⊂ Cn be a domain. If u ∈ Psh(Ω) then for all a ∈ Ω
and b ∈ Cn such that {a + ζb : |ζ| ≤ 1} ⊂ Ω it holds

(3.2) u(a) ≤ 1

2π

∫ 2π

0

u(a + eiθb)dθ .

Conversely, if u : Ω → [−∞,∞) is upper semicontinuous, u �≡ −∞ and (3.2)
holds, then u ∈ Psh(Ω).

In particular a plurisubharmonic functions has the sub-mean property with
respect to polydiscs.
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Proof. If u ∈ Psh(Ω) then ζ �→ u(a + ζb) is subharmonic and then (3.2)
follows from Theorem 1.2.2. Conversely, again by Theorem 1.2.2, if (3.2) holds
then ζ �→ u(a + ζb) is either ≡ −∞ or it is subharmonic and thus u ∈ Psh(Ω).

Finally, assume u ∈ Psh(Ω). Let P (a, r) ⊂⊂ Ω be a polydisc with multira-
dius r = (r1, . . . , rn) be relatively compact in Ω. Let ρj ∈ (0, rj) for j = 1, . . . , n.
By (3.2) we have

1

(2π)n

∫ 2π

0

. . .

∫ 2π

0

u(a1 + ρ1e
iθ1 , . . . , an + ρneiθn))dθ1 . . . dθn ≥

≥ 1

(2π)n−1

∫ 2π

0

. . .

∫ 2π

0

u(a1, a2 + ρ2e
iθ2 , . . . , an + ρneiθn))dθ2 . . . dθn ≥

≥ u(a) .

Now we multiply both sides of the previous inequality by ρ1 · · · ρn and integrate
for ρj ∈ (0, rj) obtaining

1

v(P (a, r)

∫

P (a,r)

u(z)dλ(z) ≥ u(a) .

Thus u has the sub-mean property with respect to polydiscs.

Remark 3.1.6. Again, it should be remarked that being plurisubharmonic
is a local property (which follows directly from the fact that being subharmonic
is a local property).

Proposition 3.1.7. Let Ω ⊂ Cn be a domain. Then Psh(Ω) ⊂ subh(Ω),
and for n > 1 the inclusion is proper.

Proof. Let B(a, r) ⊂⊂ Ω be an open ball. Then (3.2) holds for all ‖b‖ =
r. Consider π : ∂B(a, r) → CPn−1 the Hopf fibration with fiber S1 given by
π(z) = [z]. For any real 2n − 1 form ω on ∂B(a, r) with upper semicontinuous
coefficients it is possible to define a real 2n − 2 form π∗(ω) on CPn−1 obtained
by integration along the fibers (see [Bo-Tu, p. 61–63] for the continuous case,
the semi-continuous is analogous). In our case we set ω = udσ and then in local
coordinates (θ, b) ∈ (0, 2π) × R2n−2 which trivialize the Hopf fibration and for
which dσ = dθ ∧ dσ′(b) with dσ′(b) a 2n − 2 form, it follows that π∗(udσ) :=∫ 2π

0
u(a + eiθb)dθ ∧ dσ′(b). Thus, by the projection formula [Bo-Tu, Proposition

6.15 p. 63] and by (3.2) it follows that

∫

∂B(a,r)

udσ =

∫

CPn−1

π∗(udσ) ≥ u(a)2π

∫

CPn−1

dσ′ .
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Repeating the argument with u ≡ 1 it follows that

μ(∂B(a, r)) =

∫

∂B(a,r)

dσ =

∫

CPn−1

π∗(dσ) = 2π

∫

CPn−1

dσ′ .

Putting these two inequalities together we obtain

μ(∂B(a, r))u(a) ≤
∫

∂B(a,r)

u(ζ)dσ(ζ) ,

by Theorem 1.2.2 it follows that u ∈ subh(Ω).
To see that for n > 1 the inclusion is proper, we exhibit an example. Let

u(x1, x2) = 4(x2
1 − x2

2). Then Δu = 0 and hence u ∈ harm(C2) ⊂ subh(C2).
Now, u(x1, x2) = z2

1 − z2
2 + z2

1 − z2
2 − 2z1z1 + 2z2z2 and a direct computation

shows that L(u)(v; v) = −2|v1|2 + 2|v2|2 proving that u �∈ Psh(Ω).

Remark 3.1.8. Proposition 3.1.7 can be proved straightly using the regu-
larization sequence to be constructed in Theorem 3.2.1 and the fact that smooth
plurisubharmonic functions are subharmonic in view of Corollary 3.1.2. Of
course, proceeding this way, the proof of Theorem 3.2.1 is more complicated
(for this way of arguing see [Kl]).

In view of Proposition 3.1.7, plurisubharmonic functions enjoy all properties
of subharmonic functions such as being L1

loc, the maximum principle and Hopf’s
lemma.

Lemma 3.1.9.Let Ω ⊂ Cn be a domain and let {Ωk} ⊂ Cn be a sequence
of connected domains such that Ωk ⊆ Ωk+1 and

⋃
k Ωk = Ω. For each k, let

uk ∈ Psh(Ωk) be such that uk(x) ≥ uk+1(x) for all x ∈ Ωk and for all k (that is,
{uk} is a decreasing sequence). Let u(x) = limj→∞ uj(x). Then either u ≡ −∞
or u ∈ Psh(Ω).

Proof. Assume that u �≡ −∞. According to Corollary 1.2.4, the limit
u ∈ subh(Ω). Then the result follows by Lemma 3.1.5, since for all (suitably
chosen) a, b and j � 1

u(a) ≤ uj(a) ≤ 1

2π

∫ 2π

0

uj(a + eiθb)dθ

and the latter integral converges to 1
2π

∫ 2π

0
u(a + eiθb)dθ by Beppo Levi’s mono-

tone convergence theorem.

Corollary 3.1.10. Let Ω ⊂ Cn be a domain. Then u ∈ Ph(Ω) if and only
if u,−u ∈ Psh(Ω).
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Proof. If u ∈ Ph(Ω) then by Proposition 2.2.2 then L(u) = 0 and then
L(u),L(−u) = 0 which implies u,−u ∈ Psh(Ω) by Proposition 3.1.2. Conversely,
let u,−u ∈ Psh(Ω). By Proposition 3.1.7 and Proposition 1.2.8 it follows that
u ∈ harm(Ω). In particular u ∈ C∞(Ω). By Proposition 3.1.2 and since both u
and −u are plurisubharmonic, then L(u)(v; v) ≥ 0 and L(−u)(v; v) ≥ 0 implying
that L(u) = 0 and, by Proposition 2.2.2, u ∈ Ph(Ω).

3.2 – Regularization of plurisubharmonic functions

Theorem 3.2.1. Let Ω ⊂ Cn be a domain. Let u ∈ Psh(Ω). Let uε := χε∗u.
Then uε ∈ Psh(Ωε) ∩ C∞(Ωε). Moreover {uε} is decreasing in ε and converges
pointwise to u.

Proof. Since plurisubharmonic functions are subharmonic by Proposi-
tion 3.1.7 and in view of Theorem 1.3.1 we have only to prove that uε ∈ Psh(Ω).
By Fubini’s theorem, if {a + ζb : |ζ| ≤ 1} ⊂ Ωε, we have

uε(a) =

∫

Cn

u(a − y)χε(y)dλ(y) ≤
∫

Cn

1

2π

∫ 2π

0

u(a + eiθb − y)χε(y)dθdλ(y) =

=
1

2π

∫ 2π

0

∫

Cn

u(a + eiθb − y)χε(y)dλ(y)dθ =
1

2π

∫ 2π

0

uε(a + eiθb)dθ,

and thus by Lemma 3.1.5, uε ∈ Psh(Ωε).

Corollary 3.2.2.Let Ω ⊂ Cn be a domain. Let u ∈ Psh(Ω). Then there
exists {vε} ⊂ C∞(Ωε) strictly plurisubharmonic in Ωε such that {vε} is decreasing
in ε and converges pointwise to u.

Proof. Let {uε} be given by Theorem 3.2.1. Let vε(z) := uε(z) + ε‖z‖2.
Then for Cn 	 b 
= O,

L(vε)(b; b) = L(uε)(b; b) + εL(‖z‖2)(b; b) > 0

hence vε is strongly plurisubharmonic in Ωε and the remaining properties follow
from the properties of the uε’s.

As a consequence, arguing as in Theorem 1.4.1, one can prove the following

Proposition 3.2.3.Let Ω ⊂ Cn be a domain. If u ∈ Psh(Ω) then
L(u)(v; v) ≥ 0 in the sense of distribution for all v ∈ Cn. Conversely, if
u ∈ L1

loc(Ω) and L(u)(v; v) ≥ 0 in the sense of distribution for all v ∈ Cn,
then there exists v ∈ Psh(Ω) such that v = u almost everywhere.
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Also, the arguments in the proofs of results in Section 5 of Chapter I work
with only minor changes for plurisubharmonic functions allowing to construct
new plurisubharmonic functions starting from given plurisubharmonic functions.
We leave details to the reader.

We end up this section with an application of Hopf’s lemma for plurisub-
harmonic functions to analytic discs attached to pseudoconvex domains:

Proposition 3.2.4. Let Ω ⊂ Cn be a domain. Assume there exists a
neighborhood U of Ω and ρ ∈ Psh(U)∩C1(U) such that Ω = {z ∈ U : ρ(z) < 0}
and dρx �= 0 for all x ∈ ∂Ω. Let ϕ : D → Ω be a holomorphic disc such that
ϕ ∈ C1(D) and ϕ(∂D) ⊂ ∂Ω. Then ϕ(∂D) is transverse to ∂Ω at every point.

Proof. By hypothesis ρ(ϕ(ζ)) < 0 for all ζ ∈ D and ρ(ϕ(ζ)) = 0 for all
ζ ∈ ∂D. Then Hopf’s Lemma implies that for all ζ ∈ ∂D

dρϕ(ζ)(ϕ
′(ζ)) = lim

R�t→1−

−ρ(ϕ(tζ))

1− t
�= 0 .

Therefore ϕ′(ζ) �∈Tϕ(ζ)∂D and hence ϕ(∂D) is transverse to ∂Ω at every point.

3.3 – Plurisubharmonic and subharmonic functions under changes of coordi-
nates

We begin with the following example:

Example 3.3.1. Let (x, y) ∈ R2 and let u(x, y) = x2−y2. Then Δu(x, y) =
0 and u ∈ harm(R2). Consider the following linear change of coordinates: x =
X, y = X − Y . Then u(X, Y ) = −Y 2 + 2XY and thus Δu(X, Y ) = −2 which
implies that u(X, Y ) is not subharmonic in the new coordinates.

Very roughly, the reason why subharmonic functions do not behave well
under changes of coordinates is that in general a change of coordinates is not
conformal, thus it does not preserve balls and spheres and the sub-mean property
is no longer true.

Contrarily, not degenerate holomorphic mappings are conformal in C and
thus one might expect some better behavior for plurisubharmonic functions.
Indeed we have

Proposition 3.3.2.Let Ω ⊂ Cn be a domain. Let u : Ω→ [−∞,∞). Then
u ∈ Psh(Ω) if and only if for all f : Ω′ → Ω holomorphic (with Ω′ a domain of
Cm) it follows that either u ◦ f ∈ subh(Ω′) or u ◦ f ≡ −∞.
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Proof. First assume that u ∈ Psh(Ω) ∩ C2(Ω) and let f : Ω′ → Ω be
holomorphic. Then for all v ∈ Cm

L(u ◦ f)(v; v) = L(u)(df(v); df(v)) ≥ 0 ,

proving that u ◦ f ∈ Psh(Ω′). If u ∈ Psh(Ω) (no regularity assumptions) let
{uε} be the sequence given by Theorem 3.2.1. Then uε ◦ f ∈ Psh(f−1(Ωε)) and
since the sequence {uε ◦ f} is decreasing in ε, it follows that the limit (which
is u ◦ f) is either ≡ −∞ or plurisubharmonic (and thus subharmonic) in Ω by
Lemma 3.1.9.

Conversely, if u ◦ f is subharmonic or ≡ −∞ for all holomorphic mappings
f : Ω′ → Ω then it is so also for holomorphic map C � ζ �→ a + ζb (for a ∈ Ω,
b ∈ Cn and |ζ| � 1) and this is exactly the definition of plurisubharmonic
function.

Remark 3.3.3. With some more effort it can be proven that u ∈ Psh(Ω)
if and only if for all C-linear isomorphism T : Cn → Cn it follows that u ◦ T ∈
subh(T−1(Ω)) (see, e.g., [Kl, Theorem 2.9.12 p. 68].

As an application we have the following result:

Theorem 3.3.4. Let u ∈ subh(R2). If there exists M < ∞ such that
u(x) ≤M for all x ∈ R2 then u is constant.

Proof. We consider u : C → [−∞,∞) with complex variable z. If u
is not constant we can assume that u(0) < u(1). Let v(z) := u(1/z). By
Proposition 3.3.2 the function v ∈ subh(C\{0}) and v(z) ≤M for all z ∈ C\{0}.
By construction

lim sup
|z|→∞

v(z) = lim sup
|z|→∞

u(1/z) = lim sup
|w|→0

u(w) ≤ u(0) < u(1) = v(1) .

Thus there exists R > 0 such that

(3.3) sup
z∈C\{0}

v(z) = sup
z∈B(0,R)\{0}

v(z) .

Let define v(0) := lim supz→0 v(z). Since v is bounded, then Corollary 1.5.5
implies that v ∈ subh(R2). By (3.3) it follows that there exists z ∈ B(0, R)
such that v(z) = supw∈R2 v(w), but this contradicts the maximum principle in
Corollary 1.2.6.

As a corollary:

Corollary 3.3.5. Let u ∈ Psh(Cn). If there exists M < ∞ such that
u(z) ≤M for all z ∈ Cn then u is constant.
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Proof. Apply Theorem 3.3.4 to all complex lines passing through O.

Notice that the previous result would be false for subharmonic functions
(which are not plurisubharmonic):

Example 3.3.6. In R3 let u(x) = −1/‖x‖. Then Δu(x) = 0 for x �= O and
u(0) = −∞, therefore u ∈ subh(R3). However u(x) ≤ 0 for all x ∈ R3 and it is
not constant.

Remark 3.3.7. Proposition 3.3.2 allows to define the sheaf of plurisub-
harmonic functions on complex manifolds. In other words, if M is a complex
manifold and U ⊂ M is an open set, then u : U → [−∞,∞) is plurisubhar-
monic if for all x ∈ U there exists a local chart (V, ϕ) such that x ∈ V and
u ◦ ϕ−1 ∈ Psh(ϕ(V )). Proposition 3.3.2 guarantees that such a definition does
not depend on the (holomorphic) local chart chosen to define it.

The maximum principle (as well as the previous results on plurisubharmonic
functions) extends easily to plurisubharmonic functions on complex manifolds.
For instance, this implies that Psh(CP1) = R. With this, we have a simple
alternative proof of Theorem 3.3.4 as follows: if u ∈ subh(C) is bounded from
above, then its extension to CP1 given by defining u(∞) = lim sup|z|→∞ u(z) is

subharmonic on CP1 (by the analogous of Corollary 1.5.5 for complex manifolds)
thus it is constant.

4 – Currents

4.1 – Distributions

Let Ω ⊂ Rm be a domain. We write f ∈ Ck
0 (Ω) if f : Ω → C is such that

f ∈ Ck(Ω) and supp(f) ⊂⊂ Ω. For a multi-index α = (α1, . . . , αm) ∈ Nm we

denote by |α| = ∑m
j=1 αj and by Dαf = ∂f |α|

∂x
α1
1 ...∂xαm

m
. We let C0(Ω) := C0

0 (Ω).

Definition 4.1.1. Fix p ≤ k. Given f ∈ Ck
0 (Ω) and K a compact subset

of Ω such that supp(f) ⊆ K and ε > 0, the sets

Vp(f, ε, K)={g∈Ck
0 (Ω):supp(g) ⊆ K, sup

x∈Ω
|Dα(f − g)(x)| < ε,∀α ∈ Nm, |α|≤p}

form a basis of open neighborhoods of f . We call the Cp-topology on Ck
0 (Ω) the

topology defined by Vp(f, ε, K) when f, ε, K (with supp(f) ⊂ K) vary.

Notice that a sequence {gj} ⊂ Ck
0 (Ω) converges to f ∈ Ck

0 (Ω) in the Cp-
topology provided that

1. ∪jsupp(gj) ∪ supp(f) is relatively compact in Ω and
2. Dαgj converges uniformly in Ω to Dαf for all α ∈ Nm with |α| ≤ p.
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The space Ck(Ω) endowed with the topology of uniform convergence (on Ω)
is a Banach space. We can thus consider the induced topology, denoted by C̃p,
on Ck

0 (Ω). More in details, a basis of open neighborhoods for such a topology is
provided by

Ṽp(f, ε) = {g ∈ Ck
0 (Ω) : sup

x∈Ω
|Dα(f − g)(x)| < ε,∀α ∈ Nm, |α| ≤ p}

when f ∈ Ck
0 (Ω), ε > 0 vary. Thus a sequence {gj} ⊂ Ck

0 (Ω) converges to

f ∈ Ck
0 (Ω) in the C̃p-topology if and only if the sequence {Dαgj} converges

uniformly in Ω to Dαf for all α ∈ Nm with |α| ≤ p.
Notice that the topology Cp is finer then the C̃p-topology on Ck

0 (Ω), that

is, an open set in C̃p is open also in Cp because, clearly, Vp(f, ε, K) ⊂ Ṽp(f, ε)
for all K compact sets which contain the support of f . However the Cp-topology

does not coincide with the C̃p-topology. For instance, consider a sequence {gj}
defined as follows: let {aj} ⊂ Ω be a sequence with no accumulation points
in Ω. For each j let B(aj , rj) be an open ball relatively compact in Ω with
rj < 1. Let gj be a function with compact support in B(aj , rj) such that
max |Dαgj | ≤ 1/j for α ∈ Nn, |α| ≤ p. Then gj → 0 uniformly in Ω (and thus in

the C̃p-topology). However, since ∪supp(gj) is not relatively compact in Ω, then
gj does not converge to 0 in the Cp-topology (indeed {gj} does not eventually
belong to any open neighborhood of the form Vp(0, ε, K)).

As a consequence, the identity map I : (Ck
0 (Ω), Cp) −→ (Ck

0 (Ω), C̃p) is

continuous but not open. Thus, a continuous linear functional T on (Ck
0 (Ω), C̃p)

gives rise to a continuous linear functional T ◦ I on (Ck
0 (Ω), Cp) (but not all

continuous linear functionals on (Ck
0 (Ω), Cp) are of this form).

Definition 4.1.2. Let p ≤ k. A distribution of order p is a linear functional
T : Ck

0 (Ω) → C which is continuous with respect to the Cp-topology of Ck
0 (Ω).

We denote by Disk
p(Ω) the space of distributions of order p on Ck

0 (Ω). We omit

to write the subindex p in case p = k, that is, Disk(Ω) := Disk
k(Ω).

Clearly, Disk
p−1(Ω) ⊂ Disk

p(Ω) for all p ≤ k and Disk
p(Ω) ⊂ Disk−1

p (Ω) for
all k ≥ 1 and p ≤ k − 1.

The elements of Dis0(Ω) are called Radon measures. This is justified by the
following version of Riesz’ representation theorem:

Theorem 4.1.3. Let Ω ⊂ Rm be a domain. To any Radon measure T there
corresponds a unique (generalized) complex Borel measure μT such that

T (ϕ) =

∫

Ω

ϕdμT ,

for all ϕ ∈ C0(Ω). Moreover, any positive linear functional T on C0(Ω) (namely,
T (ϕ) ≥ 0 for all ϕ ≥ 0 with ϕ ∈ C0(Ω)) is necessarily continuous and μT is a
real positive measure. Conversely, if μT is a real positive measure then T ≥ 0.
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Remark 4.1.4.Let B be the σ-algebra of Borel subsets of Ω and let Mes(C)
be the space of regular finite complex measure. Let Bc = {E ∈ B : E ⊂⊂ Ω}.
The (generalized) complex Borel measure μT as defined in Theorem 4.1.3 is a
function μT : Bc → Mes(C) such that for any E ∈ Bc the measure μT (E) (also
denoted by μT |E) is a finite regular complex Borel measure, namely, μT |E is
σ-addictive, regular and with finite total variation. Moreover, if E ⊂ E′ then
μT |E = (μT |E′)|E . Since Ω is union of compact subsets, by the Radon-Nicodym
theorem there exists a positive measure νT on Ω (possibly with νT (Ω) =∞) and a
complex function h : Ω→ C with |h| ≡ 1 such that μT (E) =

∫
E

hdνT for all Borel
sets E ⊂⊂ Ω. Moreover νT equals the total variation of μT on each relatively
compact Borel set E ⊂ Ω. Thus νT can be defined as the total variation |T | of
T . If νT is a finite measure on Ω, then the corresponding μT is a regular finite
complex Borel measure. Moreover, if the Radon measure T defines a continuous
linear functional on (C0(Ω), C̃0) (that is on C0(Ω) with the induced topology of
uniform convergence) then μT is a regular finite complex Borel measure on Ω, and
conversely, to any regular finite complex Borel measure on Ω there corresponds
a unique Radon measure which is continuous on (C0(Ω), C̃0) (see, e.g., [Ru]).

From now on, we will consider Disk
p(Ω) endowed with the weak∗ topology.

Note that, a sequence {Tj} ⊂ Disk
p(Ω) (weakly∗-)converges to T ∈ Disk

p(Ω) if

and only if for all f ∈ Ck
0 (Ω) it follows that limj→∞ Tj(f) = T (f). In particular,

by the Banach-Alaoglu theorem, the open ball in Disk
p(Ω) is relatively compact

in the weak∗-topology.
We collect here a few useful and known facts about distributions:

Lemma 4.1.5.Let Ω ⊂ Rm be a domain. Then

1. Let Tj , T ∈ Dis0(Ω). Then Tj → T (in the weak∗ topology) if and only if
Tj(ϕ) → T (ϕ) for all ϕ ∈ C∞

0 (Ω) and supj{|dTj |(K)} < ∞ for all com-
pact subset K ⊂ Ω (here dTj denotes the complex Borel measure given by
Riesz’ Theorem 4.1.3 and |dTj | is its total variation). Moreover the condi-
tion supj{|dTj |(K)} <∞ is not necessary if Tj , T ≥ 0.

2. If T ∈ Dis∞(Ω) and T ≥ 0, then T ∈ Dis0(Ω).

At this point, it is worth to mention two results about subharmonic functions
when considering their Laplacian as a measure. We state them for C, referring to
[Kl, Section 4.1] for generalizations to Rm and proofs. Let Ω ⊂ C be an open set
and let u ∈ subh(Ω). By Theorem 1.4.1 and Lemma 4.1.5.(2), Δu is a positive
linear functional on C0(Ω). By Theorem 4.1.3, Δu is thus a Radon measure and
there exists a complex Borel measure μu such that

Δu(ϕ) =

∫

Ω

ϕdμu
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for all ϕ ∈ C0(Ω). For each open subset U ⊂⊂ Ω let μU
u be the finite complex

measure in C obtained by extending with 0 on C \ U the restriction of μu to U .
The measure μU

u has compact support contained in U . We define the potential
of u

PU
u (z) =

1

2π

∫

C
log |z − ζ|dμU

u (ζ) .

Since μU
u is a finite complex measure compactly supported in U , it follows that

PU
u ∈ L1

loc(C). Moreover the following result (known as the Riesz decomposition
theorem) holds:

Theorem 4.1.6. Let Ω ⊂ C be a domain. Let u ∈ subh(Ω). If U is an
open set relatively compact in Ω, then there exists hu ∈ harm(U) such that

u(z) = PU
u (z) + hu(z)

for all z ∈ U .

Proof. The key point is to prove the following equality:

(4.1) ΔPU
u = μU

u in Dis0(C) .

Once this is obtained, we have that Δ(u−PU
u ) = Δu−ΔPU

u = μU
u −ΔPU

u = 0.
By Theorem 1.4.1 there exist h, g ∈ subh(U) such that h = u − PU

u almost
everywhere and g = −(u − PU

u ) almost everywhere. In particular h + g = 0
almost everywhere and by Corollary 1.3.2 then h = −g everywhere and thus
h ∈ harm(U). By the same token, h = u− PU

u everywhere as required. We are
left to prove (4.1). First, we recall the well known fact

1

2π
Δζ log |z − ζ| = δz in Dis0(C) ,

where δz here denotes the Dirac delta defined by δz(ϕ) = ϕ(z) for all ϕ ∈ C0(C).
From this and from Fubini’s theorem we have for all ϕ ∈ C∞

0 (C)

ΔPU
u (ϕ) =

∫

C
PU

u (z)Δϕ(z)dλ(z) =

∫

C

1

2π

∫

C
log |z − ζ|dμU

u (ζ)Δϕ(z)dλ(z)

=

∫

C

1

2π

∫

C
log |z − ζ|Δϕ(z)dλ(z)dμU

u (ζ) =

∫

C
ϕ(ζ)dμU

u (ζ),

and (4.1) follows.
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Using the Riesz decomposition theorem one can prove the following Poisson-
Jensen formula:

Theorem 4.1.7. Let Ω ⊂ C be a domain. Let u ∈ subh(Ω) and let B(a, r)
is an open ball relatively compact in Ω. If u(a) > −∞ then

u(a) =
1

2πr

∫

∂B(a,r)

u(ζ)dσ(ζ)− 1

2π

∫ r

0

μu(B(a, s))

s
ds .

4.2 – Regularization and plurisubharmonic functions

Let Ω ⊂ Cn be a domain and let {χε} be the sequence of smoothing kernels
defined in Section 1.3. If T ∈ Dis∞(Ω) one can define a sequence of C∞ functions

Tε(x) := T ∗ χε(x) := Ty(χε(x− y))

such that Tε → T in Dis∞(Ω). We have the following generalization of (one side
implication of) Proposition 3.2.3:

Proposition 4.2.1.Let Ω ⊂ Cn be a domain. Let T ∈ Dis∞(Ω) be a
distribution such that L(T ) ≥ 0 (namely T (L(ϕ)(v; v)) ≥ 0 for all ϕ ∈ C∞

0 (Ω),
ϕ ≥ 0 and v ∈ Cn) then there exists u ∈ Psh(Ω) such that u = T in Dis∞(Ω)
(namely, T (ϕ) =

∫
Ω

ϕudλ for all ϕ ∈ C∞
0 (Ω)).

Proof. Let uε := T ∗ χε ∈ C∞(Ωε). Then uε → T in Dis(Ω) as ε → 0.
By Fubini’s theorem L(uε) = L(T ) ∗ χε as distributions. Thus L(uε) ≥ 0 and
then uε ∈ Psh(Ωε) ∩ C∞(Ωε) by Proposition 3.1.2. Now, arguing as at the end
of Theorem 1.4.1 we see that uε is decreasing in ε and thus, by Lemma 3.1.9, it
follows that u(z) = limε→0 uε(z) ∈ Psh(Ω). By Beppo Levi’s theorem uε → u
also in the sense of distributions and therefore T = u in the sense of distributions,
proving the statement.

4.3 – Sequences of L1
loc-bounded plurisubharmonic functions

The aim of this section is to show that a sequence of plurisubharmonic
functions which is bounded in the L1 norm on compacta is actually uniformly
bounded from above on compacta and admits a subsequence converging in L1

loc

to a plurisubharmonic function. To start with, we prove the following result:

Theorem 4.3.1.Let Ω ⊂ Cn be a domain. Let {uj} ⊂ Psh(Ω) be a sequence
which is locally bounded from above on compacta of Ω. Assume that there exists
T ∈ Dis∞(Ω) such that uj → T in Dis∞(Ω). Then there exists u ∈ Psh(Ω) such
that u = T in Dis∞(Ω) and uj → u in L1

loc(Ω).
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Proof. Since L(uj) ≥ 0 for all j, then L(T ) ≥ 0. Thus, by Proposition 4.2.1
there exists u ∈ Psh(Ω) such that u = T in Dis∞(Ω).

It remains to show that uj → u in L1
loc(Ω). First, since {uj} is locally

bounded from above, for any fixed compact subset K ⊂ Ω, there exists C =
C(K) > 0 such that uj − C ≤ 0 in K for all j ∈ N. We can thus assume that
uj ≤ 0 on a fixed compact set K.

Since uj → T in Dis∞(Ω) then {uj} cannot converge uniformly on compacta
to the constant function −∞. Therefore, there exist a sequence {xk} ⊂ Ω such
that xk → x0 ∈ Ω and a subsequence {ujk

} of {uj} such that |ujk
(xk)| =

−ujk
(xk) is bounded from above by some constant C > 0. Let B := B(x0, r)

be a small ball centered at x0 such that B(x0, 2r) ⊂ Ω. For k � 0 there exists
rk > 0 such that Bk := B(xk, rk) has the property that B ⊂ Bk ⊂ B(x0, 2r) ⊂ Ω.
Thus, since uj , u ∈ subh(Ω),

∫

B
|ujk
|dλ ≤

∫

Bk

|ujk
|dλ = −

∫

Bk

ujk
dλ ≤ −v(Bk)ujk

(xk) =

= v(Bk)|ujk
(xk)| ≤ Cv(B(x0, 2r)).

Hence, {ujk
} is uniformly bounded in L1(B). By Proposition 1.3.4, {ujk

} is actu-
ally uniformly bounded in L1

loc(Ω). Hence, if {χε} is the sequence of smoothing
kernels defined in Section 1.3 (which are clearly bounded on compacta together
with their first derivatives) it follows that for a fixed ε > 0, the sequence {ujk

∗χε}
is equicontinuous and uniformly bounded on compacta of Ω. Therefore—since
uj → u in Dis∞(Ω) and hence ujk

∗ χε → u ∗ χε pointwise—it follows from
Arzelà-Ascoli’s theorem that actually ujk

∗ χε → u ∗ χε uniformly on compacta.
In order to prove that ujk

→ u in L1
loc(Ω), let K ⊂ Ω be an open set whose

closure is compact in Ω and let Ψ ≥ 0 be a smooth function which is compactly
supported in Ω and such that Ψ|K ≡ 1. By Theorem 1.3.1, the sequence {ujk

∗χε}
(respectively {u ∗ χε}) decreases to ujk

(respect. u) as ε → 0+. In particular,
u ∗ χε − u ≥ 0. For ε, δ > 0 small,

lim
k→∞

∫

Ω

(u ∗ χε + δ − ujk
)Ψdλ =

∫

Ω

(u ∗ χε + δ − u)Ψdλ > 0 .

Thus

lim sup
k→∞

∫

K

|u− ujk
|dλ ≤ lim sup

k→∞

∫

Ω

|u− ujk
|Ψdλ ≤

≤ lim sup
k→∞

[∫

Ω

|u ∗ φε + δ − u|Ψdλ +

∫

Ω

| − (u ∗ φε + δ − ujk
)|Ψdλ

]
≤

≤ 2

∫

Ω

|u ∗ φε + δ − u|Ψdλ = 2

∫

Ω

(u ∗ φε + δ − u)Ψdλ,
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and the last term goes to zero as ε, δ → 0. Therefore ujk
→ u in L1(K) and, by

arbitrariness of K, ujk
→ u in L1

loc(Ω).
Repeating the above argument for all subsequences of {uj}, the statement

follows.

Corollary 4.3.2.Let Ω ⊂ Cn be a domain. Let {uj} ⊂ Psh(Ω) be a
sequence which is locally bounded from above on compacta of Ω. Then either
{uj} converges uniformly on compacta to the constant function −∞ or there
exist a subsequence {ujk

} and a function u ∈ Psh(Ω) such that ujk
→ u in

L1
loc(Ω).

Proof. If {uj} is not uniformly convergent on compacta to the constant
function −∞, then, as in the proof of Theorem 4.3.1 we see that there exists a
subsequence {ujk

} which has L1-norm uniformly bounded on compacta. By the
Banach-Alaoglu compactness theorem, up to extracting another subsequence,
{ujk
} is weak∗ converging to a distribution T . Then Theorem 4.3.1 applies.

Corollary 4.3.3. Let Ω ⊂ Cn be a domain. Let {uj} ⊂ Psh(Ω) be a
sequence which is bounded in L1

loc(Ω). Then {uj} is uniformly bounded from
above on compacta of Ω and there exist a subsequence {ujk

} and a function
u ∈ Psh(Ω) such that ujk

→ u in L1
loc(Ω).

Proof. Arguing by contradiction, assume that {uj} is not uniformly bound-
ed from above on compacta. Thus, up to extracting subsequences, there exists
a compact set K such that

(4.2) lim
j→∞

max
z∈K

uj(z) = +∞ .

By the Banach-Alaoglu theorem there exists a subsequence {ujk
} which is weak∗

converging to some distribution T . Arguing as in the proof of Theorem 4.3.1,
we see that there exists u ∈ Psh(Ω) such that ujk

→ u in Dis∞(Ω). Using the
same notations as in the proof of Theorem 4.3.1, it follows that ujk

≤ ujk
∗ χε

and ujk
∗ χε → u ∗ χε uniformly on compacta as k → ∞. Thus, for each

compact set K ⊂ Ω, the sequence {ujk
} is uniformly bounded from above, which

contradicts (4.2).
The second part of the statement follows from Corollary 4.3.2 since, being

L1
loc(Ω) bounded, {uj} cannot converges uniformly on compacta to the constant

function −∞.

Theorem 4.3.4. Let Ω ⊂ Cn be a domain.

1. The real cone Psh(Ω) is closed in L1
loc(Ω).

2. A subset U ⊂ Psh(Ω) is compact in Psh(Ω) (with respect to the L1
loc(Ω)

topology) if and only if it is bounded and closed in L1
loc(Ω).
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Proof. (1) Let {uj} ⊂ Psh(Ω) be a sequence which converges in L1
loc(Ω)

to a function u ∈ L1
loc(Ω). In particular {uj} is uniformly bounded in L1

loc(Ω)
and by Corollary 4.3.3, up to subsequences, it converges in L1

loc(Ω) to a function
v ∈ Psh(Ω). Hence u = v almost everywhere and Psh(Ω) is closed in L1

loc(Ω).
(2) One direction is clear. Conversely, assume U ⊂ Psh(Ω) is bounded and

closed in L1
loc(Ω). Since Psh(Ω) is closed in L1

loc(Ω) then U is closed in Psh(Ω).
Let {uj} ⊂ U be a sequence. Since it is bounded in L1

loc(Ω), by Corollary 4.3.3,
up to subsequences, it is converging in L1

loc(Ω) and therefore U is compact in
Psh(Ω).

4.4 – Currents. Definition and first properties

Let Ω ⊂ Cn be a domain. We denote by Ck
0 (Ω,Λp,q) the space of (complex)

(p, q)-forms having Ck coefficients with compact support in Ω. Given

ω =
∑

aj1,... ,kq
dzj1 ∧ . . . dzjp

∧ dzk1
∧ . . . ∧ dzkq

∈ Ck
0 (Ω,Λp,q)

we write |ω|Cs < ε if supΩ |Dαaj1,... ,kq
| < ε for all α ∈ Nn such that |α| ≤ s.

Definition 4.4.1. Let ε > 0 and let ω ∈ Ck
0 (Ω,Λp,q). Let K be a compact

set in Ω such that supp(ω) ⊆ K. For s ≤ k, we denote by Cs the topology on
Ck

0 (Ω,Λp,q) obtained by declaring open neighborhoods of ω the following sets

V (ω, K, ε) = {η ∈ Ck
0 (Ω,Λp,q) : supp(η) ⊆ K, |ω − η|Cs < ε}

as ε > 0 and K (with supp(ω) ⊆ K) vary.

Thus a sequence {ωl} ⊂ Ck
0 (Ω,Λp,q) converges to ω ∈ Ck

0 (Ω,Λp,q) in the
Cs-topology if and only if

1. ∪supp(ωl) ∪ supp(ω) is contained in a compact set in Ω and
2. {Dαal

j1,... ,kq
}l converges uniformly in Ω to Dαaj1,... ,kq

for all |α| ≤ s.

Definition 4.4.2. A current of order k and bidegree (n − p, n − q) is a
continuous linear functional on Ck

0 (Ω, Λp,q) (endowed with the Cs-topology). We

denote byD(n−p,n−q)
k (Ω) the space of currents of order k and bidegree (n−p, n−q)

in Ω.

In what follows we will always consider only the Ck-topology on Ck
0 (Ω,Λp,q).

Also, we will consider D(n−p,n−q)
k (Ω) endowed with the weak∗-topology.

When the underlying complex structure has no relevance, we will consider
the space of currents of order k and degree m given by

Dm
k (Ω) =

∑

s+t=m

D(s,t)
k (Ω) .
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Definition 4.4.3. The support, supp(T ), of a current T ∈ D(n−p,n−q)
k (Ω)

is the complement in D of the union of all open sets U ⊂ D such that for all
ϕ ∈ Ck

0 (Ω,Λp,q) with supp(ϕ) ⊂⊂ U it follows that T (ϕ) = 0.

There are two main examples of currents to be kept in mind:

Example 4.4.4. Let Z ⊂ Ω be a closed and orientable C1-submanifold of
dimension p. The current of integration [Z] ∈ Dn−p

0 (Ω) is given by

[Z](ϕ) :=

∫

Z

i∗(ϕ) ,

for ϕ ∈ C0(Ω,Λp) and i : Z ↪→ Ω the natural embedding. It is clear that
supp[Z] = Z. If Z is a complex submanifold of complex dimension p, then

[Z] ∈ D(n−p,n−p)
0 (Ω) for i∗(ϕ) = 0 for all 2p-form such that ϕ �∈ C0(Ω,Λp,p).

Example 4.4.5. Let ψ ∈ L1
loc(Ω,Λp,q). Define

Tψ(ϕ) :=

∫

Ω

ψ ∧ ϕ ,

for ϕ ∈ C0(Ω, Λn−p,n−q). Then Tψ ∈ D(p,q)
0 (Ω).

Let

(4.3) dV = dx1 ∧ . . . ∧ dx2n =

(
i

2

)n

dz1 ∧ dz1 ∧ . . . ∧ dzn ∧ dzn

be the standard volume form on Ω ⊂ Cn. Let η ∈ Ck
0 (Ω,Λ2n). Then there

exists a ∈ Ck
0 (Ω) such that η = adV . This allows to define a homeomorphism

W : D0
k(Ω)→ D2n

k (Ω) given by

W(T )(a) := T (adV )

for T ∈ D0
k(Ω) and a ∈ Ck

0 (Ω). The inverse is

W−1(S)(η) = S(a) ,

for S ∈ D2n
k (Ω), η ∈ Ck

0 (Ω,Λ2n) and η = adV (notice that W,W−1 are linear
isomorphisms and are continuous in the weak∗ topology).

Let us denote by Qp(m) the set of all multi-indices I = (i1, . . . , ip) with
1 ≤ i1 < . . . < ip ≤ m.

Theorem 4.4.6. Let Ω ⊂ Cn. Let T ∈ Dp
k(Ω). For each multi-index

I ∈ Qp(2n) there exists a unique TI ∈ Disk(Ω) such that

T =
∑

I∈Qp(2n)

TIdxi1 ∧ . . . ∧ dxip .

In other words, for ϕ ∈ Ck
0 (Ω,Λ2n−p) it follows

T (ϕ) =
∑

I∈Qp(2n)

W−1(TI)(dxi1 ∧ . . . ∧ dxip ∧ ϕ) .
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Proof. Let I = {i1, . . . , ip} ∈ Qp(2n) and let Ic = (j1, . . . , j2n−p) ∈
Q2n−p(2n) be its complementary. Let us write dxI := dxi1 ∧ . . . ∧ dxjp . Then
dxI ∧ dxIc = σIdV , where σI = ±1 and dV is the standard volume form in Cn.
For a ∈ Ck

0 (Ω), let us define

TI(a) := σIT (adxIc) .

Let now ϕ ∈ Ck
0 (Ω,Λ2n−p). Then ϕ =

∑
J∈Q2n−p(2n) aJdxJ for some aJ ∈

Ck
0 (Ω). Thus

T (ϕ) =
∑

J∈Q2n−p(2n)

T (aJdxJ) =
∑

I∈Qp(2n)

σITI(aIc) =

=
∑

I∈Qp(2n)

W−1(TI)(σIaIcdV ) =
∑

I∈Qp(2n)

W−1(TI)(dxi1 ∧ . . . ∧ dxip
∧ ϕ),

as wanted.

According to Theorem 4.4.6 a current of degree p and order k is a p-form
with distributional coefficients of order k. An analogue of Theorem 4.4.6 holds

in the complex category, namely, if T ∈ D(p,q)
k (Ω) (and, say, q ≥ p) then

(4.4) T = (i/2)p
∑

I∈Qp(n),J∈Qq(n)

TI,Jdzi1 ∧ dzj1 ∧ . . . dzip
∧ dzjp

∧ . . . ∧ dzjq
,

with TI,J distribution of order k on Ω. The TI,J are called coefficients of T .

Be aware: the term (i/2)p in (4.4) is clearly asymmetric in (p, q). However,
it really makes sense only in case p = q (when discussing positive currents).

4.5 – Operations with currents

Here we consider only few operations among those that can be operated on
currents. We refer to [dR] or [Dem] for the general theory.

4.5.1 – Exterior derivatives

Let Ω ⊂ Cn. Let T ∈ Dp
k(Ω). We define dT ∈ Dp+1

k+1(Ω) as follows:

dT (ϕ) := (−1)p+1T (dϕ) ∀ϕ ∈ Ck+1
0 (Ω,Λ2n−(p+1)) .

Since the operator d : Ck+1
0 (Ω, Λ2n−(p+1)) → Ck

0 (Ω,Λ2n−p) is continuous (with
respect to the Ck+1 and Ck-topologies) then d : Dp

k(Ω)→ Dp+1
k+1(Ω) is continuous

(with respect to the weak∗-topology).
Similarly, in the complex case, one can define the operators ∂ : Dp,q

k (Ω) →
D(p+1,q)

k+1 (Ω) and ∂ : Dp,q
k (Ω)→ D(p,q+1)

k+1 (Ω).

Proposition 4.5.1. Let Ω ⊂ Cn be a domain. Let ψ ∈ Ck
0 (Ω,Λp). Then

dTψ = Tdψ. Similarly, ∂Tψ = T∂ψ and ∂Tψ = T∂ψ.
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Proof. By definition, integrating by parts and by Stokes’ theorem it follows

dTψ(ϕ) = (−1)p+1Tψ(dϕ) = (−1)p+1

∫

Ω

ψ ∧ dϕ =

∫

Ω

dψ ∧ ϕ = Tdψ(ϕ) ,

for all ϕ ∈ Ck+1
0 (Ω,Λ2n−p−1). In case of ∂ (and ∂) the argument is similar

because d(ψ ∧ ϕ) = ∂(ψ ∧ ϕ) for ψ ∈ Ck
0 (Ω,Λp,q) and ϕ ∈ Ck+1

0 (Ω,Λn−p−1,n−q)
and thus Stokes’ theorem applies.

4.5.2 – Wedge product

Let Ω ⊂ Cn. Let T ∈ Dp
k(Ω) and ψ ∈ Ck

0 (Ω,Λq) with p+ q ≤ 2n. We define

T ∧ ψ ∈ Dp+q
k (Ω) as follows:

(T ∧ ψ)(ϕ) := T (ψ ∧ ϕ), ∀ϕ ∈ Ck
0 (Ω,Λ2n−p−q) .

Be aware: The wedge product is defined (here) only between currents and
(smooth) forms and not between two currents, that is

∧ : Dp
k(Ω)× Ck

0 (Ω,Λq) −→ Dp+q
k (Ω) .

It can be easily proved that d(T ∧ ψ) = dT ∧ ψ + (−1)degT T ∧ dψ.

4.6 – Positive forms and positive currents

4.6.1 – Positive forms

We recall that a distribution T is said to be positive provided T (ϕ) ≥ 0
for all test functions ϕ ≥ 0. In order to define positive currents, we first define
positive forms.

Definition 4.6.1. Let Ω ⊂ Cn be a domain. A form ω ∈ Ck(Ω,Λ2p) is
real if ω(X) ∈ R for all X ∈ (TΩR)⊗p.

Notice that ω is real if and only if ω = ω. In particular if a (p, q)-form is
real then p = q.

Proposition 4.6.2. Let Ω ⊂ Cn be a domain. A (1, 1)-form ω is real if
and only if

ω =
i

2

n∑

j,k=1

hjkdzj ∧ dzk

with (hjk(x)) being a n× n Hermitian matrix for all x ∈ Ω.
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Proof. It is a direct computation from ω = ω.

Definition 4.6.3. Let Ω ⊂ Cn be a domain. A 2n-form ω is positive if
ω = fdV with f ≥ 0 and dV the standard volume form (4.3). If ω is a positive
2n-form we write ω ≥ 0.

Definition 4.6.4. A (p, p)-form ω is elementary strongly positive if ω(x) �=
0 for all x ∈ Ω and there exist ωj ∈ Ck(Ω,Λ(1,0)), j = 1, . . . , p such that

ω =

(
i

2

)p

ω1 ∧ ω1 ∧ . . . ωp ∧ ωp .

Notice that ω1, . . . , ωp as in the previous definition are linearly independent
at each point of Ω since ω is nowhere zero in Ω.

Let SP(p,p)(Ω) be the real cone in Ck(Ω,Λ(p,p)) generated by the elementary

strongly positive forms (that is, η ∈ SP(p,p)(Ω) if there exist λj ∈ Ck(Ω, R) with
λj ≥ 0 and ηj elementary strongly positive forms such that η =

∑
λjηj). A

form ω ∈ SP(p,p)(Ω) is said strongly positive.

Proposition 4.6.5. The Ck(Ω, R)-module Ck(Ω,Λ
(p,p)
R ) of real (p, p)-forms

has a basis of strongly positive (p, p)-forms. In particular SP(p,p)(Ω) has non-
empty interior.

Proof. First of all we notice that the complex space of (p, p)-forms has a
basis of strongly positive forms. To this aim, notice that

dzj1 ∧ dzk1 ∧ . . . ∧ dzjp ∧ dzkp = ±
p∧

l=1

dzjl
∧ dzkl

and

dzj ∧ dzk =
i

4
{−i(dzj + dzk) ∧ (dzj + dzk)− i(dzj − dzk) ∧ (dzj − dzk)+

+ (dzj + idzk) ∧ (dzj − idzk)− (dzj − idzk) ∧ (dzj + idzk)}.

Now let ω be a real (p, p)-form. Write ω as linear combination of strongly positive
(p, p)-forms (with complex coefficients a priori). Since strongly positive forms
are real, it follows that the coefficients in such a linear combination are real,
proving the statement.

The cone of strongly positive forms is invariant under holomorphic changes
of coordinates:

Proposition 4.6.6. Let Ω ⊂ Cn be a domain. Let f : Ω′ → Ω be a
biholomorphism. Then f∗(SP(p,p)(Ω)) = SP(p,p)(Ω′).
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Proof. First of all notice that if η1, . . . , ηr are (1, 0)-forms linearly indepen-
dent at each z ∈ Ω then f∗(η1), . . . , f∗(ηr) are (1, 0)-forms linearly independent
at each x ∈ Ω′ and then f∗(η) is elementary strongly positive if and only if η is

elementary strongly positive. Therefore f∗(SP(p,p)(Ω)) = SP(p,p)(Ω′).

Definition 4.6.7. A (p, p)-form ω ∈ Ck(Ω,Λ(p,p)) is positive, and we write

ω ≥ 0, if for all ψ ∈ SP(n−p,n−p)(Ω) it follows ω ∧ ψ ≥ 0.

Remark 4.6.8. Since η ∈ SP(n−p,n−p)(Ω) is of the form
∑

λjηj with
λj ≥ 0 and ηj elementary strongly positive, then a (p, p)-form ω is positive if
and only if ω ∧ η ≥ 0 for all elementary strongly positive (n− p, n− p)-forms.

Clearly, one can localize the notions of elementary strongly positivity, strong-
ly positivity and positivity to each fiber of the bundle Λ(p,p) on Ω. In other words,

a form α ∈ Λ
(p,p)
x (here α is an element of the fiber of Λ(p,p) at x) is positive if

for all elementary strongly positive (n− p, n− p)-form β ∈ Λ
(n−p,n−p)
x it follows

α ∧ β = λdV (x) with λ ≥ 0.

Lemma 4.6.9. Let Ω ⊂ Cn be a domain. Let ω ∈ Ck(Ω,Λ(p,p)). Then
ω ≥ 0 if and only if ω(x) ≥ 0 for all x ∈ Ω.

Proof. If ω(x) ≥ 0 for all x ∈ Ω then ω ≥ 0 because if it were ω ∧ η =
fdV �≥ 0 for some elementary strongly positive (n − p, n − p)-form that there
would exists x ∈ Ω such that f(x) < 0 and thus ω(x) ∧ η(x) = f(x)dV (x) < 0
contrarily to our hypothesis.

Conversely, if ω(x) ∧ ηx = λdV (x) with λ < 0 and ηx ∈ Λ(n−p,n−p) ele-
mentary strongly positive, then there exists η ∈ Ck(Ω,Λ(n−p,n−p)) elementary
strongly positive such that η(x) = ηx and then ω ∧ η �≥ 0.

Lemma 4.6.9 allows to check pointwise if a given form is positive. Next
result says that positivity is a notion compatible with holomorphic maps:

Proposition 4.6.10. Let Ω ⊂ Cn be a domain. Let ω ∈ Ck(Ω,Λ(p,p)).

1. If ω ≥ 0 then for all σ : U → Ω holomorphic from a domain U ⊂ Cs (with
s ≤ n) to Ω it follows σ∗(ω) ≥ 0.

2. If for all σ : U → Ω holomorphic from a domain U ⊂ Cp to Ω it follows
σ∗(ω) ≥ 0 then ω ≥ 0.

Proof. (1) First of all notice that if σ : U → Ω with U ⊂ Cn is a

biholomorphism then σ∗(SP(p,p)(Ω)) = SP(p,p)(U) by Proposition 4.6.6. Let

η ∈ SP(p,p)(Ω). By Cauchy-Riemann equations, σ∗(dV ) = |det(∂σk

∂zj
)|2dV and

then σ∗(ω∧η) ≥ 0 if and only if ω∧η ≥ 0, namely, ω ≥ 0 if and only if σ∗(ω) ≥ 0.
Assume now that ω ≥ 0. Let σ : U → Ω be holomorphic with U ⊂ Cs. If

s < p then σ∗(ω) = 0 and there is nothing to prove. Assume that s ≥ p. Let ψ =
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(i/2)s−pψp+1∧ψp+1∧ . . . ψs∧ψs be an elementary strongly positive (s−p, s−p)-
form in U (here we take ψ ≡ 1 if s = p). We have to show that σ∗(ω) ∧ ψ ≥ 0.
According to Lemma 4.6.9, it is enough to check that σ∗(ω)(x) ∧ ψ(x) ≥ 0 for
all x ∈ U . Moreover, for what we already proved at the beginning, we can
compose with biholomorphisms. Thus we can choose holomorphic coordinates
{z1, . . . , zs} in U near x such that ψj(x) = dzj(x) for j = p + 1, . . . , s (if s = p
we do not need this change of coordinates). In such coordinates, we need to
show that σ∗(ω)(x) ∧ (i/2)s−pdzp+1 ∧ dzp+1 ∧ . . . dzs ∧ dzs ≥ 0.

Let Ej = dσx( ∂
∂zj

) for j = 1, . . . , s. We can assume that E1, . . . , Er are

linearly independent (with r ≤ s) and generate dσx(TxU). Notice that if r < p
then σ∗(ω)(x) = 0 and there is nothing to prove. We can thus assume that r ≥ p.
Let {Er+1, . . . , En} be a completion of {E1, . . . , Er} to a basis of Tσ(x)Ω = Cn.
Let

T (z1, . . . , zn) = σ(z1, . . . , zs) +

s∑

j=p+1

Ej(zj − xj) +

n∑

j=s+1

Ejzj .

Then there exist V ∈ Cn−s an open neighborhood of O and U ′ ⊂ U an open
neighborhood of x such that T : U ′×V → Ω is holomorphic and T (x, O) = σ(x).
Notice that by construction dT(x,O)(

∂
∂zj

) = εjEj with εj = 2 if j = p + 1, . . . , r

and εj = 1 otherwise. Thus dTx,O is invertible and, up to shrink U ′, V , we
can assume that T is a biholomorphism on its image. Let η be an elementary
strongly positive (n− p, n− p)-form. Then T ∗(ω ∧ η) ≥ 0. For j = 1, . . . , n, let
ηj be (1, 0)-forms such that ηj(σ(x))(Ek) = δk

j . By construction

T ∗(ηj)(x, O) = εjdzj

with εj = 2 if j = p + 1, . . . , r and εj = 1 otherwise.
Let η = (i/2)n−pηp+1∧ηp+1∧ . . .∧ηn∧ηn. Then η is an elementary strongly

positive (n− p, n− p)-form near x. Thus

0 ≤ T ∗(ω ∧ η)(x, O) = T ∗ω(x, O) ∧ T ∗η(x, O) =

= T ∗ω(x, O) ∧ (i/2)(n−p)2r−pdzp+1 ∧ dzp+1 ∧ . . . ∧ dzn ∧ dzn =

= 2r−pσ∗(ω)(x) ∧ (i/2)(n−p)dzp+1 ∧ dzp+1 ∧ . . . ∧ dzn ∧ dzn,

which implies that σ∗(ω)(x) ∧ (i/2)(s−p)dzp+1 ∧ dzp+1 ∧ . . . ∧ dzs ∧ dzs ≥ 0.
(2) Assume that for all σ : U → Ω holomorphic it follows σ∗(ω) ≥ 0. Let

η be an elementary strongly positive (n− p, n− p)-form. We have to show that
ω ∧ η(x) ≥ 0 for all x ∈ Ω. Fix x ∈ Ω. Write x = (x′, x′′) ∈ Cp × Cn−p. By (1)
we can choose local holomorphic coordinates near x such that

η(x) = (i/2)n−pdzp+1 ∧ dzp+1 ∧ . . . ∧ dzn ∧ dzn .

Now let U = Ω ∩ (Cp × {x′′}) and let σ : U → Ω be given by

σ(z1, . . . , zp) = (z1, . . . , zp, x
′′) .



236 FILIPPO BRACCI – STEFANO TRAPANI [40]

By hypothesis σ∗(ω)(x′) = λ(i/2)pdz1 ∧ dz1 ∧ . . . ∧ dzp ∧ dzp with λ ≥ 0 and
σ∗(ω)(x′)∧η(x′′) = ω∧η(x), from which ω∧η(x) = λdV proving that ω ≥ 0.

Lemma 4.6.11. Let Ω ⊂ Cn be a domain. If ω ∈ SP(p,p)(Ω) then ω ≥ 0.

Proof. Let x ∈ Ω. According to Lemma 4.6.9 and Proposition 4.6.10 we
can prove that ω is positive using any local holomorphic coordinates change. We
can thus choose local holomorphic coordinates at x such that ω(x) = (i/2)pdz1∧
dz1 ∧ . . . ∧ dzp ∧ dzp. From this it follows easily that ω(x) ≥ 0.

Theorem 4.6.12. Let Ω ⊂ Cn be a domain. Let ω = i/2
∑

hjkdzj ∧ dzk ∈
Ck(Ω,Λ(1,1)). Then the following are equivalent :

1. ω ≥ 0.
2. (hjk(x)) is a semi-positive definite hermitian matrix for all x ∈ Ω.

3. ω ∈ SP(1,1)(Ω).

Proof. Assume (1). By Proposition 4.6.2 it follows that (hjk) is an her-
mitian matrix if and only if ω is real. Let x ∈ Ω and w ∈ Cn and define
σ(ζ) := x + ζw for |ζ| � 1. Then

σ∗(ω)(0) = i/2
∑

hjk(x)dσj(0) ∧ dσk(0) = i/2
∑

hjk(x)wjwkdζ ∧ dζ

and by Proposition 4.6.10.(1), ω ≥ 0 implies σ∗(ω)(0) ≥ 0 and then (hjk(x)) ≥ 0,
proving (2).

Assume (2). Then H = (hjk(x)) ≥ 0. Let W = (ujk) be a unitary (n× n)-
matrix such that W ∗HW = D with D a diagonal matrix with entries λj ≥ 0 on
the diagonal. Let us consider the following change of coordinates z = Wz̃. Then

ω(x) =
i

2

∑

j,k

hjkdzj ∧ dzk =
i

2

∑

j,k

hjkd(Wz̃)j ∧ d(Wz̃)k =

=
∑

j,k,l,m

hjkujlukmdz̃l ∧ dz̃m =
∑

m,l

λlδ
m
l dz̃l ∧ dz̃m =

∑

m

λmdz̃m ∧ dz̃m .

Thus ω ∈ SP(1,1)(Ω) by Proposition 4.6.6, and this proves (3).
Finally, if (3) holds, then (1) follows from Lemma 4.6.11.

4.6.2 – Positive currents

Now we are in the good shape to define positive currents.

Definition 4.6.13. Let Ω ⊂ Cn be a domain. A current T ∈ D(p,p)
k (Ω)

is a positive current of degree p, and we write T ≥ 0, if T (ω) ≥ 0 for all ω ∈
SP(n−p,n−p)(Ω).
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Notice that a positive (p, p)-current T is real in the sense that for all real
(n − p, n − p)-form ω with compact support it follows T (ω) ∈ R. Indeed, by
Proposition 4.6.5 it is enough to prove it for strongly positive elementary forms.
But if ω ∈ SP(p,p)(Ω) then T (ω) ≥ 0.

Let x ∈ Ω be a given point and consider the natural bilinear map Λ
(p,p)
R,x ×

Λ
(n−p,n−p)
R,x −→ Λ

(n,n)
R,x given by (η, ϕ) �→ η ∧ ϕ. It is a non-degenerate bilinear

application which defines a duality between Λ
(p,p)
R,x and Λ

(n−p,n−p)
R,x . In other

words, it defines a R-linear isomorphism between Λ
(p,p)
R,x and (Λ

(n−p,n−p)
R,x )∗ (and

in particular Λ
(p,p)
R,x and Λ

(n−p,n−p)
R,x have the same dimension). Thus, if {ηJ} is

a basis for Λ
(p,p)
R,x , we say that {ϕJ} is a dual basis for Λ

(n−p,n−p)
R,x if ηJ ∧ ϕI = 0

for I �= J and ηI ∧ ϕI = dV .

Theorem 4.6.14.Let Ω ⊂ Cn be a domain. Let T ∈ D(p,p)
∞ (Ω), T ≥ 0. Then

T ∈ D(p,p)
0 (Ω). In particular the coefficients of T are positive Radon measures

with respect to any basis which is dual for a basis of strongly positive forms of

C∞(Ω,Λ
(n−p,n−p)
R ).

Proof. By Proposition 4.6.5 the space of (real) (n− p, n− p)-forms has a
basis of strongly positive forms, say {ϕ1, . . . , ϕM}. Let {η1, . . . , ηM} be a basis
of real (p, p)-forms, dual for {ϕ1, . . . , ϕM}. According to Theorem 4.4.6 we can
write

T =
M∑

j=1

Tjηj ,

with Tj ∈ Dis∞(Ω). Fix t ∈ {1, . . . , M}. Then

0 ≤ T (ϕt) =

M∑

j=1

W−1(Tj)(ηj ∧ ϕt) =W−1(Tt)(ηt ∧ ϕt) .

Since clearly the isomorphism W maps positive distributions to positive (n, n)-
forms, then Tt is a positive functional on C∞

0 (Ω) and by Lemma 4.1.5 it follows
that Tt is a positive Radon measure. Another application of Theorem 4.4.6

implies that T ∈ D(p,p)
0 (Ω).

Now we can relate plurisubharmonic functions to positive currents:

Theorem 4.6.15. Let Ω ⊂ Cn be a domain. Let u ∈ L1
loc(Ω). The following

are equivalent :

1. There exists v ∈ Psh(Ω) such that u = v almost everywhere in Ω.

2. The matrix ( ∂2u
∂zj∂zk

) is positive semidefinite in the sense of distributions.

3. ddcu is a positive (1, 1)-current.
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Proof. By Proposition 3.2.3 (1) is equivalent to (2). Now assume that
u ∈ C2(Ω). Then ddcu = 4(i/2)∂∂u and thus u ∈ Psh(Ω) if and only if ddcu is
a positive (1, 1)-current.

If u ∈ Psh(Ω) (no further regularity), let uε ∈ C∞(Ωε) ∩ Psh(Ωε) be such
that {uε} pointwise decreases to u (see Theorem 3.2.1). Then ddcuε ≥ 0. Let

ϕ ∈ SP(n−1,n−1)(Ω). By Beppo Levi’s theorem it follows

ddcu(ϕ) :=

∫

Ω

u ddcϕ = lim
ε→0

∫

Ω

uε ddcϕ = lim
ε→0

ddcuε(ϕ) ≥ 0 ,

thus ddcu ≥ 0 showing that (1) implies (3). Conversely, assume ddcu ≥ 0.
Let uε = u ∗ χε ∈ C∞(Ωε). Then uε converges to u in L1

loc(Ω) (and almost
everywhere). In particular for all f ∈ C∞

0 (Ω) we have

∫

Ω

∂2u

∂zj∂zk
fdV :=

∫

Ω

u
∂2f

∂zj∂zk
dV = lim

ε→0

∫

Ω

uε
∂2f

∂zj∂zk
dV .

Therefore ddcu ≥ 0 implies that ddcuε ≥ 0 and then uε ∈ Psh(Ωε) for all ε.
Now, arguing as at the end of Theorem 1.4.1 we see that uε is decreasing in ε
and thus, by Lemma 3.1.9, it follows that v(z) = limε→0 uε(z) ∈ Psh(Ω). Since
u = v almost everywhere then (1) follows.

Remark 4.6.16. By the previous theorem, if u ∈ Psh(Ω) then ddcu is a
d-closed positive (1, 1)-current, namely, d(ddcu) = 0.

Remark 4.6.17. According to Theorem 4.6.15 and Theorem 4.6.12, if
u ∈ Psh(Ω) ∩ C∞(Ω) then ddc(u) ∈ SP (1,1)(Ω).

Conversely we state and sketch a proof of the following result which says
that locally every (1, 1)-positive current has a potential.

Theorem 4.6.18. Let Ω ⊂ Cn be a domain. Let T ∈ D(1,1)(Ω) be a positive
current such that dT = 0. For any z ∈ Ω there exist an open neighborhood
Uz ⊂ Ω, z ∈ Uz and u ∈ Psh(Uz) such that T = ddcu in D(1,1)(Uz). Moreover,
if T = Tω is the current associated to ω ∈ C∞(Ω,Λ(1,1)) then u ∈ C∞(Uz) for
all z.

Proof. One can define a cohomology on Ω given by d-closed currents over d-
exact currents. As in the smooth case, such a cohomology is locally exact, in the
sense that an analogue of Poincaré’s Lemma holds for currents (see [dR], [Dem]).
Namely, since dT = 0, for any z ∈ Ω there exist a convex open neighborhood
U ⊂ Ω, z ∈ U and S ∈ D1(U), S real, such that dS = T in D2(U). Now

S = S(1,0) + S(0,1) with S(1,0) ∈ D(1,0)(U) and S(0,1) = S(1,0) ∈ D(0,1)(U). Now,

dS = ∂S + ∂S = ∂S(1,0) + ∂S(0,1) + ∂S(1,0) + ∂S(0,1)
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and because T is of bidegree (1, 1) it follows that ∂S(1,0) = ∂S(0,1) = 0. By
the Dolbeault lemma for currents (similar to the one for smooth forms, see
[Dem]) there exists ϕ ∈ D0(U) � Dis(U) such that ∂ϕ = S(0,1). Therefore

S = ∂ϕ + ∂ϕ = ∂ϕ + ∂ϕ and

T = dS = d(∂ϕ + ∂ϕ) = ∂∂ϕ + ∂∂ϕ = ∂∂(ϕ− ϕ) = 2i∂∂v = ddcv ,

where v = −i(ϕ−ϕ)/2 is a real distribution. Thus we have a real distribution v
such that T = ddcv. If T ≥ 0 then ddcv ≥ 0, which implies that L(v) ≥ 0, and
by Proposition 4.2.1 it follows that v is associated to a function u ∈ Psh(U).

Finally, assume that ω is a smooth (1, 1)-form and T = Tω. Then T =
−2i∂(∂u). Since T is C∞ then ∂u ∈ C∞(U,Λ(1,0)) because ∂ is a hypoelliptic
operator in degree (p, 0). Indeed, ∂ω = 0 because ∂T = 0 and ∂T = T∂ω and

thus (by the Poincaré lemma for the ∂ operator—recall that U is convex and
thus pseudoconvex) there exists θ ∈ C∞(U,Λ(1,0)) such that ∂θ = ω. Therefore
(identifying forms with currents as usual) ∂(θ + 2i∂u) = 0 and then θ + 2i∂u is
holomorphic which implies that ∂u ∈ C∞(U,Λ(1,0)) and, since ∂u = ∂u because
u is real, du ∈ C∞(U,Λ1). From this it follows that u ∈ C∞(U).

Example 4.6.19. Let Z ⊂ Ω be a complex submanifold of (complex)
dimension p (with no boundary in Ω). Then the integration current [Z] is a
(n − p, n − p)-positive d-closed current. Indeed, let i : Z ↪→ Ω be the natural

holomorphic embedding. If ϕ ∈ SP(p,p)(Ω) then i∗(ϕ) ≥ 0 by Proposition 4.6.10
and thus [Z](ϕ) :=

∫
Z

i∗(ϕ) ≥ 0. Finally, for ϕ ∈ C0(Ω,Λ2n−2p−1) and by
Stokes’ theorem

d[Z](ϕ) := [Z](dϕ) =

∫

Z

i∗(dϕ) = ±
∫

∂Z

i∗(ϕ) = 0 .

4.7 – Integration over analytic sets

In this section we sketch how to define currents of integration along analytic
subsets of Ω ⊂ Cn. We refer to [Dem] for details.

Let T ∈ D(p,q)
0 (Ω) be a (p, q)-currents in Ω. According to Theorem 4.4.6 we

can write T as in (4.4), with TI,J Radon measure. Let us define the mass ‖T‖
of T as

‖T‖ :=
∑

I,J

|TI,J | ,

where |TI,J | is the measure total variation of TI,J (see Remark 4.1.4). Since
by construction TI,J is absolutely continuous with respect to ‖T‖ then the
Radon-Nykodim theorem implies that there exists a locally ‖T‖-measurable com-
plex function fI,J ∈ L1

loc(Ω, ‖T‖) such that TI,J = fI,J‖T‖ (according to Re-
mark 4.1.4, such a function fI,J is defined on a relatively compact Borel subset
E of Ω by applying the Radon-Nykodim theorem to TI,J |E). Since

‖T‖ =
∑
|TI,J | =

∑
|fI,J |‖T‖ ,
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it follows that
∑ |fI,J | = 1. Thus if we set f := (i/2)p

∑
fI,Jdzi1 ∧ dzj1 ∧ . . . it

follows that
T = ‖T‖f .

Lemma 4.7.1. The current T ∈ D(p,p)
0 (Ω) is positive if and only if the form

f is positive at ‖T‖-almost all points of Ω.

Proof. If f≥0 (for ‖T‖-almost everywhere) then for all ϕ∈SP(n−p,n−p)(Ω),
we have

T (ϕ) = ‖T‖f(ϕ) :=

∫

Ω

f ∧ ϕ‖T‖ ≥ 0 .

Conversely, if T ≥ 0 then for all ϕ ∈ SP(n−p,n−p)(Ω) we have

0 ≤ T (ϕ) = ‖T‖f(ϕ) :=

∫

Ω

f ∧ ϕ‖T‖

thus f ∧ ϕ ≥ 0 but at most zero ‖T‖-measure sets. Letting ϕ varying, we see
that f ≥ 0 for ‖T‖-almost all points.

Definition 4.7.2. A complete pluripolar set E ⊂ Ω is a subset such that
for each x ∈ E there exists an open neighborhood Vx ⊂ Ω and a function
v ∈ Psh(Vx) such that E ∩ Vx = {v = −∞}.

The following theorem is due to Skoda and El Mir:

Theorem 4.7.3. Let Ω ⊂ Cn be a domain. Let E ⊂ Ω be a closed complete
pluripolar set. Let T ∈ D(p,p)(Ω\E) be a positive (p, p)-current, dT = 0. Suppose
that ‖T‖ is bounded near each point of E. Let T̃ be the trivial extension of T to
E obtained by extending TI,J to zero on E. Then T̃ is positive and closed on Ω.

Now let X ⊂ Ω be a (possibly singular) complex subvariety (with no bound-
ary) of pure dimension p. Then X defines an element of (H2n−2p(Ω, R))∗ as
follows. Given any (2n − 2p)-form ϕ such that dϕ = 0, one can define

∫
X

ϕ
by taking any C∞-smooth submanifold X ′ ⊂ Ω which is homologous to X and
defining

∫
X

ϕ =
∫

X′ i∗X′(ϕ), with iX′ : X ′ ↪→ Ω the natural embedding. Since
dϕ = 0, Stokes theorem implies that such a definition is independent of the cycle
X ′ homologous to X which has been chosen (see, e.g., [GH]).

However, this definition does not allow to define a current of integration on
X (the problem being how to defining integration of non-closed test forms).

We can thus try to define the current of integration [X] by integrating over
the regular part Xr of X:

[Xr](ϕ) :=

∫

Xr

i∗(ϕ)
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where i : X ↪→ Ω is the natural embedding (and ϕ ∈ C0(Ω,Λ(p,p)). It can be
proved that [Xr] is a current of bidegree (n − p, n − p) on Ω \ Sing(X). It is
also clearly positive and, suitably using Stokes theorem for subvariety, one can
even shows that it is closed. The following result of Lelong implies that such a
definition is the good one:

Theorem 4.7.4. Let Ω ⊂ Cn be a domain. Let X ⊂ Ω be a complex
subvariety (with no boundary) of pure dimension p. The current [Xr] has finite
mass near every point of Sing(X). Thus its trivial extension [X] is a closed
positive (n− p, n− p)-current of order 0 on Ω.

Notice that, by the previous theorem and since Sing(X) has zero measure
in X, the current [X] defined as extension of the current of integration [Xr],
coincides on closed test forms with the integration on cycles homologous to X.

5 – The Complex Monge-Ampère operator

5.1 – Maximal plurisubharmonic functions

Consider the unit ball B ⊂ Rm and let ϕ ∈ C0(∂B). The unique solution
u ∈ C0(B) ∩ harm(B) to the Dirichlet problem

(5.1)

{
Δu = 0 in B
u|∂B = ϕ

can be characterized as

(5.2) u(x) = sup{v(x) : v ∈ subh(B), lim sup
B�x→p

v(x) ≤ ϕ(p)∀p ∈ ∂B} .

Thus, harmonic functions can be characterized as the maximal functions among
subharmonic functions. In other words:

Proposition 5.1.1. Let Ω ⊂ Rm be a domain and let u ∈ C0(Ω)∩subh(Ω).
Then u ∈ harm(Ω) if and only if for all G ⊂⊂ Ω open and v ∈ subh(G) such
that lim supx→p v(x) ≤ u(p) for all p ∈ ∂G it follows that v ≤ u in G.

Proof. The necessity of the condition follows from the maximum principle.
Conversely, suppose that G ⊂⊂ Ω is an open ball. Let v ∈ harm(G) ∩ C0(G)
be such that v(p) = u(p) for all p ∈ ∂G. Then by the subharmonicity u ≤ v in
G and by hypothesis v ≤ u which implies that u = v and thus u ∈ harm(G),
proving that u ∈ harm(Ω).
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Since pluriharmonic functions are harmonic, and plurisubharmonic func-
tions are subharmonic, pluriharmonic functions are maximal among plurisub-
harmonic functions. However, considering the unit ball B ⊂ Cn and given
ϕ ∈ C0(∂B), there is, in general, no u ∈ Ph(B) ∩ C0(B) such that u|∂B = ϕ
and maximal plurisubharmonic functions are not necessarily pluriharmonic.

Example 5.1.2. Let us consider the unit ball B ⊂ C2. Let f : D →
(−∞,∞) be any continuous subharmonic function which is not C1 at some
points of D. Let ϕ(z) = f(z1) for z ∈ ∂B. Then ϕ ∈ C0(∂B). Let us define
u(z) := f(z1) for z ∈ B. Then D � ζ �→ u(a + ζb) = f(a1 + ζb1) is subharmonic
for all {a + ζb : ζ ∈ D} ⊂⊂ B. Hence u ∈ Psh(B)∩C0(B). Since u is not C∞ by
construction, u �∈ Ph(B). However, if v ∈ Psh(B) is such that lim supz→p v(z) ≤
ϕ(p) for all p ∈ ∂B then v(z) ≤ u(z) for all z ∈ B because u is harmonic on
z1 = constant. This implies that there are no V ∈ C0(B) ∩ Ph(B) such that
V |∂B = ϕ, because otherwise the maximum principle would imply V = u forcing
u to be of class C∞.

Definition 5.1.3. Let Ω ⊂ Cn be a domain. A function u ∈ Psh(Ω) is
said to be maximal (according to Sadullaev) if for any open set G ⊂⊂ Ω and
v ∈ Psh(G) such that lim supz→p v(z) ≤ u(p) for all p ∈ ∂G it follows that v ≤ u
in G.

The function u in Example 5.1.2 is an example of maximal plurisubharmonic
function which is not pluriharmonic. More generally:

Proposition 5.1.4. Let Ω ⊂ Cn be a domain. Let u ∈ Psh(Ω). Suppose
that for all z ∈ Ω there exists a proper holomorphic map ϕ : D → Ω such that
z ∈ ϕ(D) and u ◦ ϕ ∈ harm(D). Then u is maximal.

Proof. Let G ⊂⊂ Ω be an open set. Let v ∈ Psh(G) be such that
lim supz→p v(z) ≤ u(p) for all p ∈ ∂G. Let z ∈ G and let ϕ : D → Ω holo-
morphic and proper such that ϕ(ζ) = z for some ζ ∈ D and u ◦ ϕ ∈ harm(D).
Since ϕ is proper then ϕ−1(G) is an open set relatively compact in D and we can
assume, without loss of generality, that it is connected. Now, u ◦ ϕ is harmonic
in D. Also, by Proposition 3.3.2 either v ◦ϕ ≡ −∞ or v ◦ϕ ∈ subh(ϕ−1(G)). In
the latter case, since by hypothesis the upper semicontinuous extension of v ◦ ϕ
to the boundary of ϕ−1(G) is less then or equal to u ◦ ϕ on ϕ−1(∂G) it follows
by the very definition of subharmonic functions that u ◦ ϕ ≥ v ◦ ϕ on ϕ−1(G)
and hence u(z) ≥ v(z) proving that u is maximal.

Proposition 5.1.4 gives a geometric criterion for maximality. In particular
one can use such a criterion to construct a maximal plurisubharmonic function
by giving a foliation on Ω whose leaves are properly embedded holomorphic discs
and a plurisubharmonic function on Ω whose restriction on each leaf is harmonic.
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Proposition 5.1.5. Let Ω ⊂ Cn be a domain. Let u ∈ Psh(Ω). The
following are equivalent :

1. u is maximal.
2. For each open set G ⊂⊂ Ω and v ∈ Psh(G) such that lim infz→p[u(z) −

v(z)] ≥ 0 for all p ∈ ∂G it follows u ≥ v in G.
3. For each open set G ⊂⊂ Ω and v ∈ Psh(Ω) such that lim infG�z→p[u(z) −

v(z)] ≥ 0 for all p ∈ ∂G it follows u ≥ v in G.
4. For each v ∈ Psh(Ω) which has the property that for each ε > 0 there exists

a compact set K ⊂ Ω such that u− v ≥ −ε in Ω \K then u ≥ v in Ω.
5. For each open set G ⊂⊂ Ω and v ∈ Psh(Ω) such that v(p) ≤ u(p) for all

p ∈ ∂G it follows u ≥ v in G.

Proof. Assume (1) and let v, G as in (2). Then lim supz→p v(z) ≤ u(p) for
all p ∈ ∂G. Indeed, let {zk} ⊂ G be such that zk → p and L := lim supz→p v(z) =
limk→∞ v(zk). Then

0 ≤ lim inf
z→p

[u(z)− v(z)] ≤ lim inf
k→∞

[u(zk)− v(zk)] ≤ lim sup
k→∞

u(zk)− L ≤ u(p)− L .

Thus lim supz→p v(z) ≤ u(p) for all p ∈ ∂G and by (1) v ≤ u in G, which
proves (2).

Clearly (2) implies (3) because Psh(Ω)|G ⊂ Psh(G).
Now assume (3) holds. Let v ∈ Psh(Ω) with the property that for each

ε > 0 there exists a compact set K ⊂ Ω such that u− v ≥ −ε in Ω \K. Seeking
for a contradiction, we assume that there exists a ∈ Ω such that u(a) < v(a)− δ
for some δ > 0. By hypothesis, there exists a compact set K ⊂ Ω such that
u(z) − v(z) ≥ −δ/2 for all z ∈ Ω \K. Notice that a ∈ K. Let G ⊂⊂ Ω be an
open set such that K ⊂ G. Then lim infG�z→p[u(z) − v(z) + δ/2] ≥ 0 for all
p ∈ ∂G. Since (v− δ/2) ∈ Psh(Ω) then (3) implies that u ≥ v− δ/2 in G and in
particular then u(a) ≥ v(a)− δ/2, absurd. Thus (3) implies (4).

Assume (4) holds. Let G ⊂⊂ Ω be an open set and let v ∈ Psh(Ω) be such
such v(p) ≤ u(p) for all p ∈ ∂G. Let us define

(5.3) w(z) :=

{
u(z) for z ∈ Ω \G

max{u(z), v(z)} for z ∈ G

By the analogous of Proposition 1.5.1 for plurisubharmonic functions, w ∈
Psh(Ω). By construction, for all ε > 0 it follows that 0 = u(z) − w(z) ≥ −ε
for all z ∈ Ω \ G. By (4) it follows that u ≥ w in Ω and thus u ≥ v in G,
proving (5).

Finally, if (5) holds, given G ⊂⊂ Ω an open set and v ∈ Psh(G) such that
lim supz→p v(z) ≤ u(p) for all p ∈ ∂G we define w has in (5.3). Then w ∈ Psh(Ω),
w ≤ u on ∂G and by (5) it follows that w ≤ u in G, proving that v ≤ u in G
and then (1).
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5.2 – Characterization of maximal plurisubharmonic functions of class C2

In this section we characterize maximal plurisubharmonic functions of class
C2 by means of their Levi form. Let Ω ⊂ Cn and let u ∈ C2(Ω). Then

(5.4) (ddcu)n := ddcu ∧ . . . ∧ ddcu︸ ︷︷ ︸
n

= 4nn! det

(
∂2u

∂zj∂zk

)
dV

where dV is the volume form (IV.(4.3))

Lemma 5.2.1. Let Ω ⊂ Cn be a domain. Let u ∈ Psh(Ω) ∩ C2(Ω). Then
(ddcu)n ≥ 0.

Proof. It follows directly from Theorem IV.4.6.15 and (5.4). [Alterna-
tively, by Theorem IV. 4.6.15 the (1, 1)-form (with continuous coefficients) ddcu
is positive. By Theorem IV.4.6.12.(2) it is actually strongly positive. Therefore
(ddcu)n is a positive (n, n)-form.]

Theorem 5.2.2. Let Ω ⊂ Cn be a domain. Let u ∈ Psh(Ω)∩C2(Ω). Then
u is maximal in Ω if and only if (ddcu)n = 0 in Ω.

Proof. Assume first that (ddcu)n = 0. Let G ⊂⊂ Ω be an open set and let
v ∈ Psh(Ω) be such that v(p) ≤ u(p) for all p ∈ ∂G. We want to show that v ≤ u
in G which, by Proposition 5.1.5 and by the arbitrariness of v implies that u is
maximal. Seeking for a contradiction we assume that there exists a ∈ G such
that 0 < v(a)−u(a) = supz∈G(v−u)(z). Let δ > 0 be such that v(a)−δ > u(a).
Then v(z)− δ ∈ Psh(Ω) and v(p)− δ < u(p) for all p ∈ ∂G. Thus, if {vε} is the
decreasing sequence of regularizing plurisubharmonic functions for v − δ, there
exists ε > 0 such that G ⊂⊂ Ωε, vε ∈ C∞(Ωε) ∩ Psh(Ωε), vε(a) > u(a) and
vε(p) ≤ u(p) for all p ∈ ∂G.

Let M = maxz∈G ‖z‖2. Let λ > 0 be such that vε(a) + λ(‖a‖2−M) > u(a)

and let w(z) := vε(z) + λ(‖z‖2 −M). Then w ∈ Psh(Ωε), w(p) ≤ u(p) for all
p ∈ ∂G, w(a) > u(a) and Lz(w(z))(b; b) > 0 for all z ∈ G and b ∈ Cn \ {0}.

Let x ∈ G be a local maximum of w−u. Since w(a)−u(a) > 0 and w−u ≤ 0
on ∂G, such a point does exist.

Notice that det
(

∂2u
∂zj∂zk

)
(x) = 0 is equivalent to the existence of a vector

b ∈ Cn \ {0} such that Lx(u)(b; b) = 0. Let f(ζ) := (w − u)(x + ζb) for ζ ∈ C,
|ζ| � 1. Since ζ = 0 is a local maximum and f is of class C2 then Δf(0) ≤ 0.
Therefore

0 ≥ Δf(0) = 4Lx(w − u)(b; b) = 4Lx(w)(b; b) > 0 ,

a contradiction. Therefore u is maximal.
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Conversely, assume that u ∈ C2(Ω) ∩ Psh(Ω) is maximal. Assume by con-

tradiction that there exists a ∈ Ω such that det
(

∂2u
∂zj∂zk

)
(a) �= 0. This im-

plies that La(u) is positive definite. Since u is of class C2 one can find a ball
B(a, r) ⊂⊂ Ω and C > 0 such that Lz(u)(b; b) ≥ C for all b ∈ Cn such that
‖b‖ = 1 and z ∈ B(a, r). Then u(z) + C(r2 − ‖z‖2) ∈ Psh(B(a, r)) because
L(u(z) + C(r2 − ‖z − a‖2))(b; b) = L(u)(b; b)− C‖b‖2 ≥ 0 by construction. Let

v(z) =

{
u(z) for z ∈ Ω \ B(a, r)

u(z) + C(r2 − ‖z − a‖2) for z ∈ B(a, r)
.

By the analogous of Proposition 1.5.1 for plurisubharmonic functions, v∈Psh(Ω).
Moreover, v(p) = u(p) for all p ∈ ∂B(a, r) and v(a) = u(a) + Cr2 > u(a) against
the maximality of u.

Remark 5.2.3. With some more effort (see, e.g., [Kl, Proposition 3.1.7])
one can prove the following generalization of the previous theorem: let u, v ∈
C2(Ω) ∩ Psh(Ω). Let G ⊂⊂ Ω be an open set. If v ≤ u on ∂G and (ddcu)n ≤
(ddcv)n in G then v ≤ u in G.

Remark 5.2.4. Let Ω ⊂ Cn be a domain and let u ∈ C2(Ω). The condition
(ddcu)n = 0 is equivalent to the fact that the rank of the Levi form L(u) is ≤ n−1
in Ω. In other words, (ddcu)n = 0 is equivalent to the existence for every z ∈ Ω
of vector v ∈ Cn \ {0} (depending on z) such that L(u)z(v; v) = 0.

5.3 – Maximal plurisubharmonic functions and foliations

In this section we relate maximal (regular) plurisubharmonic functions to
complex foliations (in Riemann surfaces).

Let Ω ⊂ Cn be a domain. A real foliation of class Ck and dimension 2m
on Ω is a map F : Ω→ (TΩ)R such that for each p ∈ Ω there exist an open set
U ⊂ Cn−m, D ⊂ Cm and Φ : U ×D → Ω a Ck-diffeomorphism onto its image
such that dwΦ({x} × TwD) = FΦ(x,ζ) for each x ∈ U . Moreover, if the map
D � w �→ Φ(x, w) is holomorphic for each x ∈ U the foliation F is said to be a
complex foliation of dimension m. Notice that if F is a real (respectively complex)
foliation of dimension m then for each p ∈ Ω there exists a real (respect. complex)
manifold M(p) ⊂ Ω, p ∈ M(p) such that (TzM(p))R = Fz for all z ∈ M . We
call such a manifold M(p) the leaf for F at p. We refer the interested reader to
[Ca-Li] for details on foliations.

By definition, a foliation is a distribution of (TΩ)R, namely, a map Ω →
(TΩ)R. It is clear that if F is a foliation of class C1 then [F ,F ] ⊆ F , that is, F
is involutive. The converse is contained in the well known Frobenius’ theorem:

Theorem 5.3.1 (Frobenius). Let Ω ⊂ Cn be a domain. A Ck (k ≥ 1)
distribution F ⊂ (TΩ)R is a foliation of class Ck+1 if and only if it is involutive.
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If one is interested in the complex side of the story, then one can consider
(complex) distributions F ⊂ TΩ. For later reference we prove here only the
following complex version of Frobenius’s theorem.

Proposition 5.3.2. Let Ω ⊂ Cn be a domain. Let F ⊂ TΩ be a Ck (k ≥ 1)
distribution of complex rank 1. Then F is a complex foliation of class Ck+1 and
(complex) dimension 1.

Proof. Consider the associated distribution FR ⊂ (TΩ)R. Then FR is a
Ck distribution of rank 2. Let U be an open set in Ω on which F is trivial and
let z �→ Z(z) be a generator for F on U . Then Z, JZ (here J is the complex
structure coming from the multiplication by i in TΩ) generate FR on U . Now

0 = [Z, JZ] = [Z, iZ] = i[Z, Z] = 0 ,

and then FR is involutive. By Frobenius’s theorem FR is a real foliation of
dimension 2 and class Ck+1. Let p ∈ Ω and let M(p) ⊂ Ω be a real two
dimensional submanifold such that TzM(p) = FR

z for all z ∈ M(p). To see
that F is a complex foliation it is enough to prove that M(p) is a complex
submanifold of Ω. By construction TzM(p) = JTzM(p) for all z ∈ M(p) and
therefore TzM(p) has a structure of complex subspace of TzΩ. Since a C1-
submanifold of Cn is a complex manifold if and only if its real tangent space at
every point is a complex space, M(p) is a complex curve and thus F is a complex
foliation of dimension one.

We begin with the following result which generalizes Proposition 5.1.4.

Theorem 5.3.3. Let Ω ⊂ Cn be a domain. Let u ∈ C2(Ω) ∩ Psh(Ω). If
there exists a one dimensional complex foliation F of class C1 of Ω such that
the restriction of u to each leaf is harmonic then u is maximal.

Proof. Let Φ : U × D → Ω be a local foliation chart for F , namely,
U ⊂ Cn−1 is an open set, Φ is a diffeomorphism (onto its image) of class C1, for
each x ∈ U the image Φ(x, D) is contained in a leaf of F and the map ζ �→ Φ(x, ζ)
is holomorphic. By hypothesis for each x ∈ U fixed, the map ζ �→ u ◦ Φ(x, ζ) is
harmonic on Δ and therefore

0 = Δζu ◦ Φ(x, ζ) = 4L(u)

(
∂Φ

∂ζ
(x, ζ),

∂Φ

∂ζ
(x, ζ)

)
.

Since ∂Φ
∂ζ (x, ζ) �= 0 because Φ is a diffeomorphism, then L(u) has rank ≤ n− 1.

In particular it follows that (ddcu)n = 0 at Φ(x, ζ). By the arbitrariness of x ∈ U
and Φ and according to Remark 5.2.4, it follows that (ddcu)n ≡ 0 in Ω and then
u is maximal by Theorem 5.2.2.
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The converse of the previous theorem is given in the following form:

Theorem 5.3.4. Let Ω ⊂ Cn be a domain. Let u ∈ C3(Ω) ∩ Psh(Ω).
Suppose u is maximal and (ddcu)n−1

z �= 0 for all z ∈ Ω. Then there exists a one
dimensional complex foliation F of class C2 of Ω such that the restriction of u
to each leaf of F is harmonic.

Proof. Since u is maximal (and of class C3) Theorem 5.2.2 and Re-
mark 5.2.4 imply that the rank of L(u) is ≤ n − 1 and by hypothesis it is
exactly n − 1 at each z ∈ Ω. This implies that for each z ∈ Ω there ex-
ists a vector Z(z) ∈ TzΩ \ {0} unique up to complex multiples, such that
Lz(u)(Z(z), Z(z)) = 0. Let Fz = spanC{Z(z)} ⊂ TzΩ. Thus we have a well
defined distribution F : Ω � z �→ Fz ⊂ TΩ. Notice that, if Z = (Z1, . . . , Zn)
then Z is the only solution (up to complex multiples) of the system

n∑

j=1

∂2u

∂zj∂zk
(z)Zj(z) = 0, k = 1, . . . , n .

Thus, for every p ∈ Ω there exists a neighborhood Up of p and jp ∈ {1, . . . , n}
such that Zj(z) = Pj(z)Zjp

where Pj(z) is a polynomial combination of ∂2u
∂zj∂zk

(z)

for j ∈ {1, . . . , n} \ {jp} and z ∈ Up. Since by hypothesis u is of class C3, one
can perform a choice (for instance Zjp

≡ 1) which makes the map z �→ Z(z)
of class C1, showing that z �→ Fz is a C1 distribution. Thus F ⊂ TΩ is a C1

distribution of complex rank one and by Proposition 5.3.2 it is a complex one
dimensional foliation of class C2.

It remains to show that the restriction of u to every leaf of F is harmonic.
Let p ∈ Ω and let ϕ : D → Ω be holomorphic such that ϕ(0) = p, ϕ(D) is

contained in a leaf of F and
·
ϕ(ζ) �= 0 for all ζ ∈ D. Then

·
ϕ(ζ) = λ(ζ)Z(ϕ(ζ))

for some C1-function λ(ζ). Hence

Δζ(u ◦ ϕ)(ζ) = 4L(u)ϕ(ζ)(
·
ϕ(ζ);

·
ϕ(ζ)) = 4|λ(ζ)|2L(u)ϕ(ζ)(Z(ϕ(ζ));Z(ϕ(ζ))) = 0

proving that the restriction of u to each leaf of F is harmonic.

5.4 – The generalized Dirichlet problem

Let Ω ⊂ Cn be a domain and let ϕ ∈ C0(∂Ω). The generalized Dirichlet
problem on Ω is the following:

(5.5)

⎧
⎪⎨
⎪⎩

u upper semicontinuous in Ω

u maximal in Psh(Ω)

u|∂Ω = ϕ

.
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Notice that, if the requirement u ∈ Psh(Ω) is changed with u ∈ subh(Ω) then
the problem (5.5) turns out to be equivalent to the classical Dirichlet problem
which has a unique solution in case Ω is bounded with boundary of class C2.

Looking at (5.2), one is tempted to define the following function:

MΩ,ϕ(x) = sup{v(x) : v ∈ Psh(Ω), lim sup
Ω�x→p

v(x) ≤ ϕ(p)∀p ∈ ∂Ω} .

The function MΩ,ϕ is called the Perron-Bremermann function for Ω.
As a matter of notation, we say that a point p ∈ ∂Ω is a plurisubharmonic

peak point if there exists an open neighborhood U of Ω and Φp ∈ Psh(U) such
that Φp(p) = 0 and Φp(z) < 0 for all z ∈ Ω \ {p}. If this is the case, we say that
the function Φp peaks at p in Ω.

Remark 5.4.1. If Ω ⊂ Cn is a strongly convex domain and p ∈ ∂Ω, there
exists a real hyperplane Hp such that Ω ∩ Hp = {p}. Such a hyperplane can
be written as Hp = {z ∈ Cn : Re〈z − p, νp〉 = 0}, for some complex vector
νp ∈ Cn. Up to replace νp with −νp, the strong convexity of Ω implies that
Re〈z− p, νp〉 < 0 for all z ∈ Ω \ {p}. Thus the function Φp(z) := Re〈z− p, νp〉 is
a pluri(sub)harmonic function which peaks at p in Ω and then each point of ∂Ω
is a plurisubharmonic peak point. In particular each point of the boundary of
the unit ball Bn is a plurisubharmonic peak point. More generally, it is known
that if Ω ⊂⊂ Cn is a strongly pseudoconvex domain, for each p ∈ ∂Ω there exists
a holomorphic function fp (defined in a neighborhood of Ω) such that |fp(p)| = 1
and |fp(z)| < 1 for all z ∈ Ω \ {p}. The plurisubharmonic function Φp := log |fp|
peaks at p in Ω and thus each point of ∂Ω is a plurisubharmonic peak point.

Theorem 5.4.2 (Bremermann-Walsh). Suppose Ω ⊂⊂ Cn has boundary of
class C2 and assume that every p ∈ ∂Ω is a plurisubharmonic peak point. Then
the Perron-Bremermann function MΩ,ϕ is a solution of the generalized Dirichlet
problem (5.5). Moreover, MΩ,ϕ ∈ C0(Ω).

Proof. Let us denote by

PΩ,ϕ := {v ∈ Psh(Ω), lim sup
Ω�x→p

v(x) ≤ ϕ(p)∀p ∈ ∂Ω} .

Let H ∈ harm(Ω) ∩ C0(Ω) be the solution of the classical Dirichlet problem, so
that ΔH = 0 in Ω and H|∂Ω = ϕ. By the maximum principle in Corollary 1.1.6
applied to v−H, v ≤ H in Ω for all v ∈ PΩ,ϕ. This implies that MΩ,ϕ ≤ H in Ω
and by (the analogous for plurisubharmonic functions of) Proposition 1.5.3, its
upper semicontinuous regularization (MΩ,ϕ)∗ is plurisubharmonic in Ω. By the
very definition, MΩ,ϕ ≤ (MΩ,ϕ)∗ and (MΩ,ϕ)∗ ≤ F for any upper semicontinuous
F such that MΩ,ϕ ≤ F . Thus (MΩ,ϕ)∗ ≤ H in Ω which implies that (MΩ,ϕ)∗ ∈
PΩ,ϕ. Thus MΩ,ϕ = (MΩ,ϕ)∗ and then MΩ,ϕ ∈ Psh(Ω).
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By construction lim supΩ�x→p MΩ,ϕ(x) ≤ ϕ(p) for all p ∈ ∂Ω. In order
to show that limΩ�z→p MΩ,ϕ(z) = ϕ(z) for all p ∈ ∂Ω, we will prove that,
for all p ∈ ∂Ω, ε > 0 there exists a function uε,p ∈ C0(Ω) ∩ PΩ,ϕ such that
uε,p(p) = ϕ(p)− ε. Assuming such a function uε,p exists, since MΩ,ϕ ≥ up in Ω,
it follows that

lim inf
Ω�x→p

MΩ,ϕ(x) ≥ lim inf
Ω�x→p

uε,p(x) = ϕ(p)− ε ,

and thus, by the arbitrariness of ε, lim infΩ�x→p MΩ,ϕ(x) ≥ ϕ(p) showing that
MΩ,ϕ is continuous at p and MΩ,ϕ(p) = ϕ(p). The function uε,p can be defined
by taking a plurisubharmonic function Φp which peaks at p in Ω and defining
uε,p(z) := cΦp(z) + ϕ(p)− ε for c > 0 chosen so that uε,p ≤ ϕ on ∂Ω.

To show maximality of MΩ,ϕ, let G ⊂⊂ Ω be a open set and let u ∈ Psh(Ω)
be such that u(z) ≤MΩ,ϕ(z) for all z ∈ ∂G. Define

v(z) =

{
MΩ,ϕ(z) z ∈ Ω \G

max{u(z), MΩ,ϕ(z)} z ∈ G
.

By the analogous of Proposition 1.5.1, v ∈ Psh(Ω). Moreover, by construction
v ∈ PΩ,ϕ. Thus v ≤MΩ,ϕ which implies that u ≤MΩ,ϕ in G, proving maximality
of MΩ,ϕ.

It remains to prove that MΩ,ϕ is continuous. We already know that it is
upper semicontinuous, so it is enough to prove that it is lower semicontinuous.
To this aim, we define a new function as follows. Fix ε > 0. Let y ∈ Cn be such
that ‖y‖ < δ (with δ = δ(ε) > 0 small to be chosen later) and let

uy(z) :=

{
max{MΩ,ϕ(z), MΩ,ϕ(z + y)− ε} z ∈ Ω ∩ (Ω− y)

MΩ,ϕ(z) z ∈ Ω \ (Ω− y)
.

If we can show that uy ∈ PΩ,ϕ then uy ≤MΩ,ϕ in Ω, proving that for ‖z−w‖ < δ
then

MΩ,ϕ(z) ≥ uw−z(z) ≥MΩ,ϕ(z + w − z)− ε = MΩ,ϕ(w)− ε ,

proving that MΩ,ϕ is lower semicontinuous.
Let, as usual, Ωδ := {z ∈ Ω : dist(z, ∂Ω) > δ}. Since Ωδ ⊂ Ω∩ (−y + Ω), by

the analogous of Proposition 1.5.1 for plurisubharmonic functions, uy ∈ Psh(Ωδ).
In order to prove that uy ∈ PΩ,ϕ, it is then enough to prove that, for a suitable
choice of δ, uy = MΩ,ϕ on Ω \ Ω2δ, for then uy ∈ Psh(Ω) and limΩ�z→p uy(z) =
ϕ(p) for all p ∈ ∂Ω.

If z ∈ Ω\(Ω−y) then uy(z) = MΩ,ϕ(z) by definition. If z ∈ (Ω∩(Ω−y))\Ω2δ,
let w ∈ ∂Ω be such that ‖z − w‖ ≤ 2δ. Now, since limΩ�z→p MΩ,ϕ(z) = ϕ(p)
for all p ∈ ∂Ω and MΩ,ϕ|∂Ω = ϕ is uniformly continuous on ∂Ω, we can choose
δ > 0 in such a way that for all ζ ∈ Ω and η ∈ ∂Ω with ‖ζ − η‖ < 4δ it follows

|MΩ,ϕ(ζ)−MΩ,ϕ(η)| < ε/2 .
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Since ‖z − w‖ ≤ 2δ and ‖z + y − w‖ ≤ ‖z − w‖+ ‖y‖ ≤ 3δ, hence

|MΩ,ϕ(z)−MΩ,ϕ(w)| < ε/2, |MΩ,ϕ(z + y)−MΩ,ϕ(w)| < ε/2 .

Thus

MΩ,ϕ(z) > MΩ,ϕ(w)− ε/2 > MΩ,ϕ(z + y)− ε/2− ε/2 = MΩ,ϕ(z + y)− ε ,

as needed.

Remark 5.4.3. The Perron-Bremermann function MΩ,ϕ is also the unique
solution in the L∞-class of problem (5.5). However, uniqueness does not follow
at once from tools such as the maximum principle, but it is a particular instance
of the so-called comparison principle of Bedford and Taylor, see Remark 5.6.7.
From the proof of Theorem 5.4.2 it follows only that MΩ,ϕ is the maximum among
other solutions of (5.5). Indeed, if u is any solution of (5.5) then u ∈ PΩ,ϕ and
therefore u ≤MΩ,ϕ in Ω.

Remark 5.4.4. In [B-T1] Bedford and Taylor proved that if ϕ ∈ C2(∂Ω)
then MΩ,ϕ ∈ C1,1(Ω) (namely it is C1 with Lipschitz first derivatives) and
MΩ,ϕ ∈ W 2,∞(Ω) (that is MΩ,ϕ has weak second order derivatives which are in
L∞

loc(Ω)).

Remark 5.4.5. It is worth noticing that if Ω ⊂ Cn is a domain for which
the generalized Dirichlet problem (5.5) has a continuous solution for each ϕ ∈
C0(∂Ω) then every point of ∂Ω is a plurisubharmonic peak point (just solve (5.5)
with ϕ(z) = −‖z − p‖ for p ∈ ∂Ω).

5.5 – The complex Monge-Ampère operator on locally bounded plurisubhar-
monic functions

The aim of this section is to extend the definition of the complex Monge-
Ampère operator (ddc)n to locally bounded plurisubharmonic functions, accord-
ing to Bedford and Taylor [B-T1].

First of all, notice that if u ∈ Psh(Ω) ∩ L∞
loc(Ω) then u is actually locally

bounded (because it is upper semicontinuous and does not assume the value +∞
be hypothesis).

Lemma 5.5.1. Let Ω ⊂ Cn be a domain. Let T =
∑

TJηJ ∈ Dk
0 (Ω)

(with ηJ smooth k-forms and TJ Radon measures) and let u ∈ L∞
loc(Ω). If ϕ ∈

C0(Ω,Λ2n−k) define aJ
ϕ ∈ C0(Ω) by means aJ

ϕdV = ϕ ∧ ηJ (with dV the volume

form on Cn). The functional uT defined on C0(Ω,Λ2n−k) as

(5.6) uT (ϕ) :=
∑

J

∫

Ω

(uaJ
ϕ)TJ , ∀ϕ ∈ C0(Ω,Λ2n−k)

is a current of degree k and order 0. In particular, if u ∈ C0(Ω) then uT (ϕ) =
T (uϕ) for all ϕ ∈ C0(Ω,Λ2n−k).
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Proof. Since u is locally bounded then it is TJ -integrable on the support of
any ϕ ∈ C0(Ω, Λ2n−k) for any J . Thus the integrals in (5.6) are well defined and
finite. It is then clear that the definition does not depend on the choice of the
decomposition T =

∑
TJηJ and thus uT is a current of degree k and order 0.

Now we need the following result:

Proposition 5.5.2. Let Ω ⊂ Cn be a domain. Let T ∈ D(p,p)
∞ (Ω) be a

d-closed positive current. Let u ∈ Psh(Ω) ∩ L∞
loc(Ω). Define

(ddcu ∧ T )(ϕ) = ddc(uT )(ϕ) := (uT )(ddcϕ) ,

for ϕ ∈ C∞
0 (Ω,Λ(n−p−1,n−p−1)). Then ddcu∧ T is a d-closed positive current of

degree (p + 1, p + 1).

Proof. It is clear that ddcu∧T is a d-closed current of degree (p+1, p+1).
We have only to show positivity. To this aim, let {uε} be the sequence of
smooth regularizing plurisubharmonic functions given by Theorem 3.2.1. Since
{uε} pointwisely decreases to u, by Lebesgue dominated convergence theorem
and the very definition (5.6) of uT , it follows that uεT → uT in the weak∗

topology. Therefore, if we can show that uεT (ddcϕ) ≥ 0 for all ε > 0 and
ϕ ∈ SPn−p−1,n−p−1(Ω), it will follow that uT (ddcϕ) ≥ 0 and thus uT is positive.

Let ϕ ∈ SPn−p−1,n−p−1(Ω). Since uε is smooth, then (ddcuε ∧ T )(ϕ) =
T (uεddcϕ). By hypothesis dT =0, that is, T (dΦ)=0 for all Φ∈C∞

0 (Ω,Λ2n−2p−1).
In particular if we let Φ := uεd

cϕ we obtain

(5.7) 0 = T (dΦ) = T (d(uεd
cϕ)) = T (duε ∧ dcϕ) + T (uεddcϕ) ,

while, if we let Φ := dcuε ∧ ϕ we obtain

(5.8) 0 = T (dΦ) = T (d(dcuε ∧ ϕ)) = T (ddcuε ∧ ϕ)− T (dcuε ∧ dϕ) .

Moreover, recalling that T is a (p, p)-current and thus T (ψ) = 0 for any (2n−2p)-
form of type different from (n− p, n− p), it follows that

(5.9)
T (duε ∧ dcϕ) = T ((∂ + ∂)uε ∧ i(∂ − ∂)ϕ) = T (∂uε ∧ i∂ϕ + ∂uε ∧ i∂v) =

= T (i(∂ − ∂)uε ∧ (∂ + ∂)ϕ) = −T (dcuε ∧ dϕ)

Putting together (5.7), (5.8), (5.9) we have

(5.10) T (uεddcϕ) = −T (duε ∧ dcϕ) = T (dcuε ∧ dϕ) = T (ddcuε ∧ ϕ) .

Now, since uε is plurisubharmonic (and smooth) then ddcuε is a strongly positive
(1, 1)-form by Remark IV.4.6.17 and then ddcu∧ϕ ∈ SP (n−p,n−p)(Ω). But T ≥ 0
by hypothesis and therefore T (ddcuε ∧ ϕ) ≥ 0, which, by (5.10) implies that
T (uεddcϕ) ≥ 0 as needed.
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Now we can define the complex Monge-Ampère operator for locally bounded
plurisubharmonic function by induction as follows.

Let Ω ⊂ Cn. Let u1, . . . , uk ∈ Psh(Ω) ∩ L∞
loc(Ω). By Proposition 5.5.2 we

can define by induction

(ddcu1 ∧ . . . ∧ ddcuk) := T ∧ ddcuk ,

where T = (ddcu1 ∧ . . . ∧ ddcuk−1) is the positive d-closed (k − 1, k − 1)-current
defined inductively on k. More explicitly, for ϕ ∈ C∞

0 (Ω,Λ(n−k,n−k))

(ddcu1 ∧ . . . ∧ ddcuk)(ϕ) := uk(ddcu1 ∧ . . . ∧ ddcuk−1)(ddcϕ) .

The functional ddcu1 ∧ . . . ∧ ddcuk is then a d-closed positive (k, k)-current (of
order zero).

The previous definition is coherent with the case u1, . . . , uk are C2(Ω). In-
deed, for all ϕ ∈ C∞

0 (Ω,Λ(n−k,n−k)) it follows

(5.11)

∫

Ω

ddcu1 ∧ . . . ∧ ddcuk ∧ ϕ =

∫

Ω

uk(ddcu1 ∧ . . . ∧ ddcuk−1 ∧ ddcϕ)

and thus, in case u1, . . . , uk ∈ C2(Ω) the current ddcu1 ∧ . . . ddcuk defined as
before coincides with the natural current associated to continuous forms. For-
mula (5.11) can be proved by using Stokes’ theorem and division into types (see
[Kl, p. 111]).

It is known that the complex Monge-Ampère operator cannot be defined
on a generic plurisubharmonic function. Demailly (see [Dem]) extended the
domain of definition of the complex Monge-Ampère operator to plurisubharmonic
functions which are bounded outside compact sets. Other generalization are
in Cegrell [Ce]. Jus recently, Z. B�locki [Blo] characterized completely the
domain of definition of the complex Monge-Ampère operator.

5.6 – Properties of the complex Monge-Ampère operator

We collect here some basic properties of the Monge-Ampère operator refer-
ring the reader to [B-T1], [B-T2] and [Kl] for those stated without proof.

Theorem 5.6.1 (Chern-Levine-Nirenberg estimate). Let Ω be a domain in
Cn and let K ⊂⊂ Ω be a compact set. There exists a constant C = C(Ω, K) > 0
and a compact set H ⊂⊂ Ω \K such that for all u1, . . . , un ∈ Psh(Ω) ∩ L∞(Ω)
it follows

∫

K

ddcu1 ∧ . . . ∧ ddcun ≤ C‖u1‖L∞(H) · · · ‖un‖L∞(H) .
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Such an estimate can be first proved for plurisubharmonic functions of
class C2 and then, using the next approximation theorem, extended to bounded
plurisubharmonic functions.

Theorem 5.6.2. Let Ω ⊂ Cn be a domain. For k = 1, . . . , m ≤ n let
{uk,j}j∈N be a decreasing sequence of plurisubharmonic functions of class L∞

loc.
Let uk = limj uk,j and assume that uk ∈ Psh(Ω) ∩ L∞

loc(Ω) for k = 1, . . . , m.
Then

lim
j→∞

ddcu1,j ∧ . . . ∧ ddcum,j = ddcu1 ∧ . . . ∧ ddcum in D(m,m)
0 (Ω) .

The previous theorem, together with the regularization theorem, allows to
pass all algebraic properties of the Monge-Ampère operator from C∞-plurisub-
harmonic functions to locally bounded ones.

Let Ω ⊂ Cn be a domain and let u ∈ Psh(Ω) ∩ L∞
loc(Ω). The (n, n)-current

(ddcu)n can be seen as a Radon measure on Ω, the Monge-Ampère mass of u.
We already saw that if u is of class C2 then u is maximal if and only if its
Monge-Ampère mass is zero. The same is true for less regular functions, and it
follows from the following result:

Theorem 5.6.3 (Comparison theorem). Let Ω ⊂⊂ Cn be a domain. Let
u, v ∈ Psh(Ω) ∩ L∞(Ω). Suppose that for all p ∈ ∂Ω it holds

lim inf
Ω�z→p

(u(z)− v(z)) ≥ 0 .

Then ∫

{u<v}
(ddcv)n ≤

∫

{u<v}
(ddcu)n .

As a consequence we have:

Corollary 5.6.4. Let Ω ⊂ Cn be a domain. Let u ∈ Psh(Ω) ∩ L∞
loc(Ω). If

(ddcu)n = 0 in Ω then u is maximal.
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Proof. Let G ⊂⊂ Ω be a connected open set. Let v ∈ Psh(G) be such that
lim infz→p[u(z)−v(z)] ≥ 0 for all p ∈ ∂G. We have to show that v ≤ u in G. First
we claim that we can assume v ∈ L∞(Ω). Indeed, if this is not the case, we can
replace v with the plurisubharmonic function v′ := max{u|G, v}. The function v′

has the properties that v ≤ v′ in G and lim infz→p[u(z)− v′(z)] ≥ 0. Moreover,
since v is bounded from above in G (by definition of plurisubharmonic functions
and the hypothesis on the behavior near ∂G) and u ∈ L∞(G) then v′ ∈ L∞(G).
Thus if we prove that u ≥ v′ in G then it will follow also that u ≥ v in G. We
can thus assume v ∈ L∞(Ω).

Assume by contradiction that the set {z ∈ G : u(z) < v(z)} is not empty.
Let vε,δ(z) := v + ε‖z‖2 − δ and choose ε > 0, δ > 0 so that vε,δ < v in G.
Since the set {z ∈ G : u(z) < v(z)} is not empty we can choose ε, δ in such
a way that the set {z ∈ G : u(z) < vε,δ(z)} is not empty as well. The set
{z ∈ G : u(z) < vε,δ(z)} has positive Lebesgue measure, because otherwise the
plurisubharmonic function max{u|G, vε,δ} would be almost everywhere equal to
u|G and thus by Corollary 1.3.2 it would be equal to u|G everywhere in G,
implying u ≥ vε,δ in G.

Now we claim that for all w1, w2 ∈ Psh(G) ∩ L∞
loc(G)

(5.12) (ddc(w1 + w2))
n ≥ (ddcw1)

n + (ddcw2)
n .

If w1, w2 ∈ Psh(G) ∩ C2(G) then, taking into account that (ddcw1)
k ∧

(ddcw2)
n−k ≥ 0 for all k = 0, . . . , n,

(ddc(w1 + w2))
n = (ddcw1)

n + (ddcw2)
n +

n−1∑

j=1

(
n
j

)
(ddcw1)

j ∧ (ddcw2)
n−j ≥

≥ (ddcw1)
n + (ddcw2)

n .

Formula (5.12) for general w1, w2 ∈ Psh(G) ∩ L∞
loc(G) follows now from Theo-

rem 5.6.2 by approximating w1, w2 with decreasing sequences of smooth plurisub-
harmonic functions.

From (5.12) and Theorem 5.6.3 we have
∫

{u|G<vε,δ}
(ddcv)n +

∫

{u|G<vε,δ}
(ddc(ε‖z‖2 − δ))n ≤

∫

{u|G<vε,δ}
(ddcvε,δ)

n ≤

≤
∫

{u|G<vε,δ}
(ddcu)n = 0 .

But (ddcv)n ≥ 0 and (ddc(ε‖z‖2 − δ))n = 4nεnn!dV , thus
∫

{u|G<vε,δ}
(ddcv)n +

∫

{u|G<vε,δ}
(ddc(ε‖z‖2 − δ))n ≥ 4nεnn!

∫

{u|G<vε,δ}
dV > 0 ,

giving a contradiction.
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Remark 5.6.5. An argument similar to that used in the proof of Corol-
lary 5.6.4 shows that if Ω is a bounded domain, u, v ∈ Psh(Ω)∩L∞(Ω) are such
that u = v on ∂Ω and (ddcu)n = (ddcv)n = 0 in Ω then u ≡ v in Ω.

To end up the discussion about the complex Monge-Ampère operator, we
state the following very deep result of Bedford and Taylor:

Theorem 5.6.6. Let Ω ⊂ Cn be a domain. Let u ∈ Psh(Ω)∩L∞
loc(Ω). Then

u is maximal if and only if (ddcu)n = 0 in Ω.

One implication of this theorem is contained in Corollary 5.6.4. For the
other implication, namely if u is maximal then (ddcu)n = 0, the hard part is
to show that the Perron-Bremermann function MB,ϕ for the ball B satisfies the
Monge-Ampère equation (ddcMB,ϕ)n = 0 in B (apart the original source, see,
e.g., [Kl, Theorem 4.4.1]).

Remark 5.6.7. Theorem 5.6.6 and Remark 5.6.5 imply that the Perron-
Bremermann solution MΩ,ϕ is the unique solution of the generalized Dirichlet
problem (5.5) in the class L∞

loc(Ω). It also satisfies (ddcMΩ,ϕ)n = 0.

5.7 – The pluricomplex Green function for bounded domains

One of the main object in classical potential theory is the Green function.
Such a function (and its normal derivative, the Poisson kernel) allows to repro-
duce smooth functions and harmonic functions (see, e.g., [Dem], [Kl]). To be
more concrete, in the unit disc D ⊂ C let

(5.13) GD(z, ζ) := log |Tz(ζ)|

where Tz(ζ) := (z−ζ)(1−zζ)−1 is an automorphism of D which maps ζ to O and
such that T 2 = id. Then GD : D× D→ [−∞, 0] enjoys the following properties:

1. GD is of class C∞ in D×D\DiagD, where DiagD = {(z, ζ) ∈ D×D : z = ζ}.
2. GD(ζ, z) = GD(z, ζ) for all ζ, z ∈ D.
3. GD(ζ, z) < 0 in D× D and GD(ζ, z) = 0 on ∂D× D.
4. D � ζ �→ GD(ζ, z) is harmonic in D \ {z} for all fixed z ∈ D.
5. D � ζ �→ (GD(ζ, z)− log |z − ζ|) = O(1) for all fixed z ∈ D.

It can be shown (see, e.g. [Dem, Theorem 4.3]) that for all ϕ ∈ C∞
0 (D) it

follows

ϕ(z) =
1

2π

∫

D
GD(ζ, z)Δϕ(ζ)

i

2
dζ ∧ dζ ,

namely, ΔζGD(ζ, z) = 2πδz in Dis∞(D).
As we already saw, in several variables the notion of harmonic functions is

not invariant by biholomorphisms, thus when working in higher complex dimen-
sions, one is tempted to define and study “pluricomplex Green functions”.
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Definition 5.7.1. Let Ω ⊂ Cn be a domain and let x ∈ Ω. The (Klimek)
pluricomplex Green function of Ω with logarithmic pole at x is defined as

KΩ,x(z) := sup{u(z) : u ∈ Psh(Ω), u < 0, lim sup
z→x

(u(z)− log ‖z − x‖) < +∞}

with the convention that sup ∅ = −∞.

We state here some properties of the pluricomplex Green function:

Proposition 5.7.2. Let Ω,Ω′ ⊂ Cn be domains and let x ∈ Ω.

1. If Ω ⊂ Ω′ then KΩ,x(z) ≥ KΩ′,x(z) for all z ∈ Ω.
2. If Ω = B(x, r) then KB(x,r)(z) = log(‖z − x‖/r).
3. If R > 0 and Ω ⊂ B(x, R) then for all z ∈ Ω it follows

log

(‖z − x‖
R

)
≤ KΩ,x(z) .

4. If r > 0 and B(x, r) ⊂ Ω then for all z ∈ B(x, r) it follows

KΩ,x(z) ≤ log

(‖z − x‖
r

)
.

5. If f : Ω → Ω′ is holomorphic then f∗(KΩ′,f(x)) ≤ KΩ,x. In particular the
pluricomplex Green function is invariant for biholomorphisms.

6. If Ω is bounded then KΩ,x is maximal in Ω\{x} (i.e. it is plurisubharmonic
in Ω and maximal) and (ddcKΩ,x)n ≡ 0 in Ω \ {x}.

Proof. Let us denote by

(5.14) KΩ,x = {u ∈ Psh(Ω) : u < 0, u(z)− log ‖z − x‖ ≤ O(1) as z → x} .

Then (1) follows directly from the very definition since every if u ∈ KΩ′,x then
its restriction u|Ω ∈ KΩ,x.

(2) If Ω = B(x, r), let u ∈ KB(x,r),x and let z ∈ B(x, r) \ {x}. Fix v ∈ Cn

with ‖v‖ = r and such that x + ζ0v = z for some ζ0 ∈ D. Consider the function
ũ : D � ζ �→ u(ζv + x) − log |ζ|. Such a function is subharmonic in D \ {0}
and bounded from above in D (since log |ζ| = log(‖ζv + x − x‖/r) and u has
a logarithmic pole at x) thus, by Corollary 1.5.5, ũ extends to a subharmonic
function in D. Since lim supζ→q ũ(ζ) ≤ 0 for all q ∈ ∂D by construction, by the
maximum principle ũ ≤ 0 in D. Therefore for all ζ ∈ D it follows u(ζv + x) ≤
log |ζ|, proving that u(z) ≤ log(‖z − x‖/r). Thus KB(x,r)(z) ≤ log(‖z − x‖/r),
but since log(‖z − x‖/r) ∈ KB(x,r),x, then KB(x,r)(z) = log(‖z − x‖/r).

(3) and (4) follow from (1) and (2).
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(5) follows from the fact that if u ∈ KΩ′,f(x) then u ◦ f = f∗(u) ∈ KΩ,x

because clearly f∗(u) < 0 in Ω and

u(f(z))− log ‖z − x‖ = u(f(z))− log ‖f(z)− f(x)‖+ log
‖f(z)− f(x)‖
‖z − x‖ =

= u(f(z))− log ‖f(z)− f(x)‖+ O(1).

(6) If Ω is bounded then by (3) the pluricomplex Green function KΩ,x(z) >
−∞ for all z ∈ Ω \ {x}. According to (the analogous for plurisubharmonic
functions of) Proposition 1.5.3 the upper semicontinuous regularization u :=
(KΩ,x)∗ is plurisubharmonic in Ω. We claim that u ∈ KΩ,x. Indeed, by (4) u has
a logarithmic singularity at x. Also, clearly u ≤ 0 in Ω. If it were u(z) = 0 for
some z ∈ Ω, then by the maximum principle u ≡ 0, contradicting the fact that
u has a logarithmic singularity at x. Thus u < 0 in Ω and therefore u ∈ KΩ,x.
Hence u = KΩ,x which is then plurisubharmonic (and strictly negative) in Ω.

To show maximality, let G ⊂⊂ Ω \ {x} and let v ∈ Psh(G) be such that
lim supG�z→p v(z) ≤ KΩ,x(p) for all p ∈ ∂G. Define

u(z) =

{
max{v(z), KΩ,x}(z) z ∈ G

KΩ,x(z) z ∈ Ω \G
.

Then u ∈ KΩ,x and by definition u ≤ KΩ,x, proving that KΩ,x is maximal in
Ω \ {x}. Finally notice that by (4) KΩ,x is locally bounded in Ω \ {x} and thus
Theorem 5.6.6 implies (ddcKΩ,x)n ≡ 0 in Ω \ {x}.

Recall that a domain Ω ⊂ Cn is called hyperconvex if there exists ρ ∈
Psh(Ω) ∩ C0(Ω) such that for all r > 0 the open set {z ∈ Ω : ρ(z) < −r} is
relatively compact in Ω.

Theorem 5.7.3. Let Ω ⊂ Cn be a bounded hyperconvex domain and let
x ∈ Ω. Then the pluricomplex Green function KΩ,x : Ω → [−∞, 0], extended to
be 0 on ∂Ω is plurisubharmonic and continuous. Moreover, the function Ω×Ω �
(x, z) �→ KΩ,x(z) ∈ [−∞, 0] is continuous.

Sketch of the proof. First of all we can prove that limΩ�z→p KΩ,x(z) =
0 for all p ∈ ∂Ω. To this aim, by hypothesis there exists ρ ∈ Psh(Ω) ∩ C0(Ω)
such that {z ∈ Ω : ρ(z) < −r} is relatively compact in Ω for all r > 0. Let
B(x, r) ⊂ Ω ⊂ Ω ⊂ B(x, R) for some r, R > 0 and define

v(z) =

{
max{Cρ(z), log(‖z − x‖/R)} z ∈ Ω \ B(x, r)

log(‖z − x‖/R) z ∈ B(x, r)

where C > 0 is chosen so that Cρ(z) < log(r/R) on ∂B(x, r). Then v ∈ KΩ,x (the
family defined in (5.14)). Moreover, since ρ(z) → 0 as z → ∂Ω, then v(z) → 0
as z → ∂Ω and since v ≤ KΩ,x, the same holds for KΩ,x.
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In order to show continuity, it is enough to prove that KΩ,x is lower semi-
continuous. To this aim, Demailly (see, [De]) constructs a sequence of continuous
{uk} ⊂ KΩ,x such that KΩ,x = supuk (and the result follows since the supremum
of lower semicontinuous functions is lower semicontinuous). The rather explicit
construction of such a family (which requires the use of ρ) is omitted.

Finally, to show continuity of KΩ,x(z) with respect to (z, x), one can show
that for all a ∈ Ω, ε > 0 and open neighborhood U of a, there exists an open set
V ⊂⊂ U , a ∈ V such that for all (x, z), (y, z) ∈ V × (Ω \ U) it follows

(5.15) (1 + ε)−1 ≤ KΩ,x(z)

KΩ,y(z)
≤ 1 + ε .

Formula (5.15) implies that KΩ,x(z) is continuous in x locally uniformly in z ∈ Ω
outside the diagonal Diag(Ω × Ω) in Ω × Ω. From this it follows that KΩ,x(z)
is continuous in Ω × Ω \Diag(Ω × Ω). Continuity on the diagonal follows from
Proposition 5.7.2.(4).

Formula (5.15) follows from modification of the pluricomplex Green func-
tion, see [De] or [Kl, p. 227].

Some remarks are in order.

1. According to Demailly [De], every bounded pseudoconvex domain with
Lipschitz boundary is hyperconvex.

2. Although the pluricomplex Green function KΩ,x(z) (for Ω bounded and
hyperconvex) is continuous in (x, z), it is in general not symmetric in (x, z).
Moreover, it can be proved that it is symmetric in (x, z) if and only if
x �→ KΩ,x(z) is plurisubharmonic for all z ∈ Ω fixed.

The following characterization of the pluricomplex Green function is due to
Demailly:

Theorem 5.7.4. Let Ω ⊂⊂ Cn be a hyperconvex domain and let x ∈ Ω.
The pluricomplex Green function KΩ,x is the unique solution of the problem:

(5.16)

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

u ∈ Psh(Ω) ∩ L∞
loc(Ω \ {x})

(ddcu)n ≡ 0 in Ω \ {x}
u(z)− log ‖z − x‖ = O(1) for z → x

limz→p u(z) = 0 for all p ∈ ∂Ω
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Proof. We already know that KΩ,x(z) is plurisubharmonic in Ω, continuous
in z ∈ Ω, KΩ,x|∂Ω ≡ 0 and (ddcKΩ,x)n ≡ 0 in Ω \ {x} (see Proposition 5.7.2 and
Theorem 5.7.3). Moreover, according to Proposition 5.7.2.(3) and (4),

KΩ,x(z)− log ‖z − x‖ = O(1) for z → x .

Therefore KΩ,x is a solution of (5.16).
We are left to show uniqueness. Notice that if u is any solution of (5.16)

then

(5.17) lim
z→x

u(z)

log ‖z − x‖ = 1 .

Let u be a solution of (5.16). Notice that by Corollary 5.6.4 the function u is
maximal in Ω \ {x}. By the maximum principle, u < 0 in Ω and thus u ∈ KΩ,x

(where KΩ,x is the family defined in (5.14)). Therefore KΩ,x ≥ u in Ω. Seeking
for a contradiction we assume that there exists a ∈ Ω such that u(a) < KΩ,x(a).
Thus there exist δ > 0 and 0 < c < 1 such that the set

Eδ,c := {z ∈ Ω : KΩ,x(z) > cu(z) + δ}

is not empty. Since u is upper semicontinuous (and KΩ,x is continuous), the
set Eδ,c is open. We claim that Eδ,c is relatively compact in Ω \ {x}. Assume
we proved the claim. Then KΩ,x(z) ≤ cu(z) + δ in ∂Eδ,c which would imply
KΩ,x(z) ≤ cu(z) + δ in Eδ,c by maximality of u, contradiction.

To prove that Eδ,c is relatively compact in Ω \ {x}, let {zk} ⊂ Eδ,c be such
that zk → q ∈ ∂Eδ,c. If q ∈ ∂Ω then it would follow that limz→q KΩ,x(z) ≥ δ > 0,
a contradiction. If q = x then KΩ,x(zk) → −∞ by Proposition 5.7.2.(4). Thus,
from KΩ,x(zk) > cu(zk) + δ and (5.17) we obtain

1 < c
u(zk)

KΩ,x(zk)
+

δ

KΩ,x(zk)
=

= c
u(zk)

log ‖x− zk‖
· log ‖x− zk‖

KΩ,x(zk)
+

δ

KΩ,x(zk)
→ c as k →∞ ,

from which c ≥ 1 against our choice c < 1. Thus Eδ,c is relatively compact in
Ω \ {x} as claimed.

Remark 5.7.5. Demailly [Dem] extended the definition of (ddc)n to
plurisubharmonic functions which are locally bounded in a domain Ω outside
some points (actually he extended such a definition to plurisubharmonic func-
tions which are locally bounded outside bigger subsets). For instance (see,
e.g., [Kl, p. 228-229]) fix x ∈ Ω. If u ∈ Psh(Ω) ∩ L∞

loc(Ω \ {x}), one can
prove that the regularizing sequence {uε} of smooth plurisubharmonic functions
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which pointwise decreases to u is such that the Monge-Ampére masses (ddcuε)
n

converges in the weak∗ topology of currents to a unique positive Borel mea-
sure denoted (ddcu)n (which of course coincides with the already defined mass
(ddcu)n if u is locally bounded near x as well). Also, it can be shown that
(ddcKΩ,x)n = (2π)nδx, where δx is the Dirac delta.

Remark 5.7.6. If one changes the requirement that u(z) − log ‖z − x‖ =
O(1) in (5.16) with another condition of the type u(z)− log(|z1 − x1|α1 + . . . +
|zn−xn|αn) = O(1) with

∑
αj = 1 then the previous construction works entirely

(changing the type of singularity in x) and gives a unique solution uΩ,x. Even
such a solution satisfies (ddcuΩ,x)n = (2π)nδx.

In case the domain Ω is strongly convex with smooth boundary, Lem-
pert [Le] proved that KΩ,x(z) is actually C∞(Ω × Ω \ Diag(Ω × Ω)) and that
(ddcKΩ,x)n−1(z) �= 0 for all z ∈ Ω. Moreover, the foliation in Ω \ {x} associated
to KΩ,x according to Theorem 5.3.4 is formed by complex geodesics, namely,
any leaf is the image of a biholomorphic map ϕ : D → D which is an isometry
between the Poincaré distance of D and the Kobayashi distance of Ω.

Demailly [De1], [De] used the pluricomplex Green function to prove the
following representation formula

Theorem 5.7.7. Let Ω ⊂⊂ Cn be a hyperconvex domain. Let u ∈ Psh(Ω)∩
C0(Ω). Then for all z ∈ Ω

u(z) = μz(u)− 1

(2π)n

∫

Ω

|KΩ,z(w)|(ddcu)(w) ∧ (ddcKΩ,z)
n−1(w)

where μz is a suitable positive measure supported on ∂Ω and depending on KΩ,z.

The measure μz, which is called the pluricomplex Poisson kernel, is defined
as follows. For r < 0 let Br = {z ∈ Ω : KΩ,x(z) < r}. This set is relatively
compact in Ω. Let ur(z) = max{KΩ,x(z), r}. The Monge-Ampère mass (ddcur)

n

is supported on ∂Br. The positive Borel measure μz is thus defined as the weak∗

limit of (ddcur)
n as r → 0.

If Ω is a strongly convex domain with smooth boundary, it can be proved [B-
P], [BPT] that the pluricomplex Poisson kernel is given by dμz(p) = |PΩ,p(z)|n
ω∂Ω(p), where p ∈ ∂Ω, ω∂Ω is a volume form on ∂Ω and PΩ,p ∈ C∞(Ω \ {p}) ∩
C0(Ω) is the solution of the following problem:

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u ∈ Psh(D)

(∂∂u)n = 0 in D

u < 0 in D

u(z) = 0 for z ∈ ∂D \ {p}
u(z) ≈ ‖z − p‖−1 as z → p non-tangentially
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5.8 – Invariant distances and the pluricomplex Green function

Recall that the Poincaré distance ω on D is defined as

(5.18) ω(ζ, z) := tanh−1 |Tz(ζ)| = 1

2
log

1 + |Tz(ζ)|
1− |Tz(ζ)| ,

where Tz(ζ) := (z − ζ)(1 − zζ)−1 is an automorphism of D which maps z to 0.
Such a distance is complete. By (5.13) it follows

GD(z, ζ) = log tanhω(z, ζ), z, ζ ∈ D
and by Proposition 5.7.2 (or directly from the Schwarz lemma) it follows that
f∗ω ≤ ω for all f : D→ D holomorphic.

Definition 5.8.1. Let Ω ⊂ Cn be a domain. The Carathéodory pseudodis-
tance CΩ : Ω× Ω→ R+ is defined as

CΩ(z, w) := sup{ω(f(z), f(w)) : f : Ω→ D is holomorphic} .

The Lempert function δΩ : Ω× Ω→ R+ is defined as

δΩ(z, w) = inf{ω(ζ1, ζ2) : ∃f : D→ Ω holomorphic with f(ζ1) = z, f(ζ2) = w} ,

with the convention that δΩ(z, w) = +∞ if there do not exist holomorphic func-
tions ϕ : D→ Ω with ϕ(ζ) = z and ϕ(η) = w.

The Kobayashi distance dΩ : Ω× Ω→ R+ is defined as

dΩ(z, w) = inf

m∑

j=1

δΩ(zj , zj+1) ,

where the infimum is taken over all finite chains of points z1, . . . , zm ∈ Ω such
that z1 = z and zm = w.

Notice that dΩ is the biggest pseudodistance smaller than δΩ. It is not too
difficult to see that

CΩ(z, w) ≤ dΩ(z, w) ≤ δΩ(z, w) .

Both the Carathéodory and the Kobayashi pseudodistances are continuous, but
in general the induced distance topology is less finer than the euclidean topology
of Ω. The topology induced by the Kobayashi pseudodistance is equivalent to
the euclidean topology if and only if dΩ is a distance (namely, dΩ(z, w) = 0 if and
only if z = w). The topology induced by the Carathéodory pseudodistance is
equivalent to the euclidean topology if the inner pseudodistance associated to CΩ

is a distance (the inner pseudodistance Ci
Ω(z, w) is defined to be the infimum of

the CΩ-length of piecewise smooth curves joining z to w. Notice that CΩ ≤ Ci
Ω).

However, if Ω is bounded then CΩ induces a topology equivalent to the euclidean
one. For all these properties and much more see [Ko].

Proposition 5.8.2. Let Ω ⊂ Cn be a domain. Then for all z, w ∈ Ω

log tanhCΩ(z, w) ≤ KΩ,z(w) ≤ log tanh δΩ(z, w) .
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Proof. Let f : D → Ω be holomorphic and such that f(ζ) = z, f(η) = w.
Then

KΩ,f(ζ)(f(η)) ≤ KD,ζ(η) = log |Tζ(η)| .

Therefore exp(KΩ,f(ζ)(f(η))) ≤ |Tζ(η)| which implies

tanh−1 exp(KΩ,f(ζ)(f(η))) ≤ tanh−1 |Tζ(η)| = ω(ζ, η) .

For the arbitrariness of f we obtain tanh−1 exp(KΩ,z(w)) ≤ δΩ(z, w) from which
the second inequality follows.

As for the other inequality, the argument is similar. Let f : Ω → D. Then
KΩ,z(w) ≥ KD,f(z)(f(w)) = log |Tf(z)(f(w))|. Arguing as before this implies that

tanh−1 exp(KΩ,z(w)) ≥ ω(f(z), f(w)). By arbitrariness of f the first inequality
follows.

In [Le] Lempert showed that for a convex domain CΩ = dΩ = δΩ and
therefore the previous proposition implies that if Ω is a convex domain then

KΩ,z(w) = log tanh δΩ(z, w) = log tanh dΩ(z, w) = log tanhCΩ(z, w) .

In particular in this case the pluricomplex Green function is symmetric.

Corollary 5.8.3. Let Ω ⊂ Cn be a domain and z ∈ Ω. Suppose that
Ω � w �→ log tanh δΩ(z, w) is plurisubharmonic. Then

KΩ,z(w) = log tanh δ(z, w) ∀w ∈ Ω .

Proof. Let u(w) = log tanh δ(z, w). Then u < 0 in Ω and u ∈ Psh(Ω). If
we show that u has a logarithmic singularity at z then u ∈ KΩ,z which implies
that u ≤ KΩ,z and by Proposition 5.8.2 we have the result. Now let r > 0 be
such that B(z, r) ⊂ Ω. Let w ∈ B(z, r) \ {z} and define

ϕ(ζ) := z + ζr
w − z

‖w − z‖

for ζ ∈ D. Clearly ϕ : D → Ω is holomorphic, ϕ(0) = z and ϕ(‖w − z‖/r) = w.
Thus by definition δΩ(z, w) ≤ ω(0, ‖w − z‖/r). Therefore by (5.18)

log tanh δ(z, w) ≤ log tanhω(0, ‖w − z‖/r) = log ‖z − w‖/r ,

as needed.
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5.9 – Some further geometrical directions

The works [B-P] and [BPT] show that it is possible to define a maximal
plurisubharmonic function in strongly convex domains such that it solves a com-
plex homogeneous Monge-Ampère equation with a simple pole at the boundary.
Such a function is the normal derivative of the pluricomplex Green function and
it is called the pluricomplex Poisson kernel. It is strongly related to the invari-
ant geometry of the domain because its level sets are horospheres of the domain
(namely, limits of Kobayashi balls) and the associated Monge-Ampère foliation
is made of complex geodesics (namely, isometries between the Poincaré metric of
the disc and the Kobayashi metric of the domain). Roughly speaking, similarly
to what have been done for the pluricomplex Green function, the pluricomplex
Poisson kernel can be characterized as the maximum of the family

Fp = {u ∈ Psh(Ω) : u < 0,K- lim sup
z→p

u(z)‖z − p‖ < −1} ,

where K- lim sup means non-tangential limit, Ω is a bounded strongly convex
domain in CN with smooth boundary and p ∈ ∂Ω. However, the proof involves
the use of fine properties of complex geodesics and Lempert’s theory, and such
tools are not available in other domains.

Thus, a geometrically relevant problem is to understand whether the fam-
ily Fp has a maximum (and which are its regularity properties) when Ω is not
strongly convex, for instance if Ω is strongly pseudoconvex or weakly convex or
hyperconvex. Also, it would be interesting to know whether the Demailly mea-
sure μz introduced in Theorem 5.7.7 can be expressed in terms of the maximal
element (if any) of the family Fp.

We thank the participants of the course for their comments and questions
which certainly improved these notes. We also thank prof. Sandro Silva for the
opportunity of publishing these notes.
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