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Notes on pluripotential theory

FILTPPO BRACCI - STEFANO TRAPANI

ABSTRACT: These notes are an introduction to the theory of pluripotential, from
subharmonic to plurisubharmonic functions with a special emphasis on the complex
Monge-Ampére operator and invariant metrics.

Preface

These are the notes of a PhD course the first named author gave in 2005,/06
at Universita di Roma “Tor Vergata”. The main subject of this course was the
study of plurisubharmonic functions and their properties. These are very im-
portant tools in complex analysis because plurisubharmonic functions are pretty
much related to holomorphic functions but much more flexible to handle and to
be constructed. However, these notes contain very few applications of plurisub-
harmonic functions theory to complex analysis (for instance we included bound-
ary transversality properties of analytic discs as a consequence of Hopf’s lemma
and a few relations between the pluricomplex Green function and invariant dis-
tances).

The present material contains a first part about elementary properties of
(pluri-)subharmonic functions (chapters one, two and three), a second part
(chapter four) about elementary properties of currents (especially positive cur-
rents) and a third part (chapter five) about maximal plurisubharmonic functions
and the Monge-Ampere operator. This latter part has been developed in details
for smooth plurisubharmonic functions and only sketched for locally bounded
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ones. Also, in this last chapter there are two sections about the pluricomplex
Green function in bounded domains.

The reader — if any — of these notes is assumed to have a basic knowledge
of harmonic functions, analysis and geometry.

The PhD course itself and, as consequence these notes, are mainly based
on the wonderful books by KLIMEK [KI] and DEMAILLY [Dem]. It may happen
that some result is stated here in a more general form than in those books and
other material has been added from different sources. Some proofs have been
completely re-elaborated and might not be contained in the literature in this
form but of course we do not claim any original credit on this material.

1 — Subharmonic functions
1.1— The sub-mean property and the maximum principle

DEFINITION 1.1.1. Let © C R™ be a set. A function u : Q — [—o0,00) is
upper semicontinuous if for all ¢ € R the set {x € Q : u(z) < ¢} is open in Q.

Notice that an upper semicontinuous function is measurable and is not al-
lowed to assume the value 400 (while it may assume the value —o0). It is easy to
show that if K C R™ is a compact set and u : K — [—00,00) is upper semicon-
tinuous then it has a maximum on K, but in general it may have no minimum
(for instance let K = [—1,1] and define u(z) = log|z| for  # 0 and u(0) = 0.
Then w is upper semicontinuous on K but has no minimum).

Another useful property that we will use in the sequel is that if u is upper
semicontinuous on a compact set K then there exists a decreasing sequence
{u;} € C°(K) such that lim;_,. uj(z) = u(z) for all z € K.

Moreover, if K is a compact set, then [ 5 U is well defined (possibly = —oc0)
for all upper semicontinuous functions u in K, and according to Beppo Levi’s
theorem on monotone convergence, [, u = lim;_,o [5 u; with {u;} € C°(K) a
sequence decreasing to u on K.

THEOREM 1.1.2. Let @ C R™ be a connected domain (not necessarily
bounded). Let u : Q — [—o00,+00) be a non-constant upper semicontinuous
function. Suppose that for all a € Q there exists R(a) > 0 with the following
property: for all balls B(a,r) of center a and radius 0 < r < R(a) withB(a,r) C Q
it holds

1
(1.1) o) € s /B @),

Then for all z €

u(z) < sup u(w).
weN
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Moreover, if there exists Ry € (0,+00] such that R(a) > Ry for all a € Q then
u e LI:LOC(Q)'

PROOF. Let a := sup,cq u(z). By hypothesis u does not assume the value
400 in €2, thus, if @« = +0o0 the statement is correct. We can assume then that
a < 4o00. Let us define

Qo :={2€Q:u(z) >a}.

Since wu is upper semicontinuous then €2, is closed in 2 and by the very definition
of a the set Q, coincides with the set {z € Q : u(z) = a}. The theorem will
follow if we can prove that €2, is empty. In order to do that, we show that if
were not empty then it would be open as well, which, by connectedness of €2,
would imply u = « against our hypothesis that u is not constant. Let assume
then that there exists a € Q. Let B(a,r) C £ be an open ball relatively compact
in Q, r < R(a). We want to show that B(a,r) C Q. If this is not the case then
there exists b € B(a, r) such that u(b) < a and, since u is upper semicontinuous,
there exists an open set K C B(a,r) such that b € K and u(z) < afor all z € K.

Then
1

Svm@xwéwﬂuum“”

= T s OB */K“W(@] <

a = u(a)

1
< V(B 1) /IB e u(z)dA(z) + /K ad)\(x)] <

= v(B(a,r)) _/IB(a,r)\K A=) + /K d)\(x)] -

that is, o < «, a contradiction. Then B(a,r) C Q, and this latter set is open.

Now assume that R(a) > Ry for all a € Q. Since u is upper semicontinuous,
on each compact subset K CC € it has a maximum. Moreover, if u(a) > —oo
and B(a, p) with R(a) > p > 0 is relatively compact in €, then by (1.1) it follows
that u € L'(B(a,r)) for all r < p. Therefore the set W = {z € Q: 3U > z,u €
LIIOC(U )} of points where u is locally integrable, is a non-empty open subset of
Q. To show that u € L{ () it is enough to prove that W is closed in . Let
xg € OW N Q. The condition that R(a) > Ry for all a € Q guarantees that there
exists a point @ € W with u(a) > —oo and a number r > 0, r < R(a), such that
U = B(a,r) is relatively compact in Q and xo € B(a,r). Let ¢ = max, g u(z).
Then v — ¢ < 0 in U. Therefore for all compact subsets K C B(a,r)

fu(z) — ddA(x) < / fu(z) — ddA(z) < 0.

K

~o0 < v(B(a0)(ula) ~ o) < [

B(a,r)
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Hence u € L'(K) for all K CC B(a,r) and in particular zg € W showing that
W is closed in Q and u € L (). 0

loc

REMARK 1.1.3. The condition on the existence of Ry > 0 which uniformly
bounds R(a) from below for each a € § is actually not necessary for the con-
clusion that u € L (€2). However this will be a consequence of the equivalence

between (3) and (4) in Theorem 1.2.2.

REMARK 1.1.4. The previous proof shows that Theorem 1.1.2 holds if one
substitutes the balls B(a,r) in (1.1) with any other basis of open sets.

REMARK 1.1.5. Let Q C R™ be a connected domain and let u : Q —
[—00,00) be an upper semicontinuous function, u Z —oo. Define the function
@ : Q) — [~00,00] as follows: (x) := u(x) for x € Q and u(y) := limsup u(z)

Qdx—y
for y € 9Q. If 4(y) < +oo for all y € 9N then @ is upper semicontinuous. In
this case we say that @ is an upper semicontinuous extension of u to . Notice
that @ is the minimal upper semicontinuous extension of u to €2, namely, if v is
another semicontinuous extension of u then @ < v.

COROLLARY 1.1.6. Let Q C R™ be a connected bounded domain. Let
u: Q — [—o00,+00) be a non-constant upper semicontinuous function which
satisfies the sub-mean property (1.1). For y € 0Q define u(y) := limsup u(x).

Qoz—y
Then for all x € Q)
u(z) < sup u(y) .
YEIN
In particular, if u extends upper semicontinously on 0 (namely, if u(y) < co for
all y € 0Q) then u(z) < maxyecoo u(y) for all z € .

1.2 — Definition and first properties

Let harm (Q) be the space of harmonic functions on a domain Q C R™.
DEFINITION 1.2.1. Let © C R™ be a connected domain. A function u :
Q — [—00,00) is called a subharmonic function, u € subh(Q) if

1. u # —o0.

2. w is upper semicontinuous.

3. For all open set G CC Q and all v € harm(G)NC%(G) such that u(y) < v(y)
for all y € OG it follows that u(z) < v(z) for all z € G.

By the very definition, subh(f2) is a cone in the space of all real functions
on 2.

THEOREM 1.2.2. Let  C R™ be a domain. Let u : @ — [—00,00) be an
upper semicontinuous function, u % —oo. The following are equivalent:
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1. For all open ball B(a,r) relatively compact in Q it follows

1
(0B (a, 1)) /ama,r) ul6)da (<)

2. For all open ball B(a,r) relatively compact in Q it follows

(1.2) u(a) <

1
(1.3) ) <~ /B @),

3. For all a € Q there exists R(a) > 0 such that for all 0 < r < R(a) and open
balls B(a,r) relatively compact in it follows

1

(1.4) u(a) < “Bar) /IB(G’T) u(x)dA(x) .

4. u € subh(9).

PROOF. (1) implies (2) by integration on r and Fubini’s theorem. Obviously
(2) implies (3).

Assume (3) holds. Let G CC € be open and v € harm(G) N C°(G) be such
that v < v on OG. Then u — v has the sub-mean property and, by Theorem 1.1.6
it satisfies the maximum principle in G. Thus u — v has maximum on G and
then v —v < 0 in G proving that (4) holds.

Finally, assume (4) holds and let B(a,r) be an open ball relatively compact
in Q. Since IB(a,r) is compact and u is upper semicontinuous on dB(a, ), there
exist a decreasing sequence {u;} C C°(9B(a,r)) such that lim;_,oc uj(x) — u(z)
for all z € OB(a,r). Let U; € harm(B(a,r)) N C°(B(a,r)) be such that U; = u;
on dB(a,r). Since u € subh(Q) and u < U; on 0B(a,r) then u < U; in B(a,r)
for all j. Therefore for all j

1

ue) < Uy(0) = s /8 o Qo0

Thus, by Beppo Levi’s theorem on monotone convergence

1
u(a) < lim 7/
(@) i—oo (0B(a, 7)) Jos(a,r)

. i j o = ; U o
" u(0B(a,7) /am(a,r) o, (o ©) = SE ) /m(w) (Q)do (<)

and (1) holds. 0

REMARK 1.2.3. By the equivalence between (2) and (3) in Theorem 1.2.2
it follows that if u : Q — [—o0, 4+00) is a non-constant upper semicontinuous

u;(¢)do(¢) =
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function which satisfies (1) then actually R(a) = +oo for all @ € Q and then
u e LI:LOC(Q)'

COROLLARY 1.2.4. Let Q@ C R™ be a connected domain and let {Q} C R™
be a sequence of connected domains such that Q, C Qiq1 and |J, Qp = Q. For
each k, let up € subh(Qy) be such that ug(z) > ugy1(z) for all x € Q and
for all k (that is, {ur} is a decreasing sequence). Let u(x) := limy_,o0 ug(x) for
x € Q. Then either u = —oo or u € subh(Q).

PROOF. Assume that u # —oo. First of all, for ¢ € R and k € N the
set {z € Qi : u(z) > ¢} = Nspfzr € Qs 1 us(x) > ¢} is closed in Qf and
thus u is upper semicontinuous in €, for all £ which implies that u is upper
semicontinuous in §2. Next, according to Theorem 1.2.2 we just need to prove
that u satisfies the sub-mean property. Let a €  and let B(a,r) be an open ball
relatively compact in 2. Then, since the uy’s are subharmonic by Beppo Levi’s
theorem one has

, . 1 _
u(a) = lim ug(a) < lim TBa) /B(a,r) u(z)dA(z) =

.
=—— u(z)dA(x),
V(B(Q’T)) B(a,r)
as wished. 0
Another important consequence of Theorem 1.2.2 is that subharmonicity is

a local property:

PROPOSITION 1.2.5. Let Q@ C R™ be a connected domain. Then a function
u € subh(Q) if and only if for all x € Q there exists an open neighborhood V,, C Q
of © such that u € subh(V,).

Also

COROLLARY 1.2.6. Let Q C R™ be a connected domain. Let u € subh(Q).
Then u € L (). Moreover, for all z € Q

loc

u(z) < sup u(w).
weN

In particular, if Q is bounded and u extends upper semi-continuously on Q then
u(z) < maxyean u(y) for all x € .
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REMARK 1.2.7. Corollary 1.2.6 says that a subharmonic function satisfies
the maximum principle, namely, if u € subh(€) is not constant then for each
G C Q open it follows u(z) < sup,eq u(w). The converse is however not true.
For instance consider 2 = {(z,y) € R? : 2 > 0,y > 0}. Let u : Q — R be
given by u(z,y) := v/r +y. Then u satisfies the maximum principle (because
u is increasing in  with respect to the distance from the origin), but it is not
subharmonic (for instance we see that Au < 0 and by Theorem 1.4.1 then u
cannot be subharmonic).

Also, since harmonic functions are continuous and satisfy the mean-value
property, it follows that

PROPOSITION 1.2.8. Let Q@ C R™ be a connected domain. Then harm(§2) C
subh(Q). Moreover, if u € subh(Q2) and —u € subh(Q) then v € harm(9).

1.3 - Regularization

Let x € O (™) be such that x > 0, supp(x) € B(O. T, x(x) = x(|lzl)
and [, x(z)dX(z) = 1. Let € > 0 and define

1
Xel@) == —ox(/e)
Then supp(xe) € B(O,€) and [p,. xc(z)dA(z) = 1.
For an open connected subset 2 C R™ let

Q. = {z € Q: dist(z,00) > €}.

From now on, we assume without further comments that e is so small that . # 0.
If u € L (Q) then we let for z € Q.

Ue(T) 1= u* X () = /m u( — y)Xe(y)dA(y) = /m u(y)xe(z —y)dA(y) -

By Lebesgue’s dominated convergence theorem the functions u. € C*°(€,) and
ue — u in the L} (€)-topology as e — 0 (and thus u. — u pointwise almost
everywhere).

THEOREM 1.3.1. Let Q@ C R™ be a connected domain. Let v € subh(Q).
Then u. € C= () Nsubh(Q,). Moreover, {uc} is decreasing as ¢ — 0" and for
all z € Q it follows lime_,g ue(x) = u(z).
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PrOOF. Let a € Q and B(a,r) an open ball relatively compact in Q.. By
Fubini’s theorem and since u is subharmonic

1
v(B(a,7)) /IB(a,r) ue(z)dM(@) =

(1.5) =/m Xe(y) (W /w )U(w—y)d/\(x)> dA(y) =
> [t~ n)dry) = u(o).

and thus by Theorem 1.2.2, u. € subh(,).
Next we show that u. is decreasing in €. To this aim, for a € Q and r > 0
such that B(a,r) CC Q we let

1
(OB (a,r) /ama,r) u(¢)do (<)

We claim that r — L(u,a,r) is increasing. Indeed, let r; < ry and let {u;} C
CY(0B(a,r2)) be a decreasing sequence whose limit is u on dB(a,rs) (such a
sequence exists because u is upper semicontinuous on the compact set 9B(a, r3)).
Let U; € harm(B(a,r2)) N C°(B(a,r2)) be such that U; = u; on dB(a,rs). Since
u < u; on 0B(a,r2) then u < U in B(a,r2) for all j. Therefore

L(u,a,r) :=

L(uaaﬂnl) < L(Ujaavrl) = Uj(a) = L(Ujaa7r2) = L(ujvaaTQ)

for all j. Thus by Beppo Levi’s theorem, L(u,a,m) < lim;_,o L(uj,a,m2) =
L(u,a,ry) proving that r — L(u, a,r) is increasing. Now, a direct computation
from the very definition shows that

(1.6) ue(z) = n(0B(0, 1))/0 X(r)rm_lL(u,x,er)dr

and since r — L(u, a,r) is increasing (and thus decreasing as r — 0+), € — u.(x)
is decreasing for each fixed x € Q.

We have to show that ue — u pointwise as ¢ — 0. From (1.6), since
u(z) < L(u,x,er) for all € > 0, it follows that u(z) < uc(x) for all z € Q.. Let
first assume that u(z) # —oo and let C' > 0. Since w is upper semicontinuous
there exists €3 > 0 such that u(y) < u(z) 4+ C for all y € B(z,€;). For € < €1,
since X, is supported in B(O, €), we have

ue(x) = u(x — (y)dX(y) = u(x — (y)dA
. @ = [ v = [ )i

< (u(z) + C) / o, XD =) O
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and thus u(z) < ue(z) < u(x) + C. Therefore lim._,o uc(z) = u(x). Assume
now that u(z) = —oo. Then, since limsup,,_,, u(z) < u(z) = —oo, for all C >0
there exists €; > 0 such that u(y) < —C for all y € B(z,¢€) and € < €;. Arguing
as in (1.7) we find that u.(x) < —C for € < €1 and therefore u.(x) — —oco as
e— 0. 0

COROLLARY 1.3.2. Let Q C R™ be a connected domain. If u,v € subh(Q)
and uw = v almost everywhere then u = v.

PROOF. Since u = v almost everywhere, then u, = v.. Thus, by Theo-
rem 1.3.1, u(x) = limc_, ue(z) = lime_,o ve(r) = v(z) for all x € Q. 0

REMARK 1.3.3. Let Q € R™. Let u € subh(Q). Let B(x,r) be an open
ball relatively compact in 2. Consider the function

1
A(m,u,r) = W A(w7r) ud\ .

Then A(z,u,r) is increasing in r > 0. Indeed, in the proof of Theorem 1.3.1 we
proved that L(x,u,r) is increasing in 7 > 0 and

1
Az, u,r) = m/ t" L(x, u, tr)dt.
0

PROPOSITION 1.3.4. Let Q C R™ be a connected domain. Let {u;} C
subh(Q) be a sequence of subharmonic functions which are uniformly bounded
from above on compacta of Q). Let

S({u;}):= {m € Q:3U open neighborhood of x,3Cy > 0: sup/ lujldX < C’U}.
J JU

Then, either S({u;}) =0 or S({u;}) = Q.

PROOF. The set S({u,}) is clearly open. Since (2 is connected, it is enough to
show that it is also closed in 2. Assume that S({u;}) # 0 and let y € S({u;})NQ.
There exist € S({u;}) and r > 0 such that B(z,r) is relatively compact in
and y € B(z,r). In order to show that y € S({u;}) (proving that 2 is closed) it
is enough to show that there exists M > 0 such that

(1.8) sup/ |ujld\ < M.
J B(z,r)

Since {u;} are uniformly bounded on compacta, there exists C' > 0 such that
uj(z) —C <0 for all j € Nand z € B(x,r). Thus, we can assume that u; <0
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on B(z,r). By hypothesis, € S({u;}). Therefore, there exist 0 < 7’ < r and
M’ > 0 such that

sup/ |u;|d\ = sup —/ wid\ | < M.
j JB(z,r") J B(x,r’)

According to Remark 1.3.3, for all j € N,

; /
R wild\ = —A(z,u;,r) < —A(z,u;,r’
U(B(IE,T‘)) ]B(x,r)| ]| ( J ) ( J )

!

1
= WB@ ) /B(m,m ldr < By

and we are done. a

1.4 — Subharmonic functions and distributions

THEOREM 1.4.1. Let Q C R™ be a connected domain. If u € subh(Q) then
Au > 0 in the sense of distribution. Conversely, if u € L () and Au > 0 in
the sense of distributions, then there exists v € subh(Q) such that v = u almost
everywhere.

PRrOOF. First of all, we assume u € C?(Q2). Suppose Au > 0. Let G CC Q
and h € harm(G) N C°(G) be such that u < h on dG. Fix € > 0. Let R :=
max{[[z]|*: 2z € G}, 0 < § < ¢/R and

v(2) == u(z) — e+ 82|

Notice that v < u in G and therefore v < h on dG. Let w(z) := v(2) — h(z).
Then w(z) < 0 on dG. We claim that w < 0 in G. Let a € G be such that
w(a) = max, 5 w(z). Assume by contradiction that w(a) > 0. Since a € G,
then there exists s > 0 such that (—s,s) 3 t — w(a + te;) has a maximum in
t =0. Thus

o w(a) = i w(a +te;)|t=0 <0

el =5 i)le=0 < 0.

da3 2 /

dt
Therefore Aw(a) < 0. But
Aw(a) = Au(a) + 5A| z||*|.=a — Ah(a) = Aula) +6 >0,
contradiction. Thus v < h in G. Hence, u < h + € — §||2]|> < h + 2¢ on G. By

the arbitrariness of € we obtain u < h in G and thus u € subh(). Now, if u €
C?(Q) Nsubh(Q) and Au(a) < 0 then there exists an open ball B(a,r) C € such
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that Au(z) <0 for all z € B(a, 7). Therefore A(—u) > 0 in B(a, r) which, by the
previous part, implies that —u € subh(B(a, r)). Therefore u, —u € subh(B(a,r))
and then u € harm(B(a,r)). But then Au(a) = 0, contradicting Au(a) < 0.
Thus the theorem holds for C? functions.

Now assume u € subh() (with no regularity assumptions). Let u. be the
regularization sequence given by Theorem 1.3.1. Then Au, > 0 for all ¢ > 0. If
v € C§(2), ¢ > 0, then by the Lebesgue theorem and integration by parts

/ uAp = lim/ uAp = lim [ (Aue)p >0,
Q e—0 Q e—0 Q
and thus Aw > 0 in the sense of distributions.

Conversely, let u € L. . be such that Au > 0 in the sense of distributions.
Let ue := u % x.. Recall that ue — w in L{ (Q) — and thus u. — u almost
everywhere. For small €, test function ¢ € C§°(€2) with ¢ > 0 and by Fubini’s
theorem we have

[ u@aetine = [t ([ ute-nav@ane ) i = o,

therefore Au. > 0 (this is true in the sense of distributions and, since u. €
C?(Q.), integrating by parts it is true for all x € Q). Hence u, € subh(Q,). If we
show that {u.} is decreasing in €, then by Corollary 1.2.4 the limit is subharmonic
(and, as we already noticed, it coincides with u out of a zero-measure set). In
order to see that {u.} is decreasing in €, let €; < €. Then u,, = lims_, U, * Xs-
By Fubini’s theorem u., * x5 = (w* Xe,) * X5 = (W% X5) * Xe,- The function u* xs
is subharmonic and by Theorem 1.3.1 the regularizing sequence approximating
it is decreasing in €, namely (u * Xs) * Xe, = (U * Xs) * Xe,. Thus

(1.9) Ue, = lim U, * x5 > Hm ue, * X5 = Ue,
§—0 §—0
as needed. a

1.5 — Construction of subharmonic functions

PrOPOSITION 1.5.1. Let Q C R™ be a domain. Let V. C Q be an open
subset. Letu € subh(€2) and let v € subh(V') be such thatlimsup,_,, v(z) < u(y)
for ally € OV N Q. Then the function

- { max{u,v} in V
w in Q\V

is subharmonic in Q. In particular, if V = Q, namely if u,v € subh(Q), then
max{u,v} € subh(Q).
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Proor. Clearly w : @ — [-00,00). We want to prove that w is upper
semicontinuous in 2. By the very definition, w is upper semicontinuous in Q\V.
Let x € VNQ. If £ € V then

limsup w(z) < max{u(x),v(z)} = w(z),
Qoz—z

while, if z € OV N Q then

limsupw(z) < u(x) = w(x),
Qoz—x

because limsup,_,, v(z) < u(y) for all y € 9V N €. Thus w is upper semicontin-
uous in €.

Now, let a € Q. If w(a) = u(a) then

1 1
T oo "D 2 o) [y, MO 2 ) =06

If w(a) = v(a) > u(a) (and then necessarily a € V) then we can find R(a) > 0
such that B(a,r) C V for all 0 < r < R(a). Thus

1 1
m s/B(an‘) w(x)dA(z) > W ,/[E;(ayr) v(z)dA\(z) > v(a) =v(a),
and by Theorem 1.2.2, w € subh(Q). 0

A simple argument shows that

PROPOSITION 1.5.2. Let Q@ C R™ be a connected domain. Let {u;} C
subh(Q) be a sequence converging uniformly on compacta. Then the limit u €

subh(€).

PROPOSITION 1.5.3. Let Q2 C R™ be a connected domain. Let {uq}acs be a
family of subharmonic functions on Q. Let u(z) = sup,e s ua(x). Assume that u
1s locally bounded from above. Let u* be the upper semicontinuous regularization
of u, namely

uw*(z) = max {u(m),lim Supu(w)} .

Qo3w—a

Then u* € subh(Q) and u = u* almost everywhere in Q. Also, u* = lim._,q u* ).
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PROOF. By the very definition u* : Q — [—00, 00) and, since lim supgs,_,
u*(w) = w*(x) it is upper semicontinuous. Notice that

*

u* = inf{v upper semicontinuous : v > u}.

In particular if v is upper semicontinuous and v > u then v > u*. Let G CC Q
be an open set and let v € harm(G) N C°(JG) be such that v > u* on dG. Thus
v>u* > u>u, on OG for all a € J. Since u, € subh(Q), v > u, on G for all
a € J. Thus v > u on G. But v is (upper semi-)continuous and therefore v > u*
in G, proving that u* € subh().

Now consider the convolutions u, := ukxx. € C*°(€). We know that u. — u
almost everywhere in Q. Let B(a,r) be an open ball relatively compact in €.
Since for all @ € J

1 1
val®) < Bam) /BW) ua(@)AA®) < Trg ) /Ma,m ue)d()

then it follows that u(a) < m fB(am u(z)dX(x). Arguing as in (1.5) we
find then that the u.’s have the sub-mean property and then u. € subh(f).
Moreover, by Theorem 1.3.1, uq < g * Xe and then ug < g * Xe < U * Xe = Ue
for all «, showing that u < wu. for all € and thus u* < wu. (since u. are C).
Arguing as in (1.9) we see that u. is decreasing in €. Thus by Corollary 1.2.4

the limit v := lim._,q u. is subharmonic in ). Since v = u almost everywhere
in Q, and u < u* < v then u = u* almost everywhere in 2 and u* = v by
Corollary 1.3.2. O

DEFINITION 1.5.4. Let 2 C R™ be a domain. A subset £ C Q is a polar set
if for each x € F there exists an open set V,, C Q with 2 € V,, and v € subh(V}))
such that ENV, C {v=—oc0}.

Since subharmonic functions are L _, then every polar set E C  has zero

Lebesgue measure and its complementary © \ E is dense in €.

COROLLARY 1.5.5. Let Q C R™ be a domain. Let v € subh(Q) and let E
be a closed polar set. Let u € subh(Q\ E) (respectively v € harm(Q\ E)) and
assume that u is bounded from above. Let

(1.10) U(z) = { limsup u(y) ifz€FE
Q\E>y—ax

Then U is subharmonic (respectively harmonic) in ).
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PROOF. Assume u € subh(Q\ E). Since u is bounded from above, then U is
upper semicontinuous on €. Let x € F and let V, C € be an open neighborhood
of x such that there exists v € subh(V,) with ENV, C {v = —c0}. We are
going to show that U € subh(V) and then, by arbitrariness of € F and by
Proposition 1.2.5 it will follow that U € subh(Q).

Let define U, := u+ ev (here we consider U (z) = —o0 if v(x) = —o0) in V.
Then U, € subh(Q). Let U = sup, U, on V, \ E. According to Proposition 1.5.3
the upper semicontinuous regularization U* of U is subharmonic in V.. By
construction U = U* on V, and thus U € subh(V},).

If w € harm(Q\ E), let V denotes the function defined as in (1.10) for —u.
Then U,V € subh(Q) and U+ V = 0in Q \ E which is a set of full Lebesgue
measure. By Corollary 1.3.2 it follows that U+V = 0 and thus U, —U € subh(Q)
which implies that U € harm(Q). 0

THEOREM 1.5.6. Let Q C R™ be an open set. Assume that one of the
following conditions is satisfied:

1. u,v € harm(Q) with v > 0 and ¢ : R — R is a convex function;

2. u € subh(Q), v € harm(Q) with v > 0 and ¢ : R — R is an increasing
convex function;

3. u,—v € subh(Q), withu > 0, v > 0 and ¢ : R — R is a positive convex
function with ¢(0) = 0;

then vo(u/v) € subh(£).

ProoF. We only give a proof of (2), the others being similar. First, being ¢
increasing and convex, for x € R, the tangent line to ¢(x) is given by y = ax + b
with a > 0 and b € R. Let

Fap(x):={ax+b:a>0,be R, at +b < ¢(t) Vt € R}.

By convexity ¢(x) = sup,>qp Fab(z). Now, v(a® +b) = au + bv € subh(£) for
a > 0 and b € R. Thus the upper semicontinuous regularization of vo(u/v)(x) =
SUP, >0, Fa,p(au(z) + bv(z)) is subharmonic by Proposition 1.5.3. To have the
result we only need to show that vé(u/v) is upper semicontinuous. But ¢ is
increasing and u/v is upper semicontinuous, thus

lim sup é(u(x)/v(x)) < d(u(xo)/v(x0)). 0

T—>T0o

COROLLARY 1.5.7. Let Q C R™ be an open set. If u € subh(Q) then
e" € subh(Q).
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PRrROOF. By Theorem 1.5.6 with ¢(x) = €® and v = 1. 0

1.6 — Boundary behavior: the Hopf lemma

THEOREM 1.6.1 (Hopf’s lemma). Let Q@ C R™ be a domain. Let p € 052
and suppose that OQ has the inner ball property at p (for instance, if OQ is C?
at p). Let U be an open neighborhood of p and let u € subh(QNU) be such that
limosz—p u(z) = u(p) and u < u(p) in UNKQ. Let v € R™ be a non-zero vector
which does not belong to T,0Q0 and pointing outward. Then

Jiam sup u(p — hv) — u(p)

<0.
h—0 h

PROOF. Since €2 has the inner ball property at p, there exists a ball B C QNU
such that 0B is tangent to 02 at p. We can assume with no loss of generality that
B = B(0,1) and that u(p) = 0 and u < 0 in B\ {p}. Let v(z) := e—ellzl* _ g=o
for & > 2m. A direct computation shows that Av = e~l=l” (4]|z]|2a2 — 2ma)
and v = 0 on JB. Thus, since a > 2m, v is subharmonic in {z : ||z|| > 1/2}.
Moreover,

ov o
" =gradfv(p)] v = —2ae *p-v <0,

@=p
since v points outward, that is p-v > 0. Fix € > 0. Let M be such that u < —M
on ||z|| = 1/2. Now v > 0in B, but, since e™*/*—e~* — 0 as @ — 0o, there exists
a > 1such that v(z) < M/2¢ for ||z|| = 1/2. Let V =B\{z € R™ : ||z|* < 1/2}.
Then u + ev € subh(V). Moreover, by construction u + ev < 0 on 9V. By
the maximum principle, u + ev < 0 in V and p € OB is a maximum since
u(p) + ev(p) = 0. Let tg > 0 be such that p —tv € V for 0 < ¢t < tg. Then

Jimn sup (u+ev)(p —tv)

<0.
t—0+ t

Now let {t;}, tx > 0, be any sequence converging to 0. Then for all &k

o> WHe)p—tw) _up—tw) | v(p—tw)
th th th

and since limy_, 00 U(p;—:"”) = —%(p) > 0 we obtain

. u(p — txv) ov
limsup ——= < e—(p) <0,
T

proving the statement. 0
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Hopf’s lemma can be used in analysis to prove uniqueness for the solution
of von Neumann-type problems. As a matter of example, we give the following:

PROPOSITION 1.6.2 .Let €2 C R™ be a bounded domain with C? boundary.
If u € harm(Q) N C%(Q) is such that g)T“p(p) =0 for all p € 0N (here n, is the
outer normal vector) then u = const.

PROOF. Assume that u is not constant. By the maximum principle it has a
strict maximum at some p € 9. Thus Hopf’s lemma implies that %(p) > 0,

against the hypothesis. O

2 — Pluriharmonic functions
2.1 - Interlude on holomorphic functions

Consider the complex space C™" as a 2n-dimensional real space R?". The
multiplication by i in C" determines a complex structure J on R?", called the
standard complex structure of R?”. More explicitly, if v € C™ and we denote by
v® its image in R?", then J(v®) := (iv)®. Let Q C C" be an open set. Then
T = Q x C" and one can consider the real structure  x R?" with the standard
complex structure on each fiber which, being independent of z € €, we still
denote by J. If we consider (TQ)® @g C ~ Q x C?" the operator J determines
an operator J© on (TQ)® ®g C which has the property that (J¢)? = —I and
thus one has the decomposition (TQ)® @g C = T1°Q @ T%'Q in terms of the
eigenspaces of JC. Namely, J¢X = iX forall X € T"°Q and J°X = —iX for all
X € T%1Q). Accordingly, one can decompose the cotangent space (T*Q)® @ C =
(T*Q)0 @ (T*Q)%L. In general, given an R-linear map L : (TQ)® — TC, then L
is C-linear (namely there exists a C-linear map [ : TQ) — TC such that [® = L)
if and only if L o J = ¢L, that is, L commutes with the complex structures on
Q and C respectively, while L is C-antilinear if L o J = —iL. Notice that L
is C-linear (respectively C-antilinear) if and only if L € (T19Q)* (respectively
L € (T%1Q)").

Now, let u € C1(Q,R). Considering R C C we can think of u: Q — C as a
function such that u = @. Thus du : (TQ)R = QxR — TR CTC =C x C
is an R-linear morphism.

LEMMA 2.1.1. Let Q C R?*™ be an open set and let u € C*(Q,R).
1. The C-linear part of du is given by Ou := %(du —idduo J).
2. The C-antilinear part of du is given by Ou := %(du +iduo J).

The decomposition du = Ou + Ou is the unique decomposition in C-linear
and C-antilinear parts.
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PRrOOF. Clearly du = du + du. Since
(du —iduo J)oJ = (duoJ+idu) = i(du —iduo J)

then Ou is C-linear. Similarly one can prove that Ou is C-antilinear. Finally, if
du = A + B is another decomposition in C-linear and C-antilinear parts, then
Ou — A = 0u — B and thus

i(Ou—A) = (Ou—A)oJ = (0u— B)oJ=—i(0u— B) = —i(0u— A)

forcing Ou = A and ou = B. O

In local coordinates z; = :Eg + 1y; in C", we define dz; = d:ﬂj + zdy] and
dz; = dx; —idy;. Also, we let 5o~ = (52 d)and 2 :1(896 +zay) A

8 ) Z )
dlI eC t CO1M [)u ta tl()Il bll() WS t}lat

Let us define

LEMMA 2.1.2. Let Q C C" be a domain. Let u € C*(Q,R). Then d°u =
—duo J.

Proor. We have

d°u = i0u — iOu = —OuoJ —OuoJ = —duo J. a

The classical Cauchy-Riemann equations can be read in terms of d,d° as
follows:

THEOREM 2.1.3. Let 2 C C™ be a domain. A function f = u + iv €
CY(Q,C) is holomorphic in Q if and only if d°u = dv in Q.
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PROOF. Let fix coordinates {z;,y;} in . The function f is holomorphic in
Q if and only if the Cauchy-Riemann equations

ou _ o
8.’17]‘ 9
ou o,
o, "
are satisfied. Now, writing % = (68—;, . ’%) (and similarly for —Z) we have
Ou Ou 0 —I Oou Ou
duoJ=——,—]" =(z=,—5] -
ox’ dy I 0 dy’  Ox
Thus Cauchy-Riemann equations become —du o J = dv. By Lemma 2.1.2
Cauchy-Riemann equations are then equivalent to d°u = dv, proving the state-
ment. O

2.2 — Pluriharmonic functions

DEFINITION 2.2.1. Let @ C C" be a domain. A function u € C?(),R) is
pluriharmonic, u € Ph(Q), if for all p € Q and v € C™ the function C 3 ¢ —
u(p + ¢v) is harmonic for || < 1.

For a C?-real function u we define the complex Hessian (or the Levi form)
as the following (0, 2)-tensor:

—d dz
Z 8238zk % ® dZn

8%u
Szj SEk
We have the following characterization of pluriharmonic functions in terms
of Levi form:

Notice that, since u = @ then the matrix ( ) is Hermitian.

PROPOSITION 2.2.2. Let Q C C" be a domain. A function u € C?(Q,R)
is pluriharmonic if and only if L(u) = 0. Namely, v € Ph(Q) if and only if

af;%k(x):()for allj,k=1,... ,n and x € Q.

PROOF. Recall that in C with (-coordinate, A = 48%8%' Therefore

8 u(p + Cv) " 0%

(2.1) AU(erCv)l oot l¢=0 =

Thus Au(p + ¢v)|¢c=o =0 for all p € @ and v € C" if and only if L(u) =0. O

COROLLARY 2.2.3. Let Q C C" be a domain. Then Ph(Q2) C harm(Q). If
n > 1 the inclusion is proper.
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PRrROOF. By Proposition 2.2.2 it follows that if v € Ph(Q2) then L(u) = 0
which implies Au = 0 and then u € harm(Q). For n > 1 let 2o ¢ Q and consider
the function u(z) = ||z — z|| 72»=1. Then Au = 0 but ¢ ~ u(p + Cey) is not
harmonic. O

COROLLARY 2.2.4. Let Q C C™ be a domain. Let Q' C C™ be another
domain and let f : Q' — Q be a holomorphic map. If u € Ph(Q) then uo f €
Ph(QY).

PROOF. In view of Theorem 2.2.2 it is enough to prove that L(u o f) = 0.
By the chain rule, since df = 0f

Luo f) = L(u)o (df ®@df) =0,
because L(u) = 0. 0

Summarizing these last two corollary, we can say that a harmonic function
is pluriharmonic if and only if it is harmonic under holomorphic changes of
coordinates.

THEOREM 2.2.5. Let Q C C" be a domain.

1. If f is holomorphic in Q then Ref,Imf € Ph(Q).
2. Suppose H(Q,R) = 0. If u € Ph(2) then there exists v € Ph(Q) such that
u + v is holomorphic in €.

Proor. (1) If f : © — C is holomorphic then for all p € Q the function
C 3 ¢+~ f(p+¢w) is holomorphic for |¢| < 1. Thus its real and imaginary parts
are harmonic and then Ref,|Imf are pluriharmonic.

(2) Let w := d°u. Then dw = 0 and since H'(Q,R) = 0, Poincaré lemma
implies that w is exact. Thus, there exists v € C1(Q) such that dv = w. Hence
d“u = dv and the function u + iv is holomorphic in view of Theorem 2.1.3. [

REMARK 2.2.6 The previous theorem says that locally every pluriharmonic
function is the real part of a holomorphic function.

3 — Plurisubharmonic functions
3.1 - Definition and first properties

DEFINITION 3.1.1. Let © C C" be a connected domain. A function u :
Q — [—00,00) is plurisubharmonic, u € Psh(Q), if

1. u # —oo0.

2. wu is upper semicontinuous.

3. For all p € © and v € C™ the function C 5 ¢ — u(p + (v) is either
subharmonic or = —oco for |(| < 1.



216 FILIPPO BRACCI ~ STEFANO TRAPANI [20]

PROPOSITION 3.1.2. Let Q C C" be a domain. Let u € C*(Q). Then
u € Psh(Q) if and only if for all v € C™ it follows

(3.1) L(u)(v;v) >0.

PRrOOF. By Theorem 1.4.1, u € Psh(Q) if and only if Au(p + (v)|¢c=0 > 0
for all v € C™. By ((2.1) it follows that Au(p + (v)|¢c=o > 0 if and only if
L(u)(v;v) > 0. 0

COROLLARY 3.1.2. Let Q C C" be a domain. Then

1. Ph() C Psh(Q).
2. Psh(Q) N C?%(Q) C subh(Q).

ProOF. (1) By Proposition 2.2.2, if v € Ph(Q) it follows that L(u) = 0,
thus by Proposition 3.1.2 we have u € Psh(Q).

(2) Let u € C?(2). If u € Psh(€2) then by Proposition 3.1.2 it follows that
L(u)(v;v) > 0for allv € C"*, namely the matrix (82281‘Ek ) is positive semi-definite.
In particular its trace is > 0. Since a direct computation shows that

0%u
8zj82k
it follows that v € subh(Q) in view of Theorem 1.4.1. 0

DEFINITION 3.1.3. Let  C C" be a domain. Let u € C%(2). We say that

u is strictly plurisubharmonic if for all v € C™ \ {O} it follows L(u)(v;v) > 0.

Au = 4tr(

)=0

REMARK 3.1.4. One could define strictly plurisubharmonic functions with-
out the requirement of C?-regularity. Namely, one can say that a function
u € Psh(Q) is strictly plurisubharmonic in the weak sense if for each p € Q
there exists ¢ > 0 such that z — u(z) — c||z||? is plurisubharmonic near p. Note
that u € C%(Q) is strictly plurisubharmonic in the weak sense if and only if it
is strictly plurisubharmonic in the sense of Definition 3.1.3. This follows easily
from the fact that (z,v) — L(u)(v;v) is continuous and thus it has a minimum
for (z,v) € B(p,r) x 0B(O, 1), where B(p,r) CC Q is any open ball.

LEMMA 3.1.5. Let Q C C™ be a domain. If u € Psh(Q) then for all a € Q
and b € C™ such that {a+ ¢b: |(] <1} C Q it holds

(3.2) u(a) < /0 ot by

27
Conversely, if u : Q — [—00,00) is upper semicontinuous, u Z —oo and (3.2)
holds, then u € Psh(€).
In particular a plurisubharmonic functions has the sub-mean property with
respect to polydiscs.
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PrOOF. If u € Psh(Q) then ¢ — wu(a + ¢b) is subharmonic and then (3.2)
follows from Theorem 1.2.2. Conversely, again by Theorem 1.2.2, if (3.2) holds
then ¢ — u(a + ¢b) is either = —oo or it is subharmonic and thus u € Psh(f).

Finally, assume u € Psh(2). Let P(a,r) CC € be a polydisc with multira-
diusr = (r1,... ,7my) be relatively compact in Q. Let p; € (0,7;) forj=1,... ,n.
By (3.2) we have

1 27 27 ) ‘
@n)" / / u(ar + e, an + pne®))dbs ... db >
0 0

@

1 27 27 ) '
> @rt /0 /o u(ar, as + p2e®2, ... an + pnet®))dbs . .. db, >
> u(a).

Now we multiply both sides of the previous inequality by p; - - - p,, and integrate
for p; € (0,7;) obtaining

1
TP "0 260

Thus u has the sub-mean property with respect to polydiscs. O

REMARK 3.1.6. Again, it should be remarked that being plurisubharmonic
is a local property (which follows directly from the fact that being subharmonic
is a local property).

PROPOSITION 3.1.7. Let Q@ C C™ be a domain. Then Psh(2) C subh(Q),
and for n > 1 the inclusion is proper.

PROOF. Let B(a,r) CC Q be an open ball. Then (3.2) holds for all ||b|| =
r. Consider 7 : OB(a,r) — CP"~! the Hopf fibration with fiber S* given by
7(z) = [z]. For any real 2n — 1 form w on dB(a,r) with upper semicontinuous
coefficients it is possible to define a real 2n — 2 form . (w) on CP"~! obtained
by integration along the fibers (see [Bo-Tu, p. 61-63] for the continuous case,
the semi-continuous is analogous). In our case we set w = udo and then in local
coordinates (6,b) € (0,27) x R?*"~2 which trivialize the Hopf fibration and for
which do = df A do’(b) with do’(b) a 2n — 2 form, it follows that m.(udo) :=
0% u(a+ e*b)df A do’ (b). Thus, by the projection formula [Bo-Tu, Proposition
6.15 p. 63] and by (3.2) it follows that

/ udo = / 7. (udo) > u(a)Qﬂ'/ do’.
OB(a,r) cpn—1 Ccpn—1
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Repeating the argument with w = 1 it follows that

w(0B(a,r)) = / do = / 7. (do) = 27r/ do’ .
dB(a,r) Ccpr—1 Cpr—1

Putting these two inequalities together we obtain

1(OB(a, r))u(a) < / w(Q)do(C),

OB(a,r)

by Theorem 1.2.2 it follows that u € subh(Q).

To see that for n > 1 the inclusion is proper, we exhibit an example. Let
(w1, m2) = 4(z% — 23). Then Au = 0 and hence u € harm(C?) C subh(C?).
Now, u(x1,z2) = 23 — 22 + 22 — 73 — 22121 + 229%> and a direct computation
shows that £(u)(v;v) = —2[v1|? + 2|va|? proving that u & Psh(Q). 0

REMARK 3.1.8. Proposition 3.1.7 can be proved straightly using the regu-
larization sequence to be constructed in Theorem 3.2.1 and the fact that smooth
plurisubharmonic functions are subharmonic in view of Corollary 3.1.2. Of
course, proceeding this way, the proof of Theorem 3.2.1 is more complicated
(for this way of arguing see [KI]).

In view of Proposition 3.1.7, plurisubharmonic functions enjoy all properties
of subharmonic functions such as being L;. ., the maximum principle and Hopf’s
lemma.

LEMMA 3.1.9.Let Q@ C C™ be a domain and let {Q} C C™ be a sequence
of connected domains such that Qp C Q1 and U, Q = Q. For each k, let
uy € Psh(Q) be such that ug(z) > ukr1(x) for all x € Qi and for all k (that is,
{ur} is a decreasing sequence). Let u(z) = lim;_ o uj(z). Then either u = —oo

or u € Psh(9).

PROOF. Assume that u # —oo. According to Corollary 1.2.4, the limit
u € subh(©2). Then the result follows by Lemma 3.1.5, since for all (suitably
chosen) a,b and j > 1

2m
u(a) < uj(a) < i/ uj(a+ e“b)do
2T 0

and the latter integral converges to 7 fozﬂ u(a + €*b)df by Beppo Levi’s mono-

tone convergence theorem. O

COROLLARY 3.1.10. Let Q C C™ be a domain. Then u € Ph(Q) if and only
if u, —u € Psh(9).
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ProOOF. If u € Ph(2) then by Proposition 2.2.2 then £(u) = 0 and then
L(u), L(—u) = 0 which implies u, —u € Psh(Q) by Proposition 3.1.2. Conversely,
let u, —u € Psh(Q2). By Proposition 3.1.7 and Proposition 1.2.8 it follows that
u € harm(Q). In particular u € C*°(Q2). By Proposition 3.1.2 and since both u
and —u are plurisubharmonic, then £(u)(v;v) > 0 and £L(—u)(v;v) > 0 implying
that £(u) = 0 and, by Proposition 2.2.2, u € Ph(Q). 0

3.2 — Regularization of plurisubharmonic functions

THEOREM 3.2.1. Let Q C C" be a domain. Let u € Psh(Q). Let u. := xe*u.
Then ue € Psh(Q¢) N C=(Q,). Moreover {uc} is decreasing in € and converges
pointwise to .

PROOF. Since plurisubharmonic functions are subharmonic by Proposi-
tion 3.1.7 and in view of Theorem 1.3.1 we have only to prove that u. € Psh(Q).
By Fubini’s theorem, if {a + (b : |(] <1} C ., we have

ue(a) = / wla—nxmam < [ o | 7 ua+ % — ). (y)doaA(y) =
= 27(/” a+€e%b —y)x(y)d\(y)do = 217T/0 uc(a 4 €b)de,

and thus by Lemma 3.1.5, u. € Psh(£,). 0

COROLLARY 3.2.2.Let @ C C™ be a domain. Let u € Psh(Q). Then there
exists {v.} C C™°(Qe) strictly plurisubharmonic in Q. such that {v.} is decreasing
i € and converges pointwise to u.

PROOF. Let {u.} be given by Theorem 3.2.1. Let v.(2) := u.(2) + €/ 2|
Then for C* 3 b # O,

L(ve)(b;b) = L{u)(b; b) + eL(]|2[*)(b:6) > 0
hence v, is strongly plurisubharmonic in 2. and the remaining properties follow
from the properties of the u.’s. O
As a consequence, arguing as in Theorem 1.4.1, one can prove the following
PROPOSITION 3.2.3.Let Q@ C C™ be a domain. If uw € Psh(Q) then
L(u)(v;v) > 0 in the sense of distribution for all v € C"™. Conversely, if

u € LL (Q) and L(u)(v;v) > 0 in the sense of distribution for all v € C,
then there exists v € Psh(Q) such that v = u almost everywhere.
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Also, the arguments in the proofs of results in Section 5 of Chapter I work
with only minor changes for plurisubharmonic functions allowing to construct
new plurisubharmonic functions starting from given plurisubharmonic functions.
We leave details to the reader.

We end up this section with an application of Hopf’s lemma for plurisub-
harmonic functions to analytic discs attached to pseudoconvex domains:

PROPOSITION 3.2.4. Let Q C C" be a domain. Assume there exists a
neighborhood U of Q and p € Psh(U) N CY(U) such that @ = {z € U : p(z) < 0}
and dp, # 0 for all x € 0Q. Let ¢ : D — Q be a holomorphic disc such that
o € CH(D) and p(OD) C Q. Then (D) is transverse to I at every point.

PROOF. By hypothesis p(¢(¢)) < 0 for all ¢ € D and p(¢(¢)) = 0 for all
¢ € OD. Then Hopf’s Lemma implies that for all { € oD

dpe(o)('(Q)) = _ lim - %(tf)) L0,

Therefore ¢'(¢) €Ty, (¢)0D and hence p(0D) is transverse to J2 at every point. [

3.3 - Plurisubharmonic and subharmonic functions under changes of coordi-
nates

We begin with the following example:

EXAMPLE 3.3.1. Let (z,y) € R? and let u(x,y) = 22 —y2. Then Au(z,y) =
0 and u € harm(R?). Consider the following linear change of coordinates: z =
X,y =X —Y. Then u(X,Y) = —Y? + 2XY and thus Au(X,Y) = —2 which
implies that «(X,Y) is not subharmonic in the new coordinates.

Very roughly, the reason why subharmonic functions do not behave well
under changes of coordinates is that in general a change of coordinates is not
conformal, thus it does not preserve balls and spheres and the sub-mean property
is no longer true.

Contrarily, not degenerate holomorphic mappings are conformal in C and
thus one might expect some better behavior for plurisubharmonic functions.
Indeed we have

PROPOSITION 3.3.2.Let Q@ C C™ be a domain. Let u: Q — [—o00,00). Then
u € Psh(Q) if and only if for all f : Q' — Q holomorphic (with Q' a domain of
C™) it follows that either uo f € subh(€') or uo f = —oo.
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PROOF. First assume that u € Psh(Q) N C?(Q) and let f : Q' — Q be
holomorphic. Then for all v € C™

L(uo f)(v;v) = L(u)(df (v); df (v)) = 0,

proving that u o f € Psh(€). If u € Psh(Q) (no regularity assumptions) let
{u} be the sequence given by Theorem 3.2.1. Then u, o f € Psh(f~1(£,)) and
since the sequence {u. o f} is decreasing in ¢, it follows that the limit (which

is wo f) is either = —oo or plurisubharmonic (and thus subharmonic) in Q by
Lemma 3.1.9.
Conversely, if u o f is subharmonic or = —oo for all holomorphic mappings

f:Q — Q then it is so also for holomorphic map C 3 ¢ — a + ¢b (for a € 9,
b € C" and || < 1) and this is exactly the definition of plurisubharmonic
function. 0

REMARK 3.3.3. With some more effort it can be proven that u € Psh(f)
if and only if for all C-linear isomorphism 7" : C" — C" it follows that uo T €
subh(T-1(Q)) (see, e.g., [Kl, Theorem 2.9.12 p. 68].

As an application we have the following result:

THEOREM 3.3.4. Let u € subh(R?). If there exists M < oo such that
u(z) < M for all x € R? then u is constant.

PrOOF. We consider u : C — [—o00,00) with complex variable z. If u
is not constant we can assume that u(0) < w(1l). Let v(z) := u(l/z). By
Proposition 3.3.2 the function v € subh(C\{0}) and v(z) < M for all z € C\{0}.
By construction

limsupv(z) = limsupu(1l/z) = limsup u(w) < u(0) < u(l) =v(1).

|z]—00 |z] =00 |w]—0
Thus there exists R > 0 such that

(3.3) sup v(z) = sup v(z).
2€C\{0} z€B(0,R)\{0}

Let define v(0) := limsup,_,,v(z). Since v is bounded, then Corollary 1.5.5
implies that v € subh(R?). By (3.3) it follows that there exists z € B(0, R)
such that v(z) = sup,cg> v(w), but this contradicts the maximum principle in
Corollary 1.2.6. O

As a corollary:

COROLLARY 3.3.5. Let u € Psh(C™). If there exists M < oo such that
u(z) < M for all z € C™ then u is constant.
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ProOOF. Apply Theorem 3.3.4 to all complex lines passing through O. 0

Notice that the previous result would be false for subharmonic functions
(which are not plurisubharmonic):

EXAMPLE 3.3.6. In R3 let u(z) = —1/||z||. Then Au(z) = 0 for = # O and
u(0) = —oo, therefore u € subh(R?). However u(x) < 0 for all z € R? and it is
not constant.

REMARK 3.3.7. Proposition 3.3.2 allows to define the sheaf of plurisub-
harmonic functions on complex manifolds. In other words, if M is a complex
manifold and U C M is an open set, then v : U — [—00,00) is plurisubhar-
monic if for all € U there exists a local chart (V,¢) such that x € V and
uo @t € Psh(p(V)). Proposition 3.3.2 guarantees that such a definition does
not depend on the (holomorphic) local chart chosen to define it.

The maximum principle (as well as the previous results on plurisubharmonic
functions) extends easily to plurisubharmonic functions on complex manifolds.
For instance, this implies that Psh(CP!) = R. With this, we have a simple
alternative proof of Theorem 3.3.4 as follows: if u € subh(C) is bounded from
above, then its extension to CP! given by defining u(co) = lim SUD|| 00 U(2) 18
subharmonic on CP! (by the analogous of Corollary 1.5.5 for complex manifolds)
thus it is constant.

4 — Currents
4.1 — Distributions

Let Q C R™ be a domain. We write f € C§(Q) if f : @ — C is such that

f € C*¥(Q) and supp(f) cC Q. For a multi-index a = (1,... ,a,,) € N™ we
m o la
denote by |a| = 3777, a; and by D*f = aafi. We let Cp(Q) := CJ(Q).

at @
z, .0z

DEFINITION 4.1.1. Fix p < k. Given f € C§(Q) and K a compact subset
of © such that supp(f) C K and € > 0, the sets

Vi (f. e, K)={g€C(Q):supp(g) C K, sup [D*(f = 9)(@)] < &,V €N™, |a]<p}

form a basis of open neighborhoods of f. We call the CP-topology on C§(€) the
topology defined by V,(f, ¢, K) when f,e, K (with supp(f) C K) vary.

Notice that a sequence {g;} C C§(Q) converges to f € C¥(Q) in the CP-
topology provided that

1. U;jsupp(g;) Usupp(f) is relatively compact in Q and
2. D%g; converges uniformly in Q to D f for all & € N™ with |a| < p.



[27] Notes on pluripotential theory 223

The space C*(2) endowed with the topology of uniform convergence (on )
is a Banach space. We can thus consider the induced topology, denoted by C',n
on C¥(£2). More in details, a basis of open neighborhoods for such a topology is
provided by

Vo(f.e)={g€ CE): sup |D*(f — g)(@)| < e,¥a €N, |a| <p}

when f € C§(2), € > 0 vary. Thus a sequence {g;} C CE(f2) converges to
f € CE(Q) in the CP-topology if and only if the sequence {D%g,} converges
uniformly in Q to D*f for all « € N™ with |a| < p.

Notice that the topology C), is finer then the C’p—topology on CF(Q), that
is, an open set in C,, is open also in C), because, clearly, V,(f,¢, K) C V,(f,¢)
for all K compact sets which contain the support of f. However the C),-topology
does not coincide with the C'p—topology. For instance, consider a sequence {g;}
defined as follows: let {a;} C Q be a sequence with no accumulation points
in Q. For each j let B(aj,7;) be an open ball relatively compact in 2 with
r; < 1. Let g; be a function with compact support in B(a;,r;) such that
max |D%g;| <1/j for o € N7, |a| < p. Then g; — 0 uniformly in Q (and thus in
the C),-topology). However, since Usupp(g;) is not relatively compact in 2, then
g; does not converge to 0 in the C)-topology (indeed {g;} does not eventually
belong to any open neighborhood of the form V,,(0, ¢, K)).

As a consequence, the identity map I : (CE(Q),C,) — (CE(Q),C,) is
continuous but not open. Thus, a continuous linear functional 7' on (C§(52), C))
gives rise to a continuous linear functional T'o I on (CE(2),C,) (but not all
continuous linear functionals on (C§(€2),C),) are of this form).

DEFINITION 4.1.2. Let p < k. A distribution of order p is a linear functional
T : C¥(Q) — C which is continuous with respect to the CP-topology of C5 ().
We denote by Dis];(ﬂ) the space of distributions of order p on C¥(Q2). We omit
to write the subindex p in case p = k, that is, Dis"(Q) := Disk(Q).

Clearly, Disﬁfl(ﬂ) C Dis’;(Q) for all p < k and Dis’;(Q) C Disg_l(Q) for
allk>1and p<k—1.

The elements of DisO(Q) are called Radon measures. This is justified by the
following version of Riesz’ representation theorem:

THEOREM 4.1.3. Let Q C R™ be a domain. To any Radon measure T there
corresponds a unique (generalized) complex Borel measure pr such that

7(¢) = [ wdur.,

for all ¢ € Cy(2). Moreover, any positive linear functional T on Co(R2) (namely,
T(p) > 0 for all ¢ > 0 with ¢ € Cy(N)) is necessarily continuous and pr is a
real positive measure. Conversely, if ur is a real positive measure then T > 0.
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REMARK 4.1.4.Let B be the o-algebra of Borel subsets of 2 and let Mes(C)
be the space of regular finite complex measure. Let B, = {E € B: F CC Q}.
The (generalized) complex Borel measure pur as defined in Theorem 4.1.3 is a
function pr : B, — Mes(C) such that for any F € B, the measure ur(E) (also
denoted by pr|g) is a finite regular complex Borel measure, namely, ur|g is
o-addictive, regular and with finite total variation. Moreover, if E C E’ then
pr|e = (ur|g)|E. Since € is union of compact subsets, by the Radon-Nicodym
theorem there exists a positive measure v on € (possibly with v (Q) = c0) and a
complex function h : @ — C with |h| = 1 such that pp(E) = [, hdvr for all Borel
sets £ CC . Moreover vy equals the total variation of up on each relatively
compact Borel set E C . Thus vy can be defined as the total variation |T| of
T. If vy is a finite measure on 2, then the corresponding ur is a regular finite
complex Borel measure. Moreover, if the Radon measure T' defines a continuous
linear functional on (Co(€2),Co) (that is on Co(2) with the induced topology of
uniform convergence) then pr is a regular finite complex Borel measure on €2, and
conversely, to any regular finite complex Borel measure on 2 there corresponds
a unique Radon measure which is continuous on (Co (), Co) (see, e.g., [Ru]).

From now on, we will consider Dis]; (©2) endowed with the weak* topology.
Note that, a sequence {T;} C Dz’s’;(Q) (weakly*-)converges to T € DzsI’f(Q) if
and only if for all f € C§ () it follows that lim;_,o. T;(f) = T(f). In particular,
by the Banach-Alaoglu theorem, the open ball in Dis’;(Q) is relatively compact
in the weak*-topology.

We collect here a few useful and known facts about distributions:

LEMMA 4.1.5.Let Q C R™ be a domain. Then

1. Let T;,T € Dis®(Q). Then T; — T (in the weak* topology) if and only if
Ti(¢) = T(p) for all p € C§°(Q) and sup,;{|dT;|(K)} < oo for all com-
pact subset K C Q (here dI; denotes the complex Borel measure given by
Riesz” Theorem 4.1.3 and |dT}| is its total variation). Moreover the condi-
tion sup,;{|dT;|(K)} < oo is not necessary if T;, T > 0.

2. If T € Dis™(Q) and T >0, then T € Dis’(Q).

At this point, it is worth to mention two results about subharmonic functions
when considering their Laplacian as a measure. We state them for C, referring to
[K1, Section 4.1] for generalizations to R™ and proofs. Let 2 C C be an open set
and let u € subh(Q). By Theorem 1.4.1 and Lemma 4.1.5.(2), Au is a positive
linear functional on Cy(2). By Theorem 4.1.3, Aw is thus a Radon measure and
there exists a complex Borel measure p, such that

Aule) = [
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for all ¢ € Cy(Q). For each open subset U CC 2 let u be the finite complex
measure in C obtained by extending with 0 on C\ U the restriction of 1, to U.
The measure U has compact support contained in U. We define the potential

of u

1
PY(:) = 5o [ tomls = Clant (0.

Since pU is a finite complex measure compactly supported in U, it follows that

PY e L _(C). Moreover the following result (known as the Riesz decomposition

theorem) holds:

THEOREM 4.1.6. Let Q C C be a domain. Let u € subh(Q). If U is an
open set relatively compact in ), then there exists h,, € harm(U) such that

u(z) = P/ (2) + hu(2)
forall z € U.
PrOOF. The key point is to prove the following equality:
(4.1) APY = 4Y in Dis(C).

Once this is obtained, we have that A(u — PY) = Au— APY = u¥ — APY = 0.
By Theorem 1.4.1 there exist h,g € subh(U) such that h = u — PY almost
everywhere and ¢ = —(u — PY) almost everywhere. In particular h + g = 0
almost everywhere and by Corollary 1.3.2 then h = —g everywhere and thus
h € harm(U). By the same token, h = u — PY everywhere as required. We are
left to prove (4.1). First, we recall the well known fact

1
—Aclog|z—¢| =46, inDis’(C),
27

where §, here denotes the Dirac delta defined by 6. (p) = ¢(z) for all ¢ € Cy(C).
From this and from Fubini’s theorem we have for all ¢ € C§°(C)

1
APY() = [ PY@AGEIANE) = [ 5- [1ogls =l (OAp()AG)
1
= [ 5 Lol = ae@irEa € = [ e,

and (4.1) follows. 0
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Using the Riesz decomposition theorem one can prove the following Poisson-
Jensen formula:

THEOREM 4.1.7. Let Q C C be a domain. Let u € subh(Q?) and let B(a,r)
is an open ball relatively compact in Q. If u(a) > —oo then

" pu(B(a, 5))

u(a) = - w(Q)do(C) — = /

= ds .
2mr 8B(a,r) 2 y

4.2 — Regularization and plurisubharmonic functions

Let Q C C™ be a domain and let {x.} be the sequence of smoothing kernels
defined in Section 1.3. If T € Dis™ () one can define a sequence of C*° functions

Te(x) =T * xe(x) :== Ty(xe(z — y))

such that T, — T in Dis™(€2). We have the following generalization of (one side
implication of) Proposition 3.2.3:

PROPOSITION 4.2.1.Let Q@ C C™ be a domain. Let T € Dis™(Q) be a
distribution such that L(T) > 0 (namely T(L(y)(v;v)) > 0 for all ¢ € C§° (),
© >0 and v € C™) then there exists u € Psh(Q) such that u = T in Dis™(Q)
(namely, T(p) = [, pud\ for all ¢ € C§°(Q)).

PROOF. Let ue := T % x. € C®°(Q,). Then ue — T in Dis(2) as € — 0.
By Fubini’s theorem L(u.) = L(T) * x. as distributions. Thus L(u¢) > 0 and
then u. € Psh(Q.) N C>(£,) by Proposition 3.1.2. Now, arguing as at the end
of Theorem 1.4.1 we see that u is decreasing in € and thus, by Lemma 3.1.9, it
follows that u(z) = lim. o u.(z) € Psh(Q2). By Beppo Levi’s theorem u. — u
also in the sense of distributions and therefore T = w in the sense of distributions,
proving the statement.

1
loc

4.3 - Sequences of L} -bounded plurisubharmonic functions

The aim of this section is to show that a sequence of plurisubharmonic
functions which is bounded in the L' norm on compacta is actually uniformly
bounded from above on compacta and admits a subsequence converging in LllOC
to a plurisubharmonic function. To start with, we prove the following result:

THEOREM 4.3.1.Let Q C C™ be a domain. Let {u;} C Psh(Q) be a sequence
which is locally bounded from above on compacta of Q. Assume that there exists
T € Dis™ () such that uj — T in Dis™(Q). Then there exists u € Psh(Q) such
that uw =T in Dis™(Q) and u; — u in Li ().
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PROOF. Since L(u;) > 0 for all j, then £(T') > 0. Thus, by Proposition 4.2.1
there exists u € Psh(Q) such that u = T in Dis™ ().

It remains to show that u; — w in L} _(Q). First, since {u;} is locally
bounded from above, for any fixed compact subset K C (), there exists C =
C(K) > 0 such that u; — C < 0in K for all j € N. We can thus assume that
u; < 0 on a fixed compact set K.

Since u; — T in Dis™ (2) then {u;} cannot converge uniformly on compacta
to the constant function —oo. Therefore, there exist a sequence {x} C € such
that z — 29 € Q and a subsequence {u;, } of {u;} such that |u;, (zx)| =
—uj, (x)) is bounded from above by some constant C' > 0. Let B := B(xzo,r)
be a small ball centered at x¢ such that B(xg,2r) C Q. For k > 0 there exists
7, > 0 such that By, := B(x, ) has the property that B C B C B(zg,2r) C .
Thus, since uj,u € subh(Q),

Jrusgix < [ usgix == [ u,dh < (B, @) =
B By By
— V(B0 lus (21)] < OV(B (0, 2).

Hence, {u;, } is uniformly bounded in L' (B). By Proposition 1.3.4, {u;, } is actu-
ally uniformly bounded in L] (£2). Hence, if {x.} is the sequence of smoothing
kernels defined in Section 1.3 (which are clearly bounded on compacta together
with their first derivatives) it follows that for a fixed € > 0, the sequence {u;, *x. }
is equicontinuous and uniformly bounded on compacta of 2. Therefore—since
uj — w in Dis™(Q) and hence uj, * xc — u * X pointwise—it follows from
Arzela-Ascoli’s theorem that actually uj, * xc — u * X uniformly on compacta.
In order to prove that uj, — u in L{ (), let K C Q be an open set whose
closure is compact in 2 and let ¥ > 0 be a smooth function which is compactly
supported in © and such that ¥|x = 1. By Theorem 1.3.1, the sequence {u;, *x.}
(respectively {u * x}) decreases to uj, (respect. u) as e — 0. In particular,
u* xe —u > 0. For €,6 > 0 small,

lim (u*xe—i—d—ujk)\lld)\:/(u*x6+5—u)\lld)\>0.
Q

k—o0 Q

Thus

limsup/ lu — u;, |[dA < hmsup/ lu — uj, |[PdA <
K

k—o0

glimsup[/ \u*¢€+57u|\lld)\+/\f(u*¢ﬁ+67ujk)|\lld)\
Q Q

k— o0

§2/|u*¢6+5—u|\lld)\:2/(u*qﬁe—i—é—u)\lld)\,
Q Q
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and the last term goes to zero as €, — 0. Therefore uj, — u in L'(K) and, by
arbitrariness of K, uj, — u in L{ _(Q).
Repeating the above argument for all subsequences of {u;}, the statement

follows. 0

COROLLARY 4.3.2.Let Q@ C C" be a domain. Let {u;} C Psh() be a
sequence which is locally bounded from above on compacta of Q). Then either
{uj} converges uniformly on compacta to the constant function —oo or there
exist a subsequence {u;, } and a function uw € Psh(Q) such that uj, — u in
Li(9).

PrROOF. If {u;} is not uniformly convergent on compacta to the constant
function —oo, then, as in the proof of Theorem 4.3.1 we see that there exists a
subsequence {uj, } which has L'-norm uniformly bounded on compacta. By the
Banach-Alaoglu compactness theorem, up to extracting another subsequence,
{u;, } is weak™ converging to a distribution T'. Then Theorem 4.3.1 applies. 0

COROLLARY 4.3.3. Let Q C C" be a domain. Let {u;j} C Psh(Q2) be a
sequence which is bounded in Li (). Then {u;} is uniformly bounded from
above on compacta of Q0 and there exist a subsequence {uj, } and a function

u € Psh(Q) such that uj, — u in L] ().

PROOF. Arguing by contradiction, assume that {u;} is not uniformly bound-

ed from above on compacta. Thus, up to extracting subsequences, there exists
a compact set K such that
(4.2) Jlgr;o rznezﬁcuj(z) = +00.
By the Banach-Alaoglu theorem there exists a subsequence {u;, } which is weak*
converging to some distribution 7. Arguing as in the proof of Theorem 4.3.1,
we see that there exists u € Psh(2) such that uj, — u in Dis™(Q). Using the
same notations as in the proof of Theorem 4.3.1, it follows that u;, < uj, * x.
and uj, * xc — u * X uniformly on compacta as & — oo. Thus, for each
compact set K C Q, the sequence {u;, } is uniformly bounded from above, which
contradicts (4.2).

The second part of the statement follows from Corollary 4.3.2 since, being
L () bounded, {u;} cannot converges uniformly on compacta to the constant
function —oo. 0

THEOREM 4.3.4. Let Q C C" be a domain.

1. The real cone Psh(Q) is closed in L{ (Q).
2. A subset U C Psh(Q) is compact in Psh(Q) (with respect to the L] ()
topology) if and only if it is bounded and closed in L ().

loc
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PrROOF. (1) Let {u;} C Psh(£2) be a sequence which converges in L{. ()
to a function u € L] (Q). In particular {u;} is uniformly bounded in L] ()
and by Corollary 4.3.3, up to subsequences, it converges in L. () to a function
v € Psh(Q). Hence u = v almost everywhere and Psh(f2) is closed in L{ (Q).

(2) One direction is clear. Conversely, assume U C Psh(€2) is bounded and
closed in Li (). Since Psh(Q) is closed in L{ () then U is closed in Psh(Q).

Let {u;} C U be a sequence. Since it is bounded in L{ (©), by Corollary 4.3.3,

loc
up to subsequences, it is converging in L] (2) and therefore U is compact in

Psh(Q). 0

4.4 — Currents. Definition and first properties

Let  C C" be a domain. We denote by C§(£2, AP?) the space of (complex)
(p, q)-forms having C* coefficients with compact support in Q. Given

_ k ,
W= Zajh”_ R,z A dzi, NdZRy NN dZR, € Co(Q, AP

we write |w|c, <€ if supg [D%; Eq‘ < e for all @ € N such that |a| < s.

DEFINITION 4.4.1. Let € > 0 and let w € C§(Q, AP7). Let K be a compact
set in 2 such that supp(w) C K. For s < k, we denote by C the topology on
Ck(Q, AP:9) obtained by declaring open neighborhoods of w the following sets

V(w, K,e) = {n € C§(Q,A™) : supp(n) C K, |w —nlc, < e}

as € > 0 and K (with supp(w) C K) vary.

Thus a sequence {w;} C CF(Q, AP?) converges to w € CF(2, AP7) in the
Cs-topology if and only if

1. Usupp(w;) U supp(w) is contained in a compact set in 2 and

2. {D“ag z } converges uniformly in 2 to D%, %, for all |a] < s.
1y--- g yeeey

DEFINITION 4.4.2. A current of order k and bidegree (n — p,n — q) is a
continuous linear functional on C§ (€2, AP?) (endowed with the C,-topology). We
denote by D,(c"_p’n_Q) (92) the space of currents of order k and bidegree (n—p, n—q)
in €.

In what follows we will always consider only the Cj-topology on C§ (2, AP-9).

Also, we will consider D,(cn_p "9 () endowed with the weak*-topology.
When the underlying complex structure has no relevance, we will consider
the space of currents of order k and degree m given by

D) = Y. DY),

s+t=m
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DEFINITION 4.4.3. The support, supp(T’), of a current T' € D,(fnfp’nfq)(Q)
is the complement in D of the union of all open sets U C D such that for all
¢ € CE(Q, AP9) with supp(yp) CC U it follows that T'(p) = 0.

There are two main examples of currents to be kept in mind:

EXAMPLE 4.4.4. Let Z C Q be a closed and orientable C''-submanifold of
dimension p. The current of integration [Z] € Dy~ P(Q) is given by

12)(0) == / *(9).

for ¢ € Cy(2,AP) and i : Z — € the natural embedding. It is clear that
supp[Z] = Z. If Z is a complex submanifold of complex dimension p, then

Z] € D(()"_p’n_p)(Q) for i*(p) = 0 for all 2p-form such that ¢ & Cy(2, APP).
EXAMPLE 4.4.5. Let ¢ € L{ (Q, AP*9). Define

loc
Ty(p) = /Qi/mw

for ¢ € Cy(Q, A»~P"=9). Then T}, € DF? ().
Let

(4.3) dV =dxi N ... Ndzo, = (%) dzy NdzZi A ... Ndzy, N\ dZ,,

be the standard volume form on Q C C". Let n € C§(2,A>). Then there
exists a € CF(Q) such that n = adV. This allows to define a homeomorphism
W : DY(Q) — Di"(Q) given by

W(T)(a) := T(adV)
for T € DY(Q) and a € C§(2). The inverse is

WH(S)(n) = S(a),
for S € D"(2), n € CE(Q,A?") and ) = adV (notice that W, W~ are linear
isomorphisms and are continuous in the weak* topology).

Let us denote by Q,(m) the set of all multi-indices I = (41,... ,4p) with
1§i1<...<ip§m.

THEOREM 4.4.6. Let Q C C". Let T € D}y(Q). For each multi-index
I € Q,(2n) there exists a unique Ty € Dis*(Q) such that

T = Z T]dxl'l/\.../\dl'ip.
I€Q,(2n)
In other words, for ¢ € CE(Q, A2"=P) it follows

T(e)= Y. W NIy (dwi, A...Adzi, Ag).
I1€Q,(2n)
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PrROOF. Let I = {i1,...,ip} € Q,(2n) and let I¢ = (j1,...,Jon—p) €
Qan—p(2n) be its complementary. Let us write dry := dx;, A ... Adxj,. Then
dxy ANdxre = ordV, where oy = +1 and dV is the standard volume form in C".
For a € CE (), let us define

Ti(a) := orT(adx;e) .

Let now ¢ € CF(Q,A%""P). Then ¢ = EJGQQTL,p(zn) ajdxry for some a; €
Ck(Q). Thus

Te)= >  Tlagdey)= Y orTy(az) =

JEQa2n_p(2n) I1€Q,(2n)
= > WNI)(orardV)= > WTNT)(dzi, A... Adxi, Ag),
1€9Q,(2n) I€eQ,(2n)
as wanted. O

According to Theorem 4.4.6 a current of degree p and order k is a p-form
with distributional coefficients of order k. An analogue of Theorem 4.4.6 holds

in the complex category, namely, if T € D(p q)(Q) (and, say, ¢ > p) then

(4.4) T = (i/2)P > Ty gdzi, NdZj, A ... dz, NdZj, A .. NdZ,
Iegp(n)vJEQq(")

with 77 distribution of order k on Q. The 17 j are called coefficients of T'.

Be aware: the term (i/2)P in (4.4) is clearly asymmetric in (p, ¢). However,
it really makes sense only in case p = ¢ (when discussing positive currents).

4.5 — QOperations with currents

Here we consider only few operations among those that can be operated on
currents. We refer to [dR] or [Dem] for the general theory.

4.5.1 - Exterior derivatives
Let Q C C". Let T € Dy (). We define dT' € Dzﬁ(Q) as follows:

dT( ) = (7 )erlT(ng) VQD c Ck+1(Q A2n7(p+1))

Since the operator d : CF+1(Q, A2n=@+1)) 5 CF(Q, A2"~P) is continuous (with
respect to the Cy11 and Cy-topologies) then d : D} () — DZL(Q) is continuous
(with respect to the weak*-topology).

Similarly, in the complex case, one can define the operators 9 : D;"(Q) —

1, A .y Ja+1
DI (Q) and §: DPU(Q) — D,ﬁﬁ‘{* ().
PROPOSITION 4.5.1. Let Q C C" be a domain. Let 1) € C§(Q, AP). Then

dTy = Tyy. Similarly, 9Ty = Tpy and 0Ty, = T5,-
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PRrROOF. By definition, integrating by parts and by Stokes’ theorem it follows
ATy(0) = (0P Tytd) = (<17 [ wndo= [ dinp=Tule).

for all ¢ € CHTH(Q,A?"~P=1). In case of O (and ) the argument is similar
because d(1h A ) = A1) A @) for ¢ € CE(Q, AP9) and ¢ € C¥T(Q, An—P—1r—a)
and thus Stokes’ theorem applies. 0
4.5.2 — Wedge product

Let Q C C". Let T € DY(2) and ¢ € C§(Q, A7) with p+ ¢ < 2n. We define
T Aty € DYYYQ) as follows:

(T AY) (@) =T Ap), VpeCr(Q A P71).

Be aware: The wedge product is defined (here) only between currents and
(smooth) forms and not between two currents, that is

A:DR(Q) x CF(Q, A7) — DETI(Q).
It can be easily proved that d(T A ) = dT A+ (—1)3TT A dip.

4.6 — Positive forms and positive currents
4.6.1 - Positive forms

We recall that a distribution T is said to be positive provided T'(¢) > 0
for all test functions ¢ > 0. In order to define positive currents, we first define
positive forms.

DEFINITION 4.6.1. Let 2 C C" be a domain. A form w € C*(Q, A?P) is
real if w(X) € R for all X € (TOX)®P.

Notice that w is real if and only if w = @. In particular if a (p, ¢)-form is

real then p = q.

PROPOSITION 4.6.2. Let Q C C" be a domain. A (1,1)-form w is real if
and only if

i~ i
w = 5 vgl hjdej A\ de
J,R=

with (h;i(z)) being a n x n Hermitian matric for all x € Q.
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PROOF. It is a direct computation from w = @. O

DEFINITION 4.6.3. Let 2 C C™ be a domain. A 2n-form w is positive if
w = fdV with f > 0 and dV the standard volume form (4.3). If w is a positive
2n-form we write w > 0.

DEFINITION 4.6.4. A (p, p)-form w is elementary strongly positive if w(x) #
0 for all z € Q and there exist w; € CF(Q,A19)) j =1,... psuch that

S\ P
7
w(2> w1 AW N owp AWy -

Notice that wy, ... ,w, as in the previous definition are linearly independent
at each point of €2 since w is nowhere zero in Q.

Let SPPP)(Q) be the real cone in C*(€2, A®P)) generated by the elementary
strongly positive forms (that is, n € SP(p’p)(Q) if there exist \; € C*(Q,R) with
Aj > 0 and 7, elementary strongly positive forms such that n = > A\;n;). A
form w € SPPP)(Q) is said strongly positive.

PROPOSITION 4.6.5. The C*(2, R)-module C* (<, Ag’p)) of real (p, p)-forms

has a basis of strongly positive (p, p)-forms. In particular SPPP) (Q) has non-
empty interior.

PROOF. First of all we notice that the complex space of (p,p)-forms has a
basis of strongly positive forms. To this aim, notice that

14
dzj, NdZx, A ... Ndz, Nz, = £ [\ dzj, A dz,
=1

and

de NdzZp = i{—z(dzj + de) AN (dfj + dEk) - z(dzj - dzk) A\ (dfj - dzk;)—‘r
+ (dzj + idzg) A (dZ; —idZg) — (dz; — idzg) A (dZ5 +idZg) }.

Now let w be a real (p, p)-form. Write w as linear combination of strongly positive
(p, p)-forms (with complex coefficients a priori). Since strongly positive forms
are real, it follows that the coefficients in such a linear combination are real,
proving the statement. O

The cone of strongly positive forms is invariant under holomorphic changes

of coordinates:

PROPOSITION 4.6.6. Let Q C C" be a domain. Let f : ' — Q be a
biholomorphism. Then f*(SP®P)(Q)) = SPPP) (V).
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PRrOOF. First of all notice that if ny, ... ,n, are (1, 0)-forms linearly indepen-
dent at each z € Q then f*(m),..., f*(n.) are (1,0)-forms linearly independent
at each x € ' and then f*(n) is elementary strongly positive if and only if 7 is
elementary strongly positive. Therefore f*(SP®P)(Q)) = SP®P) (V). 0

DEFINITION 4.6.7. A (p,p)-form w € C*(Q, A®P)) is positive, and we write
w >0, if for all ¢ € SPMP"=P)(Q) it follows w A b > 0.

REMARK 4.6.8. Since n € SP" P "P)(Q) is of the form 3 A, with
Aj > 0 and 7n; elementary strongly positive, then a (p,p)-form w is positive if
and only if w An > 0 for all elementary strongly positive (n — p,n — p)-forms.

Clearly, one can localize the notions of elementary strongly positivity, strong-
ly positivity and positivity to each fiber of the bundle A®®?) on Q. In other words,

a form o € AP (here a is an element of the fiber of A®?) at ) is positive if

for all elementary strongly positive (n — p,n — p)-form § € ALTPP) it follows
aAf =AMV (z) with A > 0.

LEMMA 4.6.9. Let Q C C" be a domain. Let w € CF(Q,APP)). Then
w >0 if and only if w(z) > 0 for all z € Q.

PrOOF. If w(z) > 0 for all x € Q then w > 0 because if it were w Anp =
fdV # 0 for some elementary strongly positive (n — p,n — p)-form that there
would exists € Q such that f(z) < 0 and thus w(z) An(z) = f(z)dV(z) <0
contrarily to our hypothesis.

Conversely, if w(z) A1, = AV (z) with A < 0 and 7, € A»=P7=P) ele-
mentary strongly positive, then there exists n € C*(Q, A(»~P»=P)) clementary
strongly positive such that n(z) =7, and then w An 2 0. 0

Lemma 4.6.9 allows to check pointwise if a given form is positive. Next
result says that positivity is a notion compatible with holomorphic maps:

PROPOSITION 4.6.10. Let Q C C" be a domain. Let w € C*(Q, APP)).

1. If w > 0 then for all 0 : U — Q holomorphic from a domain U C C* (with
s <n) to Q it follows o*(w) > 0.

2. If for all o : U — Q holomorphic from a domain U C CP to Q it follows
o*(w) >0 then w > 0.

PrOOF. (1) First of all notice that if o : U — Q with U C C" is a
biholomorphism then o*(SP®P) (Q)) = SPPP)(U) by Proposition 4.6.6. Let
n € SPPP(Q). By Cauchy-Riemann equations, o*(dV) = |det(%§f)|2dV and
then o*(wAn) > 0 if and only if wAn > 0, namely, w > 0 if and only if o*(w) > 0.

Assume now that w > 0. Let 0 : U — Q be holomorphic with U C C*®. If
s < p then 0*(w) = 0 and there is nothing to prove. Assume that s > p. Let ¢ =
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(1/2)°"Ppia /\Eerl A...%s A, be an elementary strongly positive (s—p,s—p)-
form in U (here we take ¢ = 1 if s = p). We have to show that o*(w) Ay > 0.
According to Lemma 4.6.9, it is enough to check that o*(w)(x) A ¢(x) > 0 for
all x € U. Moreover, for what we already proved at the beginning, we can
compose with biholomorphisms. Thus we can choose holomorphic coordinates
{#1,...,2s} In U near z such that ¢;(z) = dz;(z) for j=p+1,...,s (if s=p
we do not need this change of coordinates). In such coordinates, we need to
show that o*(w)(z) A (4/2)* Pdzpy1 AdZpp1 A ... dzs ANdZs > 0.

Let E; = dc%(%) for j = 1,...,s. We can assume that F1,..., F,. are
linearly independent (with r < s) and generate do,(T,U). Notice that if r < p
then o*(w)(2) = 0 and there is nothing to prove. We can thus assume that r > p.
Let {Ery1,...,Ey} be a completion of {E, ..., E.} to a basis of T;,(;)Q2 = C".
Let

T(z1,. .. y2n) =0(21,-.. ,25) + Z Ei(zj —zj)+ Z E;z;.
i=pt1 j=s+1

Then there exist V' € C"* an open neighborhood of O and U’ C U an open
neighborhood of x such that T': U’ x V' — £ is holomorphic and T'(z, O) = o(z).
Notice that by construction dT(z,O)(aizj) =B withe; =2if j=p+1,... 7
and €; = 1 otherwise. Thus dT, o is invertible and, up to shrink U’,V, we
can assume that T is a biholomorphism on its image. Let n be an elementary
strongly positive (n — p,n — p)-form. Then T*(w A7) > 0. For j =1,... ,n, let
n; be (1,0)-forms such that n;(c(z))(Ex) = 5;“. By construction

T*(n;)(x,0) = €;dz;

withe; =2if j=p+1,... ,r and ¢; = 1 otherwise.
Let = (i/2)" " PNpt1 ATlpr1 A+ . Al AT, Then 7 is an elementary strongly
positive (n — p,n — p)-form near z. Thus

0<T*(wAn)(z,0)=T"w(x,0) NT*n(z,0) =

=T*w(z,0) A (i/2) P2 Pdz, ) AdZpi1 A ... Adz, AdZ, =

= 2" P (W) () A (i/2) P dzy s AdZpi A Adzy A dZy,
which implies that o*(w)(x) A (i/2) P dzy 1 AdZpir A ... Adzs NdZg > 0.

(2) Assume that for all o : U — Q holomorphic it follows ¢*(w) > 0. Let
7 be an elementary strongly positive (n — p,n — p)-form. We have to show that
wAn(z) >0 forall z € Q. Fix z € Q. Write z = (2/,2”) € C» x C""P. By (1)
we can choose local holomorphic coordinates near x such that
n(x) = (1/2)" " Pdzpy1 ANdZpy1 A ... Ndzy ANdZ, .

Now let U = QN (CP x {2”}) and let o : U — Q be given by

(21, 2p) = (21, ..., 2p,2").
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By hypothesis 0*(w)(z") = A(i/2)Pdz1 Adz1 A ... Ndzp A dZ, with X\ > 0 and
o*(w)(z")An(a”) = wAn(z), from which wAn(z) = AdV proving that w > 0. 0O

LEMMA 4.6.11. Let Q C C™ be a domain. If w € SPPP)(Q) then w > 0.

PrOOF. Let z € Q. According to Lemma 4.6.9 and Proposition 4.6.10 we
can prove that w is positive using any local holomorphic coordinates change. We
can thus choose local holomorphic coordinates at  such that w(z) = (i/2)Pdz; A
dzy A ... Ndzp A dZ,. From this it follows easily that w(x) > 0.

THEOREM 4.6.12. Let Q C C™ be a domain. Let w =1/2) hjrdz; N dZ) €
C*(Q, AV, Then the following are equivalent:

1. w>0.
2. (hjr(x)) is a semi-positive definite hermitian matriz for all x € Q.

3. we SPUY(Q).

PrOOF. Assume (1). By Proposition 4.6.2 it follows that (k) is an her-
mitian matrix if and only if w is real. Let x € Q and w € C™ and define
o(¢) := z + Cw for |(| < 1. Then

o (w)(0) = /2 hjr(@)do; (0) A doe(0) = /2> hjk(x)wwed( A dC

and by Proposition 4.6.10.(1), w > 0 implies 0*(w)(0) > 0 and then (h;x(z)) > 0,
proving (2).

Assume (2). Then H = (h;i(z)) > 0. Let W = (u;x) be a unitary (n x n)-
matrix such that W*HW = D with D a diagonal matrix with entries A; > 0 on
the diagonal. Let us consider the following change of coordinates z = WZ. Then

wiz) = > hjrdz; Adzy, = 5 > hird(W2); Ad(Wz)y, =
Jsk j.k
= > hipkmdi A dZ, =Y NG dE A dEn =Y Andim A dZp,

g,k lm m,l m

Thus w € SPMY(Q) by Proposition 4.6.6, and this proves (3).
Finally, if (3) holds, then (1) follows from Lemma 4.6.11. O
4.6.2 — Positive currents

Now we are in the good shape to define positive currents.

DEFINITION 4.6.13. Let © C C" be a domain. A current 7' € D,(Cp’p)(Q)
is a positive current of degree p, and we write T' > 0, if T(w) > 0 for all w €
Spn=rn=r)(Q).
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Notice that a positive (p,p)-current T is real in the sense that for all real
(n — p,n — p)-form w with compact support it follows T(w) € R. Indeed, by
Proposition 4.6.5 it is enough to prove it for strongly positive elementary forms.
But if w € SPPP)(Q) then T(w) > 0.

Let x € 2 be a given point and consider the natural bilinear map Ay
An=p;n—p)

R,z

application which defines a duality between A]gj ’zp and A ;e ). In other

(p,p) %

— A]E&Qc ™) given by (n,¢) — n A p. It is a non-degenerate blhnear

words, it defines a R-linear isomorphism between A]% ?) and (A "aj PPy« (and

in particular A]%p f) and A]gl; P"P) have the same dimension). Thus, if {n;} is

a basis for Aﬁ{f), we say that {¢s} is a dual basis for A(n pin=p)

for[;éJandn[/\gp[ dv.

ifns Aer=20

THEOREM 4.6.14.Let Q C C™ be a domain. LetT € Dég’p)(Q), T > 0. Then

T e D(()p’p)(ﬂ). In particular the coefficients of T' are positive Radon measures

with respect to any basis which is dual for a basis of strongly positive forms of
o0 (n—p,n—p)

C>(Q, Ay ).

PROOF. By Proposition 4.6.5 the space of (real) (n — p,n — p)-forms has a
basis of strongly positive forms, say {¢1,...,¢onm}. Let {n1,... ,nn} be a basis
of real (p,p)-forms, dual for {¢1,...,¢an}. According to Theorem 4.4.6 we can

write
M
T=> Ty,
j=1
with T; € Dis™(Q). Fixt € {1,... ,M}. Then

0< T(py) = ZW 30 A ) =WHT) (e A pr) -

Since clearly the isomorphism W maps positive distributions to positive (n,n)-
forms, then T; is a positive functional on C§°(Q2) and by Lemma 4.1.5 it follows
that T} is a positive Radon measure. Another application of Theorem 4.4.6
implies that T € D(()p’p)(Q). 0

Now we can relate plurisubharmonic functions to positive currents:

THEOREM 4.6.15. Let Q C C" be a domain. Letu € Li (Q). The following
are equivalent:
1. There exists v € Psh(Q) such that u = v almost everywhere in .
2. The matriz (%) is positive semidefinite in the sense of distributions.
3. dd°u is a positive (1,1)-current.
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PRrOOF. By Proposition 3.2.3 (1) is equivalent to (2). Now assume that
u € C%(Q). Then dd°u = 4(i/2)00u and thus u € Psh(Q) if and only if dd°u is
a positive (1, 1)-current.

If u € Psh(Q2) (no further regularity), let u. € C*°(€Q,) N Psh(€,) be such
that {u.} pointwise decreases to u (see Theorem 3.2.1). Then dd°u. > 0. Let
RS SP("fl’"fl)(Q). By Beppo Levi’s theorem it follows

ddu(y) = / u ddp = lim/ e dd®p = lim dd°uc(p) > 0,
Q e—0 Jq e—0

thus dd°u > 0 showing that (1) implies (3). Conversely, assume dd®u > 0.

Let ue = ux xe € C*®(Q). Then u, converges to u in L (2) (and almost

everywhere). In particular for all f € C§°(2) we have
0%u 0% f

0% f
V.= dV =1l .
Q aZjazk Q ui’)zj(%k 623(1) Q u 8Zj32k

av.

Therefore ddu > 0 implies that dd°u. > 0 and then u. € Psh(£.) for all e.
Now, arguing as at the end of Theorem 1.4.1 we see that u. is decreasing in e
and thus, by Lemma 3.1.9, it follows that v(z) = lim._,o uc(z) € Psh(Q). Since
u = v almost everywhere then (1) follows. 0

REMARK 4.6.16. By the previous theorem, if u € Psh(Q) then dd“u is a
d-closed positive (1,1)-current, namely, d(dd®u) = 0.

REMARK 4.6.17. According to Theorem 4.6.15 and Theorem 4.6.12, if
u € Psh(Q) N C>=(Q) then dd°(u) € SPHD(Q).

Conversely we state and sketch a proof of the following result which says
that locally every (1,1)-positive current has a potential.

THEOREM 4.6.18. Let Q C C" be a domain. Let T € D™V (Q) be a positive
current such that dT' = 0. For any z € () there exist an open neighborhood
U.CQ, z€U, and u € Psh(U,) such that T = dd°u in DD (U,). Moreover,
if T =T, is the current associated to w € C=(Q, ALV then u € C=(U,) for
all z.

PROOF. One can define a cohomology on €2 given by d-closed currents over d-
exact currents. As in the smooth case, such a cohomology is locally exact, in the
sense that an analogue of Poincaré’s Lemma holds for currents (see [dR], [Dem]).
Namely, since dT'" = 0, for any z € () there exist a convex open neighborhood
UcCQ,z€UandS € DY(U), S real, such that dS = T in D*(U). Now

S = 810 4 SO with §1:9 € DULO(T) and SOV = §1.0) ¢ DOL(T). Now,

dS =98 +8S = 9510 4 9501 4 §5(1.0) 4 §5O.1)
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and because T is of bidegree (1,1) it follows that 9S(1:0) = 9501 = 0. By
the Dolbeault lemma for currents (similar to the one for smooth forms, see
[Dem]) there exists ¢ € DO(U) ~ Dis(U) such that dp = SO, Therefore

S = 0p + 0p = 0% + Jp and
T =dS = d(0p + 0¢p) = 0P + 0dp = 00(p — P) = 2i00v = dd‘v,

where v = —i(¢ — ) /2 is a real distribution. Thus we have a real distribution v
such that T' = dd®v. If T' > 0 then dd°v > 0, which implies that £(v) > 0, and
by Proposition 4.2.1 it follows that v is associated to a function u € Psh(U).
Finally, assume that w is a smooth (1,1)-form and T' = T,,. Then T =
—2id(du). Since T is C* then du € C=(U, A1) because J is a hypoelliptic
operator in degree (p,0). Indeed, dw = 0 because 0T = 0 and 9T = Tj,, and
thus (by the Poincaré lemma for the O operator—recall that U is convex and
thus pseudoconvex) there exists 6 € C°°(U, A(1:0)) such that 00 = w. Therefore
(identifying forms with currents as usual) 9(f + 2i0u) = 0 and then 6 + 2idu is
holomorphic which implies that du € C® (U, A1) and, since du = du because
u is real, du € C*°(U, A'). From this it follows that u € C>°(U). a0

EXAMPLE 4.6.19. Let Z C Q be a complex submanifold of (complex)
dimension p (with no boundary in Q). Then the integration current [Z] is a
(n — p,n — p)-positive d-closed current. Indeed, let i : Z < Q) be the natural
holomorphic embedding. If ¢ € SP®P)(Q) then i*(¢) > 0 by Proposition 4.6.10
and thus [Z](p) := [,i*(p) > 0. Finally, for ¢ € C°(Q,A?""2P~1) and by
Stokes’ theorem

42)() = (2)(do) = |

Z

z'*(d@:i/azi*(sa):o.

4.7 — Integration over analytic sets

In this section we sketch how to define currents of integration along analytic
subsets of 2 C C™. We refer to [Dem] for details.

Let T € D(gp’q)(Q) be a (p, g)-currents in 2. According to Theorem 4.4.6 we
can write 7' as in (4.4), with 77 ; Radon measure. Let us define the mass |||

of T as
17 = Z T7,41,
1,7

where |77, | is the measure total variation of 77 ; (see Remark 4.1.4). Since
by construction 77 ; is absolutely continuous with respect to ||T'|| then the
Radon-Nykodim theorem implies that there exists a locally ||T'||-measurable com-
plex function fr; € LL _(Q,||T|)) such that Tr ; = fr.4]|T| (according to Re-
mark 4.1.4, such a function fr ; is defined on a relatively compact Borel subset

E of Q by applying the Radon-Nykodim theorem to 77 ;|g). Since

170 = \Tr gl = 1T,
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it follows that > |fr 7| = 1. Thus if we set f := (i/2)? ) fr sdz;, NdZj, A... it
follows that
T=|TIf.

LEMMA 4.7.1. The current T € ’Dép’p) (Q) is positive if and only if the form
f is positive at ||T||-almost all points of Q.

PROOF. If f >0 (for ||T|-almost everywhere) then for all p € SP"~P"=P)(Q),
we have

fN@=HﬂUW%=lewMﬂzu

Conversely, if T'> 0 then for all ¢ € SP""P"~P)(Q) we have

ogTwwﬂwwww:Awawn

thus f A ¢ > 0 but at most zero ||T||-measure sets. Letting ¢ varying, we see
that f > 0 for ||T||-almost all points. 0

DEFINITION 4.7.2. A complete pluripolar set EE C () is a subset such that
for each * € FE there exists an open neighborhood V, C £ and a function
v € Psh(V,,) such that ENV, = {v = —o0c}.

The following theorem is due to Skoda and EI Mir:

THEOREM 4.7.3. Let Q C C" be a domain. Let E C Q be a closed complete
pluripolar set. Let T € DPP)(Q\E) be a positive (p, p)-current, dT = 0. Suppose
that |T|| is bounded near each point of E. Let T be the trivial extension of T to
E obtained by extending T j to zero on E. Then T is positive and closed on €.

Now let X C € be a (possibly singular) complex subvariety (with no bound-
ary) of pure dimension p. Then X defines an element of (H?"~2P(Q,R))* as
follows. Given any (2n — 2p)-form ¢ such that dp = 0, one can define [, ¢
by taking any C'°°-smooth submanifold X’ C Q which is homologous to X and
defining [ ¢ = [y, i% (¢), with ixs : X’ < Q the natural embedding. Since
dyp = 0, Stokes theorem implies that such a definition is independent of the cycle
X’ homologous to X which has been chosen (see, e.g., [GH]).

However, this definition does not allow to define a current of integration on
X (the problem being how to defining integration of non-closed test forms).

We can thus try to define the current of integration [X|] by integrating over
the regular part X" of X:

X0 = [ )
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where i : X < Q is the natural embedding (and ¢ € Co(2, APP)). Tt can be
proved that [X"] is a current of bidegree (n — p,n — p) on 2\ Sing(X). It is
also clearly positive and, suitably using Stokes theorem for subvariety, one can
even shows that it is closed. The following result of Lelong implies that such a
definition is the good one:

THEOREM 4.7.4. Let Q C C" be a domain. Let X C Q be a complex
subvariety (with no boundary) of pure dimension p. The current [X"] has finite
mass near every point of Sing(X). Thus its trivial extension [X] is a closed
positive (n — p,n — p)-current of order 0 on (.

Notice that, by the previous theorem and since Sing(X) has zero measure
in X, the current [X] defined as extension of the current of integration [X"],
coincides on closed test forms with the integration on cycles homologous to X.

5 — The Complex Monge-Ampeére operator
5.1 - Maximal plurisubharmonic functions

Consider the unit ball B C R™ and let ¢ € C°(9B). The unique solution
u € C°(B) Nharm(B) to the Dirichlet problem

(5.1) { Au=0 inB

ulam% =

can be characterized as

(5.2) u(z) = sup{v(z) : v € SUbh(B),léI;lS_l}lpU(aﬁ) < (p)Vp € OB} .

Thus, harmonic functions can be characterized as the mazimal functions among
subharmonic functions. In other words:

PROPOSITION 5.1.1. Let Q C R™ be a domain and let u € C°(Q)Nsubh(Q).
Then u € harm(Q) if and only if for all G CC Q open and v € subh(G) such
that limsup,,_,,, v(x) < u(p) for all p € OG it follows that v < w in G.

PRrROOF. The necessity of the condition follows from the maximum principle.
Conversely, suppose that G CC € is an open ball. Let v € harm(G) N C°(G)
be such that v(p) = u(p) for all p € dG. Then by the subharmonicity v < v in
G and by hypothesis v < u which implies that u = v and thus u € harm(G),
proving that u € harm(Q). 0
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Since pluriharmonic functions are harmonic, and plurisubharmonic func-
tions are subharmonic, pluriharmonic functions are maximal among plurisub-
harmonic functions. However, considering the unit ball B C C" and given
¢ € C°(OB), there is, in general, no u € Ph(B) N C°(B) such that u|sp = ¢
and maximal plurisubharmonic functions are not necessarily pluriharmonic.

EXAMPLE 5.1.2. Let us consider the unit ball B C C2 Let f : D —
(—00,00) be any continuous subharmonic function which is not C' at some
points of D. Let ¢(2) = f(z1) for 2 € dB. Then ¢ € C°(OB). Let us define
u(z) := f(z1) for z € B. Then D > ¢ ~ u(a + ¢b) = f(a1 + ¢by) is subharmonic
for all {a+(b: ¢ € D} CC B. Hence u € Psh(B) N C°(B). Since u is not C* by
construction, u ¢ Ph(B). However, if v € Psh(B) is such that limsup,_,, v(z) <
©(p) for all p € OB then v(z) < u(z) for all z € B because u is harmonic on
z; = constant. This implies that there are no V € C°(B) N Ph(B) such that
V0es = ¢, because otherwise the maximum principle would imply V' = u forcing
u to be of class C°°.

DEFINITION 5.1.3. Let © C C™ be a domain. A function u € Psh(Q) is
said to be mazimal (according to Sadullaev) if for any open set G CC  and
v € Psh(G) such that limsup,_,, v(2) < u(p) for all p € 9G it follows that v < u
in G.

The function v in Example 5.1.2 is an example of maximal plurisubharmonic
function which is not pluriharmonic. More generally:

PROPOSITION 5.1.4. Let Q C C™ be a domain. Let u € Psh(Q). Suppose
that for all z € Q) there exists a proper holomorphic map ¢ : D — Q such that
z € p(D) and uo ¢ € harm(D). Then u is mazimal.

PROOF. Let G CC € be an open set. Let v € Psh(G) be such that
limsup, ,,v(z) < u(p) for all p € 9G. Let z € G and let ¢ : D — Q holo-
morphic and proper such that ¢(¢) = z for some ¢ € D and v o ¢ € harm(D).
Since ¢ is proper then ¢ ~1(G) is an open set relatively compact in D and we can
assume, without loss of generality, that it is connected. Now, u o ¢ is harmonic
in D. Also, by Proposition 3.3.2 either vo ¢ = —o00 or vo g € subh(¢™1(G)). In
the latter case, since by hypothesis the upper semicontinuous extension of v o ¢
to the boundary of »~1(G) is less then or equal to u o ¢ on ¢~ }(dG) it follows
by the very definition of subharmonic functions that uo ¢ > v o ¢ on p~1(G)
and hence u(z) > v(z) proving that u is maximal. 0

Proposition 5.1.4 gives a geometric criterion for maximality. In particular
one can use such a criterion to construct a maximal plurisubharmonic function
by giving a foliation on {2 whose leaves are properly embedded holomorphic discs
and a plurisubharmonic function on 2 whose restriction on each leaf is harmonic.
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PROPOSITION 5.1.5. Let @ C C™ be a domain. Let u € Psh(Q). The
following are equivalent:

1. u is mazimal.

2. For each open set G CC Q and v € Psh(G) such that liminf,_,,[u(z) —
v(z)] > 0 for all p € OG it follows u > v in G.

3. For each open set G CC Q and v € Psh(Q) such that liminfes, ., [u(z) —
v(z)] > 0 for all p € OG it follows u > v in G.

4. For each v € Psh(Q) which has the property that for each € > 0 there exists
a compact set K C Q such that u—v > —e in Q\ K then u > v in Q.

5. For each open set G CC Q and v € Psh(Q) such that v(p) < u(p) for all
p € 0G it follows u > v in G.

PrOOF. Assume (1) and let v,G as in (2). Then limsup,_,,v(z) < u(p) for
allp € 0G. Indeed, let {2} C G be such that z;, — pand L := limsup,_,, v(z) =
limg 00 v(2k). Then

0 < liminf[u(z) — v(z)] < liminflu(zx) — v(zg)] < limsupu(zr) — L < u(p) — L.

z—p k—o00 k—o0

Thus limsup,_,,v(z) < u(p) for all p € dG and by (1) v < w in G, which
proves (2).

Clearly (2) implies (3) because Psh(Q)|¢ C Psh(G).

Now assume (3) holds. Let v € Psh(Q) with the property that for each
€ > 0 there exists a compact set K C € such that u —v > —e in Q\ K. Seeking
for a contradiction, we assume that there exists a € € such that u(a) < v(a) — ¢
for some § > 0. By hypothesis, there exists a compact set K C Q such that
u(z) —v(z) > —6/2 for all z € 2\ K. Notice that a € K. Let G CC Q be an
open set such that K C G. Then liminfgs,,p[u(z) — v(z) + /2] > 0 for all
p € OG. Since (v —6/2) € Psh(£2) then (3) implies that u > v —4/2 in G and in
particular then u(a) > v(a) — /2, absurd. Thus (3) implies (4).

Assume (4) holds. Let G CC 2 be an open set and let v € Psh(Q2) be such
such v(p) < u(p) for all p € OG. Let us define

w(z)::{u(z) for 2 € Q\ G

(5:3) max{u(z),v(z)} forze G

By the analogous of Proposition 1.5.1 for plurisubharmonic functions, w €
Psh(£2). By construction, for all € > 0 it follows that 0 = u(z) — w(z) > —e
for all z € Q\ G. By (4) it follows that « > w in Q and thus v > v in G,
proving (5).

Finally, if (5) holds, given G CC Q an open set and v € Psh(G) such that
limsup,_,, v(z) < u(p) for all p € G we define w has in (5.3). Then w € Psh(Q),
w < w on OG and by (5) it follows that w < w in G, proving that v < v in G
and then (1). 0
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5.2 — Characterization of maximal plurisubharmonic functions of class C?

In this section we characterize maximal plurisubharmonic functions of class
C? by means of their Levi form. Let Q C C" and let u € C?(£2). Then

o%u
A4 dd®u)™ = dd° oA ddu = 4™"n! det d
BA) ) = . ddy = e (20 Y av

n

where dV is the volume form (IV.(4.3))

LEMMA 5.2.1. Let Q C C" be a domain. Let u € Psh(2) N C%(Q). Then
(dd°u)™ > 0.

PRrROOF. It follows directly from Theorem IV.4.6.15 and (5.4). [Alterna-
tively, by Theorem IV. 4.6.15 the (1,1)-form (with continuous coefficients) dd°u
is positive. By Theorem IV.4.6.12.(2) it is actually strongly positive. Therefore
(ddu)™ is a positive (n,n)-form.] 0

THEOREM 5.2.2. Let Q C C" be a domain. Let u € Psh(Q)NC?(Q). Then
u is mazimal in Q if and only if (dd°u)™ =0 in Q.

PROOF. Assume first that (dd“u)” = 0. Let G CC Q) be an open set and let
v € Psh(Q) be such that v(p) < u(p) for all p € OG. We want to show that v < u
in G which, by Proposition 5.1.5 and by the arbitrariness of v implies that u is
maximal. Seeking for a contradiction we assume that there exists a € G such
that 0 < v(a) —u(a) = sup,cq(v—u)(z). Let § > 0 be such that v(a) —d > u(a).
Then v(z) — § € Psh(Q2) and v(p) — 6 < u(p) for all p € IG. Thus, if {v.} is the
decreasing sequence of regularizing plurisubharmonic functions for v — J, there
exists € > 0 such that G CC Q, ve € C®(Q) N Psh(Q), ve(a) > u(a) and
ve(p) < u(p) for all p € IG.

Let M = max_ g [|z]|*>. Let A > 0 be such that vc(a) + A([|al|* = M) > u(a)
and let w(z) := ve(2) + A(||2]|> — M). Then w € Psh(£.), w(p) < u(p) for all
p € 0G, w(a) > u(a) and L,(w(2))(b;b) > 0 for all z € G and b € C™ \ {0}.

Let 2 € G be alocal maximum of w—u. Since w(a)—wu(a) > 0and w—u <0
on 0G, such a point does exist.

Notice that det ( 6225‘%) (z) = 0 is equivalent to the existence of a vector
b € C™\ {0} such that £, (u)(b;b) = 0. Let f(¢) := (w — u)(x + ¢b) for ¢ € C,
|¢] < 1. Since ¢ = 0 is a local maximum and f is of class C? then Af(0) < 0.
Therefore

0>Af(0) =4L,(w —u)(b;b) = 4L, (w)(b;b) > 0,

a contradiction. Therefore u is maximal.
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Conversely, assume that u € C?(Q2) N Psh(2) is maximal. Assume by con-

tradiction that there exists a € € such that det ( 822%) (a) # 0. This im-

plies that £,(u) is positive definite. Since u is of class C? one can find a ball
B(a,r) cC ©Q and C > 0 such that £,(u)(b;b) > C for all b € C" such that
6] = 1 and z € B(a,r). Then u(z) + C(r? — ||z||?) € Psh(B(a,r)) because
L(u(z) + C(r* — ||z — al|?))(b;b) = L(u)(b;b) — C||b]|> > 0 by construction. Let
) { u(2) for z € Q\ B(a,r)
v(z) = .
u(2) + C(r* — ||z — al|?) for z € B(a,r)

By the analogous of Proposition 1.5.1 for plurisubharmonic functions, v € Psh(Q).
Moreover, v(p) = u(p) for all p € OB(a,r) and v(a) = u(a) + Cr? > u(a) against
the maximality of wu. O

REMARK 5.2.3. With some more effort (see, e.g., [Kl, Proposition 3.1.7])
one can prove the following generalization of the previous theorem: let u,v €
C?(2) N Psh(2). Let G CC Q be an open set. If v < u on G and (dd®u)™ <
(ddv)™ in G then v < u in G.

REMARK 5.2.4. Let Q C C" be a domain and let u € C?(£2). The condition
(dd°u)™ = 0 is equivalent to the fact that the rank of the Levi form £(u) is < n—1
in . In other words, (dd°u)™ = 0 is equivalent to the existence for every z €
of vector v € C" \ {0} (depending on z) such that £(u),(v;v) = 0.

5.3 — Maximal plurisubharmonic functions and foliations

In this section we relate maximal (regular) plurisubharmonic functions to
complex foliations (in Riemann surfaces).

Let Q C C™ be a domain. A real foliation of class C* and dimension 2m
on ) is a map F : Q — (TQ)® such that for each p € 2 there exist an open set
UcCr™ DCC™and ®:U x D — Q a C*-diffeomorphism onto its image
such that d,®({z} x TwD) = Fp(a,c) for each z € U. Moreover, if the map
D > w — ®(z,w) is holomorphic for each x € U the foliation F is said to be a
complez foliation of dimension m. Notice that if F is a real (respectively complex)
foliation of dimension m then for each p € 2 there exists a real (respect. complex)
manifold M(p) C Q, p € M(p) such that (T,M(p))® = F, for all z € M. We
call such a manifold M (p) the leaf for F at p. We refer the interested reader to
[Ca-Li] for details on foliations.

By definition, a foliation is a distribution of (TQ)®, namely, a map Q —
(TQ)®. Tt is clear that if F is a foliation of class C* then [F,F] C F, that is, F
is involutive. The converse is contained in the well known Frobenius’ theorem:

THEOREM 5.3.1 (Frobenius). Let Q@ C C" be a domain. A C* (k > 1)
distribution F C (TQ)R is a foliation of class C*+1 if and only if it is involutive.
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If one is interested in the complex side of the story, then one can consider
(complex) distributions F C T. For later reference we prove here only the
following complex version of Frobenius’s theorem.

PROPOSITION 5.3.2. Let Q C C™ be a domain. Let F C TQ be a C* (k> 1)
distribution of complex rank 1. Then F is a complex foliation of class C**1 and
(complex) dimension 1.

ProOF. Consider the associated distribution F% C (TQ)®. Then FX is a
C* distribution of rank 2. Let U be an open set in € on which F is trivial and
let z — Z(z) be a generator for F on U. Then Z,JZ (here J is the complex
structure coming from the multiplication by i in TQ) generate F~ on U. Now

0=2,J2)=(2,iZ)=i[Z,Z] =0,

and then F® is involutive. By Frobenius’s theorem FX is a real foliation of
dimension 2 and class C¥*1. Let p € Q and let M(p) C Q be a real two
dimensional submanifold such that T,M(p) = FX for all z € M(p). To see
that F is a complex foliation it is enough to prove that M(p) is a complex
submanifold of Q. By construction T, M (p) = JT,M(p) for all z € M(p) and
therefore T, M (p) has a structure of complex subspace of T.§2. Since a C!-
submanifold of C" is a complex manifold if and only if its real tangent space at
every point is a complex space, M (p) is a complex curve and thus F is a complex
foliation of dimension one. O

We begin with the following result which generalizes Proposition 5.1.4.

THEOREM 5.3.3. Let Q C C™ be a domain. Let u € C?(2) N Psh(Q). If
there exists a one dimensional complex foliation F of class C' of Q such that
the restriction of u to each leaf is harmonic then u is mazximal.

PROOF. Let ® : U x D —  be a local foliation chart for F, namely,
U C C" ! is an open set, ® is a diffeomorphism (onto its image) of class C?, for
each x € U the image ®(z, D) is contained in a leaf of 7 and the map ¢ — ®(z, ()
is holomorphic. By hypothesis for each © € U fixed, the map ¢ — u o ®(z,() is
harmonic on A and therefore

0P oD
0=Acuo®(x,() =4L(u) (3_C(x7 ), 8_C(x’C)> .
Since %—‘f(% ¢) # 0 because @ is a diffeomorphism, then £(u) has rank <n — 1.
In particular it follows that (dd°u)™ = 0 at ®(x, (). By the arbitrariness of x € U
and ® and according to Remark 5.2.4, it follows that (dd°u)™ = 0 in © and then
u is maximal by Theorem 5.2.2. 0
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The converse of the previous theorem is given in the following form:

THEOREM 5.3.4. Let Q C C" be a domain. Let u € C3(2) N Psh(f).
Suppose u is mazimal and (dd°u)?~1 #£ 0 for all z € Q. Then there exists a one
dimensional complez foliation F of class C? of 2 such that the restriction of u
to each leaf of F is harmonic.

PROOF. Since u is maximal (and of class C3) Theorem 5.2.2 and Re-
mark 5.2.4 imply that the rank of L£(u) is < n — 1 and by hypothesis it is
exactly n — 1 at each z € Q. This implies that for each z € € there ex-
ists a vector Z(z) € T.Q \ {0} unique up to complex multiples, such that
L.(u)(Z(2),Z(z)) = 0. Let F, = spanc{Z(z)} C T.Q. Thus we have a well
defined distribution F : Q 3 z — F, C TQ. Notice that, if Z = (Zy,... ,Z,)
then Z is the only solution (up to complex multiples) of the system

= k=1,...,n.
Zazjazk Z) 07 ) 1

Thus, for every p € € there exists a neighborhood U, of p and j, € {1,... ,n}
such that Z;(z) = Pj(z)Z;, where P;(z) is a polynomial combination of 5% 2dzk (2)

for j € {1,... ,n}\ {jp} and z € U,. Since by hypothesis u is of class 03, one
can perform a choice (for instance Z; = 1) which makes the map z — Z(z)
of class C', showing that z — F, is a C! distribution. Thus F C T is a C!
distribution of complex rank one and by Proposition 5.3.2 it is a complex one
dimensional foliation of class C2.

It remains to show that the restriction of u to every leaf of F is harmonic.
Let p € Q and let ¢ : D — © be holomorphic such that ¢(0) = p, (D) is

contained in a leaf of F and ¢(¢) # 0 for all ¢ € D. Then ¢(¢) = A(¢)Z(¢(¢))
for some C*-function A(¢). Hence

A¢(uo9)(Q) = 4L(u)y(c) (9(C); 9(€)) = 4P L(w)(0) (Z(2(0): Z(9(€))) = 0
proving that the restriction of u to each leaf of F is harmonic. O

5.4 — The generalized Dirichlet problem

Let Q C C" be a domain and let p € C°(992). The generalized Dirichlet
problem on €2 is the following:

u upper semicontinuous in O
(5.5) u maximal in Psh(§)

ulon = ¢
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Notice that, if the requirement u € Psh(2) is changed with u € subh(£2) then

the problem (5.5) turns out to be equivalent to the classical Dirichlet problem

which has a unique solution in case € is bounded with boundary of class C?.
Looking at (5.2), one is tempted to define the following function:

Mg, (z) = sup{v(z) : v € Psh(Q), limsup v(z) < ¢(p)¥p € 002} .
Q3x—p

The function Mg, is called the Perron-Bremermann function for .

As a matter of notation, we say that a point p € 99 is a plurisubharmonic
peak point if there exists an open neighborhood U of  and ®, € Psh(U) such
that ®,(p) = 0 and ®,(z) < 0 for all z € Q\ {p}. If this is the case, we say that
the function ®, peaks at p in Q.

REMARK 5.4.1. If Q C C" is a strongly convex domain and p € 952, there
exists a real hyperplane H, such that Q N H, = {p}. Such a hyperplane can
be written as H, = {z € C" : Re(z — p,1,,) = 0}, for some complex vector
v, € C". Up to replace v, with —v,, the strong convexity of 2 implies that
Re(z —p,v,) < 0 for all z € Q\ {p}. Thus the function ®,(2) := Re(z —p,v,) is
a pluri(sub)harmonic function which peaks at p in © and then each point of 99
is a plurisubharmonic peak point. In particular each point of the boundary of
the unit ball B™ is a plurisubharmonic peak point. More generally, it is known
that if Q cC C" is a strongly pseudoconvex domain, for each p € 952 there exists
a holomorphic function f, (defined in a neighborhood of ) such that | f,(p)| = 1
and |f,(2)| < 1 for all z € Q\ {p}. The plurisubharmonic function @, := log| f,|
peaks at p in €2 and thus each point of 92 is a plurisubharmonic peak point.

THEOREM 5.4.2 (Bremermann-Walsh). Suppose Q CC C" has boundary of
class C? and assume that every p € OQ is a plurisubharmonic peak point. Then
the Perron-Bremermann function Mgq , is a solution of the generalized Dirichlet

problem (5.5). Moreover, Mg, € C°(Q).
PRrOOF. Let us denote by

Pa,, = {v € Psh(Q),limsup v(z) < ¢(p)¥p € 02} .

Q3x—p

Let H € harm(Q) N C°(Q) be the solution of the classical Dirichlet problem, so
that AH = 0 in Q and H|sq = ¢. By the maximum principle in Corollary 1.1.6
applied to v — H, v < H in Q for all v € Pq ,. This implies that Mg , < H in Q
and by (the analogous for plurisubharmonic functions of) Proposition 1.5.3, its
upper semicontinuous regularization (Mg ,)* is plurisubharmonic in 2. By the
very definition, Mq , < (Mq,,)* and (Mg ,)* < F for any upper semicontinuous
F such that Mg , < F. Thus (Mg ,)* < H in Q which implies that (Mq ,)* €
Pa,,. Thus Mg , = (Mg ,)* and then Mq , € Psh(€).
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By construction limsupgs,_,, Ma () < ¢(p) for all p € Q. In order
to show that limos.,p Mo ,(2) = ¢(z) for all p € 9Q, we will prove that,
for all p € 99, € > 0 there exists a function u., € C°(Q) N Pq,, such that
tep(p) = ¢(p) — €. Assuming such a function w. , exists, since Mq , > u, in Q,
it follows that

gglmglg Mg, (z) > ggzgﬁ Uep() = p(p) — €,
and thus, by the arbitrariness of €, liminfos,—, Mo . (z) > ¢(p) showing that
Mg, is continuous at p and Mq ,(p) = ¢(p). The function u.j, can be defined
by taking a plurisubharmonic function ®, which peaks at p in €2 and defining
Ue p(2) = cPp(2) + ¢(p) — € for ¢ > 0 chosen so that uc, < ¢ on €.
To show maximality of Mq ., let G CC Q be a open set and let u € Psh(12)
be such that u(z) < Mg () for all z € 9G. Define

o(2) = { Mg, ,(2) z2€Q\G
max{u(z), Mo ,(2)} 2€G ’

By the analogous of Proposition 1.5.1, v € Psh(€2). Moreover, by construction
v € Pq,,. Thusv < Mg ,, which implies that v < Mgq , in G, proving maximality
of MQ7¢.

It remains to prove that Mg, is continuous. We already know that it is
upper semicontinuous, so it is enough to prove that it is lower semicontinuous.
To this aim, we define a new function as follows. Fix € > 0. Let y € C™ be such
that |ly|| < ¢ (with 6 = d(e) > 0 small to be chosen later) and let

uy(2) = { max{Mq,(z), Mo ,(z+y) — €} z€QN@Q—y)

Mq (%) 2eQ\(Q—y)
If we can show that u, € Pq,, then u, < Mg , in Q, proving that for ||z—w|| <
then
Mo (2) > Up—2(2) > Ma,,(2+w—2) —e= Mg ,(w) — €,

proving that Mg , is lower semicontinuous.

Let, as usual, Qs := {z € Q : dist(z,99Q) > §}. Since Q5 C QN (—y+NQ), by
the analogous of Proposition 1.5.1 for plurisubharmonic functions, u, € Psh(€s).
In order to prove that u, € Pq ,, it is then enough to prove that, for a suitable
choice of 6, u, = Mq , on Q\ Qys, for then u, € Psh(Q) and limgs,—p uy(z) =
©(p) for all p € IN.

If z € Q\(Q—y) then u,(2) = Mg ,(z) by definition. If z € (QN(Q—y))\Q2s,
let w € 02 be such that ||z — w|| < 25. Now, since limgs.—,p, Mo o(2) = ¢(p)
for all p € 0Q and Mg ,|s0 = ¢ is uniformly continuous on 92, we can choose
0 > 0 in such a way that for all ¢ € Q and n € 9Q with || — || < 49 it follows

(Moo (C) = Ma,p(n)] < €/2.
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Since ||z —wl|| < 2§ and ||z +y — w|| < ||z —w]| + ||y]| < 30, hence
(Moo (2) = Ma,p(w)| <€/2,  [Mo,p(z +y) = Ma,(w)] <e¢/2.
Thus
Mg ,o(2) > Mo,p(w) — €/2 > Mo p(2+y) — €/2—€/2 = Mg (2 +y) — ¢,
as needed. 0

REMARK 5.4.3. The Perron-Bremermann function Mg , is also the unique
solution in the L>°-class of problem (5.5). However, uniqueness does not follow
at once from tools such as the maximum principle, but it is a particular instance
of the so-called comparison principle of Bedford and Taylor, see Remark 5.6.7.
From the proof of Theorem 5.4.2 it follows only that Mg , is the maximum among
other solutions of (5.5). Indeed, if u is any solution of (5.5) then u € Pq , and
therefore u < Mg, in ).

REMARK 5.4.4. In [B-T1] Bedford and Taylor proved that if ¢ € C?(9Q)
then Mg, € CH'(Q) (namely it is C' with Lipschitz first derivatives) and
Mg, € W2>(Q) (that is Mg , has weak second order derivatives which are in
Lige ().

loc
REMARK 5.4.5. It is worth noticing that if Q C C" is a domain for which
the generalized Dirichlet problem (5.5) has a continuous solution for each ¢ €
C°(99) then every point of O is a plurisubharmonic peak point (just solve (5.5)
with ¢(z) = —||z — p|| for p € 09).

5.5 - The complex Monge-Ampere operator on locally bounded plurisubhar-
monic functions

The aim of this section is to extend the definition of the complex Monge-
Ampere operator (dd®)™ to locally bounded plurisubharmonic functions, accord-
ing to Bedford and Taylor [B-T1].

First of all, notice that if u € Psh(Q) N L. (2) then u is actually locally
bounded (because it is upper semicontinuous and does not assume the value +o0o

be hypothesis).

LEMMA 5.5.1. Let Q C C" be a domain. Let T = > Tyn; € DE(RQ)
(with ny smooth k-forms and Ty Radon measures) and let u € LY (). If ¢ €

Co(Q, A*"=F) define a;], € Co(Q) by means ai,dV =@ Any (with dV the volume
form on C"). The functional uT defined on Co(2, A*"*) as

(5.6) uT(p) = Z/(uaé)TJ, Vo € Co(02, A2F)
T Ja

is a current of degree k and order 0. In particular, if u € C°(2) then uT(p) =
T(up) for all ¢ € Co(Q, A2"F).
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PROOF. Since u is locally bounded then it is T'j-integrable on the support of
any ¢ € Cp(Q, A2"~F) for any J. Thus the integrals in (5.6) are well defined and
finite. It is then clear that the definition does not depend on the choice of the
decomposition T'= > Tyn; and thus w7 is a current of degree k and order 0. [

Now we need the following result:

PROPOSITION 5.5.2. Let Q C C" be a domain. Let T € Dé@’p)(ﬂ) be a
d-closed positive current. Let u € Psh(Q) N L2 (). Define

(dd°u AT)(p) = dd*(uT)(p) := (uT)(dd"¢) ,

for ¢ € C§°(QQ, A("_p_l’"_p_l)). Then dd°u AT is a d-closed positive current of
degree (p+1,p+1).

PROOF. Tt is clear that dd°u AT is a d-closed current of degree (p+1,p+1).
We have only to show positivity. To this aim, let {u.} be the sequence of
smooth regularizing plurisubharmonic functions given by Theorem 3.2.1. Since
{u¢} pointwisely decreases to u, by Lebesgue dominated convergence theorem
and the very definition (5.6) of uT', it follows that u.I" — «T in the weak*
topology. Therefore, if we can show that u.7T(dd°p) > 0 for all € > 0 and
o € SPr—P=Ln=r=1(Q)) it will follow that uT'(dd“¢) > 0 and thus uT is positive.

Let ¢ € SPr—P=Ln=r=1(Q). Since u, is smooth, then (dd°u. A T)(p) =
T (ucdd®p). By hypothesis dT'=0, that is, T'(d®) =0 for all ® € C§°(Q, A?"—2P~1),
In particular if we let ® := u.d°¢p we obtain

(5.7) 0="T(d®) =T(d(ucdp)) = T(due A d°p) + T(uc.dd®p),
while, if we let ® := du, A ¢ we obtain
(5.8) 0=T(d®) = T(d(duc N p)) = T(dduc A ) — T(due A dyp) .

Moreover, recalling that T is a (p, p)-current and thus T'(¢)) = 0 for any (2n—2p)-

form of type different from (n — p,n — p), it follows that
(5.9) T(duc A d°p) = T((O+ d)ue Ni(0 — 0)p) = T(due A idp + Ju, N idv) =
' =T(i(0 — )ue A (0 + 0)p) = —T(duc A dp)

Putting together (5.7), (5.8), (5.9) we have
(5.10) T(ucdd®p) = =T (due A d°p) = T(due A dp) = T(ddue A @) .

Now, since u. is plurisubharmonic (and smooth) then dd°u. is a strongly positive
(1,1)-form by Remark IV.4.6.17 and then dd°uA@ € SP™~P"=P)(Q). But T > 0
by hypothesis and therefore T'(dd°ue A ¢) > 0, which, by (5.10) implies that
T(ucdd®p) > 0 as needed. 0
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Now we can define the complex Monge-Ampere operator for locally bounded
plurisubharmonic function by induction as follows.

Let Q C C™. Let uy,... ,u; € Psh(Q) N L (Q). By Proposition 5.5.2 we
can define by induction

(dd°uy A ... AN dduy) =T A dd°uy ,

where T' = (dduy A ... A dd°ug_1) is the positive d-closed (k — 1,k — 1)-current
defined inductively on k. More explicitly, for ¢ € Cg°(Q, A(P=kn=Fk))

(dduy A ... Addug) (@) = ug(ddur A ... A ddug—1)(dd o) .

The functional dd®uy A ... A dd®uy, is then a d-closed positive (k, k)-current (of
order zero).

The previous definition is coherent with the case u,... ,u; are C%(Q). In-
deed, for all ¢ € C§°(Q, A»=Fn=F)) it follows

(5.11) / dd®uy A\ ... ANddup Ao = / ug(ddus A ... A ddug—1 A dd€o)
Q Q

and thus, in case ug,...,ur € C%(Q) the current dduj A ...dd°uy, defined as
before coincides with the natural current associated to continuous forms. For-
mula (5.11) can be proved by using Stokes’ theorem and division into types (see
K1, p. 111)).

It is known that the complex Monge-Ampere operator cannot be defined
on a generic plurisubharmonic function. Demailly (see [Dem]) extended the
domain of definition of the complex Monge-Ampere operator to plurisubharmonic
functions which are bounded outside compact sets. Other generalization are
in CEGRELL [Ce]. Jus recently, Z. BLOCKI [Blo] characterized completely the
domain of definition of the complex Monge-Ampere operator.

5.6 — Properties of the complex Monge-Ampere operator
We collect here some basic properties of the Monge-Ampere operator refer-

ring the reader to [B-T1], [B-T2] and [K]] for those stated without proof.

THEOREM 5.6.1 (Chern-Levine-Nirenberg estimate). Let 2 be a domain in
C™ and let K CC 2 be a compact set. There exists a constant C = C(Q, K) >0
and a compact set H CC Q\ K such that for all uy,... ,u, € Psh(Q) N L>(Q)
it follows

/ ddcul VANIAN ddcun S C”ulHL‘X’(H) e ||UTIHL°°(H) .
K
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Such an estimate can be first proved for plurisubharmonic functions of
class C? and then, using the next approximation theorem, extended to bounded
plurisubharmonic functions.

THEOREM 5.6.2. Let Q C C™ be a domain. For k = 1,... ,m < n let
{ur,;}jen be a decreasing sequence of plurisubharmonic functions of class LyS,.
Let uy, = limj ug ; and assume that up, € Psh(Q) N LS () for k =1,... ,m.
Then

Hm dduy j A ... Addup, ; = ddus A ... Addu, i D{™™(Q).

Jj—oo

The previous theorem, together with the regularization theorem, allows to
pass all algebraic properties of the Monge-Ampere operator from C*°-plurisub-
harmonic functions to locally bounded ones.

Let © C C™ be a domain and let u € Psh(Q) N L2 (). The (n,n)-current
(dd°u)™ can be seen as a Radon measure on €, the Monge-Ampére mass of u.
We already saw that if u is of class C? then u is maximal if and only if its
Monge-Ampere mass is zero. The same is true for less regular functions, and it
follows from the following result:

THEOREM 5.6.3 (Comparison theorem). Let Q@ CC C™ be a domain. Let
u,v € Psh(Q) N L (Q). Suppose that for all p € OQ it holds

lim inf(u(z) — v(2)) > 0.

Then
/ (dd°v)" < / (dd°u)™ .
{u<v} {u<wv}

As a consequence we have:

COROLLARY 5.6.4. Let Q C C" be a domain. Let v € Psh(Q)N LY (Q). If
(dd°u)™ = 0 in Q then u is mazimal.
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PROOF. Let G CC Q be a connected open set. Let v € Psh(G) be such that
liminf, ,,[u(z)—v(z)] > 0 for all p € 9G. We have to show that v < uin G. First
we claim that we can assume v € L>°(2). Indeed, if this is not the case, we can
replace v with the plurisubharmonic function v := max{u|g,v}. The function v’
has the properties that v < ¢’ in G and liminf,_,,[u(z) — v'(z)] > 0. Moreover,
since v is bounded from above in G (by definition of plurisubharmonic functions
and the hypothesis on the behavior near dG) and u € L>®°(G) then v’ € L>®(G).
Thus if we prove that u > v’ in G then it will follow also that © > v in G. We
can thus assume v € L*>(12).

Assume by contradiction that the set {z € G : u(z) < v(z)} is not empty.
Let ves(2) := v+ €|z]|> — § and choose € > 0,6 > 0 so that v.s < v in G.
Since the set {z € G : u(z) < v(z)} is not empty we can choose €, in such
a way that the set {z € G : u(z) < ves(2)} is not empty as well. The set
{#z € G : u(z) < ves(2)} has positive Lebesgue measure, because otherwise the
plurisubharmonic function max{u|q, ve s} would be almost everywhere equal to
u|g and thus by Corollary 1.3.2 it would be equal to u|G everywhere in G,
implying u > v 5 in G.

Now we claim that for all wy,ws € Psh(G) N LS.(G)

If wi,wy € Psh(G) N C?(G) then, taking into account that (ddw;)”
(dd°wg)""* >0 forall k =0,...,n

(dd®(wy + wa))™ = (dd°wy)™ + (dd°ws)" Z < ) (dd°wy)? A (ddwo)" ™7 >

> (dd®wq)"™ + (ddwa)™ .

Formula (5.12) for general wy,ws € Psh(G) N L2 (G) follows now from Theo-

loc
rem 5.6.2 by approximating w1, we with decreasing sequences of smooth plurisub-

harmonic functions.
From (5.12) and Theorem 5.6.3 we have

[ e [ ooy [ () <
{ule<ve,s} {ule<ve s} {ule<ve,s}

< / (dd°u)™ =0.
{ulc<ve,s}

But (dd°v)™ > 0 and (dd®(e||z||* — 6))"™ = 4"€"n!dV, thus

/ (ddv)™ +/ (ddc(EHZH2 —o))" > 4”6"n!/ dV >0,
{u|a<ve,s} {ulg<ve,s} {ulg<ve,s}

giving a contradiction. O
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REMARK 5.6.5. An argument similar to that used in the proof of Corol-
lary 5.6.4 shows that if Q is a bounded domain, u,v € Psh(Q) N L>*(Q) are such
that v = v on 9Q and (dd°u)™ = (ddv)™ =0 in Q then u = v in Q.

To end up the discussion about the complex Monge-Ampeére operator, we
state the following very deep result of Bedford and Taylor:

THEOREM 5.6.6. Let Q C C" be a domain. Let u € Psh(Q)NLS (). Then
u is mazimal if and only if (dd°u)™ =0 in Q.

One implication of this theorem is contained in Corollary 5.6.4. For the
other implication, namely if « is maximal then (dd°u)™ = 0, the hard part is
to show that the Perron-Bremermann function Mg, for the ball B satisfies the
Monge-Ampere equation (dd°Mg,,)" = 0 in B (apart the original source, see,
e.g., [Kl, Theorem 4.4.1]).

REMARK 5.6.7. Theorem 5.6.6 and Remark 5.6.5 imply that the Perron-
Bremermann solution Mg , is the unique solution of the generalized Dirichlet
problem (5.5) in the class LS (2). It also satisfies (dd“Mq ,)" = 0.

loc

5.7 — The pluricomplex Green function for bounded domains

One of the main object in classical potential theory is the Green function.
Such a function (and its normal derivative, the Poisson kernel) allows to repro-
duce smooth functions and harmonic functions (see, e.g., [Dem], [KI]). To be
more concrete, in the unit disc D C C let

(5.13) Gn(2,¢) = log|T.(¢)|

where T.(¢) := (2—¢)(1-2¢) " is an automorphism of D which maps ¢ to O and
such that 72 = id. Then Gp : D x D — [—00, 0] enjoys the following properties:

1. Gp is of class C> in D x D\ Diagy,, where Diagy = {(2,{) e DxD: z = (}.
Gp (¢, 2) = Gp(z,¢) for all ¢,z € D.

Gp(¢,z) <0in D x D and Gp(¢,2) =0 on 9D x D.

D > ¢ — Gp((, 2) is harmonic in D\ {z} for all fixed z € D.

D> ¢ (Gp(¢, z) —log |z — ¢|) = O(1) for all fixed z € D.

It can be shown (see, e.g. [Dem, Theorem 4.3]) that for all ¢ € C5°(D) it
follows

LN

o) = 5= [ GolC. DA FdC N dC.

namely, AcGp((, z) = 276, in Dis™ (D).

As we already saw, in several variables the notion of harmonic functions is
not invariant by biholomorphisms, thus when working in higher complex dimen-
sions, one is tempted to define and study “pluricomplex Green functions”.



256 FILIPPO BRACCI ~ STEFANO TRAPANI [60]

DEFINITION 5.7.1. Let Q C C™ be a domain and let = € Q. The (Klimek)
pluricomplex Green function of Q with logarithmic pole at x is defined as

Ko »(z) :=sup{u(z) : u € Psh(Q),u < 0,limsup(u(z) —log ||z — z||) < +oo}

zZ—x

with the convention that sup () = —oo.

We state here some properties of the pluricomplex Green function:

PROPOSITION 5.7.2. Let Q,Q C C™ be domains and let © € .
1. If Q C Q then Kq.(2) > Kqr (2) for all z € Q.

If Q = B(x,7) then Kgy(2) = log(||z — z|/7).
3. If R>0 and Q C B(x, R) then for all z € Q it follows

o

log (@) < Kaz(?).

4. If r > 0 and B(z,r) C Q then for all z € B(x,r) it follows

Kq . (2) <log <||z—x> '

r

5. If f: Q — Q is holomorphic then [*(Kq/ ¢@)) < K. In particular the
pluricomplex Green function is invariant for biholomorphisms.

6. If Q is bounded then Kq 5 is mazimal in Q\ {z} (i.e. it is plurisubharmonic
in Q@ and mazimal) and (dd°Kq )" =0 in Q\ {z}.

PRrROOF. Let us denote by
(5.14)  Kq ={uePsh(Q):u<0,u(z) —log|z—z| <O(1) as z — z}.

Then (1) follows directly from the very definition since every if u € Kqs , then
its restriction ulg € Kq 4.

(2) If Q = B(x,7), let u € Kp(y,r),, and let z € B(z,r) \ {z}. Fix v € C"
with ||v|| = r and such that x + {yv = z for some (y € D. Consider the function
a:D > ¢~ ulCv+z)—log|¢|]. Such a function is subharmonic in D\ {0}
and bounded from above in D (since log|¢| = log(||¢v + x — z||/r) and u has
a logarithmic pole at x) thus, by Corollary 1.5.5, @ extends to a subharmonic
function in D. Since limsup,_,, %(¢) < 0 for all ¢ € ID by construction, by the
maximum principle & < 0 in . Therefore for all ¢ € D it follows u(v + z) <
log |¢|, proving that u(z) < log(|[z — z||/r). Thus Kg(r)(2) < log(||z —z/r),
but since log(||z — z||/7) € Kp(z,r),2, then Kgg .y (2) = log(|lz — z| /7).

(3) and (4) follow from (1) and (2).
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(5) follows from the fact that if u € Kq/ fz) then uo f = f*(u) € Ka,
because clearly f*(u) < 0 in © and

u(F(e)) = loge — ] = u((z)) ~ 1og (2) ~ £(o)] + log L=

= u(f(2)) —log || f(2) — f(x)| + O1).

(6) If Q is bounded then by (3) the pluricomplex Green function Kq () >
—oo for all z € Q\ {z}. According to (the analogous for plurisubharmonic
functions of) Proposition 1.5.3 the upper semicontinuous regularization u :=
(Kq,z)* is plurisubharmonic in Q. We claim that v € Kq_,. Indeed, by (4) u has
a logarithmic singularity at z. Also, clearly v < 0 in Q. If it were u(z) = 0 for
some z € (), then by the maximum principle v = 0, contradicting the fact that
u has a logarithmic singularity at =. Thus v < 0 in 2 and therefore u € Kq ;.
Hence u = Kq , which is then plurisubharmonic (and strictly negative) in €.

To show maximality, let G CC Q\ {z} and let v € Psh(G) be such that
limsupgs,_,, v(2) < Kq.(p) for all p € 9G. Define

u(z) = { max{v(2), Kaa}(2) z€C
— Kﬂ’x(z) Jops Q\G .

Then u € Kq, and by definition v < Kq ,, proving that Kq , is maximal in
Q\ {z}. Finally notice that by (4) Kq . is locally bounded in Q\ {z} and thus
Theorem 5.6.6 implies (dd°Kq )" =0 in Q\ {z}. 0

Recall that a domain 2 C C" is called hyperconvex if there exists p €
Psh(Q) N C°(Q) such that for all » > 0 the open set {z € Q : p(z) < —r} is
relatively compact in 2.

THEOREM 5.7.3. Let Q C C™ be a bounded hyperconver domain and let
x € Q. Then the pluricomplex Green function Kq , : Q — [—00,0], extended to
be 0 on 09 is plurisubharmonic and continuous. Moreover, the function Q x Q >
(x,2) = Kq 4(2) € [—00,0] is continuous.

SKETCH OF THE PROOF. First of all we can prove that limos, ., Ko . (2) =
0 for all p € Q. To this aim, by hypothesis there exists p € Psh(€2) N C°(Q)
such that {z € Q : p(z) < —r} is relatively compact in Q for all » > 0. Let
B(z,7) C Q C Q C B(z, R) for some r, R > 0 and define

. {nwﬂcmaA%wZ—xVRn 2 € Q\B(z,1)
log(||z — z||/R) z € B(x,r)

where C' > 0 is chosen so that Cp(z) < log(r/R) on 0B(z,r). Thenv € Kq , (the
family defined in (5.14)). Moreover, since p(z) — 0 as z — 9§, then v(z) — 0
as z — 0§ and since v < Kgq ,, the same holds for Kgq ;.
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In order to show continuity, it is enough to prove that Kq , is lower semi-
continuous. To this aim, Demailly (see, [De]) constructs a sequence of continuous
{ur} € Kq 4 such that Kq , = supuy (and the result follows since the supremum
of lower semicontinuous functions is lower semicontinuous). The rather explicit
construction of such a family (which requires the use of p) is omitted.

Finally, to show continuity of Kq () with respect to (z, ), one can show
that for all @ € Q, € > 0 and open neighborhood U of a, there exists an open set
V CC U, a €V such that for all (z,2),(y,2z) € V x (Q\ U) it follows

KQ’I(Z)

(5.15) (1+e)7t <
ay(2)

<1-+e.

Formula (5.15) implies that Kq ,(2) is continuous in 2 locally uniformly in z € Q
outside the diagonal Diag(Q x ©) in ©Q x Q. From this it follows that Kgq ,(2)
is continuous in  x Q\ Diag(2 x ). Continuity on the diagonal follows from
Proposition 5.7.2.(4).

Formula (5.15) follows from modification of the pluricomplex Green func-
tion, see [De] or [KI, p. 227]. 0

Some remarks are in order.

1. According to DEMAILLY [De], every bounded pseudoconvex domain with
Lipschitz boundary is hyperconvex.

2. Although the pluricomplex Green function Kgq ;(z) (for Q bounded and
hyperconvex) is continuous in (z, z), it is in general not symmetric in (z, z).
Moreover, it can be proved that it is symmetric in (z,z) if and only if
x +— Kq .(2) is plurisubharmonic for all z € (2 fixed.

The following characterization of the pluricomplex Green function is due to
Demailly:

THEOREM 5.7.4. Let Q@ CC C" be a hyperconver domain and let x € Q.
The pluricomplex Green function Kq 5 s the unique solution of the problem:

u € Psh(Q) N L2 (Q\ {z})

(ddu)* =0 in Q\ {z}

u(z) —logllz —z|| = O(1) forz =«
lim,_,, u(z) =0 for all p € OQ

(5.16)
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PROOF. We already know that K Q.2 (2) is plurisubharmonic in €, continuous
inzeQ Kqgglon =0and (dd°Kq ;)" =0in 2\ {x} (see Proposition 5.7.2 and
Theorem 5.7.3). Moreover, according to Proposition 5.7.2.(3) and (4),

Kq.(2) —log|z —z|| = O(1) for z —» x.

Therefore Kq , is a solution of (5.16).
We are left to show uniqueness. Notice that if « is any solution of (5.16)
then

, u(z)
5.17 lim ————— =
(5.17) pares log ||z — ||

Let u be a solution of (5.16). Notice that by Corollary 5.6.4 the function u is
maximal in Q \ {z}. By the maximum principle, © < 0 in  and thus u € Kq
(where Kq , is the family defined in (5.14)). Therefore Kq , > u in Q. Seeking
for a contradiction we assume that there exists a € Q such that u(a) < Kq (a).
Thus there exist 6 > 0 and 0 < ¢ < 1 such that the set

Es. ={2€Q:Kq.(2) > cu(z) + 0}

is not empty. Since u is upper semicontinuous (and Kq , is continuous), the
set Es. is open. We claim that Es . is relatively compact in Q \ {z}. Assume
we proved the claim. Then Kq ,(2) < cu(z) + 6 in 0Es,. which would imply
Kq .(2) < cu(z) + 6 in Ej. by maximality of u, contradiction.

To prove that Ej . is relatively compact in Q\ {z}, let {21} C Ej. be such
that 2z — g € 0E5.. If ¢ € 0Q then it would follow that lim,_,q Ko »(2) > 6 > 0,
a contradiction. If ¢ = = then Kq ;(z;) — —oo by Proposition 5.7.2.(4). Thus,
from Kq ,(2k) > cu(z,) + 6 and (5.17) we obtain

l<e u(zg) ) _
Kaoz(z)  Kaz(zk)
1 — 1)
L um) ol .

=c .
log|lz =zl Koo(z) — Kaa(zk)

from which ¢ > 1 against our choice ¢ < 1. Thus Ejs_ is relatively compact in
Q\ {z} as claimed. 0

REMARK 5.7.5. DEMAILLY [Dem] extended the definition of (dd®)" to
plurisubharmonic functions which are locally bounded in a domain ) outside
some points (actually he extended such a definition to plurisubharmonic func-
tions which are locally bounded outside bigger subsets). For instance (see,
e.g., [Kl, p. 228-229]) fix € Q. If u € Psh(Q) N L2 (Q\ {z}), one can
prove that the regularizing sequence {u} of smooth plurisubharmonic functions
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which pointwise decreases to u is such that the Monge-Ampére masses (dd°u,)"
converges in the weak™ topology of currents to a unique positive Borel mea-
sure denoted (dd“u)™ (which of course coincides with the already defined mass
(dd°u)™ if u is locally bounded near x as well). Also, it can be shown that
(dd°Kq )™ = (2m)"0,, where §,, is the Dirac delta.

REMARK 5.7.6. If one changes the requirement that u(z) —log ||z — x| =
O(1) in (5.16) with another condition of the type u(z) —log(|z; — z1|** 4+ ... +
|2n —2p|*") = O(1) with > a; = 1 then the previous construction works entirely
(changing the type of singularity in z) and gives a unique solution uq ,. Even
such a solution satisfies (dd°ugq ;)™ = (27)"0,.

In case the domain €2 is strongly convex with smooth boundary, LEM-
PERT [Le] proved that Kq . (2) is actually C*°(Q x Q\ Diag(Q x Q)) and that
(dd°Kq )" 1(2) # 0 for all z € Q. Moreover, the foliation in Q \ {z} associated
to Kq, according to Theorem 5.3.4 is formed by complex geodesics, namely,
any leaf is the image of a biholomorphic map ¢ : D — D which is an isometry
between the Poincaré distance of D and the Kobayashi distance of €.

DEMAILLY [Del], [De] used the pluricomplex Green function to prove the
following representation formula

_THEOREM 5.7.7. Let Q@ CC C" be a hyperconver domain. Let u € Psh()N
C°(Q). Then for all z € Q

1
u(z) = pz(u) — —n/ | Kq,:(w)|(ddu)(w) A (dd°Kq,:)" " (w)
(2m)™ Jo
where [, is a suitable positive measure supported on 02 and depending on Kq .

The measure pu,, which is called the pluricomplex Poisson kernel, is defined
as follows. For r < 0 let B, = {z € Q: Kq,(z) < r}. This set is relatively
compact in Q. Let u,(z) = max{Kq (2),r}. The Monge-Ampere mass (dd°u,)"
is supported on 0B,.. The positive Borel measure p, is thus defined as the weak*
limit of (dd°u, )™ as r — 0.

If Q is a strongly convex domain with smooth boundary, it can be proved [B-
P], [BPT] that the pluricomplex Poisson kernel is given by dp.(p) = |Pa ()"
waqa(p), where p € 98, waq is a volume form on 2 and Po, € C(Q\ {p}) N
CY(Q) is the solution of the following problem:

u € Psh(D)

(00u)™ =0 in D

u<0 in D

u(z) =0 for z € 0D\ {p}

u(z) ~ ||z —p||~t as z — p non-tangentially
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5.8 — Invariant distances and the pluricomplex Green function

Recall that the Poincaré distance w on D is defined as

- L, 1470
5.18 w(¢,z) :=tanh ™ T, ()] = = log ———=>2
(5.18) (€.2) 70| = 3l o
where T, (¢) := (2 — ¢)(1 — 2() ! is an automorphism of D which maps z to 0.
Such a distance is complete. By (5.13) it follows

Go(2,¢) = logtanhw(z,(), 2, €D

and by Proposition 5.7.2 (or directly from the Schwarz lemma) it follows that
ffw <w for all f:D — D holomorphic.

DEFINITION 5.8.1. Let 2 C C” be a domain. The Carathéodory pseudodis-
tance Cq : © x Q@ — RT is defined as

Ca(z,w) :=sup{w(f(z), f(w)) : f: Q& — D is holomorphic}.
The Lempert function g : @ x Q — RT is defined as
da(z,w) = inf{w((1, ) : 3f : D — Q holomorphic with f({1) = z, f((2) = w},

with the convention that dq(z,w) = +oo if there do not exist holomorphic func-
tions ¢ : D — Q with ¢(¢) = z and p(n) = w.
The Kobayashi distance dg : Q x 8 — RT is defined as

m
do(z,w) = inf Y (2, 241)
j=1
where the infimum is taken over all finite chains of points z1,... , 2, € Q such
that z; = z and z,, = w.

Notice that dg is the biggest pseudodistance smaller than dq. It is not too

difficult to see that
CQ(Z7w) < dQ(Zaw) < 59(277"0) .

Both the Carathéodory and the Kobayashi pseudodistances are continuous, but
in general the induced distance topology is less finer than the euclidean topology
of Q. The topology induced by the Kobayashi pseudodistance is equivalent to
the euclidean topology if and only if dg, is a distance (namely, dg(z, w) = 0 if and
only if z = w). The topology induced by the Carathéodory pseudodistance is
equivalent to the euclidean topology if the inner pseudodistance associated to Cq
is a distance (the inner pseudodistance C§(z,w) is defined to be the infimum of
the Cq-length of piecewise smooth curves joining z to w. Notice that Cq < C§)).
However, if €2 is bounded then Cq induces a topology equivalent to the euclidean
one. For all these properties and much more see [Ko.

PROPOSITION 5.8.2. Let Q C C" be a domain. Then for all z,w € )
log tanh Cq (2, w) < Kq ,(w) < logtanhdg(z,w) .



262 FILIPPO BRACCI ~ STEFANO TRAPANI [66]

PrOOF. Let f: D — Q be holomorphic and such that f({) = z, f(n) = w.
Then

Ka,5)(f(n) < Kpc(n) = log |T¢(n)] -
Therefore exp(Kq, 7(¢)(f(n))) < |T¢(n)| which implies

tanh ™" exp(Kq, () (f(n))) < tanh™" |T¢(n)| = w(¢,n) -

For the arbitrariness of f we obtain tanh ™! exp(Kq . (w)) < do(2,w) from which
the second inequality follows.

As for the other inequality, the argument is similar. Let f : Q@ — . Then
Kaq.(w) > Kp 52)(f(w)) = log | T (f(w))|. Arguing as before this implies that
tanh ™" exp(Kq..(w)) > w(f(2), f(w)). By arbitrariness of f the first inequality
follows. O

In [Le] Lempert showed that for a convex domain Cqo = do = Jdo and
therefore the previous proposition implies that if ) is a conver domain then

Kq .(w) = logtanh dq(z, w) = log tanh do (2, w) = log tanh Cq(z, w) .
In particular in this case the pluricomplex Green function is symmetric.

COROLLARY 5.8.3. Let Q C C™ be a domain and z € Q. Suppose that
Q > w— logtanh dq(z, w) is plurisubharmonic. Then

Kq .(w) =logtanhd(z,w) Yw € Q.

PROOF. Let u(w) = logtanh 6(z, w). Then u < 0 in  and u € Psh(Q). If
we show that u has a logarithmic singularity at z then u € Kq . which implies
that u < Kgq . and by Proposition 5.8.2 we have the result. Now let » > 0 be
such that B(z,7) C Q. Let w € B(2,7) \ {#} and define

w—z
©(¢) 3:Z+CTM

for ¢ € D. Clearly ¢ : D — € is holomorphic, ¢(0) = z and ¢(|jw — z||/r) = w.
Thus by definition dq(z, w) < w(0, ||w — z||/r). Therefore by (5.18)

log tanh é(z, w) < logtanhw(0, ||w — z||/r) = log ||z — w|| /7,

as needed. 0
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5.9 — Some further geometrical directions

The works [B-P| and [BPT] show that it is possible to define a maximal
plurisubharmonic function in strongly convex domains such that it solves a com-
plex homogeneous Monge-Ampere equation with a simple pole at the boundary.
Such a function is the normal derivative of the pluricomplex Green function and
it is called the pluricomplex Poisson kernel. It is strongly related to the invari-
ant geometry of the domain because its level sets are horospheres of the domain
(namely, limits of Kobayashi balls) and the associated Monge-Ampéere foliation
is made of complex geodesics (namely, isometries between the Poincaré metric of
the disc and the Kobayashi metric of the domain). Roughly speaking, similarly
to what have been done for the pluricomplex Green function, the pluricomplex
Poisson kernel can be characterized as the maximum of the family

Fp={uePsh(Q):u < 0,K-limsupu(z)||z —p|| < -1},
zZ—p
where K-limsup means non-tangential limit, 2 is a bounded strongly convex
domain in CV with smooth boundary and p € 9Q. However, the proof involves
the use of fine properties of complex geodesics and Lempert’s theory, and such
tools are not available in other domains.

Thus, a geometrically relevant problem is to understand whether the fam-
ily F, has a maximum (and which are its regularity properties) when Q is not
strongly convex, for instance if 2 is strongly pseudoconvex or weakly convex or
hyperconvex. Also, it would be interesting to know whether the Demailly mea-
sure u, introduced in Theorem 5.7.7 can be expressed in terms of the maximal
element (if any) of the family F,.

We thank the participants of the course for their comments and questions
which certainly improved these notes. We also thank prof. Sandro Silva for the
opportunity of publishing these notes.
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