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Casimir operators, abelian subspaces

and u-cohomology

PIERLUIGI MÖSENEDER FRAJRIA – PAOLO PAPI

Abstract: We survey old and recent results by Kostant et al. on Casimir operators
and abelian subspaces in Z2-graded algebras. Our approach stresses and exploits the
connection with u-cohomology.

1 – Introduction

This note is an exposition of old and recent results of B. Kostant regarding
the relationships between the exterior algebra of a simple Lie algebra g and the
action of the Casimir operator on it (see [8], [9], [10], [11]). A key role in this
connection is played by the abelian subalgebras of g and in particular by the
abelian ideals of a Borel subalgebra b of g. These objects have been intensively
and thoroughly investigated after nice results of D. Peterson and subsequent
work of several authors which link these ideals to discrete series, the theory of
affine Weyl groups, combinatorics, and number theory.

The previous setting can be extended to a Z2-graded Lie algebra g = g0 ⊕
g1/2, where the role of abelian subalgebras is played by the abelian subspaces of

g1/2 (here g0, g1/2 denote the sets of fixed and antifixed points of the involution σ
on g inducing the Z2-grading). In the following we will refer to this more general
setting as the graded case. The framework we have described at the beginning
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will be called the adjoint case (it is indeed a particular instance of the graded
case: see Section 4).

The generalization of the results of Kostant to the graded case can be found
in [13], [2], [4].

Recently (cf. [11]) Kostant pointed out a connection between his old results
on abelian subalgebras and the generalization to the affine case due to Garland-
Lepowsky [3] of his classical results on u-cohomology [7]. In this paper, we
exploit this connection to obtain a unified approach to Kostant’s results and
their graded generalizations. One of the advantages of our approach consists in
avoiding any reference to the theory of Clifford algebras. Another useful device
that we introduce in our treatment is the natural isomorphism

∧pg1/2 ∼=−→ ∧(p,p/2) u−

where u− = t−1g0[t−1] ⊕ t−
1
2 g1/2[t−

1
2 ] (see (3.3) for undefined notation). This

explains the role played by affine Lie algebras and their cohomology.
Although the main results are individually known (we have tried to make

precise attributions in Section 4), the new feature of our approach consists in
exploting formula (3.1), which relates the action on ∧u− of the Casimir operator

of k, the Laplacian, and the scaling element of the affine Lie algebra L̂(g, σ).
This formula is new in the graded case and it is known as Garland’s formula in
the adjoint case. The connection between Garland’s formula and abelian ideals
theory has been noticed by Kostant in [11].

Formula (3.1) is the cornerstone of the present work, for it allows us to give a
clean, compact and unified treatment of the various contributions to the subject.
The exposition is basically self-contained, with two exceptions: a “Laplacian
calculation” which can be found in [12] and a technical lemma which is taken
from [6]. The main results are Theorems 3.4, 3.5, 3.7.

2 – Setup

Let g be a complex semisimple Lie algebra and let (·, ·) be its Killing form.
Let σ be an involutive automorphism of g. If j ∈ R set j̄ = j + Z ∈ R/Z. Let
gj̄ be the e2πij-eigenspace of σ, so that we can write g = k⊕ p where k = g0̄ and

p = g1/2. Let n be the rank of k and N its dimension. Fix a Borel subalgebra b0

of k, with Cartan component h0, and let Δ+
0 be the set of positive roots of the

root system Δ0 of k corresponding to the previous choice.
Let L̂(g, σ) be the twisted affine Kac-Moody Lie algebra corresponding to g

and σ (cf. [5]). More precisely introduce a Cartan subalgebra ĥ by setting

h′ = h0 ⊕ Cc, ĥ = h0 ⊕ Cc⊕ Cd
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and define

L(g, σ) =
∑

j∈Z
(tj ⊗ k)⊕

∑

j∈ 1
2+Z

(tj ⊗ p) ,

L′(g, σ) = L(g, σ) + h′ ,

L̂(g, σ) = L(g, σ) + ĥ .

If x ∈ gr̄, we set xr = tr ⊗ x for any r ∈ r̄. With this notation the bracket of
L̂(g, σ) is defined by

[xr + ac + bd, x′
s + a′c + b′d] = [x, x′]s+r + sbx′

s + rb′xr + δr,−sr(x, x′)c

for a, a′, b, b′ ∈ C. Let Δ̂ denote the set of roots of L̂(g, σ) and

Δ̂+ = Δ+
0 ∪ {α ∈ Δ̂ | α(d) > 0} .

Then Δ̂+ is a set of positive roots for Δ̂. We let Π̂ be the corresponding set of
simple roots. It follows from [5, Exercise 8.3] that Π̂ is a finite linearly indepen-

dent subset of ĥ∗ with exactly n + 1 elements. We set Π̂ = {α0, α1, . . . , αn}.
If λ ∈ ĥ∗, we denote by λ̄ the restriction of λ to h0. Define δ ∈ ĥ∗ by setting

δ(h0) = δ(c) = 0 and δ(d) = 1. It is easy to check that (·, ·) is nondegenerate
when restricted to h0. Thus for μ ∈ h∗

0 we can define hμ to be the unique element
of h0 such that μ(h) = (hμ, h) for all h ∈ h0. Then one can define a bilinear form
on h∗

0 – still denoted by (·, ·) – by setting (μ, η) = (hμ, hη).
Write αi = siδ + αi. By [5, Exercise 8.3] we have that ᾱi �= 0. Set

hi = 2
(αi,αi)

hαi
and fix ei = tsi ⊗ Xi, fi = t−si ⊗ Yi in the root spaces

L̂(g, σ)αi
, L̂(g, σ)−αi

respectively, in such a way that (Xi, Yj) = δi,j
2

(αi,αi)
. Then

[Xi, Yj ] = δi,jhi. Set α∨
i = 2si

(αi,αi)
c + hi and Π̂∨ = {α∨

0 , . . . , α∨
n}. It follows that

[ei, fj ] = δi,jα
∨
i .

Denote by hR the real span of α∨
0 , . . . , α∨

n and let L̂(g, σ)R be the real algebra
generated by hR⊕Rd together with the Chevalley generators ei, fi, 1 ≤ i ≤ n. Let
conj be the conjugation of L̂(g, σ) corresponding to the real form L̂(g, σ)R and

define the conjugate linear antiautomorphism σo of L̂(g, σ) by setting σo(h) =

conj(h) for h ∈ ĥ, σo(ei) = fi, and σo(fi) = ei. We extend the form (·, ·) to

L̂(g, σ) by setting

(xr, ys) = δr,−s(x, y), (L(g, σ), d) = (L′(g, σ), c) = (d, d) = 0, (c, d) = 1 .

It is easy to check that (·, ·) is a nondegenerate invariant form on L̂(g, σ). In

particular, it is nondegenerate when restricted to ĥ. We let ν : ĥ → ĥ∗ be the
isomorphism induced by (·, ·), i.e. ν(h)(k) = (h, k).
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Since (·, ·) is real on hR, we have that (gR, gR) ⊂ R. Following [12, Def-

inition 2.3.9], we can therefore define the Hermitian form {·, ·} on L̂(g, σ) by
setting

(2.1) {x, y} = (x, σo(y)) .

This form is contravariant, i.e. {[a, x], y} = −{x, [σo(a), y]}.
We set

m = k + ĥ ,

u =
∑

α(d)>0

L̂(g, σ)α ,

q = m⊕ u .

We also set u− =
∑

α(d)<0 L̂(g, σ)α, q− = m ⊕ u−; note that σo(u) = u−. Since

(u, q) = 0 and the form (·, ·) is nondegenerate on L̂(g, σ), it follows that {·, ·}
defines a nondegenerate Hermitian form on u−. By Theorem 2.3.13 of [12], this
form is positive definite. Extend {·, ·} to ∧u− in the usual way: elements in
∧ru− are orthogonal to elements of ∧su− if r �= s whereas

(X1 ∧ · · · ∧Xr, Y1 ∧ · · · ∧ Yr) = det ( {Xi, Yj} ) .

Similarly, we can extend (·, ·) to define a symmetric bilinear form on ∧L̂(g, σ).

If we extend σo to ∧kL̂(g, σ) by setting σo(x
1 ∧ · · · ∧xk) = σo(x

1)∧ · · · ∧σo(x
k),

then obviously (2.1) still holds with x, y ∈ ∧u−.
Set ∂p : ∧pu− → ∧p−1u− to be the usual Chevalley-Eilenberg boundary

operator defined by

∂p(X1 ∧ . . . ∧Xp) =
∑

i<j

(−1)i+j [Xi, Xj ] ∧X1 . . . X̂i . . . X̂j · · · ∧Xp

if p > 1 and ∂1 = ∂0 = 0 and let Hp(u
−, C) be its homology. Let Lp : ∧pu− →

∧pu− be the corresponding Laplacian:

Lp = ∂p+1∂
∗
p+1 + ∂∗

p∂p

where ∂∗
p denotes the adjoint of ∂p with respect to {·, ·}.

We shall use the following two basic properties of Lp (see e.g. [7, Section 2])

Ker Lp
∼= Hp(u

−) ,(2.2)

(Ker Lp)
⊥ = Im ∂∗

p + Im ∂p+1 .(2.3)

Since u− is stable under ad(m) we have an action of m on u−. Restricting this
action to k we get an action of k on u−. Notice also that, since c is a central



[5] Casimir operators and abelian subspaces 269

element, the action of c on u− is trivial. Recall that the Casimir operator Ωk of
k is the element of the universal enveloping algebra of k defined by setting

Ωk =

N∑

i=1

bib
′
i ,

where {b1, . . . , bN}, {b′1, . . . , b′N} are dual bases of k with respect to (·, ·). Set
{u1, . . . , un} and {u1, . . . , un} to be bases of h dual to each other with respect
to (·, ·). It is well known that Ωk can be rewritten as

Ωk =

n∑

i=1

uiu
i + 2ν−1(ρ0) +

∑

α∈Δ+
0

x−αxα

where ρ0 = 1
2

∑
α∈Δ+

0
α and xα is a root vector in k.

Define Λ0 ∈ ĥ∗ by setting Λ0(h0) = Λ0(d) = 0 and Λ0(c) = 1. Set

(2.4) ρ =
1

2
Λ0 + ρ0 .

Notice that, since σ2 = Id and (·, ·) is the Killing form, then ρ coincides with
the element ρ̂σ defined in [6, (4.27)]. In particular, by [6, Lemma 5.3]), we have
that ρ(α∨

i ) = 1 for i = 0, . . . , n and ρ(d) = 0.

3 – The results

First we make explicit the relationship between the Casimir element and
the Laplacian.

Proposition 3.1. For x ∈ ∧u− we have

(3.1) Lp(x) = −1

2
(d + Ωk)(x) .

Proof. Note that {u1, . . . , un, c, d} and {u1, . . . , un, d, c} are bases of ĥ
dual to each other with respect to (·, ·). Then, following [12], we set

Ω =
n∑

i=1

uiu
i + 2cd + 2ν−1(ρ) +

∑

α∈Δ+
0

x−αxα .

By (2.4), we have that
Ω = Ωk + d + 2dc .

The Laplacian calculation done at p. 105 of [12] applied to ∧u− � C⊗∧u− gives
that, if x ∈ ∧u−, then Lp(x) = − 1

2Ω(x). Hence, by observing that c acts trivially
on ∧u−, the result follows.
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We need to recall a key tool in what follows, namely Garland-Lepowsky
generalization of Kostant’s theorem on the cohomology of the nilpotent radical.
We need some more notation. If λ ∈ ĥ∗ is such that λ is dominant integral for
Δ+

0 , denote by V (λ) be the irreducible m-module of highest weight λ. Denote

by Ŵ the Weyl group of L̂(g, σ). If w ∈ Ŵ set

N(w) = {β ∈ Δ̂+ | w−1(β) ∈ −Δ̂+} .

Set
Ŵ ′ = {w ∈ Ŵ | w−1(Δ+

0 ) ⊂ Δ̂+} .

The following is a special case of Theorem 3.2.7 from [12], which is an extended
version of Garland-Lepowsky result [3].

Theorem 3.2.

Hp

(
u−

)
=

⊕

w∈Ŵ ′
�(w)=p

V (w(ρ)− ρ) .

Moreover a representative of the highest weight vector of V (w(ρ)− ρ) is given
by

(3.2) X−β1 ∧ · · · ∧X−βp

where N(w) = {β1, . . . , βp} and the X−βi
are root vectors in L̂(g, σ).

We now define

(3.3) ∧(r,s)u− = Span

{
x1

i1 ∧ x2
i2 ∧ · · · ∧ xr

ir
| −

r∑

i=1

ij = s

}
.

Note that the map x1
− 1

2

∧. . .∧xr
− 1

2

�→ x1∧. . .∧xr affords a canonical identification

(3.4) ∧(r,r/2)u−
∼=−→ ∧r p

that intertwines the adjoint action of k.

Remark 3.1. Recall that there is a standard linear isomorphism τ : so(p)→
∧2p given by τ(ϕ) = − 1

4

∑
i ϕ(pi) ∧ pi, where {pi}, {pi} are dual basis of p

with respect to (·, ·)|p. The adjoint action adp of k on p defines an embedding
θ : k→ so(p). Observe that Im τ ◦ θ corresponds, under the identification (3.4),
to ∂∗

2 (∧(1,1)u−). Infact, for x ∈ k, a formal calculation affords

∂∗
2 (x−1) = −1

2

dim p∑

t=1

[x, pt]− 1
2
∧ pt

− 1
2

.

Lemma 3.3. Given linearly independent elements x1, . . . , xp of p, set v =
x1
− 1

2

∧ . . . ∧ xp

− 1
2

. Then ∂p(v) = 0 if and only if [xi, xj ] = 0 for all i, j.
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Proof. This follows readily from the definition of ∂p:

∂p(v) =
∑

(−1)i+j [xi, xj ]−1 ∧ x1
− 1

2
. . . x̂i

− 1
2

. . . ∧ x̂j

− 1
2

. . . ∧ xp

− 1
2

.

For a p-dimensional subspace a =
p⊕

i=1

Cvi of p define

va = v1 ∧ . . . ∧ vp ∈ ∧pp ,

v̂a = v1
− 1

2
∧ . . . ∧ vp

− 1
2

∈ ∧(p,p/2)u− .

Theorem 3.4. The maximal eigenvalue for the action of Ωk on ∧pp is at
most p/2. Equality holds if and only if there exists a commutative subspace a
of p of dimension p. In such a case, va is an eigevector for Ωk relative to the
eigenvalue p/2.

Proof. To prove the first statement, remark that Lp is self-adjoint and
positive semidefinite on ∧u− with respect to { , }. Since, by Proposition 3.1,
Ωk = −d− 2Lp, the claim follows.

Suppose that a is an abelian subspace of p of dimension p. Then, by
Lemma 3.3, ∂p(v̂a) = 0. Since v̂a ∈ ∧(p,p/2)u−, we have that ∂∗

p+1(v̂a) = 0,
hence Lp(v̂a) = 0. Therefore, by (3.1), we have Ωk(va) = p/2 va. Conversely, if
Ωk has eigenvalue p/2 on ∧pp, then Ker Lp ∩ ∧(p,p/2)u− �= 0. Using (2.2) and
Theorem 3.2, we know that Ker Lp decomposes with multiplicity one. Since
∧(p,p/2)u− is m-stable, we deduce that one of the highest weight vectors (3.2),
say x1

− 1
2

∧ · · · ∧ xp

− 1
2

, must belong to Ker Lp ∩ ∧(p,p/2)u−. Since ∂∗
p∂p = 0 im-

plies that ∂p = 0, Lemma 3.3 gives that Span(x1, . . . , xp) is the required abelian
subspace.

We now relate the vectors va to distinguished elements of Ŵ . Set Δp to be
the set of h0-weights of p and suppose that i is a h0-stable subspace of p. Set

Φi = {α ∈ Δp | pα ⊂ i} ,

Φ̂i =

{
1

2
δ − α | α ∈ Φi

}
.

Theorem 3.5. The following statements are equivalent

1) i is an abelian b0-stable subspace of p.

2) There is an element wi ∈ Ŵ such that N(wi) = Φ̂i.
3) i is a b0-stable subspace of p and Ωkvi = 1

2 (dim i)vi.
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Proof. 1) =⇒ 2). Set p = dim i. Then, since i is abelian, ∂p(v̂i) = 0.
Notice that v̂i ∈ ∧(p,p/2)u−, so ∂∗

p(v̂i) = 0. It follows that Lp(v̂i) = 0. Since i
is b0-stable, v̂i is a maximal vector for m in ∧u−. By Theorem 3.2, there is an
element wi ∈ Ŵ such that

∧α∈N(wi)X−α = v̂i

and this implies that N(wi) = Φ̂i.

2) =⇒ 3). By Theorem 3.2 we have that v̂i is a maximal vector for the
action of m on ∧u−, hence i is a b0-stable subspace of p. Moreover Lp(v̂i) = 0
therefore

Ωk(v̂i) = −(2Lp + d)(v̂i) =
1

2
(dim i)v̂i ,

and this implies that Ωkvi = 1
2 (dim i)vi.

3) =⇒ 1). This follows from Theorem 3.4.

Let Âp denote the linear span of the vectors v̂a when a ranges over the set of

commutative subalgebras of p of dimension p. Let also M̂p denote the eigenspace
corresponding to the eigenvalue p/2 for the action of Ωk on ∧(p,p/2)u−.

Denote by a1, . . . , ar the abelian b0-stable subspaces of p of dimension p
and set μi =

∑
α∈Φ̂ai

α = − 1
2 dim(ai)δ +

∑
α∈Φai

α.

Set Ĵ to be the ideal (for exterior multiplication) in ∧u− generated by ∂∗
2 (u−)

and set Ĵp = Ĵ ∩ ∧(p,p/2)u−.

Proposition 3.6.

1) Âp = M̂p =
r⊕

i=1

V (μi) = Ker(Lp).

2)

∧(p,p/2)u− = Âp ⊕ Ĵp

is the orthogonal decomposition with respect to {·, ·}. In particular, letting
A be the subalgebra of

⊕
p≥0

∧(p,p/2)u− generated by 1 and ∂∗
2 (u−), then

⊕

p≥0

∧(p,p/2)u− = A ∧
∑

p≥0

Âp .
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Proof. 1). By Theorem 3.4, the linear generators of Âp are eigenvectors

for Ωk of eigenvalue p/2, hence Âp ⊆ M̂p. Clearly, by (3.1), M̂p ⊆ Ker Lp. For

any element w ∈ Ŵ , the following relation holds (see e.g. [12, Corollary 1.3.22]):

w(ρ)− ρ = −
∑

α∈N(w)

α .

Combining this observation with Theorem 3.2 and Theorem 3.5, we have that
Ker Lp =

⊕r
i=1 V (μi). Finally, by Theorem 3.5, V (μi) is linearly generated by

elements in Âp, hence
⊕r

i=1 V (μi) ⊆ Âp.
2). We have

Â⊥
p = (KerLp)

⊥ = ∂∗
p(∧(p−1,p/2)u−) .

The first equality is clear from part 1), whereas the second follows combin-
ing (2.3) with the fact that ∧(p+1,p/2)u− = 0. It remains to prove that

∂∗
p(∧(p−1,p/2)u−) = Ĵp. Observe that, if v ∈ ∧(p−1,p/2)u−, then necessarily

v is a sum of decomposable elements of type x1
−1 ∧ x2

− 1
2

∧ · · · ∧ xp−1

− 1
2

. As-

sume that v = x1
−1 ∧ x2

− 1
2

∧ · · · ∧ xp−1

− 1
2

. Since ∂∗ is a skew-derivation and

∂∗
p−1(x

2
− 1

2

∧ · · · ∧ xp−1

− 1
2

) ∈ ∧(p−1, p−2
2 )u− = 0, we have

∂∗
p(v) = ∂∗

2 (x1
−1) ∧ x2

− 1
2
∧ · · · ∧ xp−1

− 1
2

,

so that ∂∗
p(v) ∈ Ĵp. Conversely, if w ∈ Ĵp, then w is a sum of terms of type

∂∗
2 (x) ∧ y with x ∈ ∧(1,s)u−, y ∈ ∧(p−2,r)u−. Since s + r = p/2, r ≥ p−2

2 , s ≥ 1,

we have necessarily s = 1, r = p−2
2 . Therefore ∂∗

p−1(y) = 0, hence w = ∂∗
p(x∧y) ∈

∂∗
p(∧(p−1,p/2)u−).

Finally, if x ∈⊕
p≥0 ∧(p,p/2)u−, then x = a1 +∂∗

2 (j1)∧b1 with a1 ∈ Âp, j1 ∈
u−, b1 ∈ ∧(p−2, p−2

2 )u−. In turn, we can write b1 = a2 +∂∗
2 (j2)∧ b2 as above, and

so on. The last claim now follows.

Using the map (3.4), the previous proposition can be restated as a result
on the algebra ∧p. We set Ap to be the linear span of the vectors va when a
ranges over the set of commutative subalgebras of p of dimension p, Mp to denote
the eigenspace corresponding to the eigenvalue p/2 for the action of Ωk on ∧pp.
Denote by L(ξ) the irreducible k-module of highest weight ξ.

Set J to be the ideal (for exterior multiplication) in ∧p generated by (τ◦θ)(k)
and set Jp = J ∩ ∧pp.

Theorem 3.7.

1) Ap = Mp =
r⊕

i=1

L(
∑

α∈Φai

α).
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2) We have

(3.5) ∧pp = Ap ⊕ Jp .

This is the orthogonal decomposition with respect to the form on ∧p defined
by extending, by determinants, the Killing form of g. Moreover, letting A
be the subalgebra of ∧p generated by 1 and (τ ◦ θ)(k), then

∧p = A ∧
∑

p≥0

Ap .

Proof. The only statement which does not follows directly from (3.4) and
Remark 3.1 is that the decomposition (3.5) is orthogonal with respect to the form
induced by the Killing form. Fix x ∈ Jp and va = x1 ∧ · · · ∧ xp with [xi, xj ] = 0.

We want to show that (x, va) = 0. Let x̂ be the element of Ĵp corresponding to
x under (3.4). Then

(3.6) (x, x1 ∧ · · · ∧ xp) =
(
x̂, x1

1
2
∧ · · · ∧ xp

1
2

)
=

{
x̂, σo

(
x1

1
2
∧ · · · ∧ xp

1
2

)}
.

Set x̃i
− 1

2

= σo(x
i
1
2

). We now observe that [x̃i, x̃j ] = 0. Indeed

[x̃i, x̃j ]−1 =

=
[
x̃i
− 1

2
, x̃j

− 1
2

]
=

[
σo

(
xi

1
2

)
, σo

(
xj

1
2

)]
= −σo

([
xi

1
2
, xj

1
2

])
= −σo

([
xi, xj

]
1

)
,

and the last term is zero since a is abelian. Since (3.6) gets rewritten as

(x, va) =
{

x̂, x̃1
− 1

2
∧ · · · ∧ x̃p

− 1
2

}
,

and x̂ ∈ Ĵp, Proposition 3.6 implies that (x, va) = 0.

4 – Remarks

1. If s is a simple Lie algebra, consider the semisimple algebra g = s ⊕ s,
endowed with the switch automorphism σ(x, y) = (y, x). Then we have k ∼= p ∼= s
and we recover Kostant’s classical results on abelian ideals of Borel subalgebras.
Theorems 3.4 appears in [8] as Theorem 5. The statements in Theorem 3.7
appear in [8, Theorem 8] and [9, Theorems A, B]. In all cases proofs are different
from the ones we have presented.

Subsequently Kostant realized the connection of abelian ideals with Lie
algebra homology (see [11]): our treatment is inspired by this approach.
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2. In the graded case Theorem 3.4 appears in [13, Theorem 0.3], whereas
Theorem 3.7 appears in [4, Theorems 1.1, 1.2]. Both authors do not exploit the
connection with Lie algebra homology.

3. The so-called Peterson’s abelian ideals theorem states that the number
of abelian ideals of a Borel subalgebra of g in 2rank g. This result shed a new light
on the results from [8], as Kostant pointed out in [10]. The latter paper contains
an outline of a proof of Peterson’s result and a proof of equivalence 1) ⇔ 2) of
Theorem 3.5 for abelian ideals (see [10, Section 2]).

A proof of Peterson’s theorem using the geometry of alcoves is given in [1].
Combining this geometric approach with Garland-Lepowsky theorem, a uniform
enumeration of abelian b0–stable subspaces in p has been obtained in [2]. The
proof of Theorem 3.5 is taken from [2, Theorem 3.2].
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