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On some quasilinear elliptic equations

involving Hardy potential

MARIA MICHAELA PORZIO

Abstract: In this paper we consider nonlinear boundary value problems whose
simplest model is the following:

(0.1)

{
−Δu + ν|u|p−1u = a

u

|x|2 + f(x) in Ω

u = 0 on ∂Ω

where f(x) is a summable function in Ω (bounded open set in IRN , N > 2, containing
the origin), p > N

N−2
, and ν ∈ IR+.

1 – Introduction and main results

We are interested in existence and regularity of weak solutions for a class of
quasilinear elliptic problems whose prototype is the following

(1.1)

{
−Δu + ν|u|p−1u = a

u

|x|2 + f(x) in Ω

u = 0 on ∂Ω,

where p > N
N−2 , N > 2, Ω is a bounded open set in IRN containing the origin,

ν and a are positive constants.
If a = 0, i.e., in absence of the Hardy potential, equations of the form (1.1)

have been extensively studied in the sixties by F. Browder (see e.g. [17]) and by
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J. L. Lions (see [19]) for data f ∈ H−1 using energy estimates and monotonicity
methods. Later, the existence of solutions was also proved for L1 data in a paper
of Brezis and Strauss (see [16]) and the result was extended to more general
problems involving nonlinear principal part, (as the p-laplacian), by Boccardo,
Gallouet and Vazquez (see [10]). Many other results have been proved (see
for example the well known paper of Benilan and Brezis [5] and the references
therein). The interest for this kind of equations has various motivations; for
example it comes from the study of the porous medium equation and in the
same time it is related to the Thomas-Fermi equation (see again [5]).

Results for (1.1) involving the Hardy potential and in absence of the power
term ν|u|p−1u can be found, among others, in [12], [14], and [15]. Related results
can be seen in [1], [2], [3] and in [4] in a more general framework. In particular
[3] and [4] concern the following problem

{
−Δu± |∇u|p = a

u

|x|2 + f(x) in Ω

u = 0 on ∂Ω,

and the aim of these papers is the study of the interaction between the power of
the gradient of the solution |∇u|p, p > 1, and the zero order term involving the
Hardy potential.

We recall that one of the most interesting phenomena that exhibit this
problem if ν = 0 and f is only an L1 function is the absence of solutions as
proved by Boccardo, Orsina and Peral (see [12]). Moreover if the datum
f is more summable, that is if f ∈ Lm(Ω) with 1 < m < +∞, the existence of
weak solutions in Lm∗∗

(Ω) is proved under the assumption that “a” is not too
large, that is for a < a0, with a0 depending on N and m; there are no bounded
solutions even with datum f bounded (see again [12]).

We prove here that the presence of the lower order term ensures the existence
of a solution for every choice of a and f , with f only in L1(Ω) or more in general
in M0(Ω) (i.e., bounded Radon measure continuous with respect to the standard
harmonic capacity). Moreover we prove regularity results for such a solution
(including the regularity Lm∗∗

(Ω)) in terms of the summability of the datum f
without any restriction on the size of a.

What happens is that the term |u|p−1u allows the existence of a solution
and in the same time has a regularizing effect on the solution itself, i.e. if p is
sufficiently large, that is if p > N

N−2m , we obtain higher integrability properties
for u (that turns out to belong to Lpm(Ω), with pm > m∗∗) and for its gradient
with respect to the case ν = 0. This higher integrability will also occur for
irregular data, as for example if f ∈ L1+ε(Ω), ε > 0 and surprisingly, for p
suitably large, will assure a solution in W 1,2

0 (Ω).

If a ≡ 0 and ν > 0 it is well known that a lower order term of the type
ν|u|p−1u has a regularizing effect on the solutions. As a matter of fact in [10]
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it is proved an existence result in W 1,q
0 (Ω), for every 1 < q < 2p

p+1 if f is only a

summable function (see also [18]).
This increased regularity, if there is a Hardy potential, is however only

true up to the existence of unbounded solutions. Indeed if a �= 0 and if f ∈
Lm, with m > N

2 (which is the standard assumption which yields bounded
solutions if a = 0), then there exist solutions of (1.1) which are unbounded. This
phenomenon holds true also replacing |u|p−1u with a continuous function g(u)
satisfying g(u)u ≥ 0. Hence there are no lower order terms of the previous kind
which can yield the boundedness of the solutions.

The existence of a solution if f belongs to L1(Ω) and p ≤ N
N−2 is still an

open problem, while bound p > N
N−2m , that we assume to obtain the summablity

Lm∗∗
, is optimal in the sense that, if it does not hold, we can prove the existence

of less regular solutions (not belonging to Lm∗∗
(Ω)). Indeed we can show how the

regularity of the solution that we construct increases as p varies in
(

N
N−2 , N

N−2m

)
.

We state now our results more in details. Let us consider the following
problem

(1.2)

{
−div(M(x, u)∇u) + ν|u|p−1u = a

u

|x|2 + f(x)− div(F ) in Ω,

u = 0 on ∂Ω

where Ω is a bounded open subset of IRN , N > 2, containing the origin and a is
a positive constant. We assume that M(x, s) is a Carathéodory matrix (that is,
measurable with respect to x for every s ∈ IR, and continuous with respect to s
for almost every x ∈ Ω) which satisfies, for some positive constants α, β, a.e. in
x ∈ Ω, ∀s ∈ IR , ∀ξ ∈ IRN ,

M(x, s)ξ · ξ ≥ α|ξ|2,(1.3)

|M(x, s)| ≤ β.(1.4)

We assume

(1.5) p >
N

N − 2
, and ν > 0.

On the data we require that

(1.6) f ∈ L1(Ω), F (x) ∈ (L2(Ω))N .

Before enouncing our existence and regularity results we briefly introduce some
notations and recall the definition of weak solution. If m ∈ [1,+∞] we denote
with m′, the value in [1,+∞] such that 1

m + 1
m′ = 1, where we set “ 1

+∞ = 0”,

and if m < N , we define m∗ as 1
m∗ = 1

m − 1
N .
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Definition 1.1. We say that u ∈ W 1,1
0 (Ω) ∩ Lp(Ω) is a weak solution

of (1.2) if for every ϕ ∈W 1,∞
0 (Ω) we have

(1.7)

∫

Ω

M(x, u)∇u∇ϕdx +

∫

Ω

ν|u|p−1uϕdx =

=

∫

Ω

a
u

|x|2 ϕdx +

∫

Ω

f(x)ϕdx +

∫

Ω

F∇ϕ.

We note that, since p > N
N−2 , 1

|x|2 ∈ Lp′
and so u

|x|2 belongs to L1.

We start from the existence result for irregular data.

Theorem 1.2. Assume that (1.3)-(1.6) hold true. Then there exists a weak
solution u ∈W 1,q

0 (Ω) of (1.2) for every 1 ≤ q < q1 where

(1.8) q1 = max

{
N

N − 1
,

2p

1 + p

}
=

2p

1 + p
.

Remark 1.3. Notice that if a ≡ 0 in [8] it is proved the existence of a solu-
tion belonging to W 1,q

0 (Ω) for every 1 < q < 1∗ = N
N−1 with the term ν|u|p−1u

replaced by a function g(x, u) satisfying the weaker assumption g(x, s)s ≥ 0.
Moreover in [10] (see Theorem 5) it was improved the regularity of such a so-
lution if g(x, s) = ν|u|p−1u, proving that it belongs also to W 1,q

0 (Ω) for every
1 < q < 2p

p+1 . Hence here we obtain the existence of a solution having the same
regularity proved in the case a ≡ 0 but under the assumption that a �≡ 0.

Remark 1.4. By Sobolev imbedding theorem the solution constructed in

Theorem 1.2 belongs also to Ls(Ω), for every s <
(

2p
p+1

)∗
.

Remark 1.5. As every bounded Radon measure μ ∈ M0 (i.e. continuous
respect to the standard harmonic capacity) can be decomposed as follows

μ = f0 − div(F0), f0 ∈ L1(Ω), F ∈ (L2(Ω))N ,

(see [9]), then Theorem 1.2 ensures the existence of a weak solution of (1.2) with
data a measure of M0. Notice that if a = 0, f is the Dirac mass δx0

and p > N
N−2 ,

there are no solutions of (1.1) (see [5]). For this reason we have not considered
the case of singular measure data.

As just said, if f has an higher integrability and p grows in dependence
of the summability exponent m of f , we have more regular solutions. More in
details we have the following result.
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Theorem 1.6. Assume that (1.3)-(1.5) hold true, that f belongs to Lm(Ω),
where 1 < m < N

2 and that F ≡ 0. If p > N
N−2m then there exists a weak

solution u ∈W 1,q
0 (Ω) ∩ Lpm(Ω) of (1.2) where

(1.9) q = min

{
2,

2pm

1 + p

}
.

Remark 1.7. Notice that it results

(1.10) pm ≥ m∗∗ ⇐⇒ p ≥ N

N − 2m
.

Hence the summability obtained in Theorem 1.6 is higher than the summability
that have the solutions of (1.2) when a = ν = 0.

Remark 1.8. We have that

q = min

{
2,

2pm

1 + p

}
= 2 ⇐⇒ p ≥ 1

m− 1
.

Hence the regularity (1.9) obtained in Theorem 1.6 coincides with the regularity
proved in [18] (see Theorem 3) if a ≡ 0 and p > 1

m−1 .

Remark 1.9. For the sake of simplicity we have stated Theorem 1.6 for
F ≡ 0 but it also holds true for nonzero F belonging to (Lr(Ω))N where

r ≥ max

{
2,

2pm

1 + p

}
,

(see Proposition 3.1 in Section 3 below). We can treat also the case when r do
not satisfy the previous condition: for further details see Proposition 3.2.

Remark 1.10. Notice that if p < N
N−2m then may exist solutions that do

not belong to Lpm(Ω). As a matter of fact let us consider the model problem (1.1)
with Ω = B(0, 1), where B(0, 1) is the sphere centered in the origin with radius
one, that is

(1.11)

⎧
⎨
⎩
−Δu + |u|p−1u = a

u

|x|2 + f(x) in B(0, 1)

u = 0 on ∂B(0, 1) .

Notice that if we look for radial non-negative solutions w(r) the previous problem
becomes

−w′′ − (N − 1)
w′

r
+ wp = a

w

r2
+ f ,
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and thus, if we set w(r) = A( 1
rδ − 1), w is a radial positive solution of (1.11) if

we do the following choices

δ =
2

p− 1
,

f = a
A

r2
+ Ap

[(
1

rδ
− 1

)p

− 1

rδp

]
,

Ap−1 = δ2, a = δ(N − 2) .

Notice that the assumption

p >
N

N − 2

guarantees that w belongs to Lp(Ω), and hence our equations is satisfied in the
distributional sense. Moreover if p > N

N−2m , then u belongs to Lpm(Ω)∩Lm∗∗
(Ω),

while if

p <
N

N − 2m

then the previous radial solution does not belong to Lm∗∗
(Ω). By (1.10) w does

not belong to Lpm(Ω), while the datum f belongs to Lm(Ω) for every m < N
2 .

To conclude we show how the regularity of the solution constructed in The-

orem 1.2 increases with respect to p ∈
(

N
N−2 , N

N−2m

)
. For the sake of simplicity

we enounce here our result for F ≡ 0; we refer to Propositions 3.5 and 3.6 in
Section 3 below for the case F �≡ 0.

Theorem 1.11. Assume that (1.3)-(1.5) hold true and F = 0. If it results

(1.12)
N

N − 2
< p ≤ N

N − 2m
, f ∈ Lm(Ω), 1 < m <

N

2
,

then there exists a solution u of (1.2) belonging to Ls(Ω) ∩W 1,q
0 (Ω), for every

choice of s and q satisfying

1 ≤ s < s0 ≡ p +

(
p− N

N − 2

)
N − 2

2

1 ≤ q < q1 ≡
2p

p + 1
+

(
p− N

N − 2

)
N − 2

p + 1
if p ≤ N + 2

N − 2

q = 2 if p >
N + 2

N − 2
.
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Remark 1.12. Notice that q1 = 2 if p = N+2
N−2 . Moreover, if p = N

N−2m it
results s0 = pm = m∗∗. Hence there is continuity for the results of Theorems 1.11
and 1.6. Indeed there is continuity also for the results of Theorems 1.11 and 1.2
because as p tends to p0 ≡ N

N−2 , we have that q1 tends to 2p0

p0+1 = N
N−1 .

Observe also that s0 and q1 are increasing functions of p and thus, as we
expect, the regularity of u increases as p grows.

Remark 1.13. If N
2 < m < +∞, as said before, we can have unbounded

solution as the following example shows.
By contradiction let us assume that there exists a bounded solution u ∈

H1
0 (Ω) of the following problem

(1.13)

⎧
⎨
⎩
−Δu + |u|p−1u = a

u

|x|2 +
1

|x|α in B(0, 1)

u = 0 on ∂B(0, 1) ,

where α < 2 so that the datum f = 1
|x|α belongs to Lm(B(0, 1)) for every

N
2 < m < N

α . Notice that, being the datum f non-negative, if we choose

0 < a < H, where H = N−2
2 is the Hardy constant, it follows that also the

solution u is non-negative as it can be easily proved taking −u− as test function
in (1.13). Being u bounded, there exists a subset of B(0, 1) of the type B(0, ε)
in which it results

f − up ≥ 1

2|x|α .

This fact implies that

−Δu ≥ 1

2|x|α in B(0, ε) ,

and hence
u ≥ δ > 0 in B

(
0,

ε

2

)
.

But from this last inequality it follows that

⎧
⎨
⎩
−Δu ≥ aδ

|x|2 in B
(
0, ε

2

)

u ≥ 0 in B
(
0, ε

2

)
,

which implies that u �∈ L∞(B(0, ε
2 )) which contradicts the boundedness of u.

For the sake of simplicity, we have studied just a model case but all the
previous results hold true even if the principal part is nonlinear also with respect
to the gradient. Moreover, another easy generalization that can be done is
to replace the terms ν|u|p−1u and a u

|x|2 with, respectively, the Caratheodory
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functions g(x, u) and b(x, u) verifying the following conditions a.e. in x ∈ Ω,
(bounded open subset of IRN ), and ∀s ∈ IR ,

|b(x, s)| ≤ a(x)|s|, a(x) ∈ L
N
2 ,∞(Ω) ,

g(x, s)s ≥ ν|s|p+1, ∀s ∈ IR, with p >
N

N − 2
, ν > 0 .

For further details see Remark 2.2, while for the basic properties on the Lorentz
space L

N
2 ,∞(Ω) see, for example, [7] and [11].

The plan of the paper is as follows: in Section 2 there are the proofs of
the previous results while in Section 3 we generalize the regularity Theorems 1.6
and 1.11 to nonzero data F .

2 – Proof of Theorems

2.1 – Proof of Theorems 1.2

The proof follows the outline of that in [13]. Let us define for n ∈ IN, the
following approximating problems

(2.1)

{−div(M(x, un)∇un)) + ν|un|p−1un = bn(x, un) + fn − div(Fn) in Ω

u = 0 on ∂Ω,

where

bn(x, s) ≡ b(x, s)

1 +
1

n
|b(x, s)|

, b(x, s) ≡ a
s

|x|2 ,

and

fn(x) ≡ f(x)

1 +
1

n
|f(x)|

, Fn(x) ≡ F (x)

1 +
1

n
|F (x)|

.

It results

(2.2) |bn(x, s)| ≤ n, |bn(x, s)| ≤ a
|s|
|x|2 , |fn(x)| ≤ n, |Fn(x)| ≤ n ,

and hence (see for example [13]), there exists un ∈ H1
0 (Ω)∩L∞(Ω) weak solution

of (2.1).
We prove now the following a priori estimate.

Lemma 2.1. Under the assumptions of Theorem 1.2, (i.e., if (1.3)-(1.6)
hold true), there exists a positive constant c0, independent on n, such that the
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following estimates hold true

∫

Ω

|∇un|q ≤ C, ∀ 1 ≤ q <
2p

p + 1
,(2.3)

∫

Ω

|∇un|2
(1 + |un|)λ

≤ C, ∀ 1 < λ < p
(2− q)

q
,(2.4)

∫

Ω

|un|p ≤ C ,(2.5)

∫

Ω

( |un|
|x|2

)h

≤ C, ∀ 1 < h <
pN

N + 2p
.(2.6)

Proof. As in [8] let us take as test function, ϕ =
[
1− 1

(1+|un|)λ−1

]
sign(un),

where λ > 1 will be chosen later. Observe that |ϕ| ≤ 1. We obtain, using the
structure assumptions and (2.2)

(2.7)

α(λ− 1)

∫

Ω

|∇un|2
(1 + |un|)λ

+ ν

∫

Ω

|un|p[1− (1 + |un|)1−λ] ≤

≤ a

∫

Ω

|un|
|x|2 +

∫

Ω

|f |+ (λ− 1)

∫

Ω

|Fn||∇un|
(1 + |un|)λ

.

Notice that

(λ− 1)

∫

Ω

|Fn||∇un|
(1 + |un|)λ

= (λ− 1)

∫

Ω

|Fn|
(1 + |un|)λ/2

|∇un|
(1 + |un|)λ/2

≤

≤ 1

α
(λ− 1)

∫

Ω

|F |2 +
α

4
(λ− 1)

∫

Ω

|∇un|2
(1 + |un|)λ

.

Moreover, if T is such that 1− (1 + T )1−λ = 1
2 , we have

1

2

∫

|un|>T

|un|p ≤
∫

|un|>T

|un|p[1− (1 + |un|)1−λ] ≤
∫

Ω

|un|p[1− (1 + |un|)1−λ]

which implies

1

2

∫

Ω

|un|p ≤
1

2

∫

|un|≤T

|un|p +
1

2

∫

|un|>T

|un|p ≤

≤ 1

2
T p|Ω|+

∫

Ω

|un|p[1− (1 + |un|)1−λ] .

Let 1 ≤ q < 2 to be chosen later. It results

(2.8)

∫

Ω

|∇un|q ≤
α

4
(λ− 1)

∫

Ω

|∇un|2
(1 + |un|)λ

+ c1

∫

Ω

(1 + |un|)
λq
2−q ,
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where c1 =
(
1− q

2

) [
α(λ−1)

2q

]− q
2−q

. Choose λ such that

(2.9)
λq

2− q
< p, that is 1 < λ <

p(2− q)

q
.

Notice that

(2.10) 1 <
p(2− q)

q
⇔ q <

2p

p + 1
.

Hence we obtain

c1

∫

Ω

(1 + |un|)
λq
2−q ≤ ν

4

∫

Ω

(1 + |un|)p + c2 ,

where c2 is a positive constant depending only on c1, p, q, ν and |Ω|. Putting
together all the previous estimates we get

α

2
(λ− 1)

∫

Ω

|∇un|2
(1 + |un|)λ

+
ν

4

∫

Ω

(1 + |un|)p +

∫

Ω

|∇un|q ≤

≤ a

∫

Ω

|un|
|x|2 + c3 ,

where c3 = c2 + ν
2T p|Ω|+ 1

α (λ− 1)
∫
Ω
|F |2 +

∫
Ω
|f |. Denoting with ε a positive

constant to be chosen later, we obtain

(2.11)

a

∫

Ω

|un|
|x|2 ≤ ε

∫

Ω

|un|p + ap′
c(ε)

∫

Ω

1

|x|2p′ ≤

≤ ε

∫

Ω

(1 + |un|)p + c4 ,

where c(ε) = ε−
1

p−1 and c4 = ap′
c(ε)

∫
Ω

1
|x|2p′ is a finite constant as the assump-

tion p > N
N−2 is equivalent to require 2p′ < N . Thus, choosing ε = ν

8 , from the
previous estimates we obtain

(2.12)
α

2
(λ− 1)

∫

Ω

|∇un|2
(1 + |un|)λ

+
ν

8

∫

Ω

(1 + |un|)p +

∫

Ω

|∇un|q ≤ c3 + c4 ,

which implies estimates (2.3)-(2.5). Moreover, for every 1 < h < p it results

∫

Ω

( |un|
|x|2

)h

≤
∫

Ω

|un|p +

∫

Ω

1

|x|2h p
p−h

,

where the last integral is finite if 2ph
p−h < N , that is if h < h0 ≡ Np

2p+N . Notice

that the requirement Np
2p+N > 1 is fullfilled as it is equivalent to require p > N

N−2

and obviously h0 < p. Hence also (2.6) holds true.
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By the previous estimates it follows that there exists a subsequence of un,
that we denote again un, and a function u ∈ W 1,q

0 (Ω) ∩ Lp(Ω), where q is as
before, such that as n→ +∞ it results

un ⇀ u weakly in W 1,q
0 (Ω),

un ⇀ u weakly in Lp(Ω),

un → u strongly in Lq(Ω),

un → u a.e. in Ω,

|un|
|x|2 ⇀

|u|
|x|2 weakly in Lh(Ω).

Hence, passing to the limit in the approximating problem (2.1), we conclude the
proof.

Remark 2.2. As it has been noticed in the introduction, the previous exis-
tence result holds true replacing the terms ν|u|p−1u and a u

|x|2 with, respectively,

the Caratheodory functions g(x, u) and b(x, u) verifying the following conditions
a.e. in x ∈ Ω, (bounded open subset of IRN ), and ∀s ∈ IR,

|b(x, s)| ≤ a(x)|s|, a(x) ∈ L
N
2 ,∞(Ω) ,(2.13)

g(x, s)s ≥ ν|s|p+1, ∀s ∈ IR, with p >
N

N − 2
, ν > 0 .(2.14)

As a matter of fact, the estimates of Lemma 2.1 remain true for the solutions
un ∈ H1

0 (Ω) ∩ L∞(Ω) of the following problem

(2.15)

{ −div(M(x, un)∇un)) + g(x, un) = bn(x, un) + fn − div(Fn) in Ω

u = 0 on ∂Ω ,

where bn, fn and Fn are defined as before. Notice that the existence of un ∈
H1

0 (Ω) ∩ L∞(Ω) solutions of (2.15) is guaranteed, for example, by the results
in [13]. Moreover, to pass to the limit in the approximating problems we only
need to prove that

(2.16) ‖g(x, un)− g(x, u)‖L1(Ω) → 0, n→ +∞ .

But the proof of the previous convergence result is substantially equal to that of
Lemma 2.3 of [13]. The only change regards the estimate of the Hardy potential
bn(x, un) on the set {t + ε ≤ |un|} and this can be done as follows.

Being a(x) ∈ L
N
2 ,∞(Ω) and p > N

N−2 , there exists r > 1 verifying

⎧
⎪⎨
⎪⎩

1

p
+

1

r
< 1

r <
N

2
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for which it results

∫

t+ε≤|un|
a(x)|un| ≤ ‖un‖Lp(Ω)‖a(x)‖Lr(Ω)|Ω ∩ {|un ≥ t}|1− 1

p− 1
r ≤

≤ C|Ω ∩ {|un| ≥ t}|1− 1
p− 1

r = ε(t) .

2.2 – Proof of Theorem 1.6

Let u be the solution of problem (1.2) constructed as in the previous proof,
that is, as the limit of the approximating solutions un ∈ L∞(Ω)∩H1

0 (Ω) of (2.1).
As by assumption p > N

N−2 , there exists δ > 0 such that

(2.7) p >
2δ + N

N − 2
.

Let us take ϕ = [(1 + |un|)δ − 1]sign(un) as test function in (2.1), where δ is as
before. We get, using the structure assumptions (1.3) and (1.5)

(2.18)

δ

∫

Ω

|∇un|2(1 + |un|)δ−1 + ν

∫

Ω

|un|p[(1 + |un|)δ − 1] ≤

≤ a

∫

Ω

|un|
|x|2 [(1 + |un|)δ − 1] +

∫

Ω

|f |(1 + |un|)δ .

We estimate now the terms in the previous equation. As it results

lim
s→+∞

sp[(1 + s)δ − 1]

(1 + s)δ+p
= 1 ,

there exists a positive constant k0, depending only on δ and p, such that

sp[(1 + s)δ − 1] ≥ (1 + s)δ+p

2
, ∀ s ≥ k0 .

Using the previous inequality, we deduce

ν

∫

Ω

|un|p[(1 + |un|)δ − 1] ≥ ν

2

∫

|un|>k0

(1 + |un|)δ+p .

Recalling that f belongs to Lm(Ω), m > 1, we obtain

∫

Ω

|f |(1 + |un|)δ ≤ c0

(∫

Ω

(1 + |un|)δm′
) 1

m′

,
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where c0 = ‖f‖Lm(Ω). Let γ be a real number satisfying

(2.19)

{
2 < γ < N

(δ + 1)
(γ

2

)′
≤ p + δ .

Notice that (2.19) is equivalent to require that

(2.20)
2(p + δ)

p− 1
≤ γ < N ,

and hence there exists γ satisfying (2.20) as

2(p + δ)

p− 1
< N ⇔ p >

N + 2δ

N − 2
,

that is (2.17). Thanks to the previous choices we have

a

∫

Ω

|un|
|x|2 [(1 + |un|)δ − 1] ≤ a

∫

Ω

(|un|+ 1)δ+1

|x|2 ≤

≤ ν

4

∫

Ω

(|un|+ 1)(δ+1)( γ
2 )

′
+ c1

∫

Ω

(
a

|x|2
) γ

2

≤ ν

4

∫

Ω

(|un|+ 1)p+δ + c2 ,

where c1 and c2 are positive constants depending on ν and independent on n.
Putting together all the previous estimates we obtain

(2.21)

δ

∫

Ω

|∇un|2(1 + |un|)δ−1 +
ν

4

∫

Ω

(|un|+ 1)p+δ ≤

≤ c0

(∫

Ω

(1 + |un|)δm′
) 1

m′

+ c2 .

Choose now

(2.22) δ = p(m− 1) ⇔ δm′ = p + δ .

Notice that the previous choice is possible as in such a case (2.17) becomes

p >
N

N − 2m
,

that is our assumption on p. From (2.21), applying Hoelder inequality, we get

(2.23)

∫

Ω

|∇un|2(1 + |un|)p(m−1)−1 +

∫

Ω

(|un|+ 1)pm ≤ c3 ,
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where c3 is independent on n. Thus it follows that

(2.24)

∫

Ω

|u|pm ≤ c3 .

If p(m−1)−1 ≥ 0 the result follows immediately as in this case 2 = min{2, 2pm
1+p }

and estimate (2.23) implies that un is equibounded not only in Lpm(Ω), but also
in the energy space H1

0 (Ω).
If otherwise p(m − 1) − 1 < 0 we reason as follows. Let q ∈ (1, 2) to be

determined. Recalling the definition (2.22) of δ, it results

(2.25)

∫

Ω

|∇un|q =

∫

Ω

|∇u|q

(1 + |un|)
q(1−δ)

2

(1 + |un|)
q(1−δ)

2 ≤

≤
∫

Ω

|∇un|2(1 + |un|)δ−1 +

∫

Ω

(1 + |un|)
q(1−δ)
2−q =

=

∫

Ω

|∇un|2(1 + |un|)p(m−1)−1 +

∫

Ω

(|un|+ 1)
q[1−p(m−1)]

2−q ,

and hence by (2.23) we get the result choosing q[1−p(m−1)]
2−q = pm, that is q =

2pm
1+p .

2.3 – Proof of Theorem 1.11

Proceeding exactly as in the proof of Theorem 1.6 we conclude that (2.21)
holds true for every choice of δ satisfying (2.17), that is for every δ such that

(2.26) 0 < δ <

(
p− N

N − 2

)
N − 2

2
.

Notice that the assumption p ≤ N
N−2m is equivalent to require that

(2.27)

(
p− N

N − 2

)
N − 2

2
≤ p (m− 1) .

Moreover it results

(2.28) δm′ ≤ p + δ ⇔ δ ≤ p (m− 1) .

Hence by (2.27) and (2.28) it follows that every δ satisfying (2.26) also satisfies

δm′ ≤ p + δ .
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Using this last inequality in (2.21) we get that un is equibounded in Lp+δ(Ω) for
every δ as in (2.26), that is un is equibounded in Ls(Ω) for every s < s0, where

(2.29) s0 = p +

(
p− N

N − 2

)
N − 2

2
.

Notice that if it is possible to choose δ ≥ 1, that is if p > N+2
N−2 , from (2.21) we

also deduce that |∇un| is equibounded in L2(Ω) and thus
∫

Ω

|∇u|2 ≤ c6 .

If otherwise δ < 1 we estimate the summability of the gradient proceeding as in
(2.25). Hence let q ∈ (1, 2) to be determined; it results

∫

Ω

|∇un|q ≤
∫

Ω

|∇un|2(1 + |un|)δ−1 +

∫

Ω

(1 + |un|)
q(1−δ)
2−q ,

from which, choosing q(1−δ)
2−q = δ + p, that is q = 2(δ+p)

1+p , we get that

∫

Ω

|∇u|q ≤ c7 .

Notice that by (2.26) we can choose every value of q satisfying

q < q1 =
2p

p + 1
+

N − 2

1 + p

(
p− N

N − 2

)
.

3 – The case F �≡ 0

We study here what happens in Theorems 1.6 and 1.11 if we do not assume
F ≡ 0.

As said in Remark 1.9, the regularity result of Theorem 1.6 may remain
true also for nonzero F . More in details we have the following.

Proposition 3.1. Assume that (1.3)-(1.5) hold true, that f belongs to
Lm(Ω), where 1 < m < N

2 . Let F ∈ (Lr(Ω))N where

(3.1) r ≥ max

{
2,

2pm

1 + p

}
≡ r0 .

If p > N
N−2m then there exists a weak solution u ∈ W 1,q

0 (Ω) ∩ Lpm(Ω) of (1.2)
where

(3.2) q = min

{
2,

2pm

1 + p

}
.
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Proof. Proceeding exactly as in the proof of Theorem 1.6, it appears in
the right-hand side of (2.18) the following new term

(3.3) δ

∫

Ω

|F ||∇un|(1 + |un|)δ−1 .

To estimate the previous integral we need to distinguish two cases: the case
δ > 1 and the case 0 < δ ≤ 1, where we recall that δ = p(m− 1) (see (2.22)). If
δ > 1, that is if r0 > 2, assumption (3.1) implies

(3.4) r ≥ 2

(
δ + p

δ − 1

)′
,

and hence we can estimate the new term (3.3) as follows

(3.5)

δ

∫

Ω

|F ||∇un|(1 + |un|)δ−1 ≤ δ

2

∫

Ω

|∇un|2(1 + |un|)δ−1+

+
δ

2

∫

Ω

|F |2(1 + |un|)δ−1 ≤ δ

2

∫

Ω

|∇un|2(1 + |un|)δ−1+

+
ν

8

∫

Ω

(1 + |un|)δ+p + c4

∫

Ω

|F |2( δ+p
δ−1 )

′
,

where c4 is a positive constant depending on ν and δ that is independent on n.
If otherwise 0 < δ ≤ 1, then it results r0 = 2 and we can estimate (3.3) as

follows

(3.6)

δ

∫

Ω

|F ||∇un|(1 + |un|)δ−1 = δ

∫

Ω

|F |
(1 + |un|)

1−δ
2

|∇un|
(1 + |un|)

1−δ
2

≤

≤ δ

2

∫

Ω

|∇un|2(1 + |un|)δ−1 + c(δ)

∫

Ω

|F |2
(1 + |un|)1−δ

≤

≤ δ

2

∫

Ω

|∇un|2(1 + |un|)δ−1 + c(δ)

∫

Ω

|F |2 .

Then, proceeding exactly as in the proof of Theorem 1.6, the result follows.

We can also deal the case in which r does not satisfy (3.1). More in details
we have the following.

Proposition 3.2. Assume (1.3)-(1.5), f ∈ Lm(Ω), 1 < m < N
2 , and

F ∈ (Lr(Ω))N where

(3.7) 2 < r ≤ 2pm

1 + p
, r < N .

If

(3.8) p >
N + r

N − r
, and p ≥ 1

m− 1
,

then there exists a solution u of (1.2) belonging to L
r(p+1)

2 (Ω) ∩H1
0 (Ω).
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Remark 3.3. Assumption p ≥ 1
m−1 is equivalent to require that 2 ≤ 2pm

1+p

and thus assumption (3.7) can be fullfilled. Moreover, as in Theorem 1.6, (see
Remark 1.8), the assumption p ≥ 1

m−1 guarantees that u belongs to H1
0 (Ω)).

Notice also that if we only know that F ∈ (L2(Ω))N then Proposition 3.2 assures

the existence of a solution belonging to Lp+1(Ω)∩H1
0 (Ω) if p > max

{
N+2
N−2 , 1

m−1

}
.

Remark 3.4. As we expect, since in Proposition 3.2 we are assuming less
regularity on F we obtain a less regular solution. As a matter of fact assump-

tion (3.7) implies that r(p+1)
2 ≤ pm. Moreover the summability exponent of u

satisfies r(p+1)
2 > p.

Observe also that it results p0 ≡ max
{

N+r
N−r , 1

m−1

}
< N

N−2m if and only

if m > m0 ≡ max
{

2N
N+2 , rN

N+r

}
. Hence, if m > m0 the assumption on p in

Proposition 3.2 is weaker than the assumption on p done in Proposition 3.1, and
so, as just noticed, we obtain less summability regularity on u.

Proof of Proposition 3.2. We proceed exactly as in the proof of Theo-
rem 1.6. As just noticed before, it appears the new term (3.3) containing F that
we estimate as follows using the assumption r > 2

(3.9)

δ

∫

Ω

|F ||∇un|(1 + |un|)δ−1 ≤ δ

2

∫

Ω

|∇un|2(1 + |un|)δ−1+

+
δ

2

∫

Ω

|F |2(1 + |un|)δ−1 ≤ δ

2

∫

Ω

|∇un|2(1 + |un|)δ−1+

+
δ

2
‖|F |‖2Lr(Ω)

(∫

Ω

(1 + |un|)
(δ−1)r

r−2

)1− 2
r

.

Hence, instead of (2.21) now we get

(3.10)

δ

2

∫

Ω

|∇un|2(1 + |un|)δ−1 +
ν

4

∫

Ω

(|un|+ 1)p+δ ≤

≤ c0

(∫

Ω

(1 + |un|)δm′
) 1

m′

+ c5

(∫

Ω

(1 + |un|)
(δ−1)r

r−2

)1− 2
r

+ c2 ,

where c5 = δ
2‖|F |‖2Lr(Ω). We recall that the previous estimate holds true for

every choice of δ satisfying

(3.11) p >
N + 2δ

N − 2
.

Let us choose
(δ − 1)r

r − 2
= δ + p ⇔ δ =

p(r − 2) + r

2
.
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The previous choice of δ is an admissible choice as in this case (3.11) becomes

p >
N + r

N − r
,

that is true by assumption (3.8). Notice that it results δ > 1 and that with this
choice of δ assumption (3.7) is equivalent to require that δm′ ≤ δ + p. Hence
by (3.10) it follows that

∫

Ω

|∇un|2 +

∫

Ω

(|un|+ 1)p+δ ≤ c6 ,

from which the assert follows.

The following result is the generalization of Theorem 1.11 to nonzero F .

Proposition 3.5. Assume that (1.3)-(1.5) hold true and F ∈ (Lr(Ω))N

where

2 ≤ r, if p ≤ N + 2

N − 2

2 < r < N, if
N + 2

N − 2
< p ≤ N + r

N − r
,(3.12)

N(p−1)

p + 1
=max

{
2,

N(p− 1)

p + 1

}
≤r<N, if p >

N + r

N − r
.

If it results

(3.13)
N

N − 2
< p ≤ N

N − 2m
, f ∈ Lm(Ω), 1 < m <

N

2
,

then there exists a solution u of (1.2) belonging to Ls(Ω) ∩W 1,q
0 (Ω), for every

choice of s and q satisfying

1 ≤ s < s0 ≡ p +

(
p− N

N − 2

)
N − 2

2

1 ≤ q < q1 ≡
2p

p + 1
+

(
p− N

N − 2

)
N − 2

p + 1
if p ≤ N + 2

N − 2

q = 2 if p >
N + 2

N − 2
.
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Proof. Proceeding as in the proof of Theorem 1.11, it appears the new
following term

(3.14) δ

∫

Ω

|F ||∇un|(1 + |un|)δ−1 .

We recall that δ can be any number satisfying (2.26). Thus it results δ < 1 if

(3.15)

(
p− N

N − 2

)
N − 2

2
< 1, ⇔ p <

N + 2

N − 2
.

In this case the assumption on r becomes r ≥ 2 and allows us to estimate (3.14)
exactly as in (3.6).

If otherwise p > N+2
N−2 by (3.15) it follows that we can choose δ > 1. We

distinguish two cases.
If N+2

N−2 < p ≤ N+r
N−r then we suppose r > 2 and we can estimate (3.14) as in

(3.9). Hence (3.10) holds true. Notice that

(3.16)
(δ − 1)r

r − 2
≤ δ + p ⇔ δ ≤ p(r − 2) + r

2
.

Moreover it results

(
p− N

N − 2

)
N − 2

2
≤ p(r − 2) + r

2
⇔ p ≤ N + r

N − r
.

Hence in this case (3.16) is satisfied and thus the result follows.

Finally if N+r
N−r < p, the assumption on r becomes r ≥ N(p−1)

p+1 and implies

that (3.4) holds true. Thus we can estimate (3.14) exactly as in (3.5).

The only case of nonzero F not considered in Proposition 3.5 is treated in
the following result.

Proposition 3.6. Assume that (1.3)-(1.5) hold true, f ∈ Lm(Ω), 2N
N+2 <

m < N
2 and F ∈ (Lr(Ω))N where

N + r

N − r
< p <

N

N − 2m
,(3.17)

2 < r < min

{
N(p− 1)

p + 1
, N, m∗

}
.(3.18)

Then there exists a solution u of (1.2) belonging to L
r(p+1)

2 (Ω) ∩H1
0 (Ω).
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Remark 3.7. Notice that assumption r < m∗ is equivalent to require that
N+r
N−r < N

N−2m and hence it is necessary to guarantee that condition (3.17) can

be fullfilled. Moreover the assumption m > 2N
N+2 is equivalent to require 2 < m∗

and thus it is necessary to obtain a nonempty set in (3.18).

Remark 3.8. Notice that if p > N+r
N−r and r = N(p−1)

p+1 , by Proposition 3.5

it follows that there exists a solution u belonging to H1
0 (Ω) ∩ Ls(Ω), for every

s < s0 = N(p−1)
2 . Moreover if r → N(p−1)

p+1 then r(p+1)
2 → N(p−1)

2 . Hence there is
“continuity of the regularity results” of Propositions 3.5 and 3.6.

Proof of Proposition 3.6. Notice that condition p < N
N−2m implies that

N(p− 1)

p + 1
<

2pm

1 + p
.

Since the assumption p ≥ 1
m−1 in Proposition 3.2 is done only to guarantee that

assumption (3.7) can be fulfilled, and being in our case

2 < min

{
N(p− 1)

p + 1
, N, m∗

}
,

because, as just noticed, we are assuming p > N+r
N−r and m > 2N

N+2 , we can repeat
the proof of Proposition 3.2 and conclude that the result follows.
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Moro, 2 – 00185, Roma, Italy
E-mail: porzio@mat.uniroma1.it


