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Exchangeability and semigroups

PAUL RESSEL

Abstract: Exchangeability of a “random object” is a strong symmetry condition,
leading in general to a convex set of distributions not too far from a “simplex” - a set
easily described by its extreme points, in this case distributions with very special prop-
erties as for example iid coin tossing sequences in de Finetti’s original result. Although
in most cases of interest the symmetry is defined via a non–commutative group acting
on the underlying space, it very often can be described by a suitable factorization in-
volving an abelian semigroup. The factorizing function typically turns out to be positive
definite, and results from Harmonic Analysis on semigroups become applicable. In this
way many known theorems on exchangeability can be given an alternative proof, more
analytic/algebraic in a sense, but also new results become available.

1 – Introduction

A sequence X = (X1, X2, . . . ) of random variables is called exchangeable
if for any permutation π of IN the sequence (Xπ(1), Xπ(2), . . . ) has the same
distribution as X; of course it is enough to require this property for finite per-
mutations π (in the sense that {i ∈ IN | π(i) = i} is a finite set). This holds
obviously for an iid–sequence and so also for a mixture (in distribution) of iid’s,
since exchangeable distributions form a convex set. As is well known, in 1930
Bruno de Finetti published the pathbreaking result that for {0, 1}–valued ran-
dom variables the converse holds, too: exchangeable sequences are precisely the
mixtures of iid Bernoulli sequences. A few years later de Finetti generalized
this to real–valued random variables, and in 1955 Hewitt and Savage proved the
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corresponding result for arbitrary compact Hausdorff spaces, from which it is
immediately seen to be true also for Borel subsets of compact spaces, for exam-
ple for locally compact spaces. In ([6], Theorem 4) a further generalization to
completely regular Hausdorff spaces was shown.

In contrast to this “global” point of view (i.e. considering all exchangeable
distributions) a different kind of question seems natural: is it possible to char-
acterize mixtures of iid–sequences of a particular type, say normal or Poisson
distributed, or with a special form of their Fourier or Laplace transform, or even
(for non–negative random variables) of their multivariate survival function?

An attempt for fairly general answers was given in [6] and subsequent pa-
pers. Here we present a certain overview, and as “Main Theorem” a new result
which in a way is a de Finetti theorem for positive definite functions on abelian
semigroups, which appear (perhaps surprising) as a natural tool in this connec-
tion.

After explaining some basic notions concerning positive definite and related
functions on semigroups in Section 3, the main result will be presented in Sec-
tion 4. The extended de Finetti–type theorem in Section 5 is given a new proof,
based on the main theorem, and followed by a few typical examples. The above
mentioned theorem of Hewitt and Savage is shown in Section 6 to be another
“almost straightforward” consequence of the main theorem. Finally, the closing
Section 7 presents a different point of view to the main theorem, followed by an
application to exchangeable random partitions.

2 – Why semigroups?

They enter the scene naturally, as can be seen already in de Finetti’s original
result.

Let P be an exchangeable probability measure on the space of all (infinite)
0− 1 sequences, abbreviated P ∈ M1,e

+ ({0, 1}∞), the “e” referring to exchange-
ability. Then P (x1, . . . , xn) depends only on x1 + . . . + xn, i.e.

P (x1, . . . , xn) = ϕn

(
n∑

i=1

xi

)
= ϕ

(
n∑

i=1

xi, n

)
=

= ϕ

(
n∑

i=1

(xi, 1)

)

with ϕ defined on the set

S :=
{
(k, n) ∈ IN2

0 | k ≤ n
}

which is a (sub-) semigroup inside IN2
0. The crucial point will be that ϕ turns

out to be a socalled positive definite function, therefore a (unique) mixture of
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socalled characters, taking here the form

σ : (k, n) �−→ σ(k, n) = pkqn−k, p, q ∈ IR

and it is easy to see that only characters with p, q ≥ 0 and p + q = 1 play a rôle.
Inserting this we get (slightly abusing the letter μ as a measure on the characters
resp. on [0, 1])

P (x1, . . . , xn) = ϕ

(
n∑

i=1

(xi, 1)

)
=

=

∫
σ

(
n∑

i=1

(xi, 1)

)
dμ(σ) =

=

∫ n∏

i=1

σ(xi, 1)dμ(σ) =

=

∫ 1

0

n∏

i=1

pxi(1− p)1−xidμ(p)

for some (unique) μ ∈ M1
+([0, 1]), which is de Finetti’s result, proved in 1930,

cf. [3].

3 – Basic definitions and notations

We will make use in a crucial way of some notions and results about positive
definite and related functions on semigroups, an introduction to which can be
found in [1], Chapter 4.

Let S denote an abelian semigroup, written additively, with neutral element
0, and possibly with an involution, i.e. a mapping s �−→ s−, with (s + t)− =
s− + t−, 0− = 0 and (s−)− = s which in many cases is just the identity.

σ : S −→ C is a character iff

σ(s + t) = σ(s) · σ(t), σ(s−) = σ(s), σ(0) = 1

ϕ : S −→ C is positive definite (abbrev. “p.d.”) iff

n∑

j,k=1

cjckϕ(sj + s−k ) ≥ 0 ∀ n ∈ IN, cj ∈ C, sj ∈ S

ϕ : S −→ C is completely positive definite (“c.p.d.” ) iff s �−→ ϕ(s + a) is
positive definite ∀a ∈ S;



66 PAUL RESSEL [4]

α : S −→ IR+ is an absolute value iff

α(s + t) ≤ α(s) · α(t), α(s−) = α(s), α(0) = 1

f : S −→ C is α–bounded (with α a fixed absolute value) iff

|f(s)| ≤ C · α(s) ∀ s ∈ S, for some C ≥ 0, briefly: |f | ≤ Cα

(if furthermore f(0) = 1 and f is p.d., then one can take C = 1);
f is exponentially bounded iff it is α–bounded with respect to some absolute
value α;
S∗ := set of all characters of S;
P(S) := set of all positive definite functions on S;
Sα := {σ ∈ S∗ | σ is α–bounded} then Sα = {σ ∈ S∗ | |σ| ≤ α};
Pα(S) := {ϕ ∈ P(S) | ϕ is α–bounded};
Ŝ := all bounded characters on S, then Ŝ = {σ ∈ S∗ | |σ| ≤ 1};
Pb(S) := all bounded positive definite functions on S.

For any set B of complex functions on S, the symbols B+ and B1 denote
respectively B ∩ {f | f(x) ≥ 0 ∀s ∈ S} and B ∩ {f | f(0) = 1}.

It is easily seen that

S∗ ⊆ P1(S) := {ϕ ∈ P(S) | ϕ(0) = 1};
Sα ⊆ Pα

1 (S), ϕ ∈ Pα
1 (S) =⇒ |ϕ| ≤ α;

Ŝ ⊆ Pb
1(S), ϕ ∈ Pb

1(S) =⇒ |ϕ| ≤ 1

and each σ ∈ S∗
+ is even c.p.d.

4 – The main result

If K is a non–empty compact convex subset of some locally convex vector
space, then K is by Krein-Milman’s theorem the closed convex hull of ex(K), the
extreme points of K. If ex(K) is closed, and if furthermore the representation
of points in K as barycenters of (Radon) measures on ex(K) is unique, K is
called a Bauer simplex. In all subsequent applications K will be a subset of
CS , the set of all complex–valued functions on S, equipped with the topology of
pointwise convergence. Note that in this case for any given γ : S −→ IR+ the
set K := {f ∈ CS | |f | ≤ γ} is compact (and convex).

Let us recall first the basic result concerning exponentially bounded positive
definite functions. We shall only consider abelian semigroups with a neutral
element.

Theorem (Berg/Maserick, cf. [2] or [1], 4.2.6 and 4.2.7). For a semigroup
S and an absolute value α on S the set Pα

1 (S) is a Bauer simplex with Sα as its
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set of extreme points. In other words, for any ϕ ∈ Pα
1 (S) there exists a unique

Radon probability measure μ on Sα such that

ϕ(s) =

∫
σ(s)dμ(σ) ∀ s ∈ S .

We’ll also make use of the following

Corollary (cf. [6], Proposition 1). If ϕ ∈ Pα(S) is completely positive
definite, then the unique measure representing ϕ is concentrated on Sα

+.

From now on we will typically deal with two semigroups R, S, and a mapping
t : R −→ S with the properties t(0) = 0, t(r−) = (t(r))− and such that t(R)
generates S as a semigroup. Furthermore, a function β : R −→ C\{0} is given
with β(0) = 1 and β(r−) = β(r) for all r; in most of the examples we’ll have
β ≡ 1. The direct product

R(∞) := {(r1, r2, . . . ) ∈ R∞ | ri = 0 finally}

of countably many copies of R will play a particular rôle.
The following result is new in this generality.

Main Theorem. Let R and S be semigroups, and t : R −→ S, β : R −→
C � {0} be functions as just described :

(i) if Φ(r1, r2, . . . ) :=
∏

β(ri) · ϕ(
∑

t(ri)) for some function ϕ : S −→ C, and
Φ is positive definite then so is ϕ;

(ii) if furthermore |Φ(r1, r2, . . . )| ≤ C · ∏ γ(ri) for some function γ : R −→
IR+, γ(0) = 1, and some C > 0, then

α(s) := inf

{∏ γ(ri)

|β(ri)|
|
∑

t(ri) = s

}

is an absolute value on S, ϕ is α–bounded, and the measure μ representing
ϕ is concentrated on

W := {σ ∈ Sα | β · (σ ◦ t) is positive definite on R}

(iii) conversely, for μ ∈ M+(W ) and ϕ(s) :=
∫

σ(s)dμ(σ) the function Φ as
defined in (i) is positive definite and fulfills (ii) for some C > 0 and some
function γ;

(iv) a corresponding result holds for completely positive definite functions, the
measure in (ii) being then concentrated on W+.
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For the proof the following lemma is crucial. Since the statement here differs
slightly from earlier presentations, we present it with the (short) proof. Recall
that for a non–empty set M a function ψ : M×M −→ C is a positive semidefinite
kernel iff for any finite subset {x1, . . . , xk} ⊆ M the matrix (ψ(xi, xj))i,j≤k is
positive semidefinite.

Approximation lemma. Let p ≥ 2 be an integer, M a non-empty set, ψ :
M ×M −→ C a positive semidefinite kernel, (aij) ∈ Cp×p a given p× p–matrix.
Suppose that for each n ∈ IN there exist {xn

jm | j = 1, . . . , p;m = 1, . . . , n} ⊆ M
such that

ψ
(
xn

ik, xn
jm

)
= aij ∀ (i, k) = (j, m)

and
sup

j,m,n
ψ

(
xn

jm, xn
jm

)
< ∞ .

Then (aij) is positive semidefinite.

Proof. Let c1, . . . , cp ∈ C be given; with {xn
jm} as indicated put djm :=

cj/n. Then

0 ≤
p∑

i,j=1

n∑

k,m=1

dikd̄jmψ
(
xn

ik, xn
jm

)
=

=

p∑

i,j=1
i�=j

cic̄jaij +
n2 − n

n2

p∑

j=1

|cj |2ajj +
1

n2

p∑

j=1

n∑

m=1

|cj |2ψ(xn
jm, xn

jm) =

=
n∑

i,j=1

cic̄jaij + Rn

where Rn := − 1
n

∑p
j=1 |cj |2ajj + 1

n2

∑p
j=1

∑n
m=1 |cj |2ψ(xn

jm, xn
jm) and so Rn −→

0 for n −→∞, showing positive semidefiniteness of (aij).

Proof of the Main Theorem.
(i) Let s1, . . . , sp ∈ S and n ∈ IN be given. By assumption

sj =

qj∑

�=1

t(rj�) for suitable rj� ∈ R .

Let {Njm | j = 1, . . . , p;m = 1, . . . , n} be disjoint subsets of IN with cardi-
nalities |Njm| = qj ∀ j, m, and define xjm ∈ R(∞) (for Njm = {ν1, . . . , νqj

})
by

xjm(ν�) := rj�, xjm(i) := 0 for i /∈ Njm .
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Put ξj :=
∏qj

�=1 β(rj�), j = 1, . . . , p. Then for (i, k) = (j, m)

Φ(xik + x−
jm) = ξiξ̄jϕ(si + s−j ) ,

and Φ(xjm + x−
jm) =

∏qj

�=1 β(rj� + r−j�)ϕ(
∑qj

�=1 t(rj� + r−j�)), independent

of m and n. Hence by the Approximation lemma (ξiξ̄jϕ(si + s−j ))i,j≤p is

positive definite, and so is also (ϕ(si + s−j ))i,j≤p.
Suppose now Φ to be c.p.d., and let an additional element a ∈ S be given,
a = t(r1) + . . . + t(rv). Choose in the preceding argument the Njm ⊆
IN � {1, . . . , v}, and define y ∈ R(∞) by y(1) := r1, . . . , y(v) := rv, y(i) := 0
else. Then for (i, k) = (j, m)

Φ(y + xik + x−
jm) = ξiξ̄jϕ(a + si + s−j ) ·

v∏

�=1

β(r�)

and if the positive semidefinite matrix on the RHS is not identically zero,∏v
�=1 β(r�) > 0 and then (ϕ(a + si + s−j )) is positive semidefinite, i.e. ϕ is

completely positive definite.
(ii) If s =

∑
t(rj) we get from

Φ(r1, r2, . . . ) =
∏

β(rj)ϕ(
∑

t(rj))

that

|ϕ(s)| ≤ C ·
∏ γ(rj)

|β(rj)|
,

hence
1

C
|ϕ(s)| ≤ α(s) := inf

{∏ γ(rj)

|β(rj)|
|
∑

t(rj) = s

}

and α is immediately seen to be an absolute value. The function ϕ be-
ing positive definite and α–bounded, has a unique representing measure μ
supported by the compact set Sα in view of the Berg/Maserick theorem.
Define f : S∗ −→ C by

(∗) f(σ) :=

w∑

u,v=1

cuc̄vβ(au + a−
v )σ(t(au + a−

v ))

for given a1, . . . , aw ∈ R and c1, . . . , cw ∈ C. Then f is continuous, and
on the compact subset Sα the function f is bounded. We want to show
that f is μ–a.e. nonnegative, or equivalently that the measure ν := f · μ
is nonnegative. This will be shown if ν̂(s) :=

∫
σ(s)dν(σ) turns out to be

positive definite, by the Berg/Maserick theorem.
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Let again s1, . . . , sp ∈ S, d1, . . . , dp ∈ C and n ∈ IN be given, with

sj =

qj∑

�=1

t(rj�)

as in the proof of (i).
Let now {Nujm | u = 1, . . . , w, j = 1, . . . , p;m = 1, . . . , n} be disjoint
subsets of IN � {1} with |Nujm| = qj ∀u, j, m, say Nujm = {ν1, . . . , νqj},
and define xujm ∈ R(∞) by

xujm(1) := au

xujm(ν�) := rj�

xujm(i) := 0 else.

Put ξj :=
∏qj

�=1 β(rj�). Then for (u, i, k)) = (v, j, �)

Φ(xuik + x−
vj�) = ξiξjβ(au + a−

v )ϕ(t(au + a−
v ) + si + s−j )

and Φ(xuik + x−
uik) is again bounded uniformly in u, i, k, n. So again the

matrix (with index set A := {1, . . . , w} × {1, . . . , p})

(β(au + a−
v ) · ϕ(t(au + a−

v ) + si + s−j ))(u,i),(v,j)∈A

is positive semidefinite, leading to

p∑

i,j=1

did̄j ν̂(si + s−j ) =

p∑

i,j=1

w∑

u,v=1

cudic̄vd̄j×

×
∫

β(au + a−
v )σ(t(au + a−

v ) + si + s−j )dμ(σ) =

=
∑

i,j

∑

u,v

cudic̄vd̄jβ(au+a−
v ) · ϕ(t(au+a−

v )+si+s−j )≥0.

We have shown f · μ to be a positive measure , i.e.

μ(f−1(C � IR+)) = 0 .

Now f−1(C � IR+) is open, and μ is a Radon measure, hence

μ
(⋃

f−1(C � IR+)
)

= 0

the union being taken over all functions f of the form (∗). Hence μ–almost
surely r �−→ β(r) · σ(t(r)) is positive definite on R.
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(iii) W is obviously closed, hence compact, so that C := μ(W ) < ∞. For σ ∈ W
the function

Φσ(r1, r2, . . . ) :=
∏

β(ri) · σ(t(ri))

is positive definite as a (tensor) product of such functions. Also

|β(r)σ(t(r))| ≤ |β(r)| · α(t(r)) =: γ(r) .

Now Φ =
∫

Φσdμ(σ) is positive definite as a mixture of positive definite
functions, and

|Φ(r1, r2, . . . )| ≤ C ·
∏

γ(ri) ∀ r1, r2, . . . ∈ R .

(iv) See the end of the proof of (i) .

One of the most direct corollaries is the following result, characterizing
spherically exchangeable (or symmetric) sequences, i.e. sequences of real random
variables whose finite dimensional distributions are invariant under rotations.

Theorem (Schoenberg, 1938). Every infinite spherically exchangeable ran-
dom sequence is a unique variance mixture of centered iid normal sequences. Or
formally:

P ∈ M1
+(IR∞) is spherically symmetric

⇐⇒ P =

∫ ∞

0

N(0, c)∞dμ(c) ∃!μ ∈ M1
+(IR+) .

Proof. Only one direction needs a proof. Given a spherically exchangeable
P we let Φ be its characteristic function, i.e.

Φ(r1, r2, . . . ) := E
[
exp

(
i
∑

rjXj

)]
, (r1, r2, . . . ) ∈ IR(∞) =

= ϕ
(∑

r2
j

)

for some function ϕ : IR+ −→ C, by assumption. With t(r) = r2, β ≡ γ ≡ 1, we
get from the Main Theorem that ϕ is a bounded positive definite function with
ϕ(0) = 1. Then, for example applying the Berg/Maserick theorem, ϕ has the
unique integral representation

ϕ(s) =

∫
e−λsdμ(λ), μ ∈ M1

+([0,∞])

(with e−λ∞ = 1{0}(λ), λ ∈ IR+). Now ϕ is obviously continuous, leading to
μ({∞}) = 0, and then from

Φ(r1, r2, . . . ) =

∫ ∞

0

e−λ
∑

r2
j dμ(λ)

we read off the wanted result.
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Schoenberg (cf. [8]) proved this result in the totally different connection of
the imbedding problem for quasi-metric spaces into a Hilbert space.

With only slightly more effort we get the following characterization of

Mixtures of the full 2-parameter normal family. Let X =
(X1, X2, . . . ) be any real random sequence with characteristic function Φ. Then

Φ(r1, r2, . . . ) = ϕ
(∑

rj ,
∑

r2
j

)
for some ϕ

iff

PX =

∫

IR×IR+

N(a, c)∞dμ(a, c) for some μ ∈ M1
+(IR× IR+) .

For a proof, see [6], Example 6.
Different transforms may of course be used. An example with Laplace trans-

forms is this:

Let X = (X1, X2, . . . ) be non–negative random variables. Then

E
[
exp

(
−

∑
rjXj

)]
= ϕ

(∏
(1 + rj)

)
.

For some ϕ : [1,∞[−→ IR iff

PX =

∫ ∞

0

γ∞
λ dμ(λ)

where γλ denotes the Gamma (λ, 1) distribution, with γ1 = e1, the exponential
distribution with parameter 1; cf. Example 8 in [6].

The natural question if mixtures of exponential iid sequences can be char-
acterized similarly, can be answered immediately:

For a non–negative sequence X we have

PX =

∫ ∞

0

e∞λ dμ(λ)

iff

P (X1 ≥ a1, X2 ≥ a2, . . . ) = ϕ
(∑

aj

)
, a ∈ IR

(∞)
+

for some ϕ : IR+ −→ IR; cf. Example 11 in [6].
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5 – De Finetti’s theorem in extended form

Theorem. Let X be a finite or countable set, S a semigroup, t : X −→ S
such that t(X ) generates S � {0}, β : X −→ ]0,∞[, ϕ : S −→ IR+. Then
P ∈ M1

+(X∞) fulfills

P (x1, . . . , xn) =

n∏

i=1

β(xi) · ϕ
(

n∑

i=1

t(xi)

)
∀n, xi

iff

P =

∫
κ∞

σ dμ(σ)

where μ ∈ M1
+(S∗

+) is concentrated on

W :=
{
σ ∈ S∗

+ | κσ := β · (σ ◦ t) ∈ M1
+(X )

}

(cf. Theorem 4 in [6]; we’ll derive it here as a consequence of the Main Theorem).

Proof. Let R := {1{x} | x ∈ X} ∪ {0, 1} with pointwise multiplication,

considered as a subsemigroup of IRX , add an absorbing element ζ to S, S′ :=
S ∪ {ζ}, and define t′ : R −→ S′ by t′(1{x}) := t(x), t′(1) := 0, t′(0) := ζ. Put
β′(1{x}) := β(x), β′(1) := 1, β′(0) := 2 (or any number > 1), ϕ(ζ) := 0, and let
X1, X2, . . . be the natural projections X∞ −→ X . Then

Φ(r1, r2, . . . ) : = E[r1(X1) · r2(X2) · . . . ] =

=
∏

β′(rj) · ϕ
(∑

t′(rj)
)

for all (r1, r2, . . . ) ∈ R(∞).
Denoting the semigroup operation in R(∞) by “⊕” we get for r(1), . . . , r(n) ∈

R(∞) and c1, . . . , cn ∈ IR

n∑

i,j=1

cicjΦ(r(i) ⊕ r(j)) = E

⎧
⎨
⎩

[
n∑

i=1

cir
(i)(X)

]2
⎫
⎬
⎭ ≥ 0

where r(X) := r1(X1) · r2(X2) · . . . for r ∈ R(∞), showing Φ to be positive
definite.

By the Main Theorem (i) ϕ is positive definite, and (ii) being fulfilled with
C = 1, γ ≡ 1, ϕ is α–bounded with

α(s) = inf

{(∏
β(xi)

)−1

|
∑

t(xi) = s

}
for s ∈ S



74 PAUL RESSEL [12]

and
α(ζ) = 0 (since β′(0) > 1) .

Also, the measure μ′ representing ϕ (on S′) concentrates on {σ′ ∈ (S′)α | β′ ·
(σ′ ◦ t′) is positive definite on R} =: V ′ and each σ′ ∈ V ′ is non-negative since
R is idempotent, so σ := σ′ |S≥ 0. Let μ be the image of μ′ under σ′ �−→ σ′ |S ,
and V := {σ′ |S | σ′ ∈ V ′}. Then

ϕ(s) =

∫

V ′
σ′(s)dμ′(σ′) =

∫

V

σ(s)dμ(σ)

for s ∈ S, and

P (x1, . . . , xn) = Φ
(
1{x1}, 1{x2}, . . . , 1{xn}, 1, 1, . . .

)
=

=

n∏

i=1

β(xi) · ϕ
(

n∑

i=1

t(xi)

)
=

=

∫

V

n∏

i=1

β(xi)σ(t(xi))dμ(σ) ,

leading to

1 =
∑

x1,... ,xn∈X
P (x1, . . . , xn) =

∫ [∑

x∈X
β(x)σ(t(x))

]n

dμ(σ)

for all n ∈ IN, which shows that μ is in fact concentrated on W .

The technicalities in the above proof were perhaps slightly more complicated
than expected, but then calculations with (Fourier, Laplace) transforms are often
easier than those with the distributions themselves . . . The following examples
will show, however, that the result is easy to apply.

Example 4.1. The original De Finetti theorem: here X = {0, 1}, S =
{(k, n) ∈ IN2

0 | k ≤ n} (cf. Section 1), t(x) = (x, 1), β ≡ 1. A general non–
negative character on S has the form σ(k, n) = pkqn−k with p, q ≥ 0. The
condition σ ◦ t ∈ M1

+(X ) translates into

σ(t(0)) + σ(t(1)) = σ(0, 1) + σ(1, 1) = q + p = 1

which gives the result.

Example 4.2. A slight extension of 4.1. We consider X = {0, 1, 2, . . . , k},
where k ∈ IN. Let again P ∈ M1

+(X∞) fulfill

P (x1, . . . , xn) = ϕn

(
n∑

i=1

xi

)
= ϕ

(
n∑

i=1

(xi, 1)

)
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as before. Then

P =

∫ 1

0

κ∞
p dμ(p)

with

κp({j}) = pjqk−j , q = q(p) from pk + pk−1q + . . . + pqk−1 + qk = 1 .

Example 4.3. A further “extension”: X = IN0, P as before. Then

P =

∫

]0,1]

γ∞
a dμ(a)

γa denoting the geometric distribution with parameter a, i.e. γa({k}) = a(1−a)k.

Example 4.4. X = IN0 as before, P ∈ M1
+(X∞). Then

P (x1, . . . , xn) =
1∏n

i=1 xi!
· ϕn

(
n∑

i=1

xi

)

iff

P =

∫ ∞

0

π∞
λ dμ(λ)

where πλ denotes the Poisson distribution with parameter λ. Here we have for
the first time the non–trivial function β(x) = 1/x!. The choice β(x) = 1/(x + 1)
leads instead to mixtures of

κu({x}) :=
1

− log(1− u)
· ux+1

x + 1
(0 < u < 1) and κ0 = ε0 ,

and β(x) =
(
x+r−1

r−1

)
would lead to negative binomials.

6 – Abstract results

De Finetti’s original result dealt with {0, 1}–valued random variables, and
was generalized by him a few years later to the real-valued case. In 1955 a con-
siderable further extension to arbitrary compact Hausdorff spaces was presented:

Theorem (Hewitt–Savage). Let X be a compact Hausdorff space. Then
P ∈ M1

+(X∞) is exchangeable iff

P =

∫
κ∞dμ(κ)

for some μ ∈ M1
+(M1

+(X )).
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[Here M1
+(X ) is by definition the set of all Radon probability measures on

X ; and M1
+(X ) is given the usual weak topology in which it is again compact.]

In the following proof we’ll use the notion of the free abelian semigroup

(without involution) over a set A, denoted IN
(A)
0 , and consisting of all functions

s : A −→ IN0 such that {s > 0} is finite, with the usual addition.

A character σ on IN
(A)
0 can be identified with a function τ : A −→ IR via

τ(a) = σ(δa), where δa := 1{a} ∈ IN
(A)
0 .

Proof. Let A := {f : X −→ [0, 1] | f is continuous}. Then for any finite
collection of f1, f2, . . . ∈ A

E
[∏

fj(Xj)
]

= ϕ
(∑

δfj

)

with ϕ being defined on IN
(A)
0 . By the Main Theorem, ϕ is c.p.d. (and bounded),

so

ϕ
(∑

δfj

)
=

∫ ∏
τ(fj)dμ(τ)

for some μ ∈ M1
+([0, 1]A).

An easy argument shows μ to be concentrated on

T := {τ : A −→ [0, 1] | τ(1) = 1, τ finitely additive}

(cf. [6], Theorem 2) , and each τ ∈ T extends uniquely to a positive linear
functional on C(X ), i.e. τ can be identified with a Radon probability measure
on X . Inserting this above gives the desired result.

Remark 1. If X was just a measurable space then with A := {f : X −→
[0, 1] | f measurable} one obtains

E
[∏

fj(Xj)
]

=

∫ ∏
τ(fj)dμ(τ), fj ∈ A ,

with μ ∈ M1
+(T ) and

T := {τ : A −→ [0, 1] | τ(1) = 1, τ additive}

which is a “weak” form of a general De Finetti type result.

Remark 2. As noted above, the Berg/Maserick theorem is an essential
ingredient in the proof of the Main Theorem. It can however also be deduced
from it: if ϕ : S −→ C is p.d. and α–bounded then Φ(s1, s2, . . . ) := ϕ(

∑
sj) is

p.d., and

| Φ(s1, s2, . . . ) |≤ C ·
∏

α(sj) .

With R = S, t = idS and β ≡ 1 the set W in the Main Theorem reduces to Sα.
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Remark 3. The Main Theorem can be looked at as a result on exchangeable
p.d. functions (here for simplicity we assume S without involution): let Φ :
R(∞) −→ IR be p.d. and exchangeable. This leads to a factorization of the form

Φ(r1, r2, . . . ) = ϕ
(∑

δrj

)

with ϕ : IN
(R�{0})
0 −→ IR (and δ0 := 0). Then ϕ is p.d., and if |Φ(r1, r2, . . . ) |≤

C · ∏ γ(rj) for some function γ : R −→ IR+, γ(0) = 1, and some C > 0, the
function ϕ is α-bounded with α(

∑
δrj ) :=

∏
γ(rj) – so α is even a character.

We get

ϕ
(∑

δrj

)
=

∫
σ

(∑
δrj

)
dμ(σ)

where μ is a Radon measure on all characters σ of IN
(R�{0})
0 with |σ| ≤ α. Since

such a σ can be identified with the function τ on R�{0} given by τ(r) := σ(δr),
completed by τ(0) := 1, we see that μ can be considered as a measure on

W := {τ ∈ P1(R) | |τ | ≤ γ} ,

leading to

Φ(r1, r2, . . . ) =

∫

W

∏
τ(rj)dμ(τ) ,

a mixture of tensor powers of p.d. functions on R.

Note that in the special case where Φ(r1, r2, . . . ) = ϕ(
∑

rj) depends on the
sum of the entries, the function ϕ : R −→ IR is automatically p.d., so that if
furthermore ϕ is a moment function (i.e. a mixture of characters) Φ would be
the corresponding mixture of infinite tensor powers of characters.

7 – A different point of view

Let’s take another look at the Main Theorem (with β ≡ 1) :

Φ(r1, r2, . . . ) = ϕ
(∑

t(rj)
)

and the conclusion Φ p.d. =⇒ ϕ p.d.
Put U := R(∞), ψ(r1, r2, . . . ) :=

∑
t(rj), then ψ : U −→ S is onto and the

theorem says: ϕ ◦ ψ p.d. =⇒ ϕ p.d.

What is the crucial property of ψ enabling this conclusion?
The answer looks complicated:

∣∣∣∣∣∣

∀ finite subsets {s1, . . . , sn} ⊆ S and {u1, . . . , um} ⊆ U and
∀ N ∈ IN ∃ {ujpα | j ≤ n, p ≤ m, α ≤ N} ⊆ U such that
ψ(ujpα + u−

kqβ) = sj + s−k + ψ(up + u−
q ) for (j, p, α) = (k, q, β)
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If this is fulfilled, and ψ(0) = 0, we call ψ strongly almost additive.
This holds for example if ψ is a homomorphism and onto, but this case is

not too interesting.
In this more general framework we shall deal only with bounded functions,

being no restriction for the applications we have in mind.

Theorem. Let U, S be two semigroups, ψ : U −→ S be strongly almost
additive, and ϕ : S −→ C bounded. Then

ϕ ◦ ψ p.d. =⇒ ϕ p.d.

and ϕ is in fact a mixture of characters in

Ŝψ := {σ ∈ Ŝ | σ ◦ ψ p.d.}

(n.b.: a compact subsemigroup of Ŝ).
Furthermore:

{ϕ : S −→ C | ϕ bounded, ϕ(0) = 1, ϕ ◦ ψ p.d.}

is a Bauer simplex with Ŝψ as extreme points.

Cf. [7], Theorem 1, where a slightly more general result is shown.

We shall apply this theorem to socalled exchangeable random par-
titions of the positive integers.

V = {v1, v2, . . . } is a partition of IN :⇐⇒ vj = ∅, vj ∩ vk = ∅ for j = k, and⋃
j vj = IN.

Examples are {{i} | i ∈ IN} or {IN}, the two “extreme” partitions of IN.
Let P denote the set of all partitions of IN. Any V ∈ P can be identified with

the equivalence relation E(V ) :=
⋃

v∈V v × v ⊆ IN2 or with 1E(V ) ∈ {0, 1}IN2

,
this last identification defining the (natural) topology on P, turning it into a
compact metric space.

For A ⊆ IN and V ∈ P we write

A � V :⇐⇒ ∃ v ∈ V with A ⊆ v

(that is: A is not separated by the classes of V ).
For U, V ∈ P we define

U ≤ V :⇐⇒ u � V ∀u ∈ U [⇐⇒ E(U) ⊆ E(V )] .

Every subset of P has a unique minimal element w.r. to “≤ ”, and for a family A
of subsets of IN there is a smallest W ∈ P such that A � W for each A ∈ A. In
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the particular case of A = U ∪V for U, V ∈ P we write U ∨V for this minimum,
and call it (of course) their maximum.

The order intervals PU := {W ∈ P | U ≤ W} fulfill PU ∩ PV = PU∨V . For
U ∈ P the classes u ∈ U with |u| ≥ 2 are called non-trivial, their union 〈U〉 is
called the support of U . Obviously 〈U ∨ V 〉 ⊆ 〈U〉 ∪ 〈V 〉, so that

U := {U ∈ P | 〈U〉 is finite}
is a subsemigroup w.r. to “∨ ”, with neutral element U0 = {{j} | j ∈ IN}.
The order intervals PU for U ∈ U are clopen and generate the Borel sets of P.
Probability measures on P will be called random partitions.

Theorem. ϕ : U −→ IR is p.d. and normalized (i.e. ϕ(U0) = 1) ⇐⇒ ∃
(unique) random partition μ ∈ M1

+(P) with

ϕ(U) = μ(PU ) ∀U ∈ U
[cf. [4], Theorem 1].

Note that the easy direction “⇐=” follows immediately from

n∑

j,k=1

cjckϕ(Uj ∨ Uk) =

∫ ⎛
⎝

n∑

j=1

cj1PUj

⎞
⎠

2

dμ ≥ 0 .

A permutation π of IN induces π : P −→ P, π(V ) := {π(v) | v ∈ V }, and π is
continuous. π is finite iff {i ∈ IN | π(i) = i} is finite.

Definition. μ ∈ M1
+(P) is exchangeable :⇐⇒ μπ = μ ∀ finite π.

Now μπ(PU ) = μ(P
π−1(U)

), so μ is exchangeable iff

μ(PU ) = μ(PV )

∀U, V ∈ U with |{u ∈ U | |u| = k}) = |{v ∈ V | |v| = k}| for k = 2, 3, . . . iff
μ(PU ) = ϕ ◦ g(U) for some ϕ defined on the semigroup

S := IN
({2,3,... })
0 ,

with g(U) :=
∑

u∈U
|u|≥2

δ|u|.

This function g : U −→ S is in fact strongly almost additive, cf. [4],
Lemma 5.

Theorem (Kingman). M1,e
+ (P) := {μ ∈ M1

+(P)|μ exchangeable} is a
Bauer simplex whose extreme points are precisely those μ for which

μ(PU ) = σ(g(U)), U ∈ U with σ ∈ Ŝ+ .
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Such a character σ is given by a sequence (t2, t3, . . . ) in [0, 1], and we see
that

tn = μ(P{{1,... ,n},{n+1},{n+2},... }), n ≥ 2

is the μ–probability for {1, . . . , n} not getting separated. For general U ∈ U the
multiplicativity of σ is reflected in a certain pattern of independence:

μ(PU ) =
∏

u∈U
|u|≥2

t|u| .

Kingman ([5]) showed that there exists a sequence x = (x1, x2, . . . ) with xi ≥
0,

∑
xi ≤ 1, such that

tn =

∞∑

i=1

xn
i for n = 2, 3, . . .

is the associated sequence of power sums.
Using x, there is in fact a natural way to describe this distribution μ : put

x0 := 1−∑∞
i=1 xi and let X1, X2, . . . be iid with P (X1 = i) = xi, i ≥ 0. Then

G := {{j ∈ IN | Xj = c} | c ∈ IN} ∪ {{i} | Xi = 0}� {∅}

is P–valued and has μ as its distribution.

Acknowledgements

The author is very grateful to the organizing committee of the Bruno de
Finetti Centenary Conference (Rome, November 2006), in particular to Professor
Fabio Spizzichino, for the invitation to give at this highly interesting congress,
taking place in the fascinating “Eternal City”, a talk of which the present paper
is an elaborate version.

Many thanks are due also to the referee(s) for a particularly thorough revi-
sion of my first draft, resulting in many improvements.

REFERENCES

[1] C. Berg – J. P. R. Christensen – P. Ressel: Harmonic Analysis on Semi-
groups, Springer–Verlag, Berlin/Heidelberg/New York, 1984.

[2] C. Berg – P. H. Maserick: Exponentially bounded positive definite functions,
Illinois J. Math., 28 (1984), 162–179.

[3] B. De Finetti: Funzione caratteristica di un fenomeno aleatorio, Memorie della
R. Accademia Nazionale dei Lincei, V (IV) (1930), 86–133.



[19] Exchangeability and semigroups 81

[4] U. Hirth – P. Ressel: Random partitions by semigroup methods, Semigroup
Forum, 59 (1999), 126–140.

[5] J. F. C. Kingman: The representation of partition structures, J. London Math.
Soc., 18 (1978), 374–380.

[6] P. Ressel: De Finetti–type theorems: an analytical approach, Ann. Prob., 13
(1985), 898–922.

[7] P. Ressel: Integral representations for distributions of symmetric stochastic pro-
cesses, Prob. Th. Rel. Fields, 79 (1988), 451–467.

[8] I. J. Schoenberg: Metric spaces and positive definite functions, Trans. Amer.
Math. Soc., 44 (1938), 522–536.

Lavoro pervenuto alla redazione il 8 ottobre 2007
ed accettato per la pubblicazione il 12 ottobre 2007.

Bozze licenziate il 9 aprile 2008

INDIRIZZO DELL’AUTORE:

Paul Ressel – Universität Eichstätt – Osten str. 26-28 D 85071 Eichstatt, Germany
E-mail: paul.ressel@ku-eichstaett.de


