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Exchangeable Rasch matrices

STEFFEN L. LAURITZEN

Abstract: This article is concerned with binary random matrices that are ex-
changeable with the probability of any finite submatrix only depending on its row- and
column sums. We describe basic representations of such matrices both in the case of
full row- and column exchangeability and the case of weak exchangeability. Finally the
results are interpreted in terms of random graphs with exchangeable labels and with a
view towards their potential application to social network analysis.

1 – Introduction

Let us initially consider the sequential case and recall that a sequence of
random variables X1, . . . , Xn, . . . is said to be exchangeable if for all n and
π ∈ S(n) it holds that

X1, . . . , Xn
D
= Xπ(1), . . . , Xπ(n)

where S(n) is the group of permutations of {1, . . . , n} and
D
= denotes equality in

distribution; i.e. the distribution of an exchangeable sequence of random variables
is unchanged whenever the order of any finite number of them is rearranged.

de Finetti’s theorem for binary sequences [1] then says that a binary sequence
X1, . . . , Xn, . . . is exchangeable if and only if there exists a distribution function
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F on [0, 1] such that for all n

p(x1, . . . , xn) =

∫ 1

0

θtn(1− θ)n−tn dF (θ) ,

where tn =
∑n

i=1 xi. Further, the limiting frequency Y = limn→∞
∑n

i=1 Xi/n
exists and F is the distribution function of this limit. Conditionally on Y = θ,
the sequence X1, . . . , Xn, . . . are independent and identically distributed with
expectation θ.

An alternative formulation of exchangeability focuses on its relationship to
sufficiency [2], [3], [4]. A statistic t(x) is summarizing for p [5] if for some φ

p(x) = φ(t(x)) .

Note that if t is summarizing for all p in a family P of distributions, it is sufficient
for P.

For binary variables, X1, . . . , Xn, . . . is exchangeable if and only if for all n

P (X1 = x1, . . . , Xn = xn) = φn

(
n∑

i=1

xi

)

i.e., if and only if tn =
∑n

i=1 xi is summarizing for its distribution. This is due
to the fact that tn =

∑n
i=1 xi is the maximal invariant for the action of the

permutation group S(n) on the binary sequences of length n and S(n) acts tran-
sitively on the sequences with given value of tn, so that any two such sequences
are permutations of each other.

The present paper is investigating the interplay between these ideas in the
case of random binary matrices where the situation is somewhat more complex.

The next section is initially giving an overview of results in [6] and the reader
is referred to this paper for details not described here. Some of the considerations
of [6] are further extended to the case of weakly exchangeable arrays. The last
section touches upon the relation of these to random graphs and social network
analysis.

2 – Exchangeable binary matrices

2.1 – Random Rasch matrices

The Rasch model [7] was originally developed to analyse data from intelli-
gence tests where Xij indicates a binary outcome when problem i was attempted
by person j, Xij = 1 denoting success and Xij = 0 denoting failure. The model
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is described by ‘easinesses’ α = (αi)i=1,... and ‘abilities’ β = (βj)j=1,... so that
binary responses Xij are conditionally independent given (α, β) and

P (Xij = 1 |α, β) = 1− P (Xij = 0 |α, β) =
αiβj

1 + αiβj
.

The model is a potential model for a large variety of phenomena such as, for
example, a batter i getting a hit against a pitcher j in baseball matches [8] or
the occurrence of species i on island j [9]; see for example [10] for a survey.

A random Rasch matrix has (αi) i.i.d. with distribution A, (βj) i.i.d. with
distribution B, the entire sequences α and β also being independent of each
other. Such a model would be relevant if each of batters and pitchers were a
priori exchangeable. An example of a random Rasch matrix is displayed in fig. 1.

Fig. 1: Two random matrices, each of dimension 100 × 100. The matrix to the left is a
random Rasch matrix and thus RCES whereas the matrix to the right is RCE but not RCS.
The two matrices have the same overall mean equal to 0.5.

2.2 – Exchangeable and summarized matrices

Recall that a doubly infinite matrix X = {Xij}∞,∞
1,1 is row–column exchange-

able [11] (an RCE-matrix) if for all m, n, π ∈ S(m), ρ ∈ S(n)

{Xij}m,n
1,1

D
= {Xπ(i)ρ(j)}m,n

1,1 ,

i.e. if the distribution is unchanged when rows or columns are permuted. A
random Rasch matrix is clearly RCE.
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A doubly infinite (binary) matrix X = {Xij}∞,∞
1,1 is said to be row-column

summarized (RCS-matrix) if for all m, n

p({xij}m,n
1,1 ) = φm,n{r1, . . . , rm; c1, . . . , cn} ,

where ri =
∑

j xij and cj =
∑

j xij are the row- and column sums.
In contrast to the sequential case, there is no simple summarizing statistic

for an RCE matrix. RCE-matrices are generally not RCS-matrices and vice
versa because the group GRC of row- and column permutations does not act
transitively on matrices with fixed row- and column sums. To see the latter,
consider

M1 =

⎧
⎨
⎩

0 0 1
1 0 0
0 1 1

⎫
⎬
⎭ , M2 =

⎧
⎨
⎩

0 0 1
0 0 1
1 1 0

⎫
⎬
⎭ .

The matrices M1 and M2 have identical row- and column sums. However, their
determinants are different: |detM1| = 1 whereas |detM2| = 0. Since the abso-
lute value of the determinant is invariant under row- and column permutations,
it follows that no combination of such permutations will ever modify M1 to
become M2.

If a matrix is both RCE and RCS, we say that it is an RCES-matrix. Ran-
dom Rasch matrices are RCES matrices since, conditionally on (α, β), we have

(1) p({xij}m,n
1,1 |α, β) =

m∏

i=1

n∏

j=1

(αiβj)
xij

1 + αiβj
=

∏m
i=1 αri

i

∏n
j=1 β

cj

j∏m
i=1

∏n
j=1(1 + αiβj)

,

which only depends on row- and column sums, implying that this also holds after
taking expectation w.r.t. (α, β).

The difference between an RCE and RCS matrix is not always immediately
visible. Figure 1 displays a random Rasch matrix next to an RCE matrix which
is not RCS, yet they are not easily distinguishable.

2.3 – de Finetti’s theorem for RCE matrices

The set of distributions PRCE of binary RCE matrices is a convex simplex.
In particular, every P ∈ PRCE has a unique representation as a mixture of
extreme points ERCE of PRCE, i.e.

P (A) =

∫

E
Q(A)μP (Q) .

The same holds if RCE is replaced by RCS or RCES. In addition, it can be
shown that

ERCES = ERCE ∩ PRCS .
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The extreme measures are particularly simple. Aldous [11] shows that for any
P ∈ PRCE the following are equivalent:

• P ∈ ERCE;
• the tail σ-field T is trivial;
• the corresponding RCE-matrix X is dissociated.

Here the tail T is

T =
∞⋂

n=1

σ{Xij ,min(i, j) ≥ n}

and a matrix is dissociated if for all A1, A2, B1, B2 with A1 ∩A2 = B1 ∩B2 = ∅

{Xij}i∈A1,j∈B1
⊥⊥ {Xij}i∈A2,j∈B2

.

Following [12], a binary doubly infinite random matrix X is a φ-matrix if Xij

are independent given U = (Ui)i=1,... and V = (Vj)j=1,... where Ui and Vj are
independent and uniform on (0, 1) and

P (Xij = 1 |U = u, V = v) = φ(ui, vj) .

In [11], [12], [13] it is shown that distributions of φ-matrices are the extreme
points of PRCE, i.e. binary RCE matrices are mixtures of φ-matrices. Different
φ may in general have identical distributions of their φ-matrix. Clearly, if (g, h)
is a pair of measure-preserving transformations of the unit interval into itself,
φ̃(u, v) = φ(g(u), h(v)) yields the same distribution of X as φ. In fact, φ is exactly
determined up to such a pair of measure-preserving transformations [14].

2.4 – Rasch type φ-matrices

As shown in [6], if a φ-matrix is also RCS, then

P

({
1 0
0 1

} ∣∣ U = u, V = v

)
= P

({
0 1
1 0

} ∣∣ U = u, V = v

)

which holds if and only if φ is of Rasch type, i.e. if for all u, v, u∗, v∗:

(2) φ(u, v)φ̄(u, v∗)φ̄(u∗, v)φ(u∗, v∗) = φ̄(u, v)φ(u, v∗)φ(u∗, v)φ̄(u∗, v∗) ,

where we have let φ̄ = 1− φ. This is the Rasch functional equation [15].
Although RCE matrices have no simple summarizing statistics, RCES-

matrices do: they are summarized by the empirical distributions of row- and
column sums:

tmn =

⎛
⎝

m∑

i=1

δri ,

n∑

j=1

δcj

⎞
⎠ ,
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where δs is the measure with unit mass in s. This is a semigroup statistic,
and RCES matrices can also be represented via mixtures of characters on the
image semigroup (Ressel 2002, personal communication). General solutions of
the Rasch functional equation thus represent characters of the image semigroup
of the empirical row- and column sum measures.

Lauritzen (2003) [6] shows that any RCES matrix is a mixture of Rasch type
φ-matrices and also that any regular RCES matrix is a mixture of random Rasch
matrices. Here, a random binary matrix is said to be regular if

0 < P (Xij = 1 | S) < 1 for all i, j ,

where the shell σ-algebra S is

S =
∞⋂

n=1

σ{Xij ,max(i, j) ≥ n} .

Regular solutions (0 < φ < 1) to the Rasch functional equation are all of the
form

φ(u, v) =
a(u)b(v)

1 + a(u)b(v)
,

where a and b are positive real-valued functions on the unit interval, leading to
random Rasch models.

The matrix to the right in fig. 1 is a φ-matrix with φ(u, v) = (u + v)/2.
Since this does not satisfy Rasch’s functional equation it is not RCS. The matrix
to the left is similarly a Rasch matrix with φ = 6.49186uv/(1+6.49186uv). The
two matrices have the same overall mean equal to 0.5.

There are interesting non-regular solutions to the Rasch equation, for ex-
ample

φ(u, v) = χ{u≤v} =

{
1 if u ≤ v

0 otherwise.

A corresponding φ-matrix is displayed in fig. 2. But there are also solutions such
as, for example,

φ(u, v) =

⎧
⎨
⎩

a(u)b(v)

1 + a(u)b(v)
if 1/3 < u, v < 2/3

χ{u≤v} otherwise.

Both of these non-regular solutions imply the existence of incomparable groups,
so that some questions are always answered correctly for a subgroup of the
persons and some questions never answered by some. More complex variants of
the latter example lead to Cantor–Rasch matrices, see [6] for further details.
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Fig. 2: The left-hand matrix is a non-regular RCES φ-matrix with columns φ(u, v) =
χ{u≤v}. The matrix on the right-hand side is a φ-matrix with φ(u, v) = χ{|u−v|≤1−1/

√
2}. It

is RCE but not RCS. The two matrices have the same overall mean equal to 0.5.

The difference between RCE and RCES can be striking if the corresponding
matrix is manipulated by sorting the rows and columns by their row- and column
sums, as shown in fig. 3, where both diagrams have been obtained from fig. 2 in
this way.

Fig. 3: The matrices are obtained from those displayed in fig. 2 by sorting rows and
columns according to their sum. The left-hand matrix was a non-regular RCES matrix. The
right-hand matrix was RCE but not RCS.
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2.5 – WE matrices

A random matrix is said to be weakly exchangeable [16], [17] (a WE-matrix)
if for all n and π ∈ S(n)

{Xij}n,n
1,1

D
= {Xπ(i)π(j)}n,n

1,1 ,

i.e. if the distribution of X is unchanged when rows and columns are permuted
using the same permutation for rows and columns. Similarly we say that a doubly
infinite (binary) matrix X = {Xij}∞,∞

1,1 is weakly summarized (WS-matrix) if for
all n

p({xij}n,n
1,1 ) = φn{r1 + c1, . . . , rn + cn} ,

where ri =
∑

j xij and cj =
∑

j xij are the row- and column sums as before.
Again WE-matrices are generally not WS-matrices and vice versa. No joint

permutation of rows and columns take M3 into M4, where

M3 =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 0 0 0
0 0 0 0 1 1
0 0 0 1 0 1
0 0 0 1 1 0

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, M4 =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

have identical row- and column sums, since detM3 = 4 whereas det M4 = −4
and simultaneous permutation of rows and columns also preserves the sign of
the determinant.

If a matrix is both WE and WS, it is a WES-matrix. If in addition, {Xij =
Xji}, i.e. the matrix is symmetric, we may consider SWE, SWS, SWES matrices,
etc. Note that one could also consider the weaker distributional symmetry by

assuming X
D
= X�, i.e. that transposition of X does not alter the distribution

of X. In the following we shall mostly restrict attention to the fully symmetric
case and write X{ij} = Xij = Xji.

2.6 – de Finetti’s theorem for SWE matrices

A symmetric binary doubly infinite random matrix X is a ψ-matrix if X{ij}
are all independent given U = (Ui)i=1,... where Ui are mutually independent and
uniform on (0, 1) and

P (X{ij} = 1 |U = u) = ψ(ui, uj) .

Reformulating results in [11] yields that binary SWE matrices are mixtures of
ψ-matrices. Exactly as in the case of RCES matrices, it is easy to show that

ESWES = ESWE ∩ PSWS .
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implying that SWES matrices are mixtures of ψ-matrices where ψ satisfies the
Rasch functional equation. The latter follows from the fact that we then must
have for all y, z ∈ {0, 1} that

P

⎛
⎜⎝

⎧
⎪⎨
⎪⎩

0 y 0 1
y 0 1 0
0 1 0 z
1 0 z 0

⎫
⎪⎬
⎪⎭

∣∣ U = u

⎞
⎟⎠ = P

⎛
⎜⎝

⎧
⎪⎨
⎪⎩

0 y 1 0
y 0 0 1
1 0 0 z
0 1 z 0

⎫
⎪⎬
⎪⎭

∣∣ U = u

⎞
⎟⎠ .

Hence regular SWES ψ-matrices have the form

ψ(u, v) =
a(u)a(v)

1 + a(u)a(v)
.

There are also non-regular solutions of interest in the symmetric case. For ex-
ample

(3) ψ(u, v) =

⎧
⎪⎪⎨
⎪⎪⎩

0 if u < 1/3 or v < 1/3

a(u)a(v)

1 + a(u)a(v)
if 1/3 < u, v < 2/3

1 otherwise.

It seems complex to give a complete description of all symmetric solutions to the
Rasch functional equation.

3 – Random graphs

3.1 – Exchangeable matrices as random graphs

The results described in the previous sections become particularly relevant
when the binary matrix X is considered to represent a random graph. This
representation can be made in a number of ways. If we consider the rows and
colums as labels of two different sets of vertices, an undirected random bipartite
graph can be defined from X by ignoring the diagonal and placing an edge
between i and j if and only if Xij = 1.

In this interpretation, an RCE-matrix corresponds to a random bipartite
graph with exchangeable labels within each group of graph vertices. Similarly,
an RCS-matrix is one where any two bipartite graphs with the same vertex
degree for every vertex are equally likely. An RCES matrix represents one where
the two distributions of vertex degrees determine the probability of the graph.

If we consider the row-and column numbers to label the same vertex set,
the matrix X represents a random (directed) graph by placing a directed edge
from i to j if and only if Xij = 1. A WE-matrix then represents a random graph
with exchangeable labels.
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If the matrix X is symmetric it naturally represents a random undirected
graph, again by placing an edge between i and j if and only if Xij = 1. An SWE-
matrix then represents an undirected random graph with exchangeable labels,
an SWS-matrix represents a random graph with probability only depending on
its vertex degrees, and an SWES matrix one with probability only depending on
the distribution of vertex degrees.

Examples of WES and SWES graphs with non-regular ψ-matrices are dis-
played in fig. 4.

Fig. 4: The graph on the left-hand side is a non-regular SWES graph with ψ-matrix given
by (3). The graph on the right-hand side has a ψ-matrix with φ(u, v) = χ{|u−v|≤1−1/

√
2}. It

is SWE but not SWES. Both graphs have 25 vertices.

3.2 – Social network analysis

Random graphs with exchangeability properties form natural models for
social networks [18]. Frank and Strauss [19] consider Markov graphs which
are random graphs with

(4) X{i,j} ⊥⊥ X{k,l} |XE\{{i,j},{k,l}}

whenever all indices i, j, k, l are different. Here E denotes the edges in the com-
plete graph on {1, . . . , n}. They show that weakly exchangeable Markov graphs
on n vertices all have the form

p({xij}n,n
1,1 ) ∝ exp

{
τnt(x) +

n−1∑

k=1

ηnkνk(x)

}

where τn and ηnk are arbitrary real constants, x = {xij}n,n
1,1 , t(x) is the number

of triangles in x, and νk(x) is the number of vertices in x of degree k. Such
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Markov graphs are also SWE, but not extendable as such unless τn = 0 in which
case they are also SWES. If τn = 0 and n > 5, they are not SWES.

Typically, exchangeable graphs generated by ψ-matrices differ from Markov
graphs in that they are dissociated, hence marginally rather than conditionally
independent:

(5) X{i,j} ⊥⊥ X{k,l}

whenever all indices i, j, k, l are different. In fact infinite weakly exchangeable
Markov graphs are Bernoulli graphs because the conjunction of (4) and (5) im-
plies complete independence.

It seems unfortunate that random induced subgraph of Markov graphs are
not Markov themselves and it could be of interest to develop alternative models
for social networks that preserve their structure when sampling subgraphs based
on ψ-matrix models. This holds, for example, for the latent space models [20]
and latent position cluster models [21], both of which are instances of ψ-matrix
models.

For example, one could consider exchangeable random graphs which for
every n also are summarized by the number of triangles and the empirical dis-
tribution of vertex degrees

(6) p({xij}n,n
1,1 ) = fn

{
t(x),

n∑

k=1

δrk(x)

}
,

or similar graphs with summarizing statistics being counts of specific types of
subgraph.

Characterizing exchangeable solutions to (6) or functions involving similar
statistics in general use in social network analysis, could establish an interesting
class of alternatives to the generalizations of Markov graphs known as exponen-
tial random graph models [22], [23], [24].
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